Hydrodynamic modelling in the Amazonian Estuary: A flexible mesh approach

Authors

  • Thais Borba
  • Dano Roelvink
  • Marcelo Rollnic

DOI:

https://doi.org/10.1590/

Keywords:

Delft3D FM, Manning’s coefficient, tropical estuary, Amazon River

Abstract

Several hydrodynamic models have been applied to the Amazonian Estuary, but its complex shape makes the grid definition difficult when a structured grid is used. This research aims to implement a hydrodynamic model for this estuary based on a flexible mesh grid system and then analyze the results. The methodology is based on Delft3D FM, and the model domain encompasses the low course of the Amazon, Tapajos, Xingu, Tocantins, and Para rivers, Guajara and Marajo bays, and Breves Strait, as well as the floodplain areas and the adjacent continental shelf. The model simulation performs well against the observed tidal water levels and instantaneous transport since Pearson’s correlation coefficient showed more significant values than 95% for both, and root mean square error (RMSE) showed smaller values than 5% for water levels and 15% for instantaneous transport. This also performs well in simulating scenarios representing different tide and instantaneous transport conditions.

Downloads

Download data is not yet available.

References

Abreu, C. H. M., Barros, M. L. C., Brito, D. C., Teixeira, M. R. & Cunha, A. C. 2020. Hydrodynamic modeling and simulation of water residence time in the Estuary of the Lower Amazon River. Water, 12(3), 660. DOI: https:// doi.org/10.3390/w12030660 Achete, F. M., van der Wegen, M., Roelvink, D. & Jaffe, B. 2015. A 2-D process-based model for suspended sediment dynamics: a first step towards ecological modeling. Hydrology and Earth System Sciences, 19(6), 2837–2857. DOI: https://doi.org/10.5194/hess19-2837-2015 Alvares, C. A., Stape, J. L., Sentelhas, P. C., Gonçalves, J. L. M. & Sparovek, G. 2013. Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift, 22(6), 711728. DOI: https://doi.org/10.1127/0941-2948/2013/0507 Ana (Agência Nacional das Águas). 2015. Hydrological data. Historic serie: Amazônas, Xingu, Tapajós and Tocantins stations [Online]. Hidroweb. Available from: http://hidroweb.ana.gov.br/. Access date: 2013 Ago. 14. Arcement Jr., G. J. & Schneider, V. R. 1989. Guide for selecting manning’s roughness coefficients for natural channels and flood plains. Dallas, United States Geological Survey Water-Supply. Baltazar, L. R. S., Menezes, M. O. B. & Rollnic, M. 2011. Contributions to the understanding of physical oceanographic processes of the Marajó Bay – Pa, North Brazil. Journal of Coastal Research, (64), 1443–1447. Bars, Y. L., Lyard, F.. Jeandel, C. & Dardengo, L. 2010. The amandes tidal model for the Amazon estuary and shelf. Ocean Modelling, 31(3-4), 132–149. DOI: https://doi. org/10.1016/J.Ocemod.2009.11.001 Beardsley, R. C., Candela, J., Limeburner, R., Geyer, W. R., Lentz, S. J., Castro, B. M., Cacchione, D. & Carneiro, N. 1995. The M2 tide on the Amazon shelf. Journal 15 Ocean and Coastal Research 2025, v73:e25020Hydrodynamic simulation in the Amazonian region Borba et al. of Geophysical Research, 100(C2), 2283–2319. DOI: https://doi.org/10.1029/94jc01688 Callède, J., Cochonneau, G., Ronchail, J., Alves, F. V., Guyt, J. L., Guimarães, V. S. & Oliveira, E. 2010. Les apports en eau de l’Amazone à l’océan Atlantique. Journal of Water Science, 3, 247–273. Carneiro, A. G. & Rollnic, M. 2024. Hydrodynamic and turbulence associated with tidal bore propagation in an amazonian macrotidal system. Regional Studies in Marine Science, 77, 103721. DOI: https://doi. org/10.1016/J.Rsma.2024.103721 Corrêa, I. C. S. 2005. Aplicação do diagrama de Pejrup na interpretação da sedimentação e da dinâmica do estuário da Baía de Marajó-P. Pesquisas em Geociências, 32(2), 109–188. DOI: https://doi. org/10.22456/1807-9806.19551 Costa, M. H., Botta, A. & Cardille, J. A. 2003. Effects of large-scale changes in land cover on the discharge of the Tocantins River, Southeastern Amazonia. Journal of Hydrology, 