Phosphorus chemical speciation in surface sediments from Cananéia – a non-impacted estuary

Authors

  • Gláucia Bueno Benedetti Berbel
  • Vitor Gonsalez Chiozzini
  • Elisabete de Santis Braga

DOI:

https://doi.org/10.1590/

Keywords:

Phosphorus speciation, Organic phosphorus, Organic carbon, CIELC, Autochthonous and allochthonous origins

Abstract

Phosphorus (P) is found in estuarine sediments, which belong to the biogeochemical cycle of this element
in aquatic environments. This study examines the distribution of P in different chemical speciations in
surface sediments at 14 stations in the southern region of the Cananéia-Iguape Estuarine-Lagoon Complex.
P chemical fractions were determined using a sequential extraction method of fractional extraction that
measures five P forms: (i) exchangeable P (Pexch), loosely adsorbed or exchangeable; (ii) P-Fe (P-Fe),
P-bound Fe oxyhydroxides; (iii) authigenic P (P-CFAP), including carbonate fluorapatite, biogenic apatite
(fish debris), and P-bound calcium carbonate; (iv) detrital P (P-FAP), igneous or metamorphic apatites;
(v) organic P (Porg); and (vi) total P (Ptotal). The P fractions associated with the sedimentary properties of
grain size and organic content can be used as a proxy for understanding environmental conditions. The
average percentage of each P fraction of the surface sediments in this region follows the sequence:
P-Fe (38%) > Porg (32%) > Pexch (14%) > P-FAP (9%) > P-CFAP (7%). In all stations, P-Fe and Porg were the
main fractions of P in the sediments. CaCO3
 accounted for less than 30% of it, essentially indicating lithoclastic
characteristics, whereas organic carbon (Corg) showed values below 2%. Finally, Ptotal showed concentrations
that are consistent with an unpolluted environment, with values below 16 µmol g-1.

Downloads

Download data is not yet available.

References

Acharya, S. S., Panigrahi, M. K., Kurian, J., Gupta,

A. K. & Tripathy, S. 2016. Speciation of phosphorus in

the continental shelf sediments in the Eastern Arabian

Sea. Continental. Shelf Research, 115, 65–75. DOI:

https://doi.org/10.1016/j.csr. 2016.01.0

Aidar, E. 1980. Alguns aspectos da autoecologia de

Skeletonema costatum (Greville Cleve) de Cananéia

(25º S e 48º W) com Especial Referência ao Fator

Salinidade. PhD Thesis. IOUSP. 2 vols.

Amaral, T. F., Miyasaki, F. H., Braga, E. S. &

Azevedo, J. S. 2021. Temporal and spatial toxicogenetic

damage in estuarine catfish Cathorops spixii from a

marine protected area with evidence of anthropogenic

influences. Science of Total Environment, 799, 149409.

DOI: https://doi.org/10.1016/j.scitotenv.2021.149409

Andersen, J. H., Conley, D. J. 2009. Eutrophication in

Coastal Ecosystems. Towards better understanding and

management strategies. Hydrobiology, 629, 1-4. DOI:

https://doi.org/10.1007/978-90-481-3385-7_1

Aspila, K. I., Agemian, H. & Chau, A. S. Y. 1976. A semiautomatic method for determination of inorganic,

organic and total phosphate in sediments. Analyst, 101,

–197. DOI: https://doi.org/10.1039/AN9760100187

Azevedo, J. S., Serafim, A., Company, R., Braga, E. S.,

Favaro, D. I. & Bebianno, M. J. 2009. Biomarkers of

exposure to metal contamination and lipid peroxidation

in the benthic fish Cathorops spixii from two estuaries in

South America, Brazil. Ecotoxicology, 18, 1001–1010.

DOI: https://doi.org/10.1007/s10646-009-0370-x

Barcellos, R. L., Berbel, G. B. B. Braga, E. S. &

Furtado, V. V. 2005. Distribuição e características

do fósforo sedimentar do sistema estuarino Lagunar

Cananéia – Iguape, Estado de São Paulo, Brasil.

