Economic feasibility of small-scale aquaculture of scallop (Nodipecten nodosus) and cobia (Rachycentron canadum) in a multi-trophic system on the southeastern Atlantic coast

Authors

  • Matheus Pires Sergio
  • Rodrigo Francisco Prieto
  • Leonardo Castilho-Barros
  • Marcelo Barbosa Henriques

DOI:

https://doi.org/10.1590/

Keywords:

Bivalve mollusks, IMTA, Integrated multi-trophic aquaculture, Mariculture, Southeastern coast of Brazil

Abstract

This study evaluated the economic feasibility of scallop monoculture (Nodipecten nodosus) in six 100-meter longlines,
monoculture of cobia (Rachycentron canadum) in twelve 565.5 m3
 net cages, and the integrated multitrophic aquaculture
system (IMTA) with both species, in four longlines and six net cages of the same dimensions, in an area of 5,000
m2
, on the southeastern coast of Brazil. This study aimed to determine whether this approach could provide greater
profitability and resilience than traditional monocultures. Investments, operating costs, and profitability were estimated
for the three production systems according to the variation in survival, productivity, and market prices. The financial
indicators showed positive values for the three systems evaluated. There was a reduction of US$ 1.88 per dozen
scallops from scallop monoculture to IMTA and US$ 0.22 per kg of cobia from cobia monoculture to IMTA. However,
comparatively, scallop monoculture had the worst results. For this system, although the IRR (35.03%) and MIRR
(19.37%) are above the MRA (12%), the NPV, ANPV, and PP (US$ 69,785.07, US$ 12,350.85 and 3.71 years,
respectively), had lower economic attractiveness when compared to the other two systems evaluated. Between cobia
monoculture and IMTA, there is a certain proximity of results. The IMTA system showed a slight advantage in terms
of the highest market prices. The diversification of production is an interesting option even with the greater associated
investment, which can favor economic returns and mitigate the risks of small-scale systems dedicated to monocultures.

Downloads

Download data is not yet available.

References

Alves, J. L., Galvão, M. S. N., Garcia, C. F. & Marques, H. L. A.

Productive performance of brown mussels Perna

perna (Linnaeus, 1758) cultivated on ropes at low

densities in Caraguatatuba, Brazil. Aquaculture, 51,

–3304. DOI: https://doi.org/10.1111/are.14665

Barrett, L. T., Theuerkauf, S. J., Rose, J.M., Alleway, H. K.,

Bricker, S. B., Parker, M., Petrolia, D. R. & Jones. R. C.

Sustainable growth of non-fed aquaculture can

generate valuable ecosystem benefits. Ecosystem

Services, 53, e101396. DOI: https://doi.org/10.1016/j.

ecoser.2021.101396

Benetti, D. D., Suarez, J., Camperio, J., Hoenig, R. H.,

Tudela, C. E., Daugherty, Z., McGuigan, C. J., Mathur, S.,

Anchieta, L., Buchalla, Y., Alarcón, J., Marchetti, D.,

Fiorentino, J., Buchanan, J., Artiles, A. & Stieglitz,

J. D. 2021. A review on cobia, Rachycentron canadum,

aquaculture. Journal of the World Aquaculture Society,

, 691–709. DOI: https://doi.org/10.1111/jwas.12810

Bergamo, G. C. A., Olier, B. S., Sousa, O. M., Kuhnen, V. V.,

Pessoa, M. F. G. & Sanches, E. G. 2021. Economic

feasibility of mussel (Perna perna) and cobia

(Rachycentron canadum) produced in a multi-trophic

system. Aquaculture International, 29, 1909–1924. DOI:

https://doi.org/10.1007/s10499-021-00762-x

Bezerra, T. R. Q., Domingues, E. C., Maia Filho, L. F. A.,

Rombenso, A. N., Hamilton, S. & Cavalli, R.O. 2016.

Economic analysis of cobia (Rachycentron canadum)

cage culture in large and small-scale production systems

in Brazil. Aquaculture International, 24, 609–622.

DOI: https://doi.org/10.1007/s10499-015-9951-2

Castilho-Barros, L., Barreto, O. J. S. & Henriques, M. B.

