

ISSN 1519-1397

PHYLLOMEDUSA

Journal of Herpetology

Volume 23 Number 2 December 2024

PHYLLOMEDUSA

Journal of Herpetology

PHYLLOMEDUSA - *Journal of Herpetology* – All material originally published in PHYLLOMEDUSA belongs to Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo - ESALQ-USP, and may not be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronics, mechanical, photocopying, recording, or otherwise, without prior written permission of the publishers.

ISSN 1519-1397 (print) / ISSN 2316-9079 (online)

Correspondence to:

Jaime Bertoluci

Departamento de Ciências Biológicas – ESALQ – USP
Av. Pádua Dias, 11 – 13418-900, Piracicaba – SP - BRAZIL
E-mail: phylomedusa@usp.br

Cover: Newly hatched tadpoles of *Cycloramphus boraceiensis*
from southeastern Brazil.

Photo: Edelcio Muscat

ISSN 1519-1397 (print)
ISSN 2316-9079 (online)

PHYLLOMEDUSA

Journal of Herpetology

VOLUME 23 - NUMBER 2
JULY-DECEMBER 2024

Phyllomedusa

IS PUBLISHED BY UNIVERSIDADE DE SÃO PAULO,
ESCOLA SUPERIOR DE AGRICULTURA “LUIZ DE QUEIROZ”

PIRACICABA

BIANNUAL

CREDENCIAMENTO E APOIO FINANCEIRO:
PROGRAMA DE APOIO ÀS PUBLICAÇÕES CIENTÍFICAS PERIÓDICAS DA USP
COMITÉ CIENTÍFICO

<i>Phyllomedusa</i>	Piracicaba	v.23	n.2	pp. 99-242	Jul-Dec 2024
---------------------	------------	------	-----	------------	--------------

PHYLLOMEDUSA

Journal of Herpetology

Editorial Board

Editor-in-Chief

Jaime Bertoluci

Universidade de São Paulo, Brazil

Senior Associate Editor

Linda Trueb

University of Kansas, USA

Second Senior Associate Editor

Janalee P. Caldwell

University of Oklahoma, USA

Associate Editors

Ross Alford

James Cook University, Australia

Franco Andreone

Museo Regionale di Scienze Naturali di Torino, Italy

James Bogart

University of Guelph, Canada

Thiago R. Carvalho

Universidade Federal de Minas Gerais, Brazil

Ignacio De La Riva

Museo Nacional de Ciencias Naturales, Spain

J. Roger Downie

University of Glasgow, UK

Shirley Famelli

University of Bristol, UK

Antoine Fouquet

CNRS, University of Toulouse, France

Francisco L. Franco

Instituto Butantan, Brazil

Ariovaldo A. Giaretta

Universidade Federal de Uberlândia, Brazil

Claudia Koch

Zoologisches Forschungsmuseum Alexander Koenig, Germany

Tiana Kohlsdorf

Universidade de São Paulo, Brazil

Philippe J. R. Kok

Universitet Lódzki, Poland

Antonieta Labra

University of Oslo, Norway

J. P. Lawrence

University of Mississippi, USA

Ross D. MacCulloch

Royal Ontario Museum, Canada

Peter A. Meylan

Eckerd College NAS, USA

Tamí Mott

Universidade Federal de Alagoas, Brazil

Fausto Nomura

Universidade Federal de Goiás, Brazil

Carlos I. Piña

CONICET, Argentina

Eduardo F. Schaefer

IIIGH - CONICET, Argentina

Geoffrey R. Smith

Denison University, USA

Franco L. Souza

Universidade Federal de Mato Grosso do Sul, Brazil

Vanessa Kruth Verdade

Universidade Federal do ABC, Brazil

Board Members

Darrel R. Frost

American Museum of Natural History, USA

Célio Fernando Batista Haddad

Universidade Estadual Paulista, Brazil

Walter Hödl

Universität Wien, Austria

Flora Acuña Juncá

Universidade Estadual de Feira de Santana, Brazil

Arturo I. Kehr

CONICET, Argentina

William Magnusson

Instituto Nacional de Pesquisas da Amazônia, Brazil

Otávio Augusto Vuolo Marques

Instituto Butantan, Brazil

José P. Pombal Jr.

Museu Nacional, Brazil

Carlos Frederico Duarte da Rocha

Universidade Estadual do Rio de Janeiro, Brazil

Miguel Trefaut Rodrigues

Universidade de São Paulo, Brazil

Catherine A. Toft

University of California, Davis, USA

Monique Van Sluys

Universidade Estadual do Rio de Janeiro, Brazil

Luciano Martins Verdade

Universidade de São Paulo, Brazil

Oscar Flores Villela

Universidad Nacional Autónoma de México

Laurie J. Vitt

University of Oklahoma, USA

Hussam Zaher

Museu de Zoologia, Univ. de São Paulo, Brazil

Barbara Zimmerman

University of Toronto, Canada

Web Master

Fábio A. Bazzanelli

Universidade de São Paulo, Brazil

Assistant to the Editor-in-Chief

Gerson O. Romão

Universidade de São Paulo, Brazil

Phylomedusa: Journal of Herpetology—Vol. 5, No. 1, 2006—Piracicaba, SP, Brazil: Departamento de Ciências Biológicas, Escola Superior de Agricultura “Luiz de Queiroz”, Universidade de São Paulo.

v.; il

Vol. 1 (2002) to Vol. 3 (2004) published by Melopsittacus Publicações Científicas, Belo Horizonte, MG, Brazil.

Vol. 1 (2002) to Vol. 5 (2006) Phylomedusa: Journal of Neotropical Herpetology

Biannual

Articles and abstracts in English; additional abstracts in Portuguese, Spanish, French, Italian, or German are optional.

ISSN 1519-1397 (print) ISSN 2316-9079 (online)

1. Herpetology

CDU - 598

Referees to Volume 23, 2024 (outside referees in *italics*): *Alberto Rojas Carranza, Antonieta Labra, Antonio Cisneros Bernal, Armando Sunny, Aurelio Ramirez Bautista, Bradley E. Carlson, Brittany Mason, Carolina Esquivel, Caroline Oswald, Claudia Koch, Connor Sullivan, Cynthia Prado, Daniel Cunha Passos, Davor Vrcibradic, Emily Grason, Federico Storniolo, Felipe Andrade, Geoffrey R. Smith, Gustavo Campillo, Hilary R. Frandsen, Juan Manuel Guayasamin, Judit Szabó, Julianne Monteiro, Julio Lemos-Espinal, Larissa Oliveira Gonçalves, Leandro Alves da Silva, Lina Moreno Azocar, Lindsey Swierk, Marco Alberto Luca Zuffi, Moisés Escalona, Pedro Marinho, Peter Scott, Rachulini G. Kamei, Raciel Cruz-Elizalde, Raúl Maneiro, Renoir Auguste, Rogério P. Bastos, Ross Alford, Ross D. MacCulloch, Sergio Naretto, Sergio Potsch de Carvalho e Silva, Shirley Famelli, Tamí Mott, Vanessa K. Verdade, Winsor Lowe, Yasmin Caroline Mossioli de Souza*.

Associate Editors to Volume 23 (2024): *Antonieta Labra, Ariovaldo Giaretta, Claudia Koch, Fausto Nomura, Franco L. Souza, Geoffrey R. Smith, Ignacio De la Riva, Jaime Bertoluci, J. Roger Downie, Peter Meylan, Ross Alford, Ross D. MacCulloch, Thiago R. Carvalho, Vanessa Kruth Verdade*.

The Black Aesculapian Snake *Zamenis longissimus* (Serpentes: Colubridae): characters and possible origin of the *subgrisea* morphotype

Alessandro Paterna

OPHIS Museo Paleontologico e Centro Erpetologico, 64100 Teramo, Italy. E-mail: alessandro.paterna@hotmail.com.

Abstract

The Black Aesculapian Snake, *Zamenis longissimus* (Serpentes: Colubridae): characters and possible origin of the *subgrisea* morphotype. New data acquired on the biology of the Aesculapian snake *Zamenis longissimus* shed light on a widespread specific morphotype in this species: the *subgrisea* form. Through captive breeding of groups of individuals for several generations, it was established that this morphotype is caused by a recessive mutation. The presence and combination of several traits indicate that this form is not from a single genetic mutation, such as melanotism or axanthism but from a morphotype more complex than previously considered. The expression of this form in several specimens from different European and Middle Eastern countries suggests that the origin of the morphotype is common and ancient, not random. From genetic analyses, fossil records, and the recent observations of wild individuals, it is probable that this form originated in the Balkan peninsula, where it is more common, and spread to central Europe during the species expansion and recolonization in the late Pleistocene after the last glaciation. *Zamenis longissimus* could therefore be considered a polymorphic species.

Keywords: Balkans, Phenotype, Polymorphism, Recessive gene, Snakes.

A serpente-negra-de-esculápio, *Zamenis longissimus* (Serpentes: Colubridae): caracteres e possível origem do morfotipo *subgrisea*. Novos dados adquiridos sobre a biologia de *Zamenis longissimus* lançam luz sobre um morfotipo específico amplamente difundido nessa espécie: a forma *subgrisea*. Por meio da criação em cativeiro de grupos de indivíduos durante várias gerações, foi estabelecido que esse morfotipo é causado por uma mutação recessiva. A presença e a combinação de vários caracteres indicam que essa forma não provém de uma única mutação genética, como o melanismo ou o axantismo, mas sim de um morfotipo mais complexo do que considerado anteriormente. A expressão dessa forma em vários exemplares de diferentes países da Europa e do Oriente Médio sugere que a origem do morfotipo é comum e antiga, não aleatória. A partir de análises genéticas, registros fósseis e observações recentes de indivíduos selvagens, é provável que essa forma tenha-se originado na península dos Balcãs, onde é mais comum, e se espalhado para a Europa Central durante a expansão e a recolonização da espécie no final do Pleistoceno, após a última glaciação. *Zamenis longissimus* poderia, portanto, ser considerada uma espécie polimórfica.

Palavras-chave: Balcãs, Fenótipo, Gene recessivo, Polimorfismo, Serpentes.

Received 13 May 2024

Accepted 05 August 2024

Distributed December 2024

Introduction

Melanism and melanoticism are conditions in which an individual is characterized by an excess of melanin compared to the normal phenotype of intraspecific individuals (Majerus 1998). This form represents the most common and highly variable mutation among ophidians and can express itself in multiple forms, affecting an individual partially or totally or being congenital or ontogenetic; multiple melanotic forms can be present within the same species (Senczuk *et al.* 2021, Fănarău *et al.* 2022, Jablonski *et al.* 2023, Storniolo *et al.* 2023, Meier *et al.* 2024). In snakes, mutations such as melanoticism, melanism, amelanism, leucism, xanthism/axanthism, and erythrism/anerythrism can randomly occur in any individual of any species in any location (Schulz 1996, Bruni 2017, Meier *et al.* 2021, Jablonski *et al.* 2022), leading to the possibility that characters may become fixed within some populations (Tokunaga and Ono 1991, Andrén 2004). Studies on melanistic/melanotic populations of snakes are abundant in the literature, as are reports of a single or a few individuals (Andrén and Nilson 1981, Kuriyama *et al.* 2013, Bury *et al.* 2020).

In this study, the “melanotic” morphotype of the Aesculapian snake, *Zamenis longissimus* (Laurenti, 1768), was examined. Previously, such dark/black individuals have been treated as “simple” or sporadic chromatic mutations, involving single individuals or small populations described in single reports from several Central European, Balkan, and Middle Eastern countries (Fitzinger 1826, 1832, De Betta 1853, Massalongo 1859). In these works, following Schulz (1996) and others (Edgar and Bird 2006, Kreiner 2007), this form is identified by the name designated by Werner (1897) as “var. *subgrisea*.”

Data from the literature, together with observations published on online platforms, were used to define a spatial map in which this morphotype is found. Published genetic and phylogenetic research about populations of *Zamenis longissimus* was considered to

hypothesize the most probable origin of the morphotype and how it spread to the locations where it is currently found. This information was combined with a seven-year project in which individuals of the *subgrisea* phenotype were kept and bred in a controlled environment, and several captive-bred generations were produced to determine the genetic nature of this morphotype.