Geochimica Brasiliensis, 19, 22-36.

Barrera-Alba, J. J., Gianesella, S. M. F., Saldanha-Corrêa, F.

M. P. & Moser, G. A. O. 2007. Influence of an Artificial

Channel in a Well-Preserved Sub-Tropical Estuary.

Journal of Coastal Research, 50, 1137-1141. DOI:

https://doi.org/10.2112/JCR-SI50-206.1

Berbel, G. B. B. 2008. Estudo do fósforo sedimentar e

de suas especiações químicas em dois sistemas

costeiros e Plataforma Continental Sudeste (Brasil) e

Baía do Almirantado (região antártica) considerando

suas relações biogeoquímicas. 2008. PhD Thesis -

Instituto Oceanográfico, University of São Paulo, São

Paulo. DOI: https://doi.org/10.11606/T.21.2008.tde25062008-152427

Berbel, G. B. B. & Braga, E. 2014. Phosphorus in Antarctic

surface marine sediments – chemical speciation in

Admiralty Bay. Antarctic Science, 26, 281–289. DOI:

https://doi.org/10.1017/S0954102013000552

Berbel, G. B. B., Favaro, D. I. T. & Braga, E. S. 2015.

Impact of harbour, industry and sewage on the

phosphorus geochemistry of a subtropical estuary in

Brazil. Marine Pollution Bulletin, 93, 44-52. DOI: https://

doi.org/10.1016/j.marpolbul.2015.02.016

Bérgamo, A. L. 2000. Características de hidrografia,

circulação e transporte de sal: Barra de Cananéia, sul

do Mar de Cananaéia e Baía de Trapandé. Dissertação

de Mestrado. São Paulo. IOUSP. 210p.

Berner, R. A. 1990. Atmospheric Carbon Dioxide Levels

Over Phanerozoic Time. Science, 249, 1382-1386. DOI:

https://doi.org/10.1126/science.249.4975.1382

Braga, E. S. 1995. Nutrientes dissolvidos e produção

primária do fitoplâncton em dois sistemas costeiros

do estado de São Paulo. Instituto Oceanográfico,

Universidade de São Paulo, São Paulo. PhD thesis. V1.

pp. V2. 137pp.

Braga, E. S., Bonetti, C. V. D. H., Burone, L. & Bonetti-Filho,

J. 2000. Eutrophication and bacterial pollution caused by

industrial and domestic wastes at the Baixada Santista

Estuarine System - Brazil. Marine Pollution Bulletin,

, 165-173. DOI: https://doi.org/10.1016/S0025-

X(99)00199-X

Carreira, R. S. & Wagener, L. R. 1998. Speciation of Sewage

Derived Phosphorus in Coastal Sediments form Rio de

Janeiro, Brazil. Marine Pollution Bulletin, 36, 818-827.

DOI: https://doi.org/10.1016/S0025-326X(98)00062-9

CETESB - COMPANHIA AMBIENTAL DO ESTADO DE

SÃO PAULO. 2007. Relatório da qualidade das águas

litorâneas no Estado de São Paulo. Balneabilidade das

praias, 2006. Available in: http://www.cetesb.sp.gov.br.

Acess in: 2007 Sep.

Chuang, P., Dale, A. W., Heuer, V. B., Hinrichs, K. &

Zabel, M. 2021. Coupling of dissolved organic carbon,

Phosphorus speciation in Cananéia estuarine sediments

Ocean and Coastal Research 2025, v73:e25014 13

Berbel et al.

sulfur and iron cycling in Black Sea sediments over the

Holocene and the late Pleistocene: Insights from an

empirical dynamic model. Geochimica et Cosmochimica

Acta, 307(15), 302-318. DOI: https://doi.org/10.1016/j.

gca.2021.04.032

CIIAGRO - CENTRO INTEGRADO DE INFORMAÇÕES

AGROMETEOROLÓGICAS. Available in http://ciiagro.

org.br/cpmensal. Access in: 2022 nov.