The economic viability for the production of

live baits of white shrimp (Litopenaeus schmitti) in

recirculation culture system. Aquaculture International,

, 1925–1935

Castilho-Barros, L., Owatari, M. S., Mouriño, J. L. P.,

Silva, B. C. & Seiffert, W. Q. 2018. Economic feasibility

of tilapia culture in southern Brazil: A small-scale farm

model. Aquaculture, 515, e734551. DOI: https://doi.

org/10.1016/j.aquaculture.2019.734551

Chopin, T., Cooper, J. A., Reid, G., Cross, S. & Moore, C.

Open-water integrated multi-trophic aquaculture:

environmental biomitigation and economic diversification

of fed aquaculture by extractive aquaculture. Reviews in

Aquaculture, 4, 209–220. DOI: https://doi.org/10.1111/

j.1753-5131.2012.01074.x

Ebbert, D. 2019. chisq.posthoc.test: A Post Hoc Analysis

for Pearson’s Chi-Squared Test for Count Data.

R package version 0.1.2. https://CRAN.R-project.org/

package=chisq.posthoc.test.

Eissa, A. E., Abou-Okada, M., Alkurdi, A. R. M.,

El Zlitne, R. A., Prince, A., Abdelsalam, M. & Derwa,

Economic feasibility of IMTA – N. nodosus and R. canadum

Ocean and Coastal Research 2025, v73:e25018 21

Sergio et al.

H. I. M. 2021. Catastrophic mass mortalities caused by

Photobacterium damselae affecting farmed marine fish

from Deeba Triangle, Egypt. Aquaculture Research, 52,

–4466. DOI: https://doi. org/10.1111/are.15284

Engle, C. R. 2010. Aquaculture Economics and Financing.

Wiley-Blackwell, Oxford.

Engle, C. R., Kumar, G. & Bouras, D. 2010. The economic

trade-offs between stocking fingerlings and stockers:

A mixed integer multi-stage programming approach.

Aquaculture Economics and Management, 14(4),

–331. DOI: http://dx.doi.org/10.1080/13657305.20

526020

Engle, C. R., Pomerleau, S., Fornshell, G., Hinshaw, J. M.,

Sloan, D. & Thompson, S. 2005. The economic impact

of proposed effluent treatment options for production

of trout Oncorhynchus mykiss in flow-through systems.

Aquacultural Engineering, 32, 303–323. DOI: https://

doi. org/10.1016/j.aquaeng.2004.07.001

FAO (Food and Agriculture Organization of the United

Nations). 2024. The State of World Fisheries and

Aquaculture 2024. Blue Transformation in action.

FAO, Rome.

Garcia, C. F., Galvão, M. S. N., Alves, J. L. & Marques,

H. L. A. 2022. Compensatory growth in Nodipecten

nodosus scallops farmed in a tropical region (São Paulo

state, southeastern Brazil). Aquaculture Research,

(13), 4638–4645. DOI: https://doi.org/10.1111/

are.15955

Grant, J. & Pastres, R. 2019. Ecosystem models of bivalve

aquaculture: implications for supporting goods and

services. In: Smaal, A. C., Ferreira, J. G., Grant, J.,

Petersen, J. K. & Strand, Ø. (Ed.). Goods and Services

of Marine Bivalves (pp. 507-525). London: Springer.

Kjerfve, B., Dias, G. T. M., Filippo, A. & Geraldes, M. C.

Oceanographic and environmental characteristics

of a coupled coastal bay system: Baía de Ilha GrandeBaía de Sepetiba, Rio de Janeiro, Brazil. Regional

Studies in Marine Science, 41, e101594. DOI: https://

doi.org/10.1016/j.rsma.2020.101594

Knowler, D., Chopin, T., Martínez-Espiñeira, R., Neori, A.,

Nobre, A., Noce, A. & Reid, G. 2020. The economics of

Integrated Multi-Trophic Aquaculture: where are we now

and where do we need to go? Reviews in Aquaculture,

, 1–16. DOI: https://doi.org/10.1111/raq.12399

Kuhnen, V. V., Hopkins, K., Mota, L. S., Sousa, O. M.

