Isopycnic Modeling of Ocean Circulation
DOI:
https://doi.org/10.1590/Keywords:
Ocean circulation modeling, isentropic coordinate, generalized vertical coordinates, global overturning circulation, MICOM, HYCOMAbstract
The history of ocean circulation models utilizing sea water potential density as a vertical coordinate is described. After a brief review of several models belonging to this class, emphasis in this article shifts to the ocean models MICOM and HYCOM developed by the authors and others at the University of Miami during the period 1980– 2010.
Downloads
References
ADCROFT, A., ANDERSON, W., BALAJI, V., BLANTON, C., BUSHUK, M., DUFOUR, C. O., DUNNE, J. P., GRIFFIES, S. M., HALLBERG, R., HARRISON, M. J., HELD, I. M., JANSEN, M. F., JOHN, J. G., KRASTING, J. P., LANGENHORST, A. R., LEGG, S., LIANG, Z., MCHUGH, C., RADHAKRISHNAN, A., REICHL, B. G., ROSATI, T., SAMUELS, B. L., SHAO, A., STOUFFER, R., WINTON, M., WITTENBERG, A. T., XIANG, B., ZADEH, N. & ZHANG, R. 2019. The GFDL global ocean and sea ice model OM4.0: Model description and simulation features, J. Adv. Mod. Earth Syst. 11, 3167–3211. DOI: 10.1029/2019MS001726. ADCROFT, A., HALLBERG, R. & HARRISON, M. 2008. A finite volume discretization of the pressure gradient force using analytic integration, Ocean Mod. 22, 106–113. DOI: 10.1016/J.OCEMOD.2008.02.001. ARBIC, B. K., ALFORD, M. H., ANSONG, J. K., BUIJSMAN, M. C., CIOTTI, R. B., FARRAR, J. T., HALLBERG, R. W., HENZE, C. E., HILL, C. N., LUECKE, C. A., MENEMENLIS, D., METZGER, E. J., MüLLER, M., NELSON, A. D., NELSON, B. C., NGODOCK, H. E., PONTE, R. M., RICHMAN, J. G., SAVAGE, A. C., SCOTT, R. B., SHRIVER, J. F., SIMMONS, H. L., SOUOPGUI, I., TIMKO, P. G., WALLCRAFT, A. J., ZAMUDIO, L. & ZHAO, Z. 2018. A primer on global internal tide and internal gravity wave continuum modeling in HYCOMand MITgcm, in E. Chassignet, A. Pascual, J. Tintoré & J. Verron (eds), New Frontiers in Operational Oceanography, GODAE OceanView, 307–392. DOI: 10.17125/gov2018.ch13. ARBIC, B. K., WALLCRAFT, A. J. & METZGER, E. J. 2010. Concurrent simulation of the eddying general circulation and tides in a global ocean model, Ocean Mod. 32, 175–187. DOI: 10.1016/J.OCEMOD.2010.01.007. BARTON, N., METZGER, E. J., REYNOLDS, C. A., RUSTON, B., ROWLEY, C., SMEDSTAD, O. M., RIDOUT, J. A., WALLCRAFT, A., FROLOV, S., HOGAN, P., JANIGA, M. A., SHRIVER, J. F., MCLAY, J., THOPPIL, P., HUANG, A., CRAWFORD, W., WHITCOMB, T., BISHOP, C. H., ZAMUDIO, L. & PHELPS, M. 2021. The Navy’s earth system prediction capability: a new global coupled atmosphere-ocean-sea ice prediction system designed for daily to subseasonal forecasting, Earth and Space Sci. 8, 28pp. DOI: 10.1029/2020EA001199. BENTSEN, M., BETHKE, I., DEBERNARD, J. B., IVERSEN, T., KIRKEVÅG, A., SELAND, O., DRANGE, H., ROELANDT, C., SEIERSTAD, I. A., HOOSE, C. & KRISTJANSSON, J. E. 2013. The Norwegian Earth System Model, NorESM1-M– Part 1: description and basic evaluation of the physical climate, Geosci. Mod. Dev. 6, 687–720. DOI: 10.5194/gmd-6687-2013. BENTSEN, M., DRANGE, H., FUREVIK, T. & ZHOU, T. 2004. Simulated variability of the Atlantic meridional overturning circulation, Climate Dyn. 22, 701–720. DOI: 10.1007/s00382Ocean and Coastal Research 2025, v73:e25029 004-0397-x. 17Bleck and Sun Isopycnic Modeling of Ocean Circulation BLECK, R. 1978a. Finite difference equations in generalized vertical coordinates. Part I: Total energy conservation, Beitr. Phys. Atm. 51, 360372. BLECK, R. 1978b. On the use of hybrid vertical coordinates in numerical weather prediction models, 106, 1233–1244. Mon. Wea. Rev. DOI: 10.1175/15200493(1978)106<1233:OTUOHV>2.0.CO;2. BLECK, R. 1984. Vertical coordinate transformation of vertically-discretized mospheric fields, atMon. Wea. Rev. 112, 2535–2539. DOI: 10.1175/15200493(1984)112<2535:NAC>2.0.CO;2. BLECK, R. 1990. Depiction of upper/lower vortex interaction associated with extratropical cyclogenesis, Mon. Wea. Rev. 118, 573–585. DOI: 10.1175/15200493(1990)118<0573:DOUVIA>2.0.CO;2. BLECK, R. 2002. An oceanic general circulation model framed in hybrid isopycnic-cartesian coordinates, Ocean Mod. 4, 55–88. DOI: 10.1016/S1463-5003(01)00012-9. BLECK, R. 2005. Uncertainties in climate prediction- the ocean perspective, Science-Based Prediction for Complex Systems, Vol. 29, Los Alamos Science, Los Alamos Nat’l. Lab., 4255. BLECK, R. 2006. On the use of hybrid vertical coordinates in ocean circulation modeling, in E. P. Chassignet & J. Verron (eds), Ocean weather forecasting, Springer, 109–126. BLECK, R., DEAN, S., O’KEEFE, M. & SAWDEY, A. 1995. A comparison of data-parallel and message-passing versions of the Miami Isopycnic Coordinate Ocean Model (MICOM), Paral. Comput. 21, 1695–1720. DOI: 10.1016/01678191(95)00043-3. BLECK, R., HANSON, H. P., HU, D. & KRAUS, E. B. 1989. Mixed layer-thermocline interaction in a three-dimensional isopycnic coordinate model, J. Phys. Ocean. 