Phosphorus chemical speciation in surface sediments from Cananéia – a non-impacted estuary
DOI:
https://doi.org/10.1590/Keywords:
Phosphorus speciation, Organic phosphorus, Organic carbon, CIELC, Autochthonous and allochthonous originsAbstract
Phosphorus (P) is found in estuarine sediments, which belong to the biogeochemical cycle of this element
in aquatic environments. This study examines the distribution of P in different chemical speciations in
surface sediments at 14 stations in the southern region of the Cananéia-Iguape Estuarine-Lagoon Complex.
P chemical fractions were determined using a sequential extraction method of fractional extraction that
measures five P forms: (i) exchangeable P (Pexch), loosely adsorbed or exchangeable; (ii) P-Fe (P-Fe),
P-bound Fe oxyhydroxides; (iii) authigenic P (P-CFAP), including carbonate fluorapatite, biogenic apatite
(fish debris), and P-bound calcium carbonate; (iv) detrital P (P-FAP), igneous or metamorphic apatites;
(v) organic P (Porg); and (vi) total P (Ptotal). The P fractions associated with the sedimentary properties of
grain size and organic content can be used as a proxy for understanding environmental conditions. The
average percentage of each P fraction of the surface sediments in this region follows the sequence:
P-Fe (38%) > Porg (32%) > Pexch (14%) > P-FAP (9%) > P-CFAP (7%). In all stations, P-Fe and Porg were the
main fractions of P in the sediments. CaCO3
accounted for less than 30% of it, essentially indicating lithoclastic
characteristics, whereas organic carbon (Corg) showed values below 2%. Finally, Ptotal showed concentrations
that are consistent with an unpolluted environment, with values below 16 µmol g-1.
Downloads
References
Acharya, S. S., Panigrahi, M. K., Kurian, J., Gupta,
A. K. & Tripathy, S. 2016. Speciation of phosphorus in
the continental shelf sediments in the Eastern Arabian
Sea. Continental. Shelf Research, 115, 65–75. DOI:
https://doi.org/10.1016/j.csr. 2016.01.0
Aidar, E. 1980. Alguns aspectos da autoecologia de
Skeletonema costatum (Greville Cleve) de Cananéia
(25º S e 48º W) com Especial Referência ao Fator
Salinidade. PhD Thesis. IOUSP. 2 vols.
Amaral, T. F., Miyasaki, F. H., Braga, E. S. &
Azevedo, J. S. 2021. Temporal and spatial toxicogenetic
damage in estuarine catfish Cathorops spixii from a
marine protected area with evidence of anthropogenic
influences. Science of Total Environment, 799, 149409.
DOI: https://doi.org/10.1016/j.scitotenv.2021.149409
Andersen, J. H., Conley, D. J. 2009. Eutrophication in
Coastal Ecosystems. Towards better understanding and
management strategies. Hydrobiology, 629, 1-4. DOI:
https://doi.org/10.1007/978-90-481-3385-7_1
Aspila, K. I., Agemian, H. & Chau, A. S. Y. 1976. A semiautomatic method for determination of inorganic,
organic and total phosphate in sediments. Analyst, 101,
–197. DOI: https://doi.org/10.1039/AN9760100187
Azevedo, J. S., Serafim, A., Company, R., Braga, E. S.,
Favaro, D. I. & Bebianno, M. J. 2009. Biomarkers of
exposure to metal contamination and lipid peroxidation
in the benthic fish Cathorops spixii from two estuaries in
South America, Brazil. Ecotoxicology, 18, 1001–1010.
DOI: https://doi.org/10.1007/s10646-009-0370-x
Barcellos, R. L., Berbel, G. B. B. Braga, E. S. &
Furtado, V. V. 2005. Distribuição e características
do fósforo sedimentar do sistema estuarino Lagunar
Cananéia – Iguape, Estado de São Paulo, Brasil.
Geochimica Brasiliensis, 19, 22-36.
Barrera-Alba, J. J., Gianesella, S. M. F., Saldanha-Corrêa, F.
M. P. & Moser, G. A. O. 2007. Influence of an Artificial
Channel in a Well-Preserved Sub-Tropical Estuary.