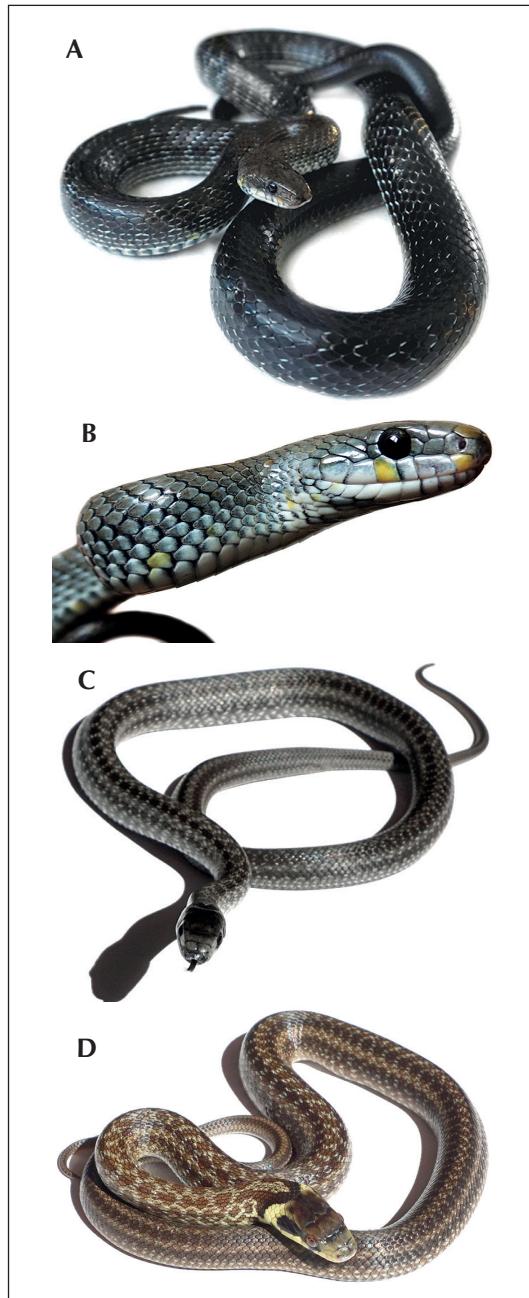
Materials and Methods

Two pairs of the *subgrisea* form born in captivity were donated to OPHIS, Museo Paleontologico e Centro Erpetologico in 2017 and 2023. The most recently received pair consisted of two adult individuals from Montenegro, while the other consisted of two young specimens born in 2017 from parents originating from two Balkan locations (male from Croatia and female from Montenegro). The specimens remain at OPHIS, where they have reproduced for two generations. The adult specimens were raised in terraria with dimensions of 100 × 60 × 50 cm (length, height, and depth, respectively). Their offspring were housed in terraria appropriate to their size and moved to larger ones during growth.

After being collected and measured, the eggs were placed in an incubator (38 × 58 × 36 cm) that had the temperature regulated by an electronic thermostat and digital probes. Each clutch was positioned in a plastic box with a transparent lid filled with moist vermiculite as a medium.

Photographs were obtained with Sony α6000 and Nikon Coolpix P510 digital cameras. Comparative or geographical data were obtained from the literature and from the GPS data provided in the reports on the iNaturalist.org platform.

Results


During the growth of the *subgrisea* specimens, as in the classic phenotype, the juvenile dorsal pattern fades, replaced by a uniform color ranging from solid black to dark grey with very

small white flecks (Figure 1A, B). The scales of both black and grey individuals are iridescent, and blue pigmentation may be present in the contact areas of black and white. In some individuals, four longitudinal dorsal lines may be visible. The ventral coloration is black, with white spots at the lateral margins of the ventral scales. These white spots form a longitudinal white stripe along the lower portion of the flanks. The chin and labial scales are white, and the subocular black spot disappears completely in adults. Scattered yellow spots appear on the ventral, subcaudal, and labial scales of adults (Figure 1A, B).

Juveniles of the *subgrisea* form exhibit a dorsal pattern of spots arranged in four longitudinal rows that distinguish all young *Zamenis longissimus* (Figure 1C, D). Unlike the more widespread phenotype, however, longitudinal rows are dark grey on a lighter grey background. As in adults, the belly is completely black with small white dots located on the lateral edges of the ventral scales. The chin and neck are white ventrally with small symmetrical black spots. The labial scales are white, the fourth and fifth with a black tear-shaped spot below the eye. A black line extends along the postocular and temporal scales. The head shields are dark grey, almost black. The iris is dark; in some individuals, the pupil is difficult to distinguish.

Three clutches were produced by the female born in 2017: in 2019, 2021, and 2022. These clutches consisted of 6, 2 and 6 fertilized eggs (plus an infertile egg), respectively (Figure 2A). The elongate white eggs featured irregular concretions on the shell (Figure 2B). Egg length ranged from 50–59 mm and diameter from 20–24 mm; eggs weighed 9–14 g.

Following an incubation of 51–56 days at temperatures between 26 and 28°C, the clutches hatched completely (Figure 2B). The hatchlings measured 30–33 cm and weighed 12–14 g. In the 2019 clutch, half of the specimens exhibited the *subgrisea* form and the other half the classic phenotype (two males and one female for each phenotype; Figure 2B). In the 2021 clutch, both

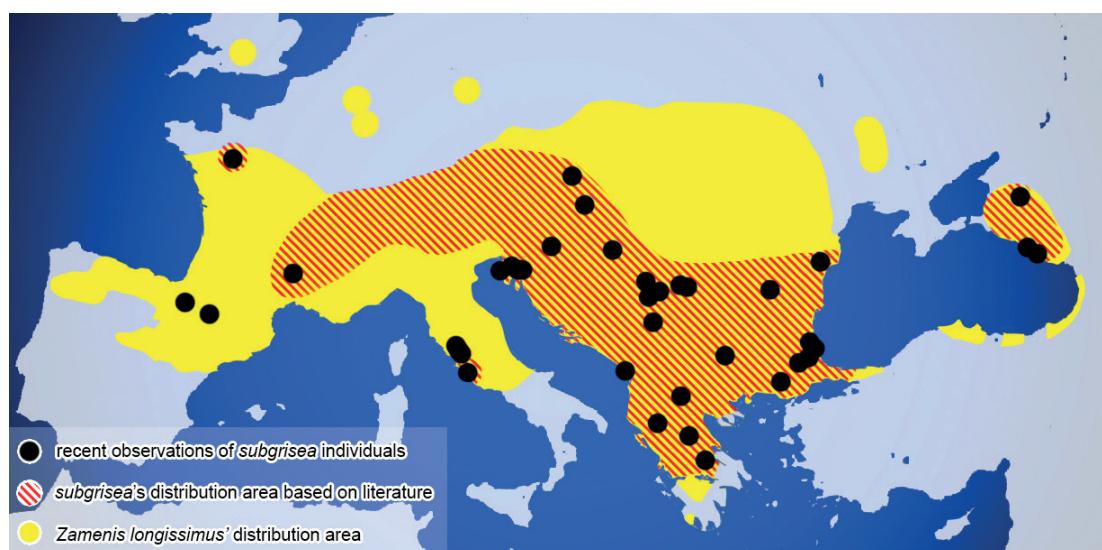
Figure 1. Specimens from the breeding program of *Zamenis longissimus*: (A) adult male *subgrisea* from Montenegro; (B) adult female *subgrisea*; (C) hatchling of the *subgrisea* morphotype; (D) hatchling of the dominant morphotype from *subgrisea* parents.

Figure 2. Specimens from the breeding program of *Zamenis longissimus*: (A) adult female *subgrisea* with eggs; (B) hatchlings from both morphotypes pipping the eggs; (C) juvenile female of the dominant morphotype showing black ventral coloration; (D) juvenile male showing characters of both dominant and *subgrisea* morphotypes.

hatchlings were of the *subgrisea* form. In 2022, four individuals exhibited the *subgrisea* form, and two were the classic phenotype. At hatching, the individuals of the classic phenotype from the mating of the *subgrisea* specimens exhibited a darker coloration than the hatchlings of *Z. longissimus* from other localities bred by the author and those observed by the author in the wild in Central Europe. The darker coloration becomes paler as the snakes grow. These offspring also exhibit a very bright orange iris (Figure 1D) that contrasts with the dark ground color.

Some chromatic “anomalies” occurred among the captive-bred specimens. One of the snakes born in 2023 (second generation bred in captivity) from heterozygous specimens (first generation in captivity) exhibits typical dorsal

coloration but is black ventrally (Figure 2C). A specimen born in 2022 from the original *subgrisea* pair exhibits coloration intermediate between the two morphotypes: hypoxanthistic with darker head shields and a greyish/bluish background dorsal coloration. The black pattern of this individual, if exposed to light, produces the same iridescence typical of the dorsal scales of *subgrisea* individuals (Figure 2D), possibly caused by a variation of concentration of iridophores and xanthophores compared to the classic phenotype.


Discussion

For many years, several authors have reported their observations of dark or “melanistic” individuals of *Zamenis longissimus*, naming this

variety/form *nigra*, or *nigrescens* (Fitzinger 1826, 1832, De Betta 1853, Massalongo 1859, Boulenger 1913). The first detailed information for identifying the morphotype, the object of this study, with those described in past literature was by Werner (1897). This author provided precise references to some characters, such as the dark belly and the longitudinal white line generated by the succession of spots located on the external portion of each ventral scale. This particular character was also confirmed by Angel (1946) and Cattaneo (1975), who even specified that this line terminates at the cloaca and is not present on the subcaudal scales.

The *subgrisea* form has been documented in France, Italy, Austria, Hungary, Croatia, Montenegro, Greece, Romania, Bulgaria, and the Caucasus (Werner 1897, Cattaneo 1975, Kreiner 2007, Schulz 1996, 2013). Most reports consist of observations of single individuals, although cases in which this form appears widespread are

known (Werner 1897, Cattaneo 2017). This latter situation appears to be more frequent in Balkan localities, where individuals of the classic and *subgrisea* phenotypes share the same habitats. Photos portraying these subjects appear in recent texts (Schulz 1996, 2013, Kreiner 2007), where details and localities are reported. Photographs of the *subgrisea* morphotype of *Z. longissimus* are on online platforms such as iNaturalist, with specific localities of the observations. Both literature and online records point out a high concentration of *subgrisea* sightings in the Balkan peninsula, and the online data confirm the distribution area in literature records (Figure 3). Most of the specimens have been documented in Greece, Bulgaria, Romania, Serbia, and Croatia, with records also in Hungary and Slovakia. The easternmost records reconfirm the presence of such morph in Russia and Turkey, and the westernmost in Italy, France, and Spain (Figure 3).

Figure 3. Distribution and observations of individuals of the *subgrisea* form. The yellow area indicates the distribution of *Zamenis longissimus*. Diagonal red lines indicate the predicted area of occurrence of the *subgrisea* form, based on information provided in the literature (Werner 1897, Cattaneo 1975, Kreiner 2007, Schulz 1996, 2013). Black dots correspond to recent observations of individuals of the *subgrisea* form from specific localities (Cattaneo 1975, Kreiner 2007, Schulz 1996, 2013, Zadravec and Lauš 2011) and from the iNaturalist platform (to April 2024).

In the literature, this morphotype has often been treated as melanic or axanthic (Zadravec and Lauš 2011, Cattaneo 2015, 2017). The results obtained by reproduction in captivity highlight the presence of several traits for which this form cannot be considered a single chromatic mutation. A character uniformly present in the *subgrisea* specimens is the black belly. This character is not found in the classic phenotype, in which the chin, belly, and tail are all colored with the same cream/yellowish shade. Pure melanic individuals are completely black, lacking even the small white spots between the dorsal scales, and any axanthistic specimen would have a white or light-grey venter, as in *subgrisea* juveniles, in which labials and the most anterior dorsal scales on the neck are white. Dark grey specimens with uniform white venters have been documented and are present on the iNaturalist platform. The same concept can be verified in the known axanthic/anerythristic forms of other colubroids (Fankhauser and Cumming 2008, Borteiro *et al.* 2021) and in the closely related species *Zamenis lineatus* (Russo *et al.* 2020).

A character not described in the literature is the presence of yellow pigment, which appears in some scales of *subgrisea* subjects. This pigmentation may affect any scale on the body, usually covering part of the scale. The yellow coloration is more evident in larger scales, such as the head shields, ventrals, and subcaudals but is also found on the dorsals. Yellowing scales in adults also occur in other species, such as the sympatric *Elaphe quatuorlineata* Lacépède, 1789 (pers. obs.). The presence of yellow pigmentation contradicts the hypothesis of axanthism and melanism because xanthophores are absent or rare in purely melanic colubrids (Kuriyama *et al.* 2013, 2016). The absence of iridophores was also reported in melanic individuals of the formerly congeneric *Elaphe quadrivirgata* (Boie, 1826) (Kuriyama 2013).

The white line on the external margins of the ventral scales is present in specimens of the classic phenotype. In the typically colored

individuals, it is present although barely visible against the light venter.

The data obtained from breeding show that the genetics of this morphotype are recessive. The results shed light on the genetics of the original pair. One of the two *subgrisea* parents that generated the individuals born in 2017 was heterozygous because among the offspring of the second generation (obtained from the mating of the 2017 *subgrisea* specimens) some of the hatchlings exhibit the classic/dominant phenotype. Furthermore, in the third generation produced by individuals of the classic phenotype, all of the hatchlings exhibited the same coloration as the parents. Confirmation of the recessive nature of this morphotype is noted by Cattaneo (1975), where a pregnant *subgrisea* female, captured near Rome in a limited and mixed *subgrisea* colony (possibly now extinct), laid eggs producing offspring of both forms.

Anomalies in the livery appeared in two hatchlings of the classic phenotype (Figure 2 C, D). These anomalies involved typical characteristics of the *subgrisea* form, demonstrating that some characters of this morphotype may appear individually in heterozygous specimens. This may be a case of incomplete dominance of the alleles but would need to be further investigated in future generations.