Coelho, J. P., Flindt, M. R., Jensen, H. S., Lillebø,

A. I. & Pardal, M. A. 2004. Phosphorus speciation

and availability in intertidal sediments of a temperate

estuary:relation to eutrophication and annual P-fluxes.

Estuarine. Coastal. Shelf Science, 61, 583–590. DOI:

https://doi.org/10.1016/j.ecss.2004.07.001

DAEE, 2006. Dados hidrográficos e pluviométricos dos

anos de 1937-2004. Available in: www.daee.sp gov.br.

Daines, S. J., Mills, B. J. W. & Lenton, T. M. 2017.

Atmospheric oxygen regulation at low Proterozoic levels

by incomplete oxidative weathering of sedimentary

organic carbon. Nature Communications, 14379. DOI:

https://doi.org/10.1038/ncomms14379

Diegues, A. C. 1987. Conservação e desenvolvimento

sustentado de ecossistemas litorâneos no Brasil. In:

Simpósio sobre Ecossistemas da Costa Sul e Sudeste

Brasileira. Cananéia. Anais. São Paulo, ACIESP, 3,

-243.

Fischer, W. R & Schwertmann, U. 1975. The formation of

hematitefrom amorphous iron (III) hydroxide. Clay and

Clays Minerals, 23, 33-37. DOI: https://doi.org/10.1346/

CCMN.1975.0230105

Grasshoff, K., Ehrhardt, M. & Kremeling, K. 1983. Methods

of Seawater Analysis, 2nd ed. Weinhein, Verlag

Chemie. 419p.

Gunnars, A., Blomqvist, S. & Martinsson, C. 2004.

Inorganic formation of apatite in brackish seawater

from the Baltic Sea: an experimental approach. Marine

Chemistry, 91, 15–26. DOI: https://doi.org/10.1016/j.

marchem.2004.01.008

Hao, Y-Y., Zhu, Z-Y., Fang, F-T., Novak, T., Cankovi, M.,

Hrusti, E., Ljubeši, Z., Li, M., Du, J-Z., Zhang, R-F. &

Gašparovic, B. 2021 Tracing Nutrients and Organic

Matter Changes in Eutrophic Wenchang (China) and

Oligotrophic Krka (Croatia) Estuaries: A Comparative

Study. Frontiers Marine Science, 8, 663601. DOI:

https://doi.org/10.3389/fmars.2021.66360

Huerta-Diaz, M. A., TovaZ–Sánchez, A., Fillipelli, G.,

Latimer, J. & Sañudo-Wilhelmy, S. A. 2005. A

combined CDB- MAGIC method for the determination

of phosphorus associated with sedimentary ironoxihydroxides. Applied Geochemistry, 20, 2108–2115.

DOI: https://doi.org/10.1016/j.apgeochem.2005.07.009

Hughes, B. B, Haskins, J. C. & Wasson, E. 2011. Identifying

factors that influence expression of eutrophication in a

central California estuary. Marine Ecology Progress

Series, 439, 31-43. DOI: https://doi.org/10.3354/

meps09295

Ingram, R. L. 1971. Sieve Analysis. In: CARVER, R. E. (Ed.)

Procedures in Sedimentary Petrology. London: Wiley

Interscience. p. 9-69.

Jilbert, T. & Slomp, C. P., 2013. Iron and manganese shuttles

control the formation of authigenic phosphorus minerals

in the euxinic basins of the Baltic Sea. Geochimica

et Cosmochimica Acta, 107, 155–169. DOI: https://

doi.org/10.1016/j.gca.2013.01.005

Larssoneur, C., Bouysse, P. & Aufret, J. P. 1982. The

Superficial Sediments of the English Channel and its

Western Approach. Sedimentology, 851-864. DOI:

https://doi.org/10.1111/j.1365-3091.1982.tb00088.x

Liu, S. M., Zhang, J. & Li, D. J., 2004. Phosphorus cycling

in sediments of the Bohai and Yellow Seas. Estuarine,

Coastal and Shelf Science, 59, 209–218. DOI: https://

doi.org/10.1016/j. ecss.200 3. 08.009

Loh, P. S., Ying, C. Y., Alnoor, H. I. M., Huang, X. R., Lou,

Z. H, Chen, X. G. et al. 2020. Comparative study on the

elucidation of sedimentary phosphorus species using

two methods, the SMT and sedex methods. Journal

of Analytical Methods in Chemistry. DOI: https://doi.

org/10.1155/2020/8548126

Mao, C., Li, T., Rao, W., Tang, Z., Song, Y. & Wang, S.