& Sanches, E. G. 2022. Challenges and lessons

from marine finfish farming in Brazil. Marine Policy,

, e104979. DOI: https://doi.org/10.1016/j.

marpol.2022.104979

Kumar, G. & Engle, C. 2017. Economics of intensively

aerated catfish ponds. Journal of the World Aquaculture

Society, 48(2), 320–332. DOI: https://doi.org/10.1111/

jwas.12385

Kurtay, E. & Lök, A. 2023. Growth rate, meat yield,

condition index and reproduction of mussels (Mytilus

galloprovincialis, Lamarck 1819) integrated to a fish

farm. Regional Studies in Marine Science, 67, e103210.

DOI: https://doi.org/10.1016/j.rsma.2023.103210

Largo, D. B., Diola, A. G. & Marababol, M. S. 2016.

Development of an integrated multi-trophic

aquaculture (IMTA) system for tropical marine species

in southern Cebu, Central Philippines. Aquaculture

Reports, 3, 67–76. DOI: https://doi.org/10.1016/j.

aqrep.2015.12.006

Lima, L. S., Pinto, T. K., Brandao, B. C. S.,

Santos, W., Hamilton, S., Domingues, E. C., Klein, A. P.,

Schettini, C. A., Poersch, L. H. & Cavalli, R. O. 2019.

Impact of cage farming of cobia (Rachycentron

canadum) on the benthic macrofauna in a tropical

region. Aquaculture, 512, 734314-734314. DOI: https://

doi.org/10.1016/j.aquaculture.2019.734314

Marques, H. L. A., Galvão, M. S. N., Garcia, C. F. &

Henriques, M. B. 2018. Economic analysis of scallop

culture at the north coast of São Paulo State, Brazil.

Boletim Instituto de Pesca, 44(2), e290. DOI: https://doi.

org/10.20950/1678-2305.2018.290

Miao, S., Jen, C. C., Huang, C. T. & Hu, S. H. 2009.

Ecological and economic analysis for cobia

Rachycentron canadum commercial cage culture in

Taiwan. Aquaculture International, 17, 125–141. DOI:

https://doi.org/10.1007/s10499-008-9185-7

Nogueira, M. C. F. & Henriques, M. B. 2020. Large-scale

versus family-sized system production: economic

feasibility of cultivating Kappaphycus alvarezii along

the southeastern coast of Brazil. Journal of Applied

Phycology, 32, 1893–1905. DOI: https://doi.org/10.1007/

s10811-020-02107-2

Parker, C., Scott, S. & Geddes, A. (2019) Snowball Sampling.

SAGE Research Methods Foundations. Available from:

http://eprints.glos.ac.uk/6781/1/6781%20Parker%20

and%20Scott%20%282019%29%20Snowball%20

Sampling_Peer%20reviewed%20pre-copy%20

edited%20version.pdf. Access date: 2025 Apr. 28.

Petersen, E. H., Luan, T. D., Chinn, D. T. M., Tuan,

V. A., Bihn, T. Q., Truc, L. V. & Glencross, B. D. 2014.

Bioeconomics of cobia, Rachycentron canadum,

aquaculture in Vietnam. Aquaculture, Economics and

Management, 18, 28–44. DOI: https://doi.org/10.1080/

2014.855953

Philips, M. 2009. Mariculture overview. In: Steele, J. H.,

Thorpe, S., Turekian, K. (Ed.). Encyclopedia of Ocean

Sciences (pp. 537–544). Amsterdam: Elsevier.

R Core Team 2020. R: A language and environment for

statistical computing. R Foundation for Statistical

Computing, Vienna, Austria. Available from: https://

www.R-project.org/. Access date: 2025 Apr. 28.

Ridler, N., Wowchuk, M., Robinson, B., Barrington, K.,

Chopin, T., Robinson, S.M.C., Page, F., Reid, G. K.,

Szmerda, M. P., Sewster, J. & Boyne-Travis, S. 2007.

Integrated multi-trophic aquaculture (IMTA): a potential

strategic choice for farmers. Aquaculture, Economics

and Management, 11, 99–110. DOI: https://doi.

org/10.1080/13657300701202767

Rombenso, A. N., Araújo, A. L., Robinson, G. & Sampaio, L. A.

Nearshore marine finfish culture: a small-scale

pilot initiative in southern Brazil. World Aquaculture, 47,

–18. DOI: https://www.was.org/Magazine/Contents.

aspx?Id=57

Rosa, J., Lemos, M. F. L., Crespo, D., Nunes, M., Freitas, A.,

Ramos, F., Pardal, M. Â. & Leston, S. 2019. Integrated

multitrophic aquaculture systems – Potential risks for

food safety. Trends in Food Science and Technology, 96,

–90. DOI: https://doi.org/10.1016/j.tifs.2019.12.008

Economic feasibility of IMTA – N. nodosus and R. canadum

Ocean and Coastal Research 2025, v73:e25018 22

Sergio et al.