Conclusion

The results obtained from breeding suggest that the *subgrisea* form is a recessive mutation. Within the groups raised in a controlled environment, specimens manifesting partial traits of such morphotypes were born. An individual born in the third generation, obtained from the mating of recessive heterozygous specimens exhibiting the dominant classic coloration, featured the black belly. This trait is characteristic of the *subgrisea* form, which does not exist in the classic phenotype, as darker iridescent dorsal tones manifested in a second individual. This would likely mean that this

morphotype expresses itself in a combination of multiple traits and would be consequently not linked to a single gene, representing a more complex form than a single chromatic mutation.

The fact that such combinative traits can be found in the same form in different sites greatly distant from each other suggests that the observed specimens in the wild may not be the result of individual/occasional mutations, but instead these specimens have an ancient common origin that continues to be actively transmitted by recessive homozygous and heterozygous individuals within populations in which the classic phenotype appears to be the dominant one.

Recent genetic analyses and fossil records could help determine the origins of this form. It is supposed that in the last glacial period, the northern and central European populations of *Z. longissimus* became extinct, and these areas were subsequently repopulated in the Holocene, mainly by populations surviving in Balkan refuges (Musilová *et al.* 2010, Allentoft *et al.* 2018). Most of the observations of individuals or small populations of the *subgrisea* morphotype come from the Balkans. It is conceivable that this form was already present in the Pleistocene of southeastern Europe, and that it has survived to this day in certain central European populations that were recolonized by individuals with the genetics of the eastern clade. Further studies focused on dermal chromatophores could indicate where this form would have been advantaged and more functional during the glacial period (King 1988, Forsman 1995, Trullas *et al.* 2007, Geen and Johnston 2014, Monahan *et al.* 2022). The appearance of the *subgrisea* form could even be backdated because records of this morph come from the Caucasus and Greece (Schulz 1996, 2013, iNaturalist data), of which populations present profound genetic differences from the European and Transcaucasian ones (Musilová *et al.* 2007, 2010), suggesting that these southern-oriental groups remained isolated even longer and did not contribute to the colonizing expansion of Central Europe following the last glacial phase.

The *subgrisea* individuals and populations have been reported from coastal areas in Montenegro, Croatia, Italy, and Russia to mainland forests of the central and eastern European countries (Werner 1897, Cattaneo 1975, Kreiner 2007, Schulz 1996, 2013, Zadravec and Lauš 2011, iNaturalist data). Such differences both in altitudes and biotopes suggest that the presence of this form may not depend exclusively on environmental factors. The occurrence of the *subgrisea* form could not be selected by a switch of an environmental nature but would mainly depend *in primis* on the genetic pool of the micropopulation in question.

Considering the analyzed evidence, the Aesculapian snake could be considered a polymorphic species that expresses (at least) two forms: the dominant classic one and the recessive *subgrisea*, which occurs in several countries within the entire distribution of this colubrid.

Acknowledgments

I thank Rainer Fesser for donating the specimens of *Zamenis longissimus* of the phenotype described here to OPHIS, and all the iNaturalist users who shared their observations about *Z. longissimus*. I thank Ross D. MacCulloch, Jaime Bertoluci, and anonymous reviewers for revising and improving this manuscript.

References

Allentoft, M. E., A. R. Rasmussen, and H. V. Kristensen. 2018. Centuries-old DNA from an extinct population of Aesculapian snake (*Zamenis longissimus*) offers new phylogeographic insight. *Diversity* 2018: 1–10.

Andrén, C. 2004. *Forsmark Site Investigation Amphibians and Reptiles*. Svensk Kärnbränslehantering AB. 35 pp.

Andrén, C. and G. Nilson. 1981. Reproductive success and risk of predation in normal and melanistic colour morphs of the adder, *Vipera berus*. *Biological Journal of the Linnean Society* 15: 235–246.

Angel, F. 1946. *Faune de France 45 Reptiles et Amphibiens*. Librairie de la Faculté des Sciences 12. 204 pp.

Borteiro, C., A. D. Abegg, F. H. Oda, D. Cardozo, F. Kolenc, I. Etchandy, I. Bisaiiz, C. Priogini, and D. Baldo. 2021. Aberrant colourations in wild snakes: case study in Neotropical taxa and a review of terminology. *Salamandra* 57: 124–138.

Boulenger, G. A. 1913. *The Snakes of Europe*. London. Methuen & Co. 269 pp.

Bruni, G. 2017. A leucistic grass snake *Natrix natrix* (Linnaeus, 1758) (Serpentes: Natricidae) from Tuscany, Central Italy. *Herpetology Notes* 10: 313–316.

Bury, S., T. D. Mazgajski, B. Najbar, B. Zajac, and K. Kurek. 2020. Melanism, body size, and sex ratio in snakes — new data on the grass snake (*Natrix natrix*) and synthesis. *Naturwissenschaften* 107: 22.

Cattaneo, A. 1975. Presenza di *Elaphe longissima longissima* (Laurenti, 1768) melanica a Castelfusano (Roma). *Atti della Società Italiana di Scienze Naturali e del Museo Civico di Storia Naturale in Milano* 116: 251–262.

Cattaneo, A., 2015. The *Zamenis longissimus* (Laurenti) axanthic phenotype found on the Castelporziano Presidential Estate: considerations on its morphology, genetic nature and probable extinction (Serpentes: Colubridae). Pp. 385–389 in S. Pignatti, E. Capanna, and E. Porecdu (eds.), *Castelporziano, Research and Conservation in a Mediterranean Forest Ecosystem*, Rendiconti Lincei 26, Supplement 3, Springer.

Cattaneo, A. 2017. *I Serpenti della Tenuta di Castelporziano, tra Passato e Presente*. Cromostampa. 132 pp.

De Betta, E. 1853. Catalogo dei rettili della Valle di Non (nel Tirolo meridionale). *Verhandlungen der Zoologisch-Botanischen Gesellschaft in Wien* 2: 153–160.

Edgar, P. and D. R. Bird. 2006. Action plan for the conservation of the Aesculapian snake (*Zamenis longissimus*) in Europe. *Convention on the Conservation of European Wildlife and Natural Habitats*. 23 pp.

Fănaru, G., A. E. Telea, I. Gherghel, and R. Melenciu. 2022. Melanism in the grass snake *Natrix natrix* (Linnaeus, 1758) from the Danube Delta Biosphere Reserve, Romania. *Herpetozoa* 35: 257–263.

Fankhauser, G. and K. B. Cumming. 2008. Snake hybridization: A case for intrabaraminic diversity. Pp. 117–132 in Proceedings of the Sixth International Conference on Creationism. A. A. Snelling, (ed.) Creation Science Fellowship and Dallas, TX: Institute for Creation Research.

Fitzinger, L. J. 1826. *Neue classification der reptilien nach ihren natürlichen verwandtschaften: nebst einer verwandtschafts-tafel und einem verzeichnisse der reptilien-sammlung des K. K. zoologischen museum's zu Wien*. Wien, J. G. Heubner. 66 pp.

Fitzinger, L. J. 1832. Ueber die ausarbeitung einer fauna des erzherzogthumes Oesterreich, nebst einer systematischen aufzählung der in diesem lande vorkommenden säugethiere, reptilien und fischen, als prodrom einer fauna derselben. *Beiträge zur Landeskunde Oesterreich's unter der Enns* 1: 280–340.

Forsman, A. 1995. Heating rates and body temperature variation in melanistic and zigzag *Vipera berus*: does colour make a difference? *Annales Zoologici Fennici* 32: 365–374.

Geen, M. R. S. and G. R. Johnston. 2014. Coloration affects heating and cooling in three color morphs of the Australian bluetongue lizard, *Tiliqua scincoides*. *Journal of Thermal Biology* 43: 54–60.

Jablonski, D., B. Trapp, E. Tzoras, and K. Mebert. 2022. Erythrism in the eastern grass snake, *Natrix natrix* (Linnaeus, 1758). *Herpetozoa* 35: 213–217.

Jablonski, D., E. Tzoras, A. Panagiotopoulos, M. Asztalos, and U. Fritz. 2023. Genotyping the phenotypic diversity in Aegean *Natrix natrix moreotica* (Bedriaga, 1882) (Reptilia, Serpentes, Natricidae). *ZooKeys* 1169: 87–94.

King, R. B. 1988. Polymorphic populations of the garter snake *Thamnophis sirtalis* near Lake Erie. *Herpetologica* 44: 451–458.

Kreiner, G. 2007. *The Snakes of Europe*. Frankfurt AM Main. Edition Chimaira. 317 pp.

Kuriyama, T., T. Okamoto, K. Miyaji, and M. Hasegawa. 2016. Iridophore- and xanthophore-deficient melanistic color variant of the lizard *Plestiodon latiscutatus*. *Herpetologica* 72: 189–195.

Kuriyama, T., H. Misawa, K. Miyaji, M. Sugimoto, and M. Hasegawa. 2013. Pigment cell mechanisms underlying dorsal color-pattern polymorphism in the Japanese four-lined snake. *Journal of Morphology* 274: 1353–1364.

Majerus, M. 1998. *Melanism: Evolution in Action*. Oxford. Oxford University Press. 338 pp.

Massalongo, A. 1859. Catalogo dei rettili delle prov. venete compilato dal Prof. A. Massalongo. *Atti dell'I.R. Istituto Veneto di Scienze, lettere ed arti* 3: 300–310.

Meier, G., L. Cavigioli, and D. Muri. 2021. Osservazione di un colubro di Esculapio, *Zamenis longissimus* (Laurenti, 1768), adulto leucistico nel Cantone Ticino, Svizzera. *Bullettino della Società Ticinese di Scienze Naturali* 109: 125–126.

Meier, N., K. Lucek, M. A. L. Zuffi, F. Storniolo, M. Mezzasalma, P. Geniez, S. Dubey, R. Sacchi, S. Scali, and S. Ursenbacher. 2024. Extensive gene flow suggests lack of reproductive barriers between the two subspecies

of the green whip snake, *Hierophis viridiflavus* (Squamata: Colubridae). *Biological Journal of the Linnean Society* 141: 133–147.

Monahan, C. F., M. M. Garner, and M. Kiupel. 2022. Chromatophoromas in reptiles. *Veterinary Sciences* 9: 115.

Musilová, R., V. Zavadil, and P. Kotlík. 2007. Isolated populations of *Zamenis longissimus* (Reptilia: Squamata) above the northern limit of the continuous range in Europe: origin and conservation status. *Acta Societatis Zoologicae Bohemicae* 71: 197–208.

Musilová, R., V. Zavadil, S. Marková, and P. Kotlík. 2010. Relics of the Europe's warm past: Phylogeography of the Aesculapian snake. *Molecular Phylogenetics and Evolution* 57: 1245–1252.

Russo, G., E. Gianrucco, P. Lanza, E. Mirone, and B. Morello. 2020. An anomalous phenotype of the Italian Aesculapian snake *Zamenis lineatus* from Mt. Etna, Sicily. *Herpetological Bulletin* 154: 29–30.

Schulz, K. D. 1996. *A Monograph of the Colubrid Snakes of the Genus Elaphe Fitzinger*. Koeltz Scientific Books. 439 pp.

Schulz, K. D. 2013. *Old World Ratsnakes. A Collection of Papers*. Bushmaster Publications. 432 pp.

Senczuk, G., L. Gramolini, I. Avella, E. Mori, M. Menchetti, G. Aloise, and R. Castiglia. 2021. No association between candidate genes for color determination and color phenotype in *Hierophis viridiflavus*, and characterization of a contact zone. *Journal of Zoological Systematics and Evolutionary Research* 59: 748–759.

Storniolo, F., M. Mangiacotti, M. A. L. Zuffi, S. Scali, and R. Sacchi. 2023. Large scale phenotypic characterisation of *Hierophis viridiflavus* (Squamata: Serpentes): climatic and environmental drivers suggest the role of evolutionary processes in a polymorphic species. *Evolutionary Ecology* 37: 419–434.

Tokunaga, S. and Y. Ono. 1991. The Iwakuni shirohebis, a group of albino *Elaphe climacophora*. *Herpetological Review* 22: 120–121.

Trullas, S. C., J. H. van Wyk, and J. R. Spotila. 2007. Thermal melanism in ectotherms. *Journal of Thermal Biology* 32: 235–245.

Werner, F. 1897. *Die Reptilien und Amphibien Oesterreich-Ungarns und der Occupationshinder*. A. Pichler's Witwe & Sohn. 162 pp.

Zadravec, M. and B. Lauš. 2011. Melanism variations in *Natrix natrix* (Linnaeus, 1758) and *Zamenis longissimus* (Laurenti, 1768) in Croatia. *Hyla 2011*: 39–42.

Editor: Ross D. MacCulloch

Analyzing and comparing the buccal anatomy of European colubroid snakes: A reassessment of dentition models

Alessandro Paterna

OPHIS Museo Paleontologico e Centro Erpetologico, 64100 Teramo, Italy. E-mail: alessandro.paterno@hotmail.com.