Chemical speciation of phosphorus in surface

sediments from the Jiangsu Coast, East China:

Influences, provenances and bioavailabilities. Marine

Pollution Bulletin, 163, 111961. https://doi.org/10.1016/j.

marpolbul.2020.111961

März, C., Poulton, S. W., Wagner, T., Schnetger,

B. & Brumsack, H. J., 2014. Phosphorus burial and

diagenesis in the Central Bering Sea (Bowers Ridge,

IODP site U1341): Perspectives on the marine P

cycle. Chemical Geology, 363, 270–282. DOI: https://

doi.org/10.1016/j.chemgeo.2013.11.004

Pagliosa, P. R., Fonseca, A., Bosquilha, G. E., Braga, E. S. &

Barbosa, F. A. R. 2005. Phosphorus dynamics in water

and sediments in urbanized and non-urbanized rivers

in Southern Brazil. Marine Pollution Bulletin, 965-974.

DOI: https://doi.org/10.1016/j.marpolbul.2005.04.005

Paludan, C. & Morris, J. T. 1999. Distribution and speciation

of phosphorus along a salinity gradient in intertidal

marsh sediments. Biogeochemistry, 45, 197-221. DOI:

https://doi.org/10.1007/BF01106781

Paytan, A., Cade-Menim & McLaughlin. 2003. Selective

phosphorus regeneration of sinking marine particles:

evidence from 31 P – NMR. Marine Chemistry, 82, 55-70.

DOI: https://doi.org/10.1016/S0304-4203(03)00052-5

Rabalais, N. N., Cai, W. J., Carstensen, J., Conley, D. J.,

Rabalais, N. N., Hu, X. P., Quinones-Rivera, Z.,

Rosenberg, R., Slomp, C. P., Turner, R., Voss, M.,

Wissel, B. & Zhang, J. 2014. Eutrophication-Driven

Deoxygenation. The Coastal Ocean. Oceanography,

(1), 172-183. DOI: https://doi.org/10.5670/oceanog.2014.21

Rashid. M. A. 1985. Geochemistry of marine humic

compounds. New York: Springer-Verlag. 300p.

Romankevich, E. A. 1984. Geochemistry of Organic Matter

in the Ocean. New York. Springer-Verlag, 334p.

Ruban V., López-Sánchez, J. F., Pardo, P, Rauret, G.,

Muntau, H. & Quevauviller, P. 1999 Selection and

evaluation of sequential extraction procedures for the

determination of phosphorus forms in lake sediment.

Journal of Environmental Monitoring, 1, 51–56. DOI:

https://doi.org/10.1039/A807778I

Ruban, V., López-Sánchez, J. F., Pardo, P., Rauret, G.,

Muntau, H. & Quevauviller, P. 2001. Development of

a harmonised phosphorus extraction procedure and

Phosphorus speciation in Cananéia estuarine sediments

Ocean and Coastal Research 2025, v73:e25014 14

Berbel et al.