Salazar, C., Jaime, M., Figueroa, Y. & Fuentes, R.

Innovation in small-scale aquaculture in

Chile. Aquaculture, Economics and Management,

, 151–167. DOI: https://doi.org/10.1080/13657305

.2017.1409293

Samonte, G. P. B. 2017. Economics of Kappaphycus

spp. Seaweed Farming with Special Reference to the

Central Philippines. Tropical Seaweed Farming Trends,

Problems and Opportunities, 147–154. DOI: http://doi.

org/10.1007/978-3-319-63498-2_9

Sampaio, L. A., Moreira, C. B., Miranda-Filho, K. C. &

Rombenso, A. N. 2011. Culture of cobia Rachycentron

canadum (L) in near-shore cages off the Brazilian coast.

Aquaculture Research, 42, 832–834. DOI: https://doi.

org/10.1111/j.1365-2109.2010.02770.x

Sanches, E. G., Seckendorff, R. W., Henriques, M. B.,

Fagundes, L. & Sebastiani, E. F. 2008. Economic

viability of cobia (Rachycentron canadum) in an offshore

system. Informações Econômicas, 38(12), 42–51.

Shang, Y.C. 1981 Aquaculture Economics: Basic Concepts

and Methods of Analysis. Westview Press. Boulder,

Colorado.

Shang, Y.C. 1990. Aquaculture economic analysis:

an introduction. World Aquaculture Society, Baton Rouge.

Silva, E. G., Castilho-Barros. L. & Henriques. M. B.

Economic feasibility of integrated multi-trophic

aquaculture (mussel Perna perna, scallop Nodipecten

nodosus and seaweed Kappaphycus alvarezii)

in Southeast Brazil: A small-scale aquaculture farm

model. Aquaculture, 552, e738031. DOI: https://doi.

org/10.1016/j.aquaculture.2022.738031

Taylor, M. H., Koch, V., Wolff, M. & Sínsel, F. 2006.

Evaluation of different shallow water culture methods

for the scallop Nodipecten subnodosus using biologic

and economic modeling. Aquaculture, 254(1), 301–316.

DOI: https://doi.org/10.1016/j.aquaculture.2005.10.048

Theodoridis, A., Ragkos, A. & Koutouzidou, G. 2020.

Revealing the profile of economically efficient mussel

farms: a restricted data envelopment analysis

application. Aquaculture International, 28, 675–689.

DOI: https://doi.org/10.1007/s10499-019-00490-3

Valderrama, D., Cai, J., Hishamunda, N., Ridler, N., Neish, I. C.,

Hurtado, A. Q., Msuya, F. E., Krishnan, M., Narayanakumar, R.,

Kronen, M., Robledo, D., Gasca-Leyva, E. & Fraga, J.

The economics of Kappaphycus seaweed cultivation

in developing countries: a comparative analysis of farming

systems. Aquaculture, Economics and Management,

(2), 251–277. DOI: http://dx.doi.org/10.1080/13657305

.2015.1024348

Valenti, W. C., Barros, H. P., Moraes-Valenti, P., Bueno,

G. W. & Cavalli, R. O. 2021. Aquaculture in Brazil: past,

present and future. Aquaculture Reports, 19, e100611.

DOI: https://doi.org/10.1016/j.aqrep.2021.100611

Zarzar, C. A., Cavalli, R. O., Santos, P. R. B. & Trombeta, T. D.

Effect of different diet pellet sizes on the growth of

juvenile cobia (Rachycentron canadum). Arquivo Brasileiro

de Medicina Veterinária e Zootecnia, 74, 677–685. DOI:

https://doi.org/10.1590/1678-4162-12543

Downloads

Published

14.07.2025

How to Cite

Economic feasibility of small-scale aquaculture of scallop (Nodipecten nodosus) and cobia (Rachycentron canadum) in a multi-trophic system on the southeastern Atlantic coast. (2025). Ocean and Coastal Research, 73. https://doi.org/10.1590/