Journal of Coastal Research, 50, 1137-1141. DOI:
https://doi.org/10.2112/JCR-SI50-206.1
Berbel, G. B. B. 2008. Estudo do fósforo sedimentar e
de suas especiações químicas em dois sistemas
costeiros e Plataforma Continental Sudeste (Brasil) e
Baía do Almirantado (região antártica) considerando
suas relações biogeoquímicas. 2008. PhD Thesis -
Instituto Oceanográfico, University of São Paulo, São
Paulo. DOI: https://doi.org/10.11606/T.21.2008.tde25062008-152427
Berbel, G. B. B. & Braga, E. 2014. Phosphorus in Antarctic
surface marine sediments – chemical speciation in
Admiralty Bay. Antarctic Science, 26, 281–289. DOI:
https://doi.org/10.1017/S0954102013000552
Berbel, G. B. B., Favaro, D. I. T. & Braga, E. S. 2015.
Impact of harbour, industry and sewage on the
phosphorus geochemistry of a subtropical estuary in
Brazil. Marine Pollution Bulletin, 93, 44-52. DOI: https://
doi.org/10.1016/j.marpolbul.2015.02.016
Bérgamo, A. L. 2000. Características de hidrografia,
circulação e transporte de sal: Barra de Cananéia, sul
do Mar de Cananaéia e Baía de Trapandé. Dissertação
de Mestrado. São Paulo. IOUSP. 210p.
Berner, R. A. 1990. Atmospheric Carbon Dioxide Levels
Over Phanerozoic Time. Science, 249, 1382-1386. DOI:
https://doi.org/10.1126/science.249.4975.1382
Braga, E. S. 1995. Nutrientes dissolvidos e produção
primária do fitoplâncton em dois sistemas costeiros
do estado de São Paulo. Instituto Oceanográfico,
Universidade de São Paulo, São Paulo. PhD thesis. V1.
pp. V2. 137pp.
Braga, E. S., Bonetti, C. V. D. H., Burone, L. & Bonetti-Filho,
J. 2000. Eutrophication and bacterial pollution caused by
industrial and domestic wastes at the Baixada Santista
Estuarine System - Brazil. Marine Pollution Bulletin,
, 165-173. DOI: https://doi.org/10.1016/S0025-
X(99)00199-X
Carreira, R. S. & Wagener, L. R. 1998. Speciation of Sewage
Derived Phosphorus in Coastal Sediments form Rio de
Janeiro, Brazil. Marine Pollution Bulletin, 36, 818-827.
DOI: https://doi.org/10.1016/S0025-326X(98)00062-9
CETESB - COMPANHIA AMBIENTAL DO ESTADO DE
SÃO PAULO. 2007. Relatório da qualidade das águas
litorâneas no Estado de São Paulo. Balneabilidade das
praias, 2006. Available in: http://www.cetesb.sp.gov.br.
Acess in: 2007 Sep.
Chuang, P., Dale, A. W., Heuer, V. B., Hinrichs, K. &
Zabel, M. 2021. Coupling of dissolved organic carbon,
Phosphorus speciation in Cananéia estuarine sediments
Ocean and Coastal Research 2025, v73:e25014 13
Berbel et al.
sulfur and iron cycling in Black Sea sediments over the
Holocene and the late Pleistocene: Insights from an
empirical dynamic model. Geochimica et Cosmochimica
Acta, 307(15), 302-318. DOI: https://doi.org/10.1016/j.
gca.2021.04.032
CIIAGRO - CENTRO INTEGRADO DE INFORMAÇÕES
AGROMETEOROLÓGICAS. Available in http://ciiagro.
org.br/cpmensal. Access in: 2022 nov.
Coelho, J. P., Flindt, M. R., Jensen, H. S., Lillebø,
A. I. & Pardal, M. A. 2004. Phosphorus speciation
and availability in intertidal sediments of a temperate
estuary:relation to eutrophication and annual P-fluxes.
Estuarine. Coastal. Shelf Science, 61, 583–590. DOI:
https://doi.org/10.1016/j.ecss.2004.07.001
DAEE, 2006. Dados hidrográficos e pluviométricos dos
anos de 1937-2004. Available in: www.daee.sp gov.br.
Daines, S. J., Mills, B. J. W. & Lenton, T. M. 2017.