certification of a sediment reference material. Journal

of Environmental Monitoring, 3, 121–125. DOI: https://

doi.org/10.1039/b005672n

Ruttenberg, K. C. & Goñi, M. A. 1997. Phosphorus

distribution, C: N: P ratios, and C13 /Coc in artic,

temperate and tropical coastal sediments: tools for

characterizing bulk sedimentary organic matter. Marine

Geology, 139, 123-145. DOI: https://doi.org/10.1016/

S0025-3227(96)00107-7

Ruttenberg, K. C. 1992. Development of a sequential extraction

method for different forms of phosphorus in marine

sediments. Limnology and Oceangography, 37, 1460-

DOI: https://doi.org/10.4319/lo.1992.37.7.1460

Slomp, C. P., Epping, E. H. G., Helder, W. & Van Raaphorst,

W. 1996. A key role for iron-bound phosphorus

in authigenic apatite formation in North Atlantic

continental platform sediments. Journal of Marine

Research, 54, 1179–1205. DOI: https://doi.org/10.1357/

Solomons, F. D., LIU, S-M. & Bin, Y. 2020. Geochemical

fractionation, potential bioavailability and ecological risk

of phosphorus in surface sediments of the Cross River

estuary system and adjacent shelf, South East Nigeria

(West Africa). Journal of Marine Systems, 201, 103244.

DOI: https://doi.org/10.1016/j.jmarsys.2019.103244

SUDELPA. 1987. Plano Básico de Desenvolvimento

Auto-Sustentado para a região Lagunar de Iguape e

Cananéia. São Paulo. 69p.

Suguio, K. 1973. Introdução à sedimentologia. Editora

Edgard Blücher. São Paulo: Universidade de São

Paulo. 317p.

Sutti, B. O., Chiozzini, V. G., Castro, C. & Braga, E. S.

Sinking particles in the photic zone: relations with

biogeochemical properties in different sector of the

Cananéia-Iguape Estuarine-Lagoon Complex (CIELC) -

Brazil. Ocean and Coastal Research, 71, Suppl 1. DOI:

https://doi.org/10.1590/2675-2824071.22075bos

Tessler, M. G. 1982. Sedimentação atual na região Lagunar

de Cananéia-Iguape, Estado de São Paulo. Master

diss. Instituto de Geociências da Universidade de São

Paulo. 2 vols.

Tramonte, K. M., Figueira, R. L. C., Ferreira, P. A. L., Ribeiro, A.

P., Batista, F. B. & Mahiques, M. M. 2016. Environmental

availability of potentially toxic elements in estuarine

sediments of the Cananéia–Iguape coastal system,

Southeastern Brazil. Marine Pollution Bulletin, 103, 260-

DOI: https://doi.org/10.1016/j.marpolbul.2015.12.011

Tyrrell, T. 1999. The relative influence of nitrogen and

phosphorus on oceanic primary production. Nature,

, 525–531. DOI: https://doi.org/10.1038/22941

Yang, B., Zhou, J. B., Lu, D. L., Dan, S. F., Zhang, D.,

Lan, W. L., Kang, Z. J., Ning, Z. M. & Cui, D. Y., 2019.

Phosphorus chemical speciation and seasonal variations

in surface sediments of the Maowei Sea, northern Beibu

gulf. Marine Pollution Bulletin, 141, 61–69. DOI: https://

doi.org/10.1016/j.marpolbul.2019.02.023

Zhang, R., Wu, F., Liu, C., Fu, P., Li, W., Wang, L., Liao, H. &

Guo, J., 2007. Characteristics of organic phosphorus

fractions in different trophic sediments of lakes from

the middle and lower reaches of Yangtze River region

and Southwestern Plateau, China. Environmental.

Pollution, 152, 366–372. DOI: https://doi.org/10.1016/j.

envpol.2007.06.024

Zhou, F., Gao, X., Yuan, H., Song, J., Chen, C. T. A.,

Lui, H. K. & Zhang, Y. 2016. Geochemical forms and

seasonal variations of phosphorus in surface sediments

of the East China Sea shelf. Journal of. Marine.

System, 159, 41–54. DOI: https://doi.org/10.1016/j.

jmarsys.2016.03.005

Zwolsman J. J. G. 1994. Seasonal variability and

biogeochemistry of phosphorus in the Scheldt Estuary,

south-west Netherlands. Estuarine Coastal and Shelf

Science, 39, 227-248. DOI: https://doi.org/10.1006/

ecss.1994.1061

Downloads

Published

14.07.2025

How to Cite

Phosphorus chemical speciation in surface sediments from Cananéia – a non-impacted estuary. (2025). Ocean and Coastal Research, 73. https://doi.org/10.1590/