283(1–4), 206–217. DOI https://doi.org/ Http://Dx.Doi.org/10.1016/S0022-1694(03)00267-1 Costa, M. S., Rollnic, M., Silveira, O. F. M., Miranda, A. G. O. & Santos, R. R. L. 2013. Morphological and sedimentological processes of an Amazon estuary, Maguari River (Pará – Northern Brazil). Journal of Coastal Research, 65(Sp2)), 1110–1115. DOI: https:// doi.org/10.2112/Si65-188.1 Cowan, W. L. 1956. Estimating hydraulic roughness coeffcients. Agricultural Engineering, 37(7), 473–475. Crespo, p. D. B. 2016. Delft3d flexible mesh modelling of the Guayas River and estuary system in Ecuador. Singapore, Delft University of Technology. Curtin, T. B. & Legeckis, R. V. 1986. Physical observations in the plume region of the Amazon River during peak discharge—I. Surface variability Continental Shelf Research, 6(1), 31–51. DOI: https://doi. org/10.1016/0278-4343(86)90052-X Dai, A. & Trenberth, K. E. 2002. Estimates of freshwater discharge from continents: latitudinal and seasonal variations. Journal of Hydrometeorology, 3(6), 660687. DOI: https://doi.org/10.1175/1525-7541(2002) 003<0660:Eofdfc>2.0.Co;2 Deltares. 2014. D-flow flexible mesh, technical reference manual. Delft, Deltares. Deltares. 2023. Delft 3d-flow, simulation of multi-dimensional hydrodynamic flows and transport phenomena, including sediments, user manual. Delft, Deltares. DHN (Directorate of Hydrography and Navigation). 2020. Nautical chart No. 232. Avaliable from: https://www. marinha.mil.br/Chm/Dados-Do-Segnav/Cartas-Raster. Access date: 2025 Apr. 3. DHN (Directorate of Hydrography and Navigation). 2018. Nautical chart No. 221. Avaliable from: https://www. marinha.mil.br/Chm/Dados-Do-Segnav/Cartas-Raster. Access date: 2025 Apr. 3. Egbert, G. D. & Erofeeva, S. Y. 2002. Efficient inverse modeling of barotropic ocean tides. Journal of Atmospheric and Oceanic Technology, 19(2), 183–204. DOI: https://doi. org/10.1175/1520-0426(2002)019<0183:Eimobo>2.0. Co;2 Femar (Fundação de Estudos do Mar). 2000. Catálogo de estações maregráficas. Rio de Janeiro: Fundação de Estudos do Mar. Available from: https://Fundacaofemar. Org.Br. Access date: 2013 Ago. 14. Fontes, R. F. C., Castro, B. M. & Beardsley, R. C. 2008. Numerical study of circulation on the inner amazon shelf. Ocean Dynamics, 58, 187–198. Fricke, A. T., Nittrouer, C. A., Ogston, A. S., Nowacki, D. J., Asp, N. E. & Souza Filho, P. W. 2018. Morphology and dynamics of the intertidal floodplain along the Amazon tidal River. Earth Surface Processes and Landforms, 44(1), 204–218. DOI: https://doi.org/10.1002/Esp.4545 Gabioux, M., Vinzon, S. B. & Paiva, A. M. 2005. Tidal propagation over fluid mud layers on the Amazon shelf. Continental Shelf Research, 25(1), 113–125. DOI: https://doi.org/Http://Dx.Doi.org/10.1016/J.Csr.2004.09.001 Geyer, W. R., Beardsley, R. C., Lentz, S. J., Candela, J., Limeburner, R., Johns, W. E., Castro. B, N. & Soares, I. D. 1996. Physical oceanography of the Amazon shelf. Continental Shelf Research, 16(5–6), 575–616. DOI: https://doi.org/Http://Dx.Doi.org/10.1016/02784343(95)00051-8 Gregório, A. M. S. & Mendes, A. C. 2009. Characterization of sedimentary deposits at the confluence of two tributaries of the Pará River estuary (Guajará Bay, Amazon). Continental Shelf Research, 29(3), 609618. DOI: https://doi.org/Http://Dx.Doi.org/10.1016/J. Csr.2008.09.007 Kernkamp, H. W. J., Van Dam, A., Stelling, G. S. & Goede, E. D. 2011. Efficient scheme for the shallow water equations on unstructured grids with application to the continental shelf. Ocean Dynamics, 61(8), 1175–1188. Kineke, G. C., Sternberg, R. W., Trowbridge, J. H. & Geyer, W. R. 1996. Fluid-mud processes on the Amazon continental shelf. Continental Shelf Research, 16(5), 667–669. DOI: https://doi.org/10.1016/02784343(95)00050-X Köppen, W. P., Alt, E. 1936. Fünf Banden. Das geographische system der klimate. In: Köppen, W., & Geiger, R. (Ed.). Handbuch der Klimatologie (pp. 1-45). Königsberg: Gebrüder Borntraeger Verlag. Mertes, L. A. K., Dunne, T. & Martinelli, L. A. 1996. Channel-Floodplain Geomorphology Along The Solimões-Amazon River, Brazil. Geological Society of America Bulletin, 108(9), 1089–1107. DOI: https://doi. org/10.1130/0016-7606(1996)108<1089:Cfgats>2.3. Co;2 Masson, S. & Delecluse, P. 2001. Influence of the Amazon River runoff on the Tropical Atlantic. Physics and Chemistry of the Earth, Part B: Hydrology, Oceans and Atmosphere, 26(2), 137–142. DOI: https://doi. org/10.1016/S1464-1909(00)00230-6 Menezes, M. O. B., Limongi, C. M., Krelling, A. P. M., Rosário, R. P. & Rollnic, M. 2011. Physical oceanographic behavior at the Guama/Acara-Moju and the Paracauari River muths, Amazon coast (Brazil). Journal of Coastal Research, 64, 1448–1452. Mikhailov, V. N. 2010. Water and sediment runoff at the Amazon River mouth. Water Resources, 37(2), 145159. DOI: https://doi.org/10.1134/S009780781002003x 16 Ocean and Coastal Research 2025, v73:e25020Borba et al. Hydrodynamic simulation in the Amazonian region Miranda, L. B., Andutta, F. P., Kjerfve, B. & Castro Filho, B. M. 2017. Fundamentals of estuarine physical oceanography. Singapore, Springer. Miranda, L. B., Castro, B. M. & Kjerfve, B. 1998. Circulation and mixing due to tidal forcing in the Bertioga Channel, São Paulo, Brazil. Estuaries, 21(2), 204–214. Moser, G. A. O., Gianesella, S. M. F., Alba, J. J. B., Bérgamo, A. L., Saldanha-Corrêa, F. M. P., Miranda, L. B. & Harari, J. 2005. Instantaneous transport of salt, nutrients, suspended matter, and Chlorophyll-A in the tropical estuarine system of Santos. Brazilian Journal of Oceanography, 53(3–4), 115–127. Nikiema, O., Devenon, J. L. & Baklouti, M. (2007). Numerical modeling of the Amazon River plume. Continental Shelf Research, 27(7),873–899. DOI: https://doi.org/Http:// Dx.Doi.org/10.1016/J.Csr.2006.12.004 Parker, B. B. 1991. Tidal hydrodynamics. New York, John Wiley & Sons. Prestes, Y. O., Borba, T. A. C., Silva, A. C. & Rollnic, M. 2020. A discharge stationary model for the Pará-Amazon estuarine system. Journal of Hydrology: Regional Studies, 28, 100668. DOI: https://doi.org/10.1016/J. Ejrh.2020.100668 Prestes, Y. O., Rollnic, M., Souza, M. & Rosário, R. P. 2014. Volume transport in the tidal limit of the Pará River, Brazil. In Proceedings of the 17th Physics of Estuaries and Coastal Seas conference (pp. 19-24). Putra, S. S., Wegen, M., Reyns, J., Dam, A. V., Solomatine, D. P., & Roelvink, J. A. 2015. Multi station calibration of 3d flexible mesh model: a case study of the Columbia estuary. Procedia Environmental Sciences, 28, 297306. DOI: https://doi.org/10.1016/J.Proenv.2015.07.038 Ribeiro, M. C. L. B., Petrere Junior, M. & Juras, A. A. 1995. Ecological integrity and fisheries ecology of the Araguaia—Tocantins River basin, Brazil. Regulated Rivers: Research & Management, 11(3–4), 325–350. DOI: https://doi.org/10.1002/Rrr.3450110308 Sioli, H. 1984. The Amazon and its main affluents: hydrography, morphology of the river courses, and river types. In: Sioli, H. (Ed.). The Amazon (pp. 127-165). Dordrecht: Springer. Simpson, M. R., & Bland, R. 2000. Methods for accurate estimation of net discharge in a tidal channel. Ieee Journal of Oceanic Engineering, 25(4), 437–445. Thomson, R. E. & Emery, W. J. 2014. Data analysis methods in physical oceanography. New York, Elsevier. Van Ormondt, M., Nederhoff, K. & Van Dongeren, A. 2020. Delft dashboard: a quick set-up tool for hydrodynamic models. Journal of Hydroinformatics, 22(3), 510–527. DOI: https://doi.org/10.2166/Hydro.2020.092 Vinzon, S. B. & Paiva, A. M. 2002. Modeling the sediment concentration profiles at the Amazon shelf. Proceedings in Marine Science, 5, 687–702. DOI: https://doi. org/10.1016/S1568-2692(02)80048-1 Voinov, G. N. 2007. Seasonal variability of the harmonic constants of the quarter-diurnal and sixth-diurnal constituents in the Barents Sea and White Sea. Russian Meteorology And Hydrology, 32(4), 252–261.

Downloads

Published

13.08.2025

How to Cite

Hydrodynamic modelling in the Amazonian Estuary: A flexible mesh approach. (2025). Ocean and Coastal Research, 73. https://doi.org/10.1590/