Abstract

Analyzing and comparing the buccal anatomy of European colubroid snakes: A reassessment of dentition models. Anatomical analyses reveal the presence of two rear-fanged models among European colubroids, categorized by different types of venom glands and rear maxillary fangs and differences in the features of the maxillary bones. The first model, opisthoglyphous, is characterized by the presence of purely serous venom glands, from which the secretions produced flow in the grooved posterior maxillary fangs. The posterior fangs are separated from the anterior ones by an alveolar diastema and a deviation of the maxillary bone. The second model, blade-fanged, has a venom gland composed of seromucous cells, anatomically positioned in a more recessed position compared to the opisthoglyphous model. In this model the posterior maxillary fangs are enlarged but have distal and mesial keels instead of grooves, but are not separated from the anterior teeth by diastemas or deviations of the maxillary bone. The European group of colubroids, previously composed almost exclusively of snakes considered “aglyphous,” must be reconsidered in light of a system that consists mostly of opisthoglyphous snakes (predominantly the large group of Whip snakes, in addition to some species of Colubridae and Lamprophiidae), “aglyphous” snakes (exclusively Colubridae, including Ratsnakes and Dwarf snakes), and blade-fanged snakes (Natricidae, including Grass snakes and Water snakes). This reassessment is justified and supported by a comparative analysis of various European and non-European species, which confirms that “aglyphous” colubrids are residual forms of a rear-fanged model.

Keywords: Blade-fanged, Opisthoglyphous, Rear-fanged, Serpentes, Venom glands.

Resumo

Analisando e comparando a anatomia bucal de serpentes colubrídeos europeus: uma reavaliação dos modelos de dentição. Análises anatômicas revelam a presença de dois modelos com presas posteriores entre os colubrídeos europeus, categorizados por diferentes tipos de glândulas de veneno e presas maxilares posteriores e diferenças nas características dos ossos maxilares. O primeiro modelo, opistóglifo, é caracterizado pela presença de glândulas de veneno puramente serosas, das quais as secreções produzidas fluem nas presas maxilares posteriores sulcadas. As presas

Received 10 July 2024

Accepted 05 November 2024

Distributed December 2024

posteriores são separadas das anteriores por um diastema alveolar e um desvio do osso maxilar. O segundo modelo, presas em forma lâminas, apresenta uma glândula de veneno composta de células seromucosas, anatomicamente posicionadas em uma posição mais recuada em comparação ao modelo opistóglifo. Neste modelo, as presas maxilares posteriores são aumentadas, mas têm quilhas distais e mesiais em vez de sulcos, mas não são separadas dos dentes anteriores por diastemas ou desvios do osso maxilar. O grupo europeu de colubróides, anteriormente composto quase exclusivamente por serpentes consideradas “áglifas”, deve ser reconsiderado à luz de um sistema que consiste principalmente de serpentes opistóglifas (predominantemente o grande grupo de cobras-chicote, além de algumas espécies de Colubridae and Lamprophiidae), serpentes “áglifas» (exclusivamente Colubridae, incluindo Cobras-rato e Cobras-anãs) e serpentes com presas em forma de lâminas (Natricidae, incluindo cobras-da-grama e cobras-d’água). Esta reavaliação é justificada e apoiada por uma análise comparativa de várias espécies europeias e não-europeias, o que confirma que os Colubridae «áglifos» são formas residuais de um modelo com presas posteriores.

Palavras-chave: Glândulas de veneno, Opistóglifa, Presas em forma de lâmina, Presas posteriores, Serpentes.

Introduction

To date, most of the European colubroid species have been considered “aglyphous,” that is, equipped with non-grooved teeth (aglyphous = without glyphs), and consequently lacking structures suitable for the inoculation of venom during a bite (Kreiner 2007, Sindaco *et al.* 2013). The remaining small number of these snakes (5 of at least 37 species of colubroids) is considered “opisthoglyphous,” i.e. having furrowed or grooved teeth suitable for conveying mixed oral secretions. As indicated by the word itself (opisthoglyphous = glyphs behind), these traits occur mainly in the posterior area of the maxillae of these snakes, and in some cases in a more advanced position, but never in the anterior area, as happens in proteroglyphous (Elapidae) and solenoglyphous (Viperidae) snakes (Weinstein *et al.* 2011). The grooved teeth alone, however, are not sufficient to determine the opisthoglyphous nature of a species. In fact, snakes that share this condition have a venom gland located beneath the supralabial scales, known as “Duvernoy’s gland.” This gland is named after the French anatomist George Louis Duvernoy, who first described it in 1832 (Taub 1966, 1967). Within this category of ophidians, the morphology of the teeth, the posterior maxillary fangs, and the

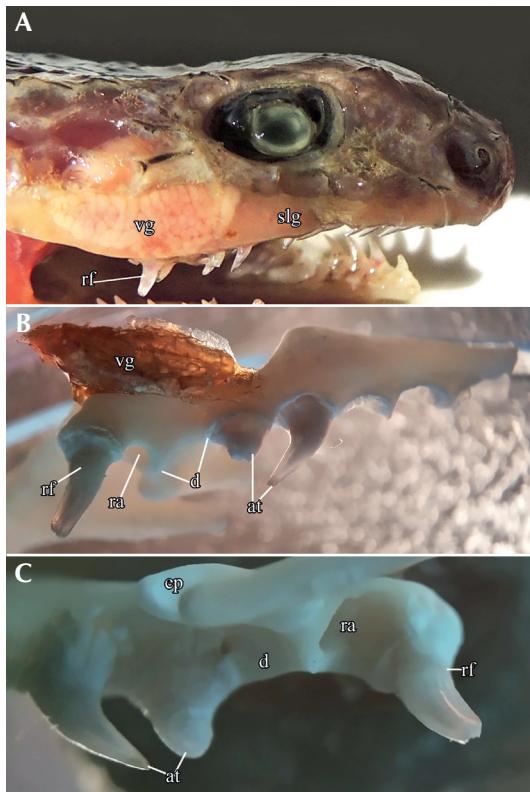
structure of the maxillary bones vary in size and composition. In some species these traits can barely be seen, whereas in others the structures are more defined and developed, leading to the possibility that the bite of certain species can cause clinical consequences in humans that may vary from mild localized symptoms to death (Weinstein *et al.* 2011).

Recent studies have demonstrated that a group of snakes, including whip snakes and racers of the western Palearctic region, that have been considered aglyphous are actually opisthoglyphous (Paterna 2023, Paterna and Grano 2024). This study investigated the buccal anatomy of various European colubroids currently considered aglyphous and opisthoglyphous and other species considered opisthoglyphous to verify whether these conditions are still attributable to these species.

Materials and Methods

An adult male *Hierophis viridiflavus carbonarius* (Lacépède, 1789), an adult male *Zamenis longissimus* (Laurenti, 1768), and two adult females *Natrix helvetica* (Linnaeus, 1758), all recent road-killed specimens, were collected in the province of Teramo, Abruzzo, Italy. The four specimens, all in excellent condition, were

transported to OPHIS Museo Paleontologico e Centro Erpetologico, where dissection and specimen preparation were carried out. Dissection was performed with surgical tools, and specimen preparation used sodium hypochlorite. During the different steps of each phase, photographs were taken using a Nikon Coolpix P510 camera. The prepared bones were subjected to microscopy at the laboratories of the Faculty of Veterinary Medicine of the University of Teramo, using a Nikon SMZ1500 stereomicroscope. The anatomy of the palatomaxillary arches of different colubroid species and genera was examined *in vivo* and specimens were compared with each other. Photographic details of the buccal anatomy of the examined individuals were acquired with the same camera model previously reported. *Elaphe quatuorlineata* (Bonnaterre, 1790), *Hemorrhois hippocrepis* (Linnaeus, 1758), *Hierophis viridiflavus*, *Natrix helvetica*, *Thamnophis marcianus* (Baird and Girard, 1853), *Zamenis longissimus*, and *Zamenis scalaris* (Schinz, 1822) were photographed at OPHIS, while specimens of *Boiga dendrophila divergens* (Boie, 1827), *Coronella austriaca* (Laurenti, 1768), *Dolichophis caspius* (Gmelin, 1789), *Hemorrhois ravergeri* (Ménétries, 1832), *Heterodon nasicus* (Baird and Girard, 1852), *Philodryas baroni* (Berg, 1895), and *Platyceps najadum* (Eichwald, 1831) were photographed in private collections.


Results

Anatomical Analysis

In *Hierophis viridiflavus* the venom gland is clearly distinguished from the supralabial salivary gland (Figure 1A). The venom gland consists of small pinkish lobules and occurs laterally from the posterior portion of the fifth supralabial to the entire seventh. Dorsally this gland reaches the upper border of the supralabial scales, while ventrally it reaches the lower limit of such scales only in the region of the enlarged posterior maxillary teeth. This point corresponds

to the lowest point ventrally reached by the lower edge of the supralabial scales (Figure 1A). The venom gland is located immediately beneath the supralabial scales and the wall of connective tissue that covers it. Ventromedially the gland is in contact with the cuff/sheath that covers the posterior maxillary teeth (Paterna 2023). Medially, the gland is in contact with the lateral wall of the maxillary bone, where, during one of the sample preparation steps, it was possible to preserve the venom gland to observe its medial extension (Figure 1B). The posterior extension reaches the posterior limit of the maxillary bone and culminates at the adductor *mandibulae externus profundus*. Anteriorly, the most voluminous portion of the gland culminates at the alveolar diastema and slightly more anteriorly with the lateral nutritive foramen, while the most anterior limit reaches the space between the last and the penultimate anterior tooth. As previously described (Paterna 2023), in addition to the posterior teeth, these anterior teeth also have grooves (Figure 1B, C). The traits observed agree with the histological analysis of Taub (1967) in which, regarding the group in which the former genus *Coluber* (actually *Hemorrhois*) is included, it is stated: “the supralabial and Duvernoy’s glands are easily distinguishable in section, as they are composed of two markedly different types of cells. Duvernoy’s glands are encased in a capsule of connective tissue and are composed primarily of serous cells. There is a small lumen in the center of each tubule or cord, a lumen that generally leads into a secondary collecting duct. These secondary ducts join to form a collecting or primary duct, which is lined with a mucous epithelium and leads into the mucous epithelial sheath of the posterior maxillary teeth.”

In *Natrix helvetica* the venom gland is relatively larger than that present in *H. viridiflavus*. This gland is developed laterally and formed of white/cream lobules (Figure 2A), analogous to that described in *Natrix tessellata* (Akat *et al.* 2011). Compared to *H. viridiflavus*, this gland is less distinguishable from the