Atmospheric oxygen regulation at low Proterozoic levels
by incomplete oxidative weathering of sedimentary
organic carbon. Nature Communications, 14379. DOI:
https://doi.org/10.1038/ncomms14379
Diegues, A. C. 1987. Conservação e desenvolvimento
sustentado de ecossistemas litorâneos no Brasil. In:
Simpósio sobre Ecossistemas da Costa Sul e Sudeste
Brasileira. Cananéia. Anais. São Paulo, ACIESP, 3,
-243.
Fischer, W. R & Schwertmann, U. 1975. The formation of
hematitefrom amorphous iron (III) hydroxide. Clay and
Clays Minerals, 23, 33-37. DOI: https://doi.org/10.1346/
CCMN.1975.0230105
Grasshoff, K., Ehrhardt, M. & Kremeling, K. 1983. Methods
of Seawater Analysis, 2nd ed. Weinhein, Verlag
Chemie. 419p.
Gunnars, A., Blomqvist, S. & Martinsson, C. 2004.
Inorganic formation of apatite in brackish seawater
from the Baltic Sea: an experimental approach. Marine
Chemistry, 91, 15–26. DOI: https://doi.org/10.1016/j.
marchem.2004.01.008
Hao, Y-Y., Zhu, Z-Y., Fang, F-T., Novak, T., Cankovi, M.,
Hrusti, E., Ljubeši, Z., Li, M., Du, J-Z., Zhang, R-F. &
Gašparovic, B. 2021 Tracing Nutrients and Organic
Matter Changes in Eutrophic Wenchang (China) and
Oligotrophic Krka (Croatia) Estuaries: A Comparative
Study. Frontiers Marine Science, 8, 663601. DOI:
https://doi.org/10.3389/fmars.2021.66360
Huerta-Diaz, M. A., TovaZ–Sánchez, A., Fillipelli, G.,
Latimer, J. & Sañudo-Wilhelmy, S. A. 2005. A
combined CDB- MAGIC method for the determination
of phosphorus associated with sedimentary ironoxihydroxides. Applied Geochemistry, 20, 2108–2115.
DOI: https://doi.org/10.1016/j.apgeochem.2005.07.009
Hughes, B. B, Haskins, J. C. & Wasson, E. 2011. Identifying
factors that influence expression of eutrophication in a
central California estuary. Marine Ecology Progress
Series, 439, 31-43. DOI: https://doi.org/10.3354/
meps09295
Ingram, R. L. 1971. Sieve Analysis. In: CARVER, R. E. (Ed.)
Procedures in Sedimentary Petrology. London: Wiley
Interscience. p. 9-69.
Jilbert, T. & Slomp, C. P., 2013. Iron and manganese shuttles
control the formation of authigenic phosphorus minerals
in the euxinic basins of the Baltic Sea. Geochimica
et Cosmochimica Acta, 107, 155–169. DOI: https://
doi.org/10.1016/j.gca.2013.01.005
Larssoneur, C., Bouysse, P. & Aufret, J. P. 1982. The
Superficial Sediments of the English Channel and its
Western Approach. Sedimentology, 851-864. DOI:
https://doi.org/10.1111/j.1365-3091.1982.tb00088.x
Liu, S. M., Zhang, J. & Li, D. J., 2004. Phosphorus cycling
in sediments of the Bohai and Yellow Seas. Estuarine,
Coastal and Shelf Science, 59, 209–218. DOI: https://
doi.org/10.1016/j. ecss.200 3. 08.009
Loh, P. S., Ying, C. Y., Alnoor, H. I. M., Huang, X. R., Lou,
Z. H, Chen, X. G. et al. 2020. Comparative study on the
elucidation of sedimentary phosphorus species using
two methods, the SMT and sedex methods. Journal
of Analytical Methods in Chemistry. DOI: https://doi.
org/10.1155/2020/8548126
Mao, C., Li, T., Rao, W., Tang, Z., Song, Y. & Wang, S.