19, 1417–1439. DOI: 10.1175/15200485(1989)019<1417:mltiia>2.0.co;2. BLECK, R. & BOUDRA, D. B. 1981. Initial testing of a numerical ocean circulation model using a hybrid (quasiisopycnic) vertical coordinate, J. Phys. Ocean. 11, 755–770. DOI: 10.1175/15200485(1981)011<0755:ITOANO>2.0.CO;2. BLECK, R. & BOUDRA, D. B. 1986. Wind-driven spin-up in eddy-resolving ocean models formulated in isopycnic and isobaric coordinates, J. Geophys. Res. 91C, 7611–7621. DOI: 10.1029/JC091IC06P07611. BLECK, R. & CHASSIGNET, E. 1994. Simulating the oceanic circulation with isopycniccoordinate models, in S. K. Majumdar (ed.), The Oceans: Physical-Chemical Dynamics and Human Impact, Pennsylvania Acad. of Sci., 17–39. BLECK, R. & SMITH, L. 1990. A wind-driven isopycnic coordinate model of the North and Equatorial Atlantic Ocean. 1. model development and supporting experiments, J. Geophys. Res. 95C, 3273–3285. DOI: 10.1029/jc095ic03p03273. BLECK, R., ROOTH, C., HU, D. & SMITH, L. T. 1992. Salinity-driven thermocline transients in a wind- and thermohaline-forced isopycnic coordinate model of the North Atlantic, J. Phys. Ocean. 12, 1486–1505. DOI: 10.1175/15200485(1992)022<1486:sdttia>2.0.co;2. BLECK, R., SUN, S. & DEAN, S. 1997. Global ocean simulations with an isopycnic coordinate model, Some new directions in science on computers, World Scientific, 297–317. BLUMBERG, A. & MELLOR, G. L. 1987. A description of a three-dimensional coastal ocean circulation model, in N. S. Heaps (ed.), Three-dimensional coastal ocean models, Amer. Geophys. Union, 1–16. DOI: 10.1029/co004p0001. BOGUE, N. M., HUANG, R. X. & BRYAN, K. 1986. Verification experiments with an Ocean and Coastal Research 2025, v73:e25029 18Bleck and Sun Isopycnic Modeling of Ocean Circulation isopycnal coordinate ocean model, J. Phys. Ocean. 16, 985–990. DOI: 10.1175/15200485(1986)016<0985:vewaic>2.0.co;2. BORIS, J. P. & BOOK, D. L. 1973. Flux-corrected transport. I. SHASTA, a fluid transport algorithm that works, J. Comput. Phys. 11, 38–69. DOI: 10.1016/0021-9991(73)90147-2. BOZEC, A., LOZIER, M. S., CHASSIGNET, E. P. & HALLIWELL, G. R. 2011. On the variability of the Mediterranean outflow water in the North Atlantic from 1948 to 2006, J. Geophys. Res. 116, C09033. DOI: 10.1029/2011JC007191. BRETHERTON, F. P. 1966. Critical layer instability in baroclinic flows, Quart. J. Roy. Met. Soc. 92, 325–334. DOI: 10.1002/qj.49709239302. BROECKER, W. S. 1991. The great ocean conveyor, Oceanography 4, 79–89. DOI: 10.1063/1.41925. BROWN, K, T., SOUTHGATE, P. C., HEWAVITHARANE, C. A. & LAL, M. M. 2022. Saving the sea cucumbers: Using population genomic tools to inform fishery and conservation management of the Fijian sandfish holothuria (metriatyla) scabra, PLoS ONE 17, e0274245. DOI: 10.1371/journal.pone.0274245. BROWNING, G. L. & KREISS, H.-O. 1994. Splitting methods for problems with different timescales, Mon. Wea. Rev. 122, 2614–2622. DOI: 10.1175/15200493(1994)122<2614:smfpwd>2.0.co;2. BRYAN, K. 1959. A numerical method for the study of the circulation of the world ocean, J. Comput. Phys. 4, 347–376. DOI: 10.1016/00219991(69)90004-7. BURGMAN,R. J., SCHOPF, P. S. & KIRTMAN, B. P. 2008. Decadal modulation of ENSO in a hybrid coupled model, J. Climate 21, 5482–5500. DOI: 10.1175/2008jcli1933.1. CHASSIGNET, E. P. & XU, X. 2017. Impact of horizontal resolution (1/12° to 1/50°) on Gulf Stream separation, penetration, and variability, J. Phys. Ocean. 47, 1999–2021. DOI: 10.1175/jpo-d-17-0031.1. CHASSIGNET, E. P., HURLBURT, H. E., METZGER, E. J., SMEDSTAD, O. M., CUMMINGS, J. A., HALLIWELL, G. R., BLECK, R., BARAILLE, R., WALLCRAFT, A. J., LOZANO, C., TOLMAN, H. L., SRINIVASAN, A., HANKIN, S., CORNILLON, P., WEISBERG, R., BARTH, A., HE, R., WERNER, F. & WILKIN, J. 2009. US GODAE: global ocean prediction with the Hybrid Coordinate Ocean Model (HYCOM), Oceanography 22, 64–75. DOI: 10.5670/oceanog.2009.39. CHASSIGNET, E. P., HURLBURT, H. E., SMEDSTAD, O. M., HALLIWELL, G. R., HOGAN, P. J., WALLCRAFT, A. J., BARAILLE, R. & BLECK, R. 2007. The HYCOM (Hybrid Coordinate Ocean Model) data assimilative system, J. Mar. Syst. 65, 60–83. DOI: 10.1016/j.jmarsys.2005.09.016. CHASSIGNET, E. P., SMITH, L. T., HALLIWELL, G. T. & BLECK, R. 2003. North Atlantic simulations with the Hybrid Coordinate Ocean Model (HYCOM): Impact of the vertical coordinate choice, reference pressure, and thermobaricity, J. Phys. Ocean. 33, 2504–2526. DOI: 10.1175/15200485(2003)033<2504:naswth>2.0.co;2. CHASSIGNET, E. P., YEAGER, S. G., FOXKEMPER, B., BOZEC, A., CASTRUCCIO, F., DANABASOGLU, G., HORVAT, C., KIM, W. M., KOLDUNOV, N., LI, Y., LIN, P., LIU, H., SEIN, D., SIDORENKO, D., WANG, Q., & XU, X. 2020. Impact of horizontal resolution on global ocean-sea-ice model simulations based on the experimental protocols of the Ocean Model Intercomparison Project phase 2 (OMIP-2), Geosci. Model Dev. 13, 4595–4637. DOI: 10.5194/gmd-13-4595-2020. CHASSIGNET, E., SMITH, L. T., BLECK, R. & BRYAN, F. O. 1996. A model comparison: Numerical simulations of the North and Equatorial Atlantic oceanic circulation in depth and isopycnic coordinates, J. Phys. Ocean. 