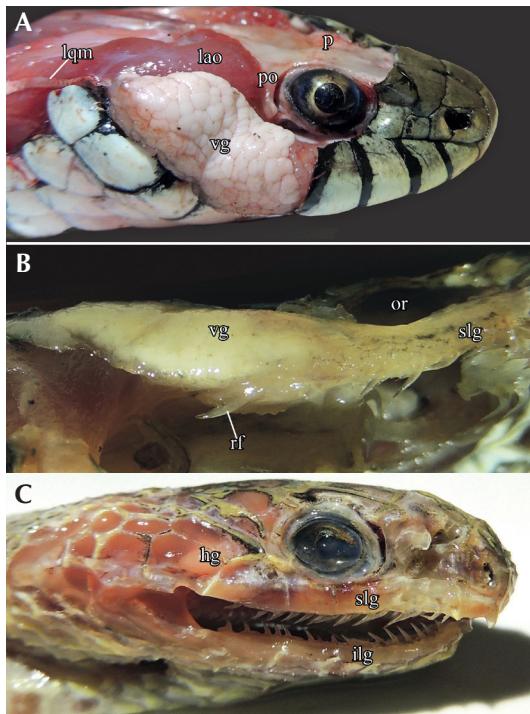


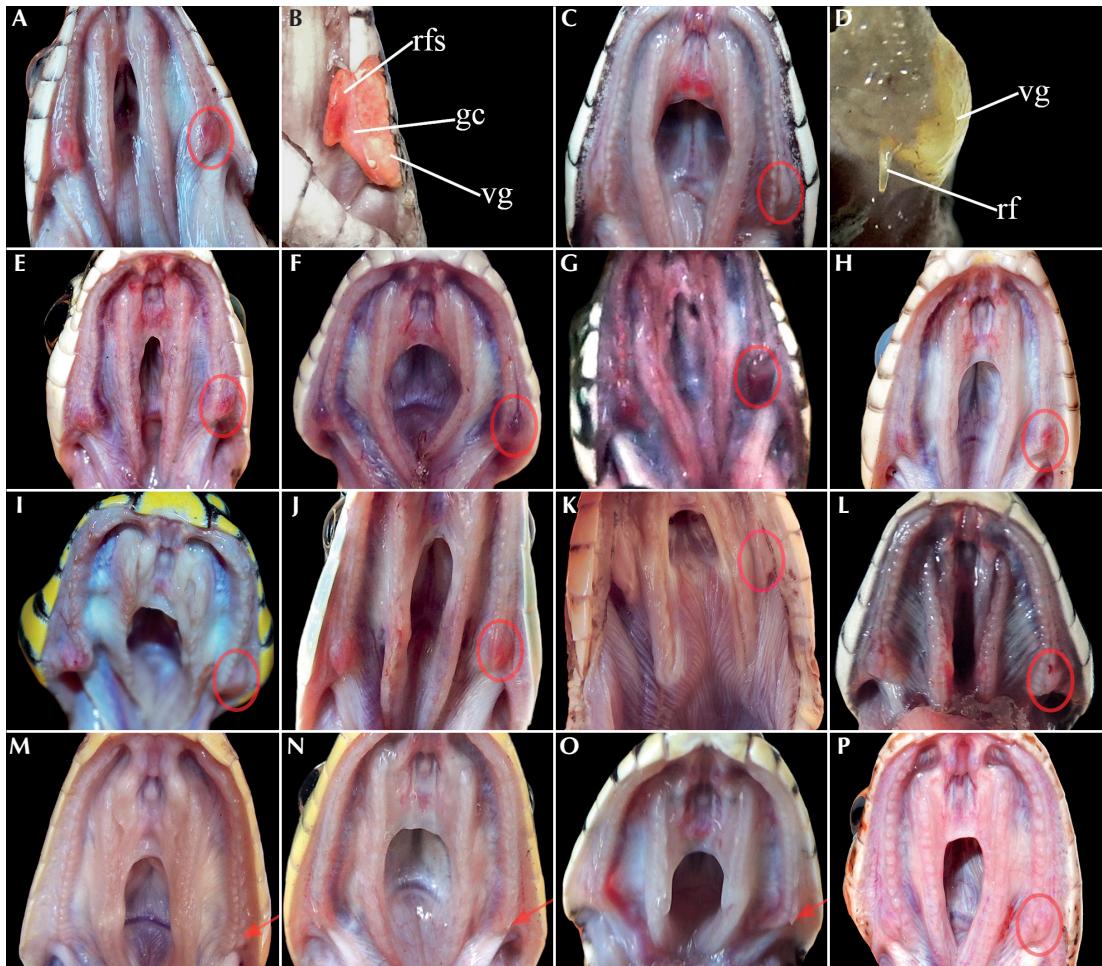
Figure 1. Adult male *Hierophis viridiflavus carbonarius* from Abruzzo, Italy. (A) Dissected head in right lateral view. (B) Prepared right maxilla in lateral view. (C) Prepared right maxilla in medial view. Abbreviations: at, anterior maxillary teeth; d, diastema; ep, ectopterygoid process; slg, supralabial salivary gland; ra, rear alveolus; rf, rear fang; vg, venom gland.

anterior supralabial salivary glands, which have a lobular structure of similar color. The venom gland is located below the sixth, seventh, and eighth supralabials, which delimit the gland extension both anteroposteriorly and dorsalventrally. In contrast to *H. viridiflavus*, the center of this gland is not found concomitantly with the enlarged posterior maxillary teeth, but these occur in the most anterior part of the gland (Figure 2B). These teeth do not have grooves, but they have a distal carina and a smaller

mesial carina, which forms a blade shape. The anterior maxillary teeth are undulated, suitable for providing grip in holding viscous prey (Figure 2B; Paterna 2023). The venom gland is therefore located further back in this species and extends far beyond the posterior end of the maxillary bone and the adductor *mandibulae externus profundus*. Different from that observed in whip snakes, in *N. helvetica* the cuffs/sheaths of the posterior maxillary teeth are not distinct in coloration from the surrounding mucosa. The lateral wall of these cuffs/sheaths is hemispherical, and clearly distinguishable due to a depression produced by the medial contact with the venom gland. The orifices for the rear fangs are visible.

As a comparison species, similarly to the previous study (Paterna 2023), a colubrid was chosen that is sympatric with European whip snakes and grass snakes, the Aesculapian Snake *Zamenis longissimus*. In lateral view of the prepared specimen, the venom gland is absent and the supralabial salivary glands are present; these glands track the size and extension of the maxillary bone (Figure 2C). At the posterior extremity of the maxilla, behind the last maxillary tooth, the salivary gland is more dorsoventrally compressed and a different color and consistency compared to the more anterior portion. This could conceivably be a remnant of a possible Duvernoy's gland/venom gland. The last trait is identifiable in a deeper stage of preparation than the one illustrated, although it is visible in Figure 2C. This eventual remnant is positioned just below the Harderian gland, which is located posterior to the postorbital bone and adjacent to the temporal scales (Figure 2C). The supralabial salivary glands, together with the infralabial ones, have the function of lubricating the prey during swallowing through the secretion of mucus (Kochva 1978). In this species ("aglyphous") the reverse condition of the opisthoglyphous model is notable, whereby the anterior maxillary teeth are longer than the posterior ones (Figure 2C; Paterna 2023).

Figure 2. Adult specimens of *Natrix helvetica* and *Zamenis longissimus* from Abruzzo, Italy. **(A)** *Natrix helvetica* dissected head in right lateral view. **(B)** *Natrix helvetica* dissected head in ventrolateral view. **(C)** *Zamenis longissimus* dissected head in right lateral view. Abbreviations: hg, Harderian gland; ilg, infralabial salivary gland; lao, levator anguli oris; lqm, ligamentum quadrato-maxillare; or, orbit; p, parietal bone; po, postorbital bone; rf, rear fang; slg, supralabial salivary gland; vg, venom gland.


Palatomaxillary Arches

Of the three species discussed, the palatomaxillary arches were examined in both dead and *in vivo* specimens, with the aim of comparing them with other species of European and non-European aglyphous and rear-fanged colubroids (Figure 3). In the material examined, in the palatomaxillary arch of *H. viridiflavus* (Figure 3A) the cuffs/sheaths that medially

extend from the venom glands and cover the posterior maxillary teeth are easily visible and distinguishable (Figure 3B). This trait is also observable in other inspected opistoglyphous species, such as the European whip snakes *Platyceps najadum*, *Hemorrhois hippocrepis*, *Hemorrhois raveri*, and *Dolichophis caspius* (Figure 3E–H), and the extra-European opistoglyphous *Boiga dendrophila*, *Philodryas baroni*, and the rear-fanged *Heterodon nasicus* (Figure I–K). Cuffs/sheaths covering the enlarged maxillary posterior teeth are present in *N. helvetica* (Figure 3C), but less visible than the ones found in whip snakes (Figure 3D) and in the American natricid *Thamnophis marcianus*, where instead these are more distinguishable (Figure 3L). Consequently, the palatomaxillary arches of this European natricid appear similar, at first sight, to those of the sympatric aglyphous colubrids such as *Elaphe quatuorlineata*, *Z. longissimus*, and *Zamenis scalaris* (Figure 3M–O), as no color variations highlight the cuffs/sheaths. The substantial difference is that in the natricids the lateromedial space between the walls of the supralabials and the maxillary bones is filled by the venom gland (Figure 3), while in ratsnakes this is hollow, generating a large longitudinal canal that occurs between the maxilla and the posterior supralabial scales (Figure 3M–O). Furthermore, in aglyphous colubrids, the posterior maxillary teeth are uncovered and visible, lacking the structures present in the other analyzed groups (Figure 3 M–O).

In the analysis of the palatal arches of another European colubrid, *Coronella austriaca*, the presence of enlarged posterior maxillary teeth covered by cuffs/sheaths that morphologically resemble those previously described is observable. Analogous to *N. helvetica*, these structures show the same color as the surrounding mucosa, and the openings from which the posterior maxillary teeth unsheathe are observable (Figure 3P).

As control tests, other colubrids from the Old World, including *Elaphe anomala*, *Elaphe*

Figure 3. Analogies and differences among the palatomaxillary arches of aglyphous, opisthoglyphous, and blade-fanged colubroids. From the top, first horizontal row: (A) *Hierophis viridiflavus carbonarius*, (B) *Hierophis viridiflavus carbonarius*, dissected right maxilla in ventral view, (C) *Natrix helvetica*, (D) *Natrix helvetica*, dissected right maxilla in ventral view. Second row, European whipsnakes: (E) *Platyceps najadum*, (F) *Hemorrhois hippocrepis*, (G) *Hemorrhois ravergeri*, (H) *Dolichophis cascpius*. Third row, extra-European rear-fanged snakes: (I) *Boiga dendrophila divergens*, (J) *Philodryas baroni*, (K) *Heterodon nasicus*, (L) *Thamnophis marcianus*. Fourth row, ratsnakes and the smooth snake: (M) *Elaphe quatuorlineata*, (N) *Zamenis longissimus*, (O) *Zamenis scalaris*, (P) *Coronella austriaca*. Red circles delimitate the sheaths of rear fangs, red arrows indicate the last (naked) maxillary tooth. Abbreviations: gc, connective tissue capsule of the gland; rf, rear fang; rfs, sheath of rear fangs; vg, venom gland.

bimaculata, *Elaphe carinata*, *Elaphe dione*, *Orthriophis taeniurus* *friesi*, *Zamenis persicus*, and from the New World, including *Pantherophis guttatus* and *Pituophis catenifer* *sayi*, were examined. In the palatomaxillary arches of the Old World species, observed in *E. quatuorlineata*, *Z. longissimus*, and *Z. scalaris*, there are no cuffs/sheaths in relation to the posterior maxillary teeth, much less the lateromedial thickening of the supralabial walls, while in the two New World species small cuffs/sheaths are present in the posterior margins of the maxillae, although less well defined than the whip snakes, grass snakes, and the other rear-fanged snakes analyzed.

Discussion

In addition to the presence of Duvernoy's glands/venom glands, several traits may be completely or partially shared in opisthoglyphous species. These are: 1) enlarged posterior maxillary teeth; 2) grooved posterior maxillary teeth; 3) blade-shaped posterior maxillary teeth; 4) alveolar diastema separating the posterior maxillary teeth from the anterior ones; 5) mediolateral or/and dorsoventral deviation of the maxillary bone corresponding to the alveolar diastema; and 6) presence of cuffs/sheaths covering the posterior maxillary teeth in the palatomaxillary arch (Table 1). A seventh trait, which does not affect European colubrids, is the extreme reduction of the jaw in which the number of teeth is considerably reduced, as in the case of *Dispholidus* (Kardong 1982). Deviations of the maxillae and diastemas that separate the posterior teeth from the anterior ones, as in the case of *Hierophis viridiflavus* and *Dolichophis* (Paterna 2023, Paterna and Grano 2024), are traits shared between opistoglyphous species (Weinstein *et al.* 2011) and not present in the aglyphous colubroid species, or in those in which only enlarged posterior maxillary teeth are present. Such a condition is documented in *Elaphe xiphodonta* (Qi *et al.* 2021) and in other species of Asian colubrids (Cundall and Irish

2008, Qi *et al.* 2021), many of which predominantly prey on anurans (Knox and Jackson 2010). The separation of the posterior maxillary teeth from the anterior ones is instead present in opisthoglyphous colubrids as in the case of *Boiga irregularis*, *Thrasops flavigularis*, *Thrasops jacksoni*, and *Philodryas baroni* (Broadley and Wallach 2002, Weinstein *et al.* 2011). The presence of grooves on the enlarged maxillary posterior teeth further justifies the role they have in the conveyance of the secretions of the venom glands. This trait does not seem to be a constant within the ophidians currently considered opisthoglyphous, where it may even be absent, as in the case of *Heterodon platirhinos*, *Rhabdophis subminiatus*, *Rhabdophis tigrinus*, *Helicops modestus*, and *Alsophis cantherigerus* (Mittleman and Goris 1974, Jackson 2003, Weinstein *et al.* 2011, Oliveira *et al.* 2016), where the term "rear-fanged" better fits these species. A further trait that does not represent a constant in opisthoglyphous snakes is the deviation of the maxillary bone, which repositions the enlarged and/or modified posterior teeth on a different plane than the anterior ones. This is the case of *Hydrodynastes gigas*, *Liophis breviceps*, *Helicops leopardinus*, and *Homalopsis buccata* (Knox and Jackson 2010). The occurrence of visible cuffs/sheaths in the posterior ends of the maxillae, as observed in the European whip snake/racers (*Hierophis*, *Hemorrhois*, *Platyceps*, and *Dolichophis*), it is a trait present in many species of opisthoglyphous colubroids such as the sympatric *Malpolon monspessulanus* and the extra-European species analyzed here: *Boiga dendrophila divergens*, *Philodryas baroni*, and *Heterodon nasicus* (Figure 3). The presence of this trait, obvious in whip snakes, and the absence of this trait in purely constrictor colubrids (Figure 3) represents yet another marked feature that firmly places these animals within the group of opisthoglyphous snakes. Together with the presence of these cuffs/sheaths, the presence of the venom gland/Duvernoy's gland is notable, which fills the space occurring between these and the supralabial

Table 1. Variation of the presence of the opisthoglyphous traits within the three European colubroids examined and three allopatric opisthoglyphous snakes.

Species	Duvernoy's glands	Enlarged rear teeth	Grooved rear teeth	Blade rear teeth	Alveolar diastema	Deviation of the maxilla	Rear fangs' cuffs/sheaths
<i>Hierophis viridiflavus</i>	•	•	•		•	•	•
<i>Natrix helvetica</i>	•	•		•			•
<i>Zamenis longissimus</i>							
<i>Boiga dendrophila</i>	•	•	•		•		•
<i>Heterodon nasicus</i>	•	•			•	•	•
<i>Philodryas baroni</i>	•	•	•		•	•	•

scales (Figure 3). In *Natrix helvetica* and *Coronella austriaca* the cuffs/sheaths are different and less evident from those of the whip snakes, in which the color is homogeneous with the surrounding mucosa, even if the bulging at the posterior margin of the maxillary bone and the bulking of the venom gland are distinguishable (Figure 3C, D, P).

No less worthy of the same consideration are the traits observed in *N. helvetica*. Unlike *H. viridiflavus* and the Western Palearctic clade of whip snake/racers, this species possesses enlarged posterior maxillary teeth, but these are characterized by large distal and a smaller mesial carinae, which confer a blade-like shape to the enlarged rear fangs (Paterna 2023). Although the maxillae of *N. helvetica* do not have many of the features typical of the opisthoglyphous colubroids (Table 1), such as alveolar diastemas and deviations (Paterna 2023), the large venom glands and the blade-like teeth still play a role in predation and the inoculation of mixed oral secretions (Jackson *et al.* 2016). In the past, some authors argued that in the species having a specialized diet of anurans, these teeth functioned to pierce the tegument of the prey to neutralize the anti-predatory mechanism by which many amphibians inflate to resist swallowing (Pope 1947, Edgren 1955, McAlister 1963). Today we know instead that these function to lacerate the prey's tegument and to introduce buccal

secretions (Weinstein and Kardong 1994, Averill-Murray 2006). In defense of this last thesis, many natricids are today considered “mid-venomous” or “low toxic” (Weinstein *et al.* 2011). Some are also highly venomous to humans, as in the case of the genus *Rhabdophis*, in which the bite can have serious and even fatal consequences in humans (Nakayama *et al.* 1973, Ogawa and Sawai 1986, Kikuchi *et al.* 1987). In our case, analogous to the Old World whip snakes/racers (Paterna and Grano 2024), there are reports in the literature in which the clinical consequences following the bite of *Natrix natrix (sensu lato)* in humans (Gardner-Thorpe 1967, Satora 2004, Gläßer-Trobisch and Trobisch 2008) and in anurans are described (Delisle 1981). Similar cases are reported in the related American natricids of the genus *Thamnophis* (Vest 1981, Hayes and Hayes 1985, Gomez *et al.* 1994, Grenard 1994). Perry *et al.* (2018) discussed how the genes that encode protein composition of the venom of *Thamnophis sirtalis* “find their evolutionary origins in a rear-fanged venomous colubrid species,” while other studies have been conducted on the mechanical action involving the emptying of the glands of Duvernoy present in this genus of snakes (Jansen and Foehring 1983, Kardong and Luchtel 1986).

Regarding the presence of Duvernoy's glands/venom glands in both *N. helvetica* and *H. viridiflavus*, information is provided in the

previous literature. Taub (1967) analyzed 180 species from 120 genera of colubroids, which he divided into groups. One group consisted of colubrids that lack Duvernoy's gland, generally in the genera *Boaedon*, *Elaphe* (*sensu lato*), and *Lampropeltis*. The Aesculapian Snake *Z. longissimus* is included in this group. A second group contains colubroids that possess a Duvernoy's gland composed of mucous cells intermingled with serous cells. This group include the natricids *Thamnophis* and *Nerodia* (genera related to *Natrix*), and *Rhabdophis*. A third group consists of colubroids that have a purely serous Duvernoy's gland. Among the species examined are the European *Hemorrhois ravergieri* (Whip Snake of the same clade as *H. viridiflavus*), *Malpolon monspessulanus*, and *Telescopus fallax*, together with other non-European opisthoglyphous species of the genera *Boiga*, *Spalerosophis*, *Philodryas*, and *Psammophis* (more species belonging to this last group have been chosen to be part of the actual research). Together with the "officially considered" opisthoglyphous species, the smooth snake, *Coronella austriaca*, is included in this group (Taub 1967). The inclusion of the European species examined by Taub in this last group confirms the morphological and anatomical analogies observed in this study (Figure 1, 3) and the consideration of the opisthoglyphous model in whip snakes discussed in previous studies (Paterna 2023, Paterna and Grano 2024). Subsequently, many studies have analyzed these types of glands and their secretions in different species (Hill and Mackessy 2000, Mackessy 2002). Some of these studies provide photographs, for example Jackson *et al.* (2016), in which it is noted that the large serous-secreting venom gland of *M. monspessulanus* is morphologically similar to that observed in *H. viridiflavus* (Figure 1). The Montpellier snake *M. monspessulanus* has been considered the most venomous colubroid among European opisthoglyphous species. In addition, the cuffs/sheaths covering the posterior maxillary teeth in this species are similar to those found in *H.*

viridiflavus. The morphology of the supralabial and infralabial glands of *H. viridiflavus* is described (Baccari *et al.* 2002), but no further references are made to other glands.

Regarding the genus *Natrix*, many authors state that the anatomy of these ophidians is unclear; in fact, Phisalix (1922) described the presence of Duvernoy's glands in *N. natrix*, while Smith and Bellairs (1947) reported the opposite. Akat *et al.* (2011) reconfirmed Taub's description, stating that the venom glands of *Natrix tessellata* consists of many small lobules mainly composed of mucous and seromucous acini. The authors also noted that Duvernoy's gland secretions of *Natrix tessellata* have toxic effects on prey. The glands were composed mainly of seromucous cells, and the authors compare them to those of known venomous ophidians, suggesting that further research on the serum secreted by these glands could reveal medical and pharmacological properties (Akat *et al.* 2011).

The smooth snake, *Coronella austriaca*, possesses venom glands of the same type as the opisthoglyphous snakes (Taub 1967, Kochva, 1978), and has enlarged posterior maxillary teeth covered by cuffs/sheaths visible in its palatomaxillary arch. This snake, together with the congeneric *C. girondica*, requires further anatomical investigation to establish whether both share this condition, and in which sub-group of the rear-fanged snakes these species belong. The genus *Coronella* separated from the macro-group of Old World "aglyphous" rat snakes (Taub 1967, Nagy *et al.* 2004, Figueiroa *et al.* 2016), followed by New World rat snakes, of which *Pantehrophis guttatus* and *Pituophis catenifer sayi* have small cuffs/sheaths at the posterior end of the maxillae. Jackson *et al.* (2016) reported the presence of a small venom gland in *P. guttatus*. Although Old World rat snakes appear to lack modified fangs and venom glands, they have residual traits that can be traced back to these adaptations. The four-lined rat snake, *Elaphe quatuorlineata*, features a longitudinal groove and depressions in the

posterior maxillary teeth (Paterna 2023), and *Z. longissimus* appears to have a small residual gland that may differ from the supralabial salivary gland. These features are unusual in a fully aglyphous model because they represent relics of a previous opisthoglyphous model. This would explain the different levels of adaptation phylogenetically related to colubrine snakes, in which the rear-fanged model is more conserved in *Coronella*, scarcely conserved in *Pantherophis* and *Pituophis*, and completely lost in *Elaphe* and *Zamenis*. Another case of loss of the opisthoglyphous model within European colubrids is that of the genus *Eirenis*, a group of dwarf snakes descended from whip snakes, and which, following miniaturization and a specialized diet, developed a type of aglyphous dentition suitable for the predation of arthropods (Çiçek and Mermer 2007, Rajabizadeh 2019, Paterna and Grano 2024). The “loss” of the opistoglyphous model across entire genera within rear-fanged colubrids is not limited to the two cases just discussed. Examining the phylogenetic trees of this family (Figueroa *et al.* 2016) another striking case is that of the genus *Dasypeltis*. This genus of snakes is equipped with small rudimentary teeth, an adaptation to their specialized diet consisting of bird eggs, which derived from the opisthoglyphous snakes of the genera *Toxicodryas* and *Boiga*. The latter are highly developed rear-fanged snakes whose bite can cause clinical consequences in humans.

Conclusions

From the data and evidence obtained, it is clear how European whipsnake/racers came to share traits of the opisthoglyphous model. In some cases, these species even have more traits than other snakes currently considered to be opisthoglyphous. From anatomical analyses of the species examined, it is possible to generate guidelines for identification of the opisthoglyphous state of certain ophidians, even when this has not yet been verified or is currently poorly identified. The most explicit features are

observable using dissection, bone preparation, and microscopy, but a preliminary evaluation can also be obtained without resorting to these practices. An initial identification of a possible opisthoglyphous model can be obtained by inspecting the head and jaws of a particular colubroid. Confirmed by examination of the palatomaxillary arches, the presence of cuffs/sheaths at the posterior margin of the maxillae is a trait that indicates the opistoglyphus model. The color and morphology of the mucosa covering the posterior maxillary teeth are easily distinguishable from the surrounding mucosa. A second feature that can be observed in the open jaws of opisthoglyphous colubroids is the thickness that occurs lateromedially between the posterior portion of the maxilla and the supralabial scales. In many opisthoglyphous species, the presence of the venom gland indicates a larger or more filled space than in the aglyphous species, where this transverse space is generally hollow (Figure 3). A third factor is not diagnostic on its own, but in some species could represent further confirmation following the observation of the first two traits, is the shape of the ventral margin of the supralabials. As observed in European whipsnakes/racers and non-European opisthoglyphous species, a distinctly wavy silhouette in the posterior supralabials (e.g., *Hemorrhois*, *Spalerosophis*) could correspond to the dorsoventral deviation of the maxillary bones, the presence of enlarged posterior teeth, and the venom gland. A fourth consideration, and not at all obvious, is whether cases of envenomation or clinical reactions in humans or animals occur following a snakebite.

Particular attention should be paid to colubroids such as *Natrix helvetica*, which presents fewer opistoglyphous traits than whip snakes/racers, but which nevertheless may have structures for the production and inoculation of toxins. Both by definition and for anatomical reasons, it would be wrong to consider these snakes opisthoglyphous, but because they are capable of inflicting toxic bites, they can be grouped into a different category of colubroids

that could be called “blade-fanged.” The distinction of this new category from the opisthoglyphous group might seem counterintuitive because the term “opisthoglyphous” is rarely used. Snakes in which these dentition models are present are generally referred to as “non-front-fanged” snakes (Weinstein *et al.* 2011, Jackson *et al.* 2016, Weinstein 2017). Furthermore, the use of the name “Duvernoy’s glands” is not recommended because these structures are homologous to the venom glands of elapids and viperids (Kochva and Gans 1970, Weinstein and Kardong 1994, Fry *et al.* 2008). Because the toxic oral secretions produced by rear-fanged snakes are intended to subdue prey, these secretions are considered “venom” in all respects (Jackson *et al.* 2016), and “it is most incorrect to view colubrid venoms as imperfect venoms” (Mackessy 2002). The use of the terms “opisthoglyphous” for whip snakes/racers, and “blade-fanged” for natricids is, however, necessary in this work to distinguish the different morphology and biology of the taxa taken into consideration. Within the “non-front-fanged”

snakes several variations of the “rear-fanged” model occur, including some cases in which the enlarged teeth are not positioned at the posterior end of the maxillae and the “aglyphous” snakes.

In light of this study and in the two previous works (Paterna 2023, Paterna and Grano 2024), we can group European colubroids into three main categories corresponding to the different dentiferous models: “opisthoglyphous, blade-fanged, and aglyphous.” Contrary to the past, current estimates indicate that the group comprising the largest number of European species is that of the opisthoglypha, consisting of taxa of Colubridae and Lamprophiidae, followed by the “aglypha” composed exclusively of colubrids, and finally the blade-fanged group, composed of natricids (Table 2). It is interesting and at the same time an inevitable consequence to see how within the aglypha, the medium- to large-sized colubrids all belong to *Elaphe* and *Zamenis*, are all powerful constrictors, and are all phylogenetically related. In the past, all were placed within the former genus *Elaphe* (Fitzinger) (Schulz 1996). The term “aglyphous” has almost always been reported in quotation marks because

Table 2. Dentition models within European colubroids. Within “rear-fanged” are indicated those genera that need further investigation to determine in which sub-group these should be placed.

Group	Genus	Type	Past consideration
Whip snakes	<i>Hierophis</i>	opisthoglyphous	aglyphous
	<i>Hemorrhois</i>	opisthoglyphous	aglyphous
	<i>Platyceps</i>	opisthoglyphous	aglyphous
	<i>Dolichophis</i>	opisthoglyphous	aglyphous
Dwarf snakes	<i>Eirenis</i>	aglyphous	aglyphous
Smooth snakes	<i>Coronella</i>	rear-fanged	aglyphous
False smooth snakes	<i>Macroprotodon</i>	rear-fanged	opisthoglyphous
Catsnakes	<i>Telescopus</i>	opisthoglyphous	opisthoglyphous
Ratsnakes	<i>Elaphe</i>	aglyphous	aglyphous
	<i>Zamenis</i>	aglyphous	aglyphous
Grass/water snakes	<i>Natrix</i>	blade-fanged	aglyphous
Lamprophiids	<i>Malpolon</i>	opisthoglyphous	opisthoglyphous

following what has been discussed, its application to colubrids would become technically incorrect, since this word describes the dentiferous model of ophidians of other families (e.g., Boidae and Pythonidae), and no longer refers to European colubrid genera such as *Eirenis*, *Elaphe*, and *Zamenis*, which were part of an earlier opisthoglyphous model. Obviously, as happened for the ophidians analyzed in this study, in-depth analyses are necessary to verify certain conditions in species that are still unsuspected or little studied to date. Discovery of such conditions could lead to a further reclassification of these, and determine if a certain species is in the process of development or suppression of a rear-fanged model. Additionally, the evolution of venom glands is not parallel with the evolution of certain types of posterior maxillary fangs, and of the number and arrangement of these (Taub 1967). Within the species analyzed in this study, the “adaptation” to the different types of rear-fanged models present profound variations even within the same group or genus (e.g., Whipsnakes).

A final consideration is that being opisthoglyphous, blade-fanged, or rear-fanged (to indicate other intermediate groups) does not mean being toxic or harmful to humans. An opistoglyphous species does not necessarily have to cause effects in humans to be considered as such, but it must present certain anatomical characteristics. The structures seen in these reptiles have developed in colubroids as adaptations and specializations derived from the diet and the ecology of the latter (Modahl *et al.* 2016) in relation to predation and digestion of prey, as well as in proteroglyphous and solenoglyphous snakes. The case of European colubroids confirms the thesis that the rear fangs (venom fangs) did not evolve independently multiple times but find their origin in common ancestors (Palci *et al.* 2021), and loss of fangs is a recurring trend within this superfamily (Westeen *et al.* 2020). Fangs and venom glands developed prior to the appearance of colubroids (Fry *et al.* 2009, Figuero *et al.* 2016, Streicher and Ruane 2018, Zaher *et al.* 2019), whose most

basal species alive today are opisthoglyphous, which has subsequently differentiated within the several groups that have preserved, developed, or lost various traits. The key model used in this study can be applied to reclassify colubroids in other regions of the world that have a similar ophidiofauna.

Acknowledgments

I deeply thank my friends and colleagues who supported me in this study by providing the samples analyzed herein, the specimens observed *in vivo*, and the photographic material: Alessio Martella, Andrea Fioretti, Bruno De Ruvò, Francesco Di Carlo, Grégoire Meier, Luca Fioretti, Luca Palazzese, Marco Di Feliciantonio, Matteo Meraviglia, Samuele Valeani, Simone Di Feliciantonio, Tomaz Jagar. I thank Jaime Bertoluci and Janalee Caldwell for their work on my manuscript, and the anonymous reviewers for their comments.

References

Akat E., O. Çakıcı, Y. E. Dinçaslan, and H. Arikán. 2011. Histochemical and histological investigations on Duvernoy's gland in *Natrix tessellata* (Squamata: Colubridae). *Kafkas Üniversitesi Veteriner Fakültesi Dergisi* 17: 285–289.

Averill-Murray, R. C. 2006. Natural history of the western hognose snake (*Heterodon nasicus*) with notes on envenomation. *Sonoran Herpetologist* 19: 98–101.

Baccari, G. C., D. Ferrara, L. D. Matteo, and S. Minucci. 2002. Morphology of the salivary glands of three squamata species: *Podarcis sicula sicula*, *Tarentola mauritanica* and *Coluber viridiflavus*. *Acta Zoologica* 83: 117–124.

Broadley, D. G. and V. Wallach. 2002. Review of the Dispholidini, with the description of a new genus and species from Tanzania (Serpentes, Colubridae). *Bulletin of the British Museum Natural History, Zoology* 68: 57–74.

Çiçek, K. And A. Mermer. 2007. A preliminary study of the food of the Dwarf Snake, *Eirenis modestus* (Martin, 1838) (Serpentes: Colubridae), in Izmir and Manisa Provinces. *Turkish Journal of Zoology* 3: 399–402.

Cundall, D. and F. Irish F. 2008. The snake skull. Pp. 349–692 in C. Gans, A. S. Gaunt, and K. Adler (eds), *The Skull of Lepidosauria, Biology of Reptilia*. Volume 20. New York. Society for the Study of Amphibians and Reptiles Press.

Delisle, H. F. 1981. Venomous or not. *Herpetology* 11: 1–19.

Edgren, R. A. 1955. The natural history of the hog-nosed snakes, genus *Heterodon*: a review. *Herpetologica* 11: 105–117.

Figueroa, A., A. D. McKelvy, L. L. Grismer, C. D. Bell, and S. P. Lailvaux. 2016. A species-level phylogeny of extant snakes with description of a new colubrid subfamily and genus. *PLoS ONE* 11: e0161070.

Fry, B. G., H. Scheib, L. van Weerd, B. A. Young, J. McNaughtan, S. F. R. Ramjan, R. E. Poelmann, and J. A. Norman. 2008. Evolution of an arsenal: structural and functional diversification of the venom system in the advanced snakes. *Molecular and Cellular Proteomics* 2008: 215–246.

Fry, B. G., N. Vidal, L. van der Weerd, E. Kochva, and C. Renjifo. 2009. Evolution and diversification of the Toxicofera reptile venom system. *Journal of Proteomics* 72: 127–36.

Gardner-Thorpe, C. 1967. Snakebite poisoning. *British Medical Journal* 26: 558.

Gläßer-Trobisch, A. and D. Trobisch. 2008. Bissunfall bei einer Ringelnatterfütterung. *Elaphe* 16: 59–6.

Gomez, H. F., M. Davis, S. Phillips, P. McKinney, and J. Brent. 1994. Human envenomation from a wandering garter snake. *Annals of Emergency Medicine* 23: 1119–22.

Grenard, S. 1994. *Medical Herpetology*. Pottsville. Reptile and Amphibian Magazine. 160 pp.

Hayes, W. K. and F. E. Hayes. 1985. Human envenomation from the bite of the eastern garter snake, *Thamnophis s. sirtalis* (Serpentes: Colubridae). *Toxicon* 2: 719–721.

Hill, R. E. and S. P. Mackessy. 2000. Characterization of venom (Duvernoy's secretion) from twelve species of colubrid snakes and partial sequence of four venom proteins. *Toxicon* 38: 1663–1687.

Jackson, K. 2003. The evolution of venom-delivery systems in snakes. *Zoological Journal of the Linnean Society* 137: 337–354.

Jackson, T. N. W., B. Young, G. Underwood, C. J. McCarthy, E. Kochva, N. Vidal, L. van der Weerd, R. Nabuurs, J. Dobson, D. Whitehead, F. J. Vonk, I. Hendrikx, C. Hay, and B. G. Fry. 2016. Endless forms most beautiful: the evolution of ophidian oral glands, including the venom system, and the use of appropriate terminology for homologous structures. *Zoomorphology* 136: 107–130.

Jansen, D. W. and R. C. Foehring. 1983. The mechanism of venom secretion from Duvernoy's gland of the snake *Thamnophis sirtalis*. *Journal of Morphology* 175: 271–277.

Kardong, K. V. 1982. The evolution of the venom apparatus in snakes from colubrids to viperids and elapids. *Memórias do Instituto de Butantan* 46: 105–118.

Kardong, K. V. and D. L. Luchtel. 1986. Ultrastructure of Duvernoy's gland from the wandering garter snake, *Thamnophis elegans vagrans* (Serpentes, Colubridae). *Journal of Morphology* 188: 1–13.

Kikuchi, H., T. Takamura, M. Ishii, T. Ichihara, Y. Kawamura, and Y. Sawai. 1987. Study on the effectiveness of the yamakagashi (*Rhabdophis tigrinus*) antivenom. *The Snake* 19: 95–98.

Knox, A. and K. Jackson. 2010. Ecological and phylogenetic influences on maxillary dentition in snakes. *Phyllomedusa* 9: 121–131.

Kochva, E. 1978. Oral glands of the Reptilia. Pp. 43–161 in C. Gans and A. Kyoto (ed.), *Biology of the Reptilia*. Volume 8. London and New York. Physiology B. Academic Press.

Kochva, E. and C. Gans. 1970. Salivary glands of snakes. *Clinical Toxicology* 3: 363–387.

Kreiner, G. 2007. *The Snakes of Europe*. Frankfurt am Main. Edition Chimaira. 317 pp.

Mackessy, S. P. 2002. Biochemistry and pharmacology of colubrid snake venoms. *Journal of Toxicology, Toxin Reviews* 21: 43–83.

McAlister, W. H. 1963. Evidence of mild toxicity in the saliva of the hognose snake (*Heterodon*). *Herpetologica* 19: 132–137.

Mittleman, M. B. and R. C. Goris. 1974. Envenomation from the bite of the Japanese colubrid snake, *Rhabdophis tigrinus* (Boie). *Herpetologica* 2: 113–119.

Modahl, C. M., A. J. Saviola, and S. P. Mackessy. 2015. Venoms of Colubrids. Pp. 51–79 in P. Gopalakrishnakone and J.J. Calvete (eds.), *Venom Genomics and Proteomics, Toxinology*. 1st Edition. Springer Dordrecht.

Nagy Z. T., R. Lawson, U. Joger, and M. Wink. 2004. Molecular systematics of racers, whipsnakes and relatives (Reptilia: Colubridae) using mitochondrial and nuclear markers. *Journal of Zoological Systematics and Evolutionary Research* 42: 223–233.

Nakayama, Y., S. Furuya, T. Yamada, Y. Hirakawa, and F. Fosaka. 1973. The treatment by artificial dialysis of a snakebite patient with an intravascular coagulation syndrome. *Japanese Journal of Nephrology* 4: 269.

Ogawa, H. and Y. Sawai. 1986. A fatal bite of the yamakagashi (*Rhabdophis tigrinus*). *The Snake* 18: 53–54.

Oliveira, L., R. R. Scartozzoni, S. M. Almeida-Santos, C. Jared, M. M. Antoniazzi, and M. G. Salomão. 2016. Morphology of Duvernoy's glands and maxillary teeth and a possible function of the Duvernoy's gland secretion in *Helicops modestus* Günther, 1861 (Serpentes: Xenodontinae). *South American Journal of Herpetology* 11: 54–65.

Palci, A., A. R. H. LeBlanc, O. Panagiotopoulou, S. G. C. Cleuren, H. Mehari Abraha, M. N. Hutchinson, A. R. Evans, M. W. Caldwell, and M. S. Y. Lee. 2021. Plicidentine and the repeated origins of snake venom fangs. *Proceedings of the Royal Society of London. Series B, Biological Sciences* 288: 20211391.

Paterna, A. 2023. The role of modified teeth in the function of prolonged bites in *Hierophis viridiflavus* (Serpentes: Colubridae). *Phylomedusa* 22: 121–130.

Paterna A. and M. Grano. 2024. Morphology of the maxillary bones in the Caspian whipsnake *Dolichophis caspius* (Serpentes: Colubridae) supports the opisthoglyphous model within western palearctic whipsnakes. *Biodiversity Journal* 15: 693–700.

Perry, B. W., D. C. Card, J. W. McGlothlin, G. I. M. Pasquesi, R. H. Adams, D. R. Schield, N. R. Hales, A. B. Corbin, J. P. Demuth, F. G. Hoffmann, M. W. Vandewege, R. K. Schott, N. Bhattacharyya, B. S. W. Chang, N. R. Casewell, G. Whiteley, J. Reyes-Velasco, S. P. Mackessy, T. Gamble, K. B. Storey, K. K. Biggar, C. N. Passow, C. H. Kuo, S. E. McGaugh, A. M. Bronikowski, A. P. J. de Koning, S. V. Edwards, M. E. Pfrender, P. Minx, E. D. Brodie 3rd, E. D. Brodie Jr., W. C. Warren, and T. A. Castoe. 2018. Molecular adaptations for sensing and securing prey and insight into amniote genome diversity from the Garter Snake genome. *Genome Biology and Evolution* 10: 2110–2129.

Phisalix, M. 1922. *Animaux Venimeux et Venins*. Vol. 2. Paris. Masson et Cie. 694 pp.

Pope, C. H. 1947. *Amphibians and Reptiles of the Chicago Area*. Chicago. Chicago Museum of Natural History. 275 pp.

Qi, S., J.-S. Shi, Y.-B. Ma, Y.-F. Gao, S.-H. Bu, L. L. Grismer, P.-P. Li, and Y.-Y. Wang. 2021. A sheep in wolf's clothing: *Elaphe xiphodonta* sp. nov. (Squamata, Colubridae) and its possible mimicry to *Protobothrops jerdonii*. *ZooKeys* 1048: 23–47.

Rajabizadeh, M., S. Van Wassenbergh, C. Mallet, M. Rücklin, and A. Herrel. 2019. Tooth shape adaptations in aglyphous colubrid snakes inferred from 3D geometric morphometrics and finite element analysis. *Zoological Journal of the Linnean Society* 191: 454–467.

Satoria, L. 2004. Bites by the grass snake *Natrix natrix*. *Veterinary and Human Toxicology* 46: 334–334.

Schulz, K.-D. 1996. *A Monograph of the Colubrid Snakes of the Genus Elaphe Fitzinger*. Havlikuv Brod. Koeltz Scientific Books. 439 pp.