Chemical speciation of phosphorus in surface
sediments from the Jiangsu Coast, East China:
Influences, provenances and bioavailabilities. Marine
Pollution Bulletin, 163, 111961. https://doi.org/10.1016/j.
marpolbul.2020.111961
März, C., Poulton, S. W., Wagner, T., Schnetger,
B. & Brumsack, H. J., 2014. Phosphorus burial and
diagenesis in the Central Bering Sea (Bowers Ridge,
IODP site U1341): Perspectives on the marine P
cycle. Chemical Geology, 363, 270–282. DOI: https://
doi.org/10.1016/j.chemgeo.2013.11.004
Pagliosa, P. R., Fonseca, A., Bosquilha, G. E., Braga, E. S. &
Barbosa, F. A. R. 2005. Phosphorus dynamics in water
and sediments in urbanized and non-urbanized rivers
in Southern Brazil. Marine Pollution Bulletin, 965-974.
DOI: https://doi.org/10.1016/j.marpolbul.2005.04.005
Paludan, C. & Morris, J. T. 1999. Distribution and speciation
of phosphorus along a salinity gradient in intertidal
marsh sediments. Biogeochemistry, 45, 197-221. DOI:
https://doi.org/10.1007/BF01106781
Paytan, A., Cade-Menim & McLaughlin. 2003. Selective
phosphorus regeneration of sinking marine particles:
evidence from 31 P – NMR. Marine Chemistry, 82, 55-70.
DOI: https://doi.org/10.1016/S0304-4203(03)00052-5
Rabalais, N. N., Cai, W. J., Carstensen, J., Conley, D. J.,
Rabalais, N. N., Hu, X. P., Quinones-Rivera, Z.,
Rosenberg, R., Slomp, C. P., Turner, R., Voss, M.,
Wissel, B. & Zhang, J. 2014. Eutrophication-Driven
Deoxygenation. The Coastal Ocean. Oceanography,
(1), 172-183. DOI: https://doi.org/10.5670/oceanog.2014.21
Rashid. M. A. 1985. Geochemistry of marine humic
compounds. New York: Springer-Verlag. 300p.
Romankevich, E. A. 1984. Geochemistry of Organic Matter
in the Ocean. New York. Springer-Verlag, 334p.
Ruban V., López-Sánchez, J. F., Pardo, P, Rauret, G.,
Muntau, H. & Quevauviller, P. 1999 Selection and
evaluation of sequential extraction procedures for the
determination of phosphorus forms in lake sediment.
Journal of Environmental Monitoring, 1, 51–56. DOI:
https://doi.org/10.1039/A807778I
Ruban, V., López-Sánchez, J. F., Pardo, P., Rauret, G.,
Muntau, H. & Quevauviller, P. 2001. Development of
a harmonised phosphorus extraction procedure and
Phosphorus speciation in Cananéia estuarine sediments
Ocean and Coastal Research 2025, v73:e25014 14
Berbel et al.
certification of a sediment reference material. Journal
of Environmental Monitoring, 3, 121–125. DOI: https://
doi.org/10.1039/b005672n
Ruttenberg, K. C. & Goñi, M. A. 1997. Phosphorus
distribution, C: N: P ratios, and C13 /Coc in artic,
temperate and tropical coastal sediments: tools for
characterizing bulk sedimentary organic matter. Marine
Geology, 139, 123-145. DOI: https://doi.org/10.1016/
S0025-3227(96)00107-7
Ruttenberg, K. C. 1992. Development of a sequential extraction
method for different forms of phosphorus in marine
sediments. Limnology and Oceangography, 37, 1460-
DOI: https://doi.org/10.4319/lo.1992.37.7.1460
Slomp, C. P., Epping, E. H. G., Helder, W. & Van Raaphorst,
W. 1996. A key role for iron-bound phosphorus
in authigenic apatite formation in North Atlantic
continental platform sediments. Journal of Marine
Research, 54, 1179–1205. DOI: https://doi.org/10.1357/
Solomons, F. D., LIU, S-M. & Bin, Y. 2020. Geochemical
fractionation, potential bioavailability and ecological risk
of phosphorus in surface sediments of the Cross River
estuary system and adjacent shelf, South East Nigeria
(West Africa). Journal of Marine Systems, 201, 103244.
DOI: https://doi.org/10.1016/j.jmarsys.2019.103244
SUDELPA. 1987. Plano Básico de Desenvolvimento
Auto-Sustentado para a região Lagunar de Iguape e
Cananéia. São Paulo. 69p.
Suguio, K. 1973. Introdução à sedimentologia. Editora
Edgard Blücher. São Paulo: Universidade de São
Paulo. 317p.
Sutti, B. O., Chiozzini, V. G., Castro, C. & Braga, E. S.
Sinking particles in the photic zone: relations with
biogeochemical properties in different sector of the
Cananéia-Iguape Estuarine-Lagoon Complex (CIELC) -
Brazil. Ocean and Coastal Research, 71, Suppl 1. DOI:
https://doi.org/10.1590/2675-2824071.22075bos
Tessler, M. G. 1982. Sedimentação atual na região Lagunar
de Cananéia-Iguape, Estado de São Paulo. Master
diss. Instituto de Geociências da Universidade de São
Paulo. 2 vols.
Tramonte, K. M., Figueira, R. L. C., Ferreira, P. A. L., Ribeiro, A.
P., Batista, F. B. & Mahiques, M. M. 2016. Environmental
availability of potentially toxic elements in estuarine
sediments of the Cananéia–Iguape coastal system,
Southeastern Brazil. Marine Pollution Bulletin, 103, 260-
DOI: https://doi.org/10.1016/j.marpolbul.2015.12.011
Tyrrell, T. 1999. The relative influence of nitrogen and
phosphorus on oceanic primary production. Nature,
, 525–531. DOI: https://doi.org/10.1038/22941
Yang, B., Zhou, J. B., Lu, D. L., Dan, S. F., Zhang, D.,
Lan, W. L., Kang, Z. J., Ning, Z. M. & Cui, D. Y., 2019.
Phosphorus chemical speciation and seasonal variations
in surface sediments of the Maowei Sea, northern Beibu
gulf. Marine Pollution Bulletin, 141, 61–69. DOI: https://
doi.org/10.1016/j.marpolbul.2019.02.023
Zhang, R., Wu, F., Liu, C., Fu, P., Li, W., Wang, L., Liao, H. &
Guo, J., 2007. Characteristics of organic phosphorus
fractions in different trophic sediments of lakes from
the middle and lower reaches of Yangtze River region
and Southwestern Plateau, China. Environmental.
Pollution, 152, 366–372. DOI: https://doi.org/10.1016/j.
envpol.2007.06.024
Zhou, F., Gao, X., Yuan, H., Song, J., Chen, C. T. A.,
Lui, H. K. & Zhang, Y. 2016. Geochemical forms and
seasonal variations of phosphorus in surface sediments
of the East China Sea shelf. Journal of. Marine.
System, 159, 41–54. DOI: https://doi.org/10.1016/j.
jmarsys.2016.03.005
Zwolsman J. J. G. 1994. Seasonal variability and
biogeochemistry of phosphorus in the Scheldt Estuary,
south-west Netherlands. Estuarine Coastal and Shelf
Science, 39, 227-248. DOI: https://doi.org/10.1006/
ecss.1994.1061
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Gláucia Bueno Benedetti Berbel, Vitor Gonsalez Chiozzini, Elisabete de Santis Braga

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Ocean and Coastal Research is an open-access journal available through SciELO (Scientific Electronic Library Online).
Ocean and Coastal Research journal title abbreviation is Ocean Coast. Res. and should be used in footnotes, references, and bibliographic entries.
All Ocean and Coastal Research scientific articles are freely available without charge to the user or institution. In accordance with the BOAI definition of open access, all contents are available to readers free of charge. Users may read, download, copy, and link to the full texts of the articles. They may be used for any lawful purpose without prior authorization from the publisher or the author, as long as proper credit is given to the original publication.
All Ocean and Coastal Research published scientific articles receive an individual Digital Object Identifier (DOI) persistent digital document identification.
All the content of the journal, except where otherwise noted, is licensed under a Creative Commons License type BY. Authors retain the copyright and full publishing rights without restrictions.
More information on intellectual property can be found here and on Scielo's Open Acess Statement.
Ocean and Coastal Research is listed in Publons and reviewers and editors can add their verified peer review and editing history to their Publons profile.
Ocean and Coastal Research is indexed in the Directory of Open Access Journals (DOAJ) and complies with principles of transparency and best practice for scholarly publications.
Ocean and Coastal Research is committed to the best standards in open-access publishing by adopting ethical and quality standards throughout the publishing process - from initial manuscript submission to the final article publication. This ensures authors that their work will have visibility, accessibility, reputation, usage, and impact in a sustainable model of scholarly publishing.