26, 1849–1867. DOI: 10.1175/1520Ocean and Coastal Research 2025, v73:e25029 0485(1996)026<1849:amcnso>2.0.co;2. 19Bleck and Sun Isopycnic Modeling of Ocean Circulation CHENG, W., BLECK, R. & ROOTH, C. 2004. Multidecadal thermohaline variability in an oceanatmosphere general circulation model, Climate Dyn. 22, 573–590. DOI: 10.1007/s00382-0040400-6. CHENG, W. &RHINES, P. 2004. Response of the overturning circulation to high-latitude freshwater perturbations in the North Atlantic general circulation model, Climate Dyn. 22, 359372. DOI: 10.1007/s00382-003-0385-6. CHENG, W., MCPHADEN, M. J., ZHANG, D. & METZGER, E. J. 2007. Recent changes in the Pacific subtropical cells inferred from an eddy-resolving ocean circulation model, J. Phys. Ocean. 37, 1340–1356. DOI: 10.1175/JPO3051.1. CUMMINGS, J. A. 2005. Operational multivariate ocean data assimilation, Quart. J. Roy. Met. Soc. 131, 3583–3604. DOI: 10.1256/qj.05.105. DANIELSEN, E. F. 1959. The laminar structure of the atmosphere and its relation to the concept of a tropopause, Arch. Meteor. Geophys. Bioklim. A11, 293–332. DOI: 10.1007/bf02247210. DE VERDIÈRE, A. C., HUCK, T., POGOSSIAN, S. & OLLITRAULT, M. 2018. Available potential energy in density coordinates, J. Phys. Ocean. 48, 1867–1883. DOI: 10.1175/JPO-D17-0272.1. DEVOS, M., VICHI, M. & RAUTENBACH, C. 2021. Simulating the coastal ocean circulation near the Cape Peninsula using a coupled numerical model, J. Mar. Sci. Eng. 9,359, 30pp. DOI: 10.3390/jmse9040359. DRIJFHOUT, S. S. & HAZELEGER, W. 2001. Eddy mixing of potential vorticity versus thickness in an isopycnic ocean model, J. Phys. Ocean. 31, 481–505. DOI: 10.1175/15200485(2001)031<0481:EMOPVV>2.0.CO;2. DUKOWICZ, J. K. 2006. Structure of the barotropic mode in layered ocean models, Ocean Mod. 11, 49–68. 10.1016/j.ocemod.2004.11.005. DOI: DUKOWICZ, J. K. & GREATBATCH, R. J. 1999. The bolus velocity in the stochastic theory of ocean turbulent tracer transport, J. Phys. Ocean. 29, 2232–2239. DOI: 10.1175/15200485(1999)029<2232:TBVITS>2.0.CO;2. DUTTON, J. A. 1976. The Ceaseless Winds, McGraw Hill, New York. EADY, E. T. 1949. Long waves and cyclone waves, Tellus 1, 33–52. DOI: 10.1111/j.21533490.1949.tb01265.x. FUREVIK, T., BENTSEN, M., DRANGE, H., KINDEM, I., KVAMSTØ, N. G. & SORTEBERG, A. 2003. Description and evaluation of the Bergen climate model: ARPEGE coupled with MICOM, Clim. Dyn. 21, 27–51. DOI: 10.1007/s00382003-0317-5. GABIOUX, M., DA COSTA, V. S., DE SOUZA, J. M. A. C., DE OLIVEIRA, B. F. & DE MORAES PAIVA, A. 2013. Modeling the South Atlantic Ocean from medium to high resolution, Rev. Brasil. Geofis. 31, 29–242. DOI: 10.22564/rbgf.v31i2.291. GASPAR, P. 1988. Modeling the seasonal cycle of the upper ocean, J. Phys. Ocean. 18, 161–180. DOI: 10.1175/15200485(1988)018<0161:mtscot>2.0.co;2. GENT, P. R. & MCWILLIAMS, J. C. 1990. Isopycnal mixing in ocean circulation models, J. Phys. Ocean. 20, 150–155. DOI: 10.1175/15200485(1990)020<0150:IMIOCM>2.0.CO;2. GRIFFIES, S., ADCROFT, A. & HALLBERG, R. W. 2020. A primer on the vertical Lagrangianremap method in ocean models based on finite volume generalized vertical coordinates, J. Adv. Mod. Earth Syst. 12, 38pp. DOI: 10.1029/2019MS001954. GRIFFIES, S., GNANADESIKAN, A., PACANOWSI, R. C., LARICHEV, V. D., DUKOWICZ, J. K. & SMITH, R. D. 1998. Isoneutral diffusion in a z-coordinate ocean model, J. Phys. Ocean. 28, 805–830. DOI: 10.1175/1520Ocean and Coastal Research 2025, v73:e25029 0485(1998)028<0805:idiazc>2.0.co;2. 20Bleck and Sun Isopycnic Modeling of Ocean Circulation GRIFFIES, S. M., ADCROFT, A. J., BANKS, H., BÖNING, C. W., CHASSIGNET, E. P., DANABASOGLU, G., DANILOV, S., DELEERSNIJDER, E., DRANGE, H., ENGLAND, M., FOXKEMPER,B., GERDES,R., GNANADESIKAN, A., GREATBATCH, R. J., HALLBERG, R. W., HANERT, E., HARRISON, M. J., LEGG, S., LITTLE, C. M., MADEC, G., MARSLAND, S. J., NIKURASHIN, M., PIRANI, A., SIMMONS, H. L., SCHRÖTER, J., XI B. L. SAMUELS, TREGUIER, A.-M., TOGGWEILER, J. R., TSUJINO, H., VALLIS, G. K. & WHITE, L. 2010. Problems and prospects in largescale ocean circulation models, Proceedings, OceanObs’09: Sustained Ocean Observations and Information for Society, Venice, 21-25 Sep. 2009, ESA Publ. WPP-306,, Vol. 2, 22pp. DOI: 10.5270/OceanObs09.cwp.38. HALLBERG, R. 1997. Stable split time stepping schemes for large-scale ocean modeling, J. Comput. Phys. 135, 54–65. DOI: 10.1006/jcph.1997.5734. HALLBERG, R. 2005. A thermobaric instability of Lagrangian vertical coordinate ocean models, Ocean Mod. 8, 279–300. DOI: 10.1016/j.ocemod.2004.01.001. HALLBERG, R. & GNANADESIKAN, A. 2006. The role of eddies in determining the structure and response of the wind-driven Southern Hemisphere overturning: Results from the Modeling Eddies in the Southern Ocean (MESO) project, J. Phys. Ocean. 36, 2232–2252. DOI: 10.1175/jpo2980.1. HALLBERG, R. & RHINES, P. 1996. Buoyancydriven circulation in an ocean basin with isopycnals intersecting the sloping boundary, J. Phys. Ocean. 26, 913–940. DOI: 10.1175/15200485(1996)026<0913:bdciao>2.0.co;2. HALLIWELL, G. R. 2004. Evaluation of vertical coordinate and vertical mixing algorithms in the HYbrid-Coordinate Ocean Model (HYCOM), Ocean Mod. 7, 285–322. DOI: 10.1016/j.ocemod.2003.10.002. HALO, I., BACKEBERG, B., PENVEN, P., ANSORGE, I., REASON, C. & ULLGREN, J. E. 2014. Eddy properties in the Mozambique Channel: A comparison between observations and two numerical ocean circulation models, Deep Sea Res. Part II 100, 38–53. DOI: 10.1016/j.dsr2.2013.10.015. HANSEN, C., KVALEBERG, E. & SAMUELSEN, A. 2010. Anticyclonic eddies in the Norwegian Sea; their generation, evolution and impact on primary production, Deep-Sea Res. I 57, 1079–1091. DOI: 10.1016/j.dsr.2010.05.013. HAZA, A. C., ÖZGÖKMEN, T. M., GRIFFA, A., GARRAFFO, Z. D. & PITERBARG, L. 2012. Parameterization of particle transport at submesoscales in the Gulf Stream region using Lagrangian subgridscale models, Ocean Mod. 42, 31–49. DOI: 10.1016/j.ocemod.2011.11.005. HERBETTE, S., MOREL, Y. & ARHAN, M. 2003. Erosion of a surface vortex by a seamount, J. Phys. Ocean. 33, 1664–1679. DOI: 10.1175/2382.1. HEWITT, D. E., SCHILLING, H. T., HANAMSETH, R., EVERETT, J. D., LI, J., ROUGHAN, M., JOHNSON, D. D., SUTHERS, I. M. & TAYLOR, M. D. 2022. Mesoscale oceanographic features drive divergent patterns in connectivity for co-occurring estuarine portunid crabs, Fish. Ocean. 31, 1–14. DOI: 10.1111/fog.12608. HIGDON, R. 2008. A comparison of two formulations of barotropic–baroclinic splitting for layered models of ocean circulation, Ocean Mod. 24, 29–45. DOI: 10.1016/j.ocemod.2008.05.006. HIRT, C. W., AMSDEN, A. A. & COOK, J. L. 1974. An arbitrary Lagrangian/Eulerian computing method for all flow speeds, J. Comput. Phys. 14, 227–253. DOI: 10.1016/00219991(74)90051-5. HOLLAND, W. R. & LIN, L. B. 1975a. On the generation of mesoscale eddies and their contribution to the oceanic general circulation. I. a preliminary numerical experiment, J. Ocean and Coastal Research 2025, v73:e25029 21Bleck and Sun Isopycnic Modeling of Ocean Circulation Phys. Ocean. 5, 642–657. DOI: 10.1175/15200485(1975)005<0642:otgome>2.0.co;2. HOLLAND, W. R. & LIN, L. B. 1975b. On the generation of mesoscale eddies and their contribution to the oceanic general circulation. II. a parameter study, J. Phys. Ocean. 5, 658–669. DOI: 10.1175/15200485(1975)005<0658:otgome>2.0.co;2. HSU, Y.-J. G. & ARAKAWA, A. 1990. Numerical modeling of the atmosphere with an isentropic vertical coordinate, Mon. Wea. Rev. 118, 1933–1959. DOI: 10.1175/15200493(1990)118<1933:nmotaw>2.0.co;2. HU, D. & CHAO, Y. 1999. A global isopycnal OGCM: Validations using observed upperocean variabilities during 1992–93, Mon. Wea. Rev. 127, 706–725. DOI: 10.1175/15200493(1999)127<0706:AGIOVU>2.0.CO;2. HUANG, R. X. 1986. Numerical simulation of wind-driven circulation in a subtropical/subpolar basin, J. Phys. Ocean. 16, 1636–1650. DOI: 10.1175/15200485(1986)016<1636:nsowdc>2.0.co;2. HUANG, R. X. 1993. Real freshwater flux as a natural boundary condition for the salinity balance and thermohaline circulation forced by evaporation and precipitation, J. Phys. Ocean. 23, 2428–2446. DOI: 10.1175/15200485(1993)023<2428:rffaan>2.0.co;2. HURLBURT, H., CHASSIGNET, E. P., CUMMINGS, J. A., KARA, A. B., METZGER, E. J., SHRIVER, J. F., SMEDSTAD, O. M., WALLCRAFT, A. J., & BARRON, C. N. 2008. Eddyresolving global ocean prediction, in M. Hecht & H. Hasumi (eds), Ocean Modeling in an eddying regime, Geophys Monog. 177, Amer. Geophys. Union, Washington, DC, 353–381. DOI: 10.1029/177GM21. HURLBURT, H. E. & THOMSON, J. D. 1976. A numerical model of the Somali Current, J. Phys. Ocean. 6, 646–664. DOI: 10.1175/15200485(1976)006<0646:anmots>2.0.co;2. HURLBURT, H. E. & THOMSON, J. D. 1980. A numerical study of Loop Current intrusions and eddy shedding, J. Phys. Ocean. 10, 1611–1651. DOI: 10.1175/15200485(1980)010<1611:ansolc>2.0.co;2. HURLBURT, H. E., METZGER, E. J., SPRINTALL, J., RIEDLINGER, S. N., ARNONE, R. A., SHINODA, T. & XU., X. 2015. Circulation in the Philippine Archipelago simulated by 1/12° and 1/25° global HYCOM and EAS NCOM, Oceanography 24, 28–47. DOI: 10.5670/oceanog.2011.02. JACKETT, D. R. & MCDOUGALL, T. J. 1997. A neutral density variable for the world’s oceans, J. Phys. Ocean. 27, 237–263. DOI: 10.1175/15200485(1997)027<0237:andvft>2.0.co;2. JENSEN, T. G. 1991. Modeling the seasonal undercurrents in the Somali Current system, J. Geophys. Res. 96C, 22151–22167. DOI: 10.1029/91jc02383. JENSEN, T. G. 1993. Equatorial variability and resonance in a wind-driven Indian Ocean model, J. Geophys. Res. 98C, 22533–22552. DOI: 10.1029/93jc02565. JENSEN, T. G., WIJESEKERA, H. W., NYADJRO, E. S., THOPPIL, P. G., SHRIVER, J. F., SANDEEP, K. K. & PANT, V. 2016. Modeling salinity exchanges between the equatorial Indian Ocean and the Bay of Bengal, Oceanography 29, 92–101. DOI: 10.5670/oceanog.2016.42. JIA, Y., CALIL, P. H. R., CHASSIGNET, E. P., METZGER, E. J., POTEMRA, J. T., RICHARDS, K. J. & WALLCRAFT,A.J. 2011. Generation of mesoscale eddies in the lee of the Hawaiian Islands, J. Geophys. Res. Oceans 116, C11009. DOI: 10.1029/2011JC007305. JOHNSON, D. & YUAN, Z. J. 1998. The development and initial tests of an atmospheric model based on a vertical coordinate with a smooth transition from terrain following to isentropic coordinates, Adv. Atmos. Sci. 15, 283–299. DOI: Ocean and Coastal Research 2025, v73:e25029 10.1007/s00376-998-0001-0. 22Bleck and Sun Isopycnic Modeling of Ocean Circulation KARA, A. B., HURLBURT, H. E., BARRON, C. N., WALLCRAFT, A. J. & MWETZGER, E. J. 2010. Can an atmospherically forced ocean model accurately simulate sea surface temperature during ENSOevents?, Tellus A 62, 48–61. DOI: 10.3402/tellusa.v62i1.15663. KARA, A. B., WALLCRAFT, A. J., MARTIN, P. J. & CHASSIGNET, E. P. 2008. Performance of mixed layer models in simulating SST in the equatorial Pacific Ocean, J. Geophys. Res. Oceans 113, C02020. DOI: 10.1029/2007JC004250. KASAHARA, A. 1974. Various vertical coordinate systems used for numerical weather prediction, Mon. Wea. Rev. 102, 509–522. DOI: 10.1175/15200493(1974)102<0509:VVCSUF>2.0.CO;2. KIM, H.-S., LOZANO, C., TALLAPRAGADA, V., IREDELL, D., SHEININ, D., TOLMAN, H. L., GERALD, V. M. & SIMS, J. 2014. Performance of ocean simulations in the coupled HWRF–HYCOMmodel, J. Atm. Ocean. Tech. 31, 545–559. DOI: 10.1175/JTECH-D-1300013.1. KONOR, C. S. & ARAKAWA, A. 1997. Design of an atmospheric model based on a generalized vertical coordinate, Mon. Wea. Rev. 125, 1649–1673. DOI: 10.1175/15200493(1997)125<1649:doaamb>2.0.co;2. KOURAFALOU, V. H., PENG, G., KANG, H., HOGAN, P. J., SMEDSTAD, O. M. & WEISBERG, R. H. 2009. Evaluation of global ocean data assimilation experiment products on South Florida nested simulations with the Hybrid Coordinate Ocean Model, Ocean Dyn. 59, 47–66. DOI: 10.1007/s10236-008-0160-7. KRAUS, E. B., BLECK, R. & HANSON, H. P. 1988. The inclusion of a surface mixed layer in a large-scale circulation model, in J. N. B. Jamart (ed.), Small-Scale Turbulence and Mixing in the Ocean, Vol. 46, Elsevier Oceanography Series, 51–62. DOI: 10.1016/s04229894(08)70537-3. KRAUS, E. B. & TURNER, J. S. 1967. A onedimensional model of the seasonal thermocline. Part II: the general theory and its consequences, Tellus 19, 1909–1924. DOI: 10.3402/tellusa.v19i1.9753. LAZAR, A., MADEC, G. & DELECLUSE, P. 1999. The deep interior downwelling, the Veronis effect, and mesoscale tracer transport parameterizations in an OGCM, J. Phys. Ocean. 29, 2945–2961. DOI: 10.1175/15200485(1999)029<2945:tdidtv>2.0.co;2. LE HÉNAFF, M., KOURAFALOU, V. H., MOREL, Y. & SRINIVASAN, A. 2012. Simulating the dynamics and intensification of cyclonic Loop Current frontal eddies in the Gulf of Mexico, J. Geophys. Res. 117, C02034. DOI: 10.1029/2011JC007279. LECLAIR, M. & MADEC, G. 2011. ˜z-coordinate, an Arbitrary Lagrangian–Eulerian coordinate separating high and low frequency motions, Ocean Mod. 37, 139–152. DOI: 10.1016/j.ocemod.2011.02.001. LEGG, S., HALLBERG, R. & GIRTON, J. 2006. Comparison of entrainment in overflows simulated by z-coordinate, isopycnal and nonhydrostatic models, Ocean Mod. 11, 69–97. DOI: 10.1016/j.ocemod.2004.11.006. LIN, S.-J. 1997. A finite-volume integration method for computing pressure gradient forces in general coordinates, Quart. J. Roy. Met. Soc. 123, 1749–1762. DOI: 10.1002/qj.49712354214. LIN, S.-J. 2004. f inite-volume global models, A vertically Lagrangian dynamical Mon. core for Wea. Rev. 132, 2293–2307. DOI: 10.1175/15200493(2004)132<2293:avlfdc>2.0.co;2. LORENZ, E. 1955. Available potential energy and the maintenance of the general circulation, Tellus 7, 157–167. DOI: 10.1111/j.21533490.1955.tb01148.x. LYNN, R. J. & REID, J. L. 1968. Characteristics and circulation of deep and abyssal waters, Deep Ocean and Coastal Research 2025, v73:e25029 23Bleck and Sun Isopycnic Modeling of Ocean Circulation Sea Res. 15, 577–598. DOI: 10.1016/00117471(68)90064-8. MAHOWALD, N. M., PLUMB, R. A., RASCH, P. J., DEL CORRAL, J., SASSI, F. & HERES, W. 2002. Stratospheric transport in a threedimensional isentropic coordinate model, J. Geophys. Res. 107, D15, 4254. DOI: 10.1029/2001JD001313. MCDOUGALL,T.J.1987. Neutral surfaces, J. Phys. Ocean. 17, 1950–1964. DOI: 10.1175/15200485(1987)017<1950:ns>2.0.co;2. MEGANN, A. P., NEW, A. L., BLAKER, A. T. & SINHA, B. 2010. The sensitivity of a coupled climate model to its ocean component, J. Climate 23, 5126–5150. DOI: 10.1175/2010jcli3394.1. MENSA, J. A., GARRAFFO, Z., GRIFFA, A., ÖZGÖKMEN, T. M., HAZA, A. & VENEZIANI, M. 2013. Seasonality of the submesoscale dynamics in the Gulf Stream region, Ocean Dyn. 63, 923–941. DOI: 10.1007/s10236-013-06331. MESINGER,F., CHOU,S.C., GOMES,J.L., JOVIC, D., BASTOS, P., BUSTAMANTE, J. F., LAZIC, L., LYRA, A. A., MORELLI, S., RISTIC, I. & VELJOVIC, K. 2012. An upgraded version of the Eta model, Meteorol. Atmos. Phys. 116, 63–79. DOI: 10.1007/s00703-012-0182z. METZGER, E. J., SMEDSTAD, O. M., THOPPIL, P. G., HURLBURT, H. E., CUMMINGS, J. A., WALLCRAFT, A. J., ZAMUDIO, L., FRANKLIN, D. S., POSEY, P. G., PHELPS, M. W., HOGAN, P. J., BUB, F. L., & DEHAAN, C. J. 2014. US Navy operational global ocean and Arctic ice prediction systems, Oceanography 27, 32–43. DOI: 10.5670/oceanog.2014.66. MEZA-PADILLA, R., ENRIQUEZ, C., LIU, Y. & APPENDINI, C. M. 2019. Ocean circulation in the western Gulf of Mexico using self-organizing maps, J. Geophys. Res. Oceans 124, 41524167. DOI: 10.1029/2018JC014377. MIKHAILOVA, E. N.&SHAPIRO,N.B.1993. Quasiisopycnic layer model for large-scale ocean circulation, Phys. Oceanogr. 4, 251–261. DOI: 10.1007/bf02197624. MILLER, R. L. & COAUTHORS 2020. CMIP6 historical simulations (1850–2014) with GISSE2.1, J. Adv. Mod. Earth Syst. 13, DOI: 10.1029/2019MS002034. MONTGOMERY, R. B. 1937. A suggested method for representing gradient flow in isentropic surfaces, Bull. Amer. Meteor. Soc. 18, 210–212. DOI: 10.1175/1520-0477-18.6-7.210. MONTGOMERY, R. B. 1938. Circulation in upper layers of southern North Atlantic deduced with use of isentropic analysis, Papers in Phys. Ocean. and Meteor., Vol. 6(2), MIT/Woods Hole, 1–55. DOI: 10.1575/1912/1093. NEW, A. L., BLECK, R., JIA, Y., MARSH, R., HUDDLESTON, M. & BARNARD, S. 1995. An isopycnic model study of the North Atlantic. Part 1: Model experiment, J. Phys. Ocean. 25, 2667–2699. DOI: 10.1175/15200485(1995)025<2667:aimsot>2.0.co;2. NIILER, P. P. & KRAUS, E. B. 1977. Onedimensional models of the upper ocean, in E. B. Kraus (ed.), Modelling and prediction of the upper layers of the ocean, Pergamon, 143172. OBERHUBER, J. M. 1993. Simulation of the Atlantic circulation with a coupled sea icemixed layer- isopycnal general circulation model. Part 1: Model description, J. Phys. Ocean. 23, 808–829. DOI: 10.1175/15200485(1993)023<0808:sotacw>2.0.co;2. ORLANSKI, I. 1969. The influence of bottom topography on the stability of jets in a baroclinic fluid, J. Atmosph. Sci. 26, 1216–1232. DOI: 10.1175/15200469(1969)026<1216:tiobto>2.0.co;2. OTTERÅ, O. H., BENTSEN, M., BETHKE, I. & KVAMSTØ, N. G. 2009. Simulated preindustrial climate in Bergen Climate Model (version 2): model description and large-scale cirOcean and Coastal Research 2025, v73:e25029 24Bleck and Sun Isopycnic Modeling of Ocean Circulation culation features, Geosci. Model Dev. 2, 197212. DOI: 10.5194/gmd-2-197-2009. PATA, P. R., YÑIGUEZ, A. T., DEAUNA, J. D. L., GUZMAN, A. B. D., JIMENEZ, C. R., ROSARIO, R. T. B.-D. & VILLANOY, C. L. 2021. Insights into the environmental conditions contributing to variability in the larval recruitment of the tropical sardine sardinella lemuru, Ecol. Mod. 451, 109570. DOI: 10.1016/j.ecolmodel.2021.109570. PEDLOSKY, J. 1964. The stability of currents in the atmosphere and the ocean: Part I, J. Atmosph. Sci. 21, 201–219. DOI: 10.1175/15200469(1964)021<0201:tsocit>2.0.co;2. PETERSEN, M. R., JACOBSEN, D. W., RINGLER, T. D., HECHT, M. W. & MALTRUD, M. E. 2015. Evaluation of the Arbitrary Lagrangian–Eulerian vertical coordinate method in the MPASoceanmodel, OceanMod.86,93113. DOI: 10.1016/j.ocemod.2014.12.004. REDI, M. H. 1982. Oceanic isopycnal mixing by coordinate rotation, J. Phys. Ocean. 12, 1154–1158. DOI: 10.1175/15200485(1982)012<1154:oimbcr>2.0.co;2. ROBERTS, K. E., GARRISON, L. P., ORTEGAORTIZ, J., HU, C., ZHANG, Y., SASSO, C. R., LAMONT, M. & HART, K. M. 2022. The inf luence of satellite-derived environmental and oceanographic parameters on marine turtle time at surface in the Gulf of Mexico, Remote Sens. 14, 4534. DOI: 10.3390/rs14184534. ROBERTS, M. J., MARSH, R., NEW, A. L. & WOOD, R. A. 1996. An intercomparison of a Bryan-Cox-type ocean model and an isopycnic ocean model. Part 1: The subtropical gyre and high-latitude processes, J. Phys. Ocean. 26, 1495–1527. DOI: 10.1175/15200485(1996)026<1495:aioabt>2.0.co;2. ROMANOU, A., GREGG, W. W., ROMANSKI, J., KELLEY, M., BLECK, R., HEALY, R., NAZARENKO, L., RUSSELL, G., SCHMIDT, G. A., SUN, S. & TAUSNEV, N. 2013. Natural air–sea flux of CO2 in simulations of the NASAGISS climate model: Sensitivity to the physical ocean model formulation, Ocean Mod. 66, 2644. DOI: 10.1016/j.ocemod.2013.01.008. ROSSBY, C.-G. & COLLABORATORS 1937. Isentropic analysis, Bull. Amer. Meteor. Soc. 18, 201–209. DOI: 10.1175/1520-0477-18.67.201. SCHMID, C., GARRAFFO, Z., JOHNS, E. & GARZOLI, S. L. 2003. Pathways and variability at intermediate depths in the tropical Atlantic, in G. J. Goni & P. Malanotte-Rizzoli (eds), Interhemispheric water exchange in the Atlantic Ocean, Vol. 68, Elsevier Oceanography Series, 233–268. DOI: 10.1016/s04229894(03)80149-6. SCHMIDT, G., KELLEY, M., NAZARENKO, L., RUEDY, R., RUSSELL, G., ALEINOV, I., BAUER, M., BAUER, S., BHAT, M., BLECK, R., CANUTO, V., CHEN, Y., CHENG, Y., CLUNE, T., GENIO, A. D., DE FAINCHTEIN, R., FALUVEGI, G., HANSEN, J., HEALY, R., KIANG, N., KOCH, D., LACIS, A., LEGRANDE, A., LERNER,J., LO, K., MATTHEWS,E., MENON, S., MILLER, R., OINAS, V., OLOSO, A., PERLWITZ, J., PUMA, M., PUTMAN, W., RIND, D., ROMANOU, A., SATO, M., SHINDELL, D., SUN, S., SYED, R., TAUSNEV, N., TSIGARIDIS, K., UNGER, N., VOULGARAKIS, A., YAO, M.-S., & ZHANG, J. 2014. Configuration and assessment of the GISS ModelE2 contributions to the CMIP5 archive, J. Adv. Mod. Earth Syst. 6, 141–184. DOI: 10.1002/2013MS000265. SCHMITZ, W. J. 1995. On the interbasin-scale thermohaline circulation, Rev. Geophys. 33, 151173. DOI: 10.1029/95rg00879. SCHOPF, P. S. & LOUGHE, A. 1995. A reduced-gravity isopycnal ocean model: hindcasts of El Niño, Mon. Wea. Rev. 123, 2839–2863. DOI: 10.1175/15200493(1995)123<2839:argiom>2.0.co;2. SHAO, A. E., ADCROFT, A., HALLBERG, R. & GRIFFIES, S. M. 2020. A generalcoordinate, nonlocal neutral diffusion operator, J. Adv. Mod. Earth Syst. 12, 22pp. DOI: 10.1029/2019MS001992. Ocean and Coastal Research 2025, v73:e25029 25Bleck and Sun Isopycnic Modeling of Ocean Circulation SHAY, L., JAIMES, B., BREWSTER, J., MEYERS, P., MCCASKILL, E., UHLHORN, E., MARKS, F., HALLIWELL, G., SMEDSTAD, O. & HOGAN, P. 2011. Airborne ocean surveys of the Loop Current complex from NOAA WP3D in support of the Deepwater Horizon oil spill, Monitoring and Modeling the Deepwater Horizon Oil Spill: A Record-Breaking Enterprise, Amer. Geophys. Union, 131–151. DOI: 10.1029/2011GM001101. SHCHEPETKIN, A. F. & MCWILLIAMS, J. C. 2003. A method for computing horizontal pressuregradient force in an oceanic model with a nonaligned vertical coordinate, J. Geophys. Res. 108, C3, 3090. DOI: 10.1029/2001JC001047. SMITH, L. T., BOUDRA, D. B. & BLECK, R. 1990. A wind-driven isopycnic coordinate model of the North and Equatorial Atlantic Ocean. II: The Atlantic basin experiments, J. Geophys. Res. 95, 13105–13128. DOI: 10.1029/jc095ic08p13105. SMOLARKIEWICZ, P. 1984. A fully multidimensional positive definite advection transport algorithm with small implicit diffusion, J. Comput. Phys. 54, 325–362. DOI: 10.1016/00219991(84)90121-9. SOOKNANAN, A. & HOSEIN, P. 2022. Estimating the carbon content of oceans using satellite sensor data, J. Big Data 9:93, 18pp. DOI: 10.1186/s40537-022-00647-7. SRINIVASAN, A., CHASSIGNET, E. P., BERTINO, L., BRANKART, J., BRASSEUR, P., CHIN, T. M., COUNILLON, F., CUMMINGS, J. A., MARIANO, A. J., SMEDSTAD, O. M. & THACKER, W. C. 2011. A comparison of sequential assimilation schemes for ocean prediction with the HYbrid Coordinate Ocean Model (HYCOM): twin experiments with static forecast error covariances, Ocean Mod. 37, 85–111. DOI: 10.1016/j.ocemod.2011.01.006. STANIFORTH, A. & THUBURN, J. 2012. Horizontal grids for global weather and climate prediction models: a review, Quart. J. Roy. Met. Soc. 138, 1–26. DOI: 10.1002/qj.958. STARR, V. P. 1945. A quasi-lagrangian system of hydrodynamical equations, J. Meteor. 2, 227–237. DOI: 10.1175/15200469(1945)002<0227:aqlsoh>2.0.co;2. SUN, S., BLECK, R., BENJAMIN, S. G., GREEN, B. W. & GRELL, G. A. 2018. Subseasonal forecasting with an icosahedral, vertically quasi-Lagrangian coupled model. Part I: Model overview and evaluation of systematic errors, Mon. Wea. Rev. 146, 1601–1617. DOI: 10.1175/mwr-d-18-0006.1. SUN, S., BLECK, R. & CHASSIGNET, E. 1993. Layer outcropping in numerical models of stratified flows, J. Phys. Ocean. 23, 1877–1884. DOI: 10.1175/15200485(1993)023<1877:loinmo>2.0.co;2. SUN, S., BLECK, R., ROOTH, C., DUKOWICZ, J., CHASSIGNET, E. & KILLWORTH, P. 1999. Inclusion of thermobaricity in isopycnic-coordinate ocean models, J. Phys. Ocean. 29, 2719–2729. DOI: 10.1175/15200485(1999)029<2719:iotiic>2.0.co;2. SUN, S. & BLECK, R. 2001. Thermohaline circulation studies with an isopycnic coordinate ocean model, J. Phys. Ocean. 31, 2761–2782. DOI: 10.1175/15200485(2001)031<2761:tcswai>2.0.co;2. SUN, S. & BLECK, R. 2006a. Geographic distribution of the diapycnal component of thermohaline circulations in coupled climate models, Ocean Mod. 15, 177–199. DOI: 10.1016/j.ocemod.2006.05.002. SUN, S. & BLECK, R. 2006b. Multi-century simulations with the coupled GISS-HYCOM climate model: control experiments, Climate Dyn. 26, 407–428. DOI: 10.1007/s00382-005-00917. THOPPIL, P. G., FROLOV, S., ROWLEY, C. D., REYNOLDS, C. A., JACOBS, G. A., METZGER, E. J., HOGAN, P. J., BARTON, N., WALLCRAFT, A. J., SMEDSTAD, O. M. & SHRIVER, J. F. 2021. Ensemble forecasting greatly expands the prediction horizon for Ocean and Coastal Research 2025, v73:e25029 26Bleck and Sun Isopycnic Modeling of Ocean Circulation ocean mesoscale variability, Commun. Earth Environ. 2, 89. DOI: 10.1038/s43247-02100151-5. VERONIS, G. 1973. Model of world ocean circulation: I. wind-driven two layer, J. Marine Res. 31, 228–288. VIGAN, X., PROVOST, C., BLECK, R. & COURTIER, P. 2000. Sea surface velocities from sea surface temperature image sequences 1. method and validation using primitive equation model output, J. Geophys. Res. 105, C8, 19499–19524. DOI: 10.1029/2000jc900027. WALLCRAFT, A. J., KARA, A. B., HURLBURT, H. E. & ROCHFORD, P. A. 2003. The NRL layered global ocean model (NLOM) with an embedded mixed layer submodel: formulation and tuning, J. Atm. Ocean. Tech. 20, 1601–1615. DOI: 10.1175/15200426(2003)020<1601:TNLGOM>2.0.CO;2. WEBSTER, S., THUBURN, J., HOSKINS, B. & RODWELL, M. 1999. Further development of a hybrid-isentropic GCM, Quart. J. Roy. Met. Soc. 125, 2305–2331. DOI: 10.1002/qj.49712555817. WELANDER, P. 1966. A two-layer frictional model of wind-driven motion in a rectangular ocean basin, Tellus 18, 54–62. DOI: 10.1111/j.21533490.1966.tb01443.x. WILLEBRAND, J., BARNIER, B., BØNING, C., DIETERICH, C., KILLWORTH, P. D., PROVOST, C. L., JIA, Y., MOLINES, J.-M. & NEW, A. L. 2001. Circulation characteristics in three eddy-permitting models of the North Atlantica, Prog.Oceanogr. 48, 123–161. DOI: 10.1016/S0079-6611(01)00003-9. WORTHINGTON, L. V. 1981. The water masses of the world ocean: some results of a finescale census, in B. A. Warren & C. Wunsch (eds), Evolution of Physical Oceanography, MIT Press, 42–69. XU, X., RHINES, P. B. & CHASSIGNET, E. P. 2016. Temperature–salinity structure of the North Atlantic circulation and associated heat and freshwater transports, J. Climate 29, 77237742. DOI: 10.1175/jcli-d-15-0798.1. XU, X., RHINES, P. B. & CHASSIGNET, E. P. 2018. On mapping the diapycnal water mass transformation of the upper North Atlantic Ocean, J. Phys. Ocean. 48, 2233–2258. DOI: 10.1175/jpo-d-17-0223.1. ZALESAK, S. 1979. Fully multidimensional f lux-corrected transport algorithms for fluids, J. Comput. Phys. 31, 335–362. DOI: 10.1016/0021-9991(79)90051-2. ZAMUDIO, L. & HOGAN, P. J. 2008. Nesting the Gulf of Mexico in Atlantic HYCOM: Oceanographic processes generated by hurricane Ivan, Ocean Mod. 21, 106–125. DOI: 10.1016/j.ocemod.2007.12.002. ZHANG, L. & XUE, Z. G. 2022. A numerical reassessment of the Gulf of Mexico carbon system in connection with the Mississippi River and global ocean, Biogeosci. 19, 4589–4618. DOI: 10.5194/bg-19-4589-2022. ZHANG, Y. J., ATELJEVICH, E., YU, H.-C., WU, C. H. & YU, J. C. S. 2015. A new vertical coordinate system for a 3D unstructuredgrid model, Ocean Mod. 85, 16–31. DOI: 10.1016/j.ocemod.2014.10.003. ZHANG, Y., YUE, S., XU, K., ZHANG, Z., ZHOU, L., ZHANG, Y. & LÜ, G. 2023. Performance analysis of global HYCOM flow field using Argo profiles, Int. J. Digital Earth 16, 3536–3559. DOI: 10.1080/17538947.2023.2252407. ZHU, Z. & SCHNEIDER, E. K. 1997. Improvement in stratosphere simulation with a hybrid θ− σ coordinate GCM, Quart. J. Roy. Met. Soc. 123, 2095–2113. DOI: 10.1256/smsqj.54314. ZHU,Z., THUBURN,J., HOSKINS,B.J.&HAYNES, P. H. 1992. A vertical finite-difference scheme based on a hybrid σ−θ−p coordinate, Mon. Wea. Rev. 120, 851–862. DOI: 10.1175/1520Ocean and Coastal Research 2025, v73:e25029 0493(1992)120<0851:avfdsb>2.0.co;2.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Rainer Bleck, Shan Sun

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Ocean and Coastal Research is an open-access journal available through SciELO (Scientific Electronic Library Online).
Ocean and Coastal Research journal title abbreviation is Ocean Coast. Res. and should be used in footnotes, references, and bibliographic entries.
All Ocean and Coastal Research scientific articles are freely available without charge to the user or institution. In accordance with the BOAI definition of open access, all contents are available to readers free of charge. Users may read, download, copy, and link to the full texts of the articles. They may be used for any lawful purpose without prior authorization from the publisher or the author, as long as proper credit is given to the original publication.
All Ocean and Coastal Research published scientific articles receive an individual Digital Object Identifier (DOI) persistent digital document identification.
All the content of the journal, except where otherwise noted, is licensed under a Creative Commons License type BY. Authors retain the copyright and full publishing rights without restrictions.
More information on intellectual property can be found here and on Scielo's Open Acess Statement.
Ocean and Coastal Research is listed in Publons and reviewers and editors can add their verified peer review and editing history to their Publons profile.
Ocean and Coastal Research is indexed in the Directory of Open Access Journals (DOAJ) and complies with principles of transparency and best practice for scholarly publications.
Ocean and Coastal Research is committed to the best standards in open-access publishing by adopting ethical and quality standards throughout the publishing process - from initial manuscript submission to the final article publication. This ensures authors that their work will have visibility, accessibility, reputation, usage, and impact in a sustainable model of scholarly publishing.