Sindaco, R., A. Venchi and C. Grieco. 2013. *The Reptiles of the Western Palearctic, Volume 2: Annotated Checklist and Distributional Atlas of the Snakes of Europe, North Africa, Middle East and Central Asia, with an Update to Volume 1*. Latina. Edizioni Belvedere. 543 pp.

Smith, M. A. and A. Bellairs. 1947. Head glands of snakes. *Journal of the Proceedings of the Linnean Society* 41: 353–368.

Streicher, J. W. and S. Ruane. 2018. Phylogenomics of snakes. *eLS*. John Wiley and Sons, Ltd, Chichester: 1–8.

Taub, A. M. 1966. Ophidian cephalic glands. *Journal of Morphology* 118: 529–541.

Taub, A. M. 1967. Comparative histological studies on Duvernoy's gland of colubrid snakes. *Bulletin of the American Museum of Natural History* 138: 1–150.

Vest, D. K. 1981. Envenomation following the bite of a wandering garter snake (*Thamnophis elegans vagrans*). *Clinical Toxicology* 18: 573–579.

Weinstein, S. A. 2017. Non-front-fanged colubroid snakes. Pp. 1–41 in J. Brent, K. Burkhardt, P. Dargan, B. Hatten, B. Mégarbane, R. Palmer, and J. White (eds.), *Critical Care Toxicology*. Springer Cham.

Weinstein, S. A. and K. V. Kardong. 1994. Properties of Duvernoy's secretions from opisthoglyphous and aglyphous colubrid snakes. *Toxicon* 32: 1161–1185.

Weinstein, S. A., D. A. Warrell, J. White, and D. E. Keyler. 2011. "Venomous" Bites from Non Venomous Snakes. A Critical Analysis of Risk and Management of "Colubrid" Snake Bites. Waltham. Elsevier Inc. 364 pp.

Westeen, E. P., A. M. Durso, M. C. Grundler, D. L. Rabosky, and A. R. D. Rabosky. 2020. What makes a fang? Phylogenetic and ecological controls on tooth evolution in rear-fanged snakes. *BMC Ecology and Evolution* 20: 1–15.

Zaher, H., R. W. Murphy, J. C. Arredondo, R. Graboski, P. R. Machado-Filho, K. Mahlow, G. G. Montingelli, A. Bottallo Quadros, N. L. Orlov, M. Wilkinson, Y.-P. Zhang, and F. G. Grazziotin. 2019. Large-scale molecular phylogeny, morphology, divergence-time estimation, and the fossil record of advanced caenophidian snakes (Squamata: Serpentes). *PLoS ONE* 14: e0217959.

Editor: Jaime Bertoluci

Dorsal polymorphism and perch height use by *Liolaemus bellii* (Squamata: Liolaemidae) in central Chile

Enrique Santoyo-Brito,¹ Herman Núñez,² and Stanley Fox³

¹ University of Illinois, Prairie Research Institute, Illinois Natural History Survey. Urbana-Champaign. Illinois 61820, USA.
E-mail: esbrito@illinois.edu.

² Museo Nacional de Historia Natural de Chile, Área Zoología. Santiago. Chile. E-mail: hermannunez53@gmail.com.

³ Oklahoma State University, Department of Integrative Biology and Collection of Vertebrates. Stillwater. Oklahoma 74078, USA. E-mail: stanley.fox@okstate.edu.

Abstract

Dorsal polymorphism and perch height use by *Liolaemus bellii* (Squamata: Liolaemidae) in central Chile. Dorsal polymorphism is a trait broadly studied in different animal species, and polymorphism within a population is common. It is presumed that individuals with a given color pattern will have an ecological or social advantage over conspecifics without it. In several lizard species, dorsal pattern polymorphism has been related to perch use, which may be determined by a lizard's social status. Here, we studied dorsal polymorphism and perch height use by *Liolaemus bellii*, a high-elevation, diurnal, saxicolous, viviparous lizard in central Chile. Discernable sexual dimorphism is absent in the species. Males and females show two morphs, a patternless one and an irregular, colored dorsal pattern characterized by olive or yellowish-brown color, flecked with yellow, black, and brown, with 8 to 10 blackish crossbars broken backward over the vertebral field (chevrons), forming an open V-like angle. We aimed to determine if lizards with this distinct chevron dorsal pattern perch higher than patternless conspecifics and if so, if conspecific social pressures might be responsible. Also, we measured eight morphological variables and evaluated their effect on perch height as covariates when lizards were grouped by sex, age class, and morph. None of the studied variables significantly influenced the presence of any morph. However, the patternless morph was found significantly more often in older lizards. Naturally broken tails increase in older lizards, although lack of a complete tail is not related to dorsal pattern. Bigger lizards with longer tails perched significantly higher, and therefore size may play a social role in perch use in *L. bellii*. Dorsal polymorphism in *L. bellii* is a conspicuous trait that has been overlooked in scientific literature concerning the species.

Keywords: Behavior, Lizard, Reptile, Saxicolous, Sociality.

Received 26 September 2023

Accepted 23 May 2024

Distributed December 2024

Resumo

Polimorfismo dorsal e uso da altura de poleiro por *Liolaemus bellii* (Squamata: Liolaemidae) no centro do Chile. O polimorfismo dorsal é uma característica amplamente estudada em diferentes espécies animais, e o polimorfismo intrapopulacional é comum. Presume-se que os indivíduos com um determinado padrão de coloração terão uma vantagem ecológica ou social sobre os indivíduos da mesma espécie sem o padrão. Em diversas espécies de lagartos, o polimorfismo do padrão dorsal tem sido relacionado ao uso de poleiros, que pode ser determinado pelo status social do lagarto. Estudamos aqui o polimorfismo dorsal e o uso da altura do poleiro por *Liolaemus bellii*, um lagarto vivíparo, diurno, saxícola e de grandes altitudes do centro do Chile. O dimorfismo sexual discernível está ausente na espécie. Machos e fêmeas apresentam duas formas, uma sem padrão e outra com um padrão dorsal colorido irregular, caracterizado pela cor verde-oliva ou marrom-amarelada, salpicado de amarelo, preto e marrom, com 8 a 10 barras transversais enegrecidas dobradas para trás sobre o campo vertebral (divisas), formando um ângulo aberto em forma de V. Nossa objetivo foi determinar se lagartos com esse padrão dorsal distinto de divisas empoleiram-se em maiores alturas do que os da mesma espécie sem padrão e, em caso afirmativo, se as pressões sociais coespecíficas podem ser responsáveis. Além disso, medimos oito variáveis morfológicas e avaliamos seu efeito na altura do poleiro como covariáveis quando os lagartos foram agrupados por sexo, classe etária e forma. Nenhuma das variáveis estudadas influenciou significativamente a presença de qualquer forma. No entanto, a forma sem padrão foi encontrada significativamente com maior frequência em lagartos mais velhos. Caudas quebradas naturalmente aumentam em lagartos mais velhos, embora a falta de uma cauda completa não esteja relacionada ao padrão dorsal. Lagartos maiores com caudas mais longas empoleiram-se em alturas significativamente maiores e, portanto, o tamanho pode desempenhar um papel social no uso de poleiros em *L. bellii*. O polimorfismo dorsal em *L. bellii* é uma característica cosnícua que tem sido negligenciada na literatura científica relativa à espécie.

Palavras-chave: Comportamento, Lagarto, Réptil, Saxícola, Socialidade.

Introduction

Dorsal polymorphism has been studied in many insect, arachnid, bird, crustacean, mammal, and herpetofauna species (Mayr 1963, Oxford and Gillespie 1998, Hoffman and Blouin 2000, Steffen 2010). The polymorphism may be expressed as color or as pattern variation between populations and within individuals of the same population (Eifler and Fogarty 2006, Santos *et al.* 2018, Utsumi *et al.* 2021). Dorsal polymorphism may be sex-restricted, or age-associated, but in both scenarios, the polymorphism may have different ecological functions (Mayr 1963, Eifler and Fogarty 2006, Steffen 2010, Ortega *et al.* 2014). In squamate reptiles, dorsal polymorphism is associated with background matching, antipredator defense and escape, habitat use, resource availability, mating opportunities, sexual selection, social structure, and perch use (Mayr 1963, Zucker 1986, Eifler

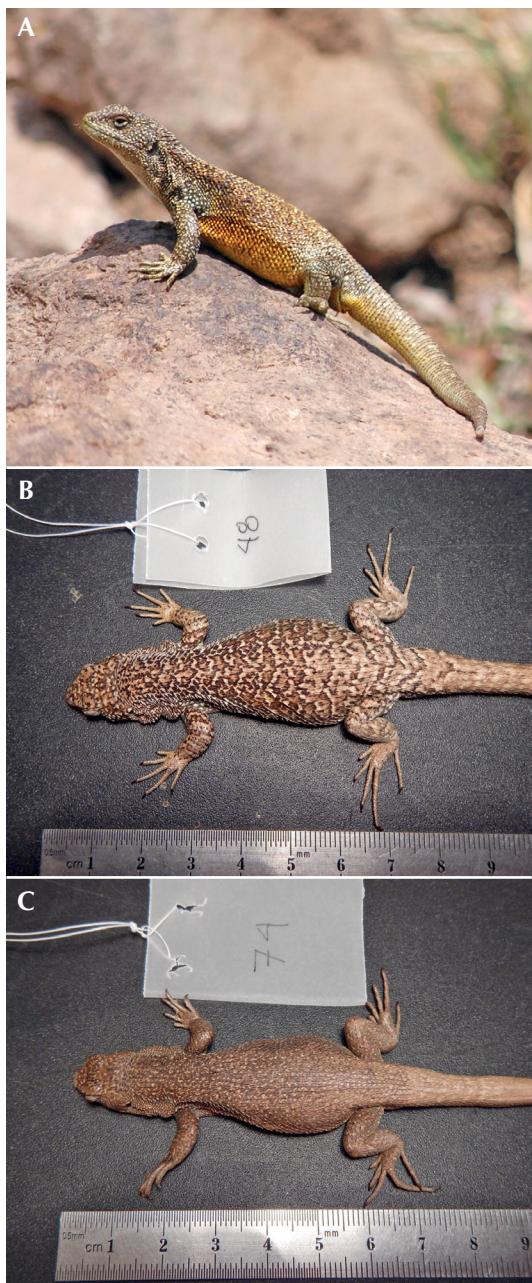
and Fogarty 2006, Ortega *et al.* 2014, Medina *et al.* 2017). Thus, it is expected that individuals with a certain dorsal color or pattern will have some sort of advantage over conspecifics without the trait (Farallo and Forstner 2012). These traits may influence perch selection.

Perching is a common behavior in numerous arboreal and saxicolous lizard species (Zucker 1986, Núñez 1996, Smith and Ballinger 2001, Losos 2009). This behavior may be influenced by ecological selective forces (Losos 1990, Baird and Sloan 2003, Radder *et al.* 2006, Ortega *et al.* 2014, Medina *et al.* 2017). Both perch type and location may affect the lizard's thermoregulation, visibility, mating opportunities, and opportunities to escape from predators (Scott 1976, Avery 1991, Eifler and Fogarty 2006, Vicenzi *et al.* 2021). For example, after the reproductive season, female *Crotaphytus collaris* (Say, 1822), a saxicolous diurnal lizard, decreased predation risk primarily by diurnal snakes by perching on high rocks close

to a refuge and distant from vegetation that might conceal a snake (Eifler and Fogarty 2006). In different *Liolaemus* lizard species, tail loss has been correlated with the frequency of observations on elevated perches (Jaksić and Fuentes 1980). Noteworthy, perch height selection by a lizard may vary throughout the year to increase its feeding opportunities while adjusting its diet as shown in *Gonatodes humeralis* (Guichenot, 1855) (Miranda and Andrade 2003).

Perch height occupation may also result from social relations among conspecifics (Zucker 1986, Fox and Shipman 2003, Deodhar and Isvaran 2018). For example, in *Agama*, *Anolis*, *Crotaphytus*, *Psammophilus*, *Sceloporus*, and *Urosaurus* lizards, males and older individuals perch higher than females and younger conspecifics (Pounds and Jackson 1983, Zucker 1986, Anibaldi *et al.* 1998, Ramírez-Bautista and Benabib 2001, Baird and Sloan 2003, Losos 2009). During the breeding season, territorial males of *Psammophilus dorsalis* (Gray, 1831) display from prominent rock perches (Deodhar and Isvaran 2018). Although males use high perches year-round, bigger males perch on higher perches compared to smaller lizards (Radder *et al.* 2006).

Thus, use of higher perches may relate to lizard sociality: higher perches might offer better opportunities for individuals to establish a dominance hierarchy, defend their territory, advertise their presence to conspecifics, and perform courtship displays (especially in polygamous species) (Zucker 1986, Ramírez-Bautista and Benabib 2001, Radder *et al.* 2006). It is expected that saxicolous lizard species will inhabit suitable rocky habitats; however, high perches may not be in abundance and may be considered a limited resource occupied primarily by bigger, older, dominant individuals (Radder *et al.* 2006, Deodhar and Isvaran 2018).


With 289 recognized species, *Liolaemus* is the world's second most speciose genus of lizards and the most diverse in South America (Pincheira-Donoso 2012, Stellateli *et al.* 2016, Abdala *et al.* 2020). As with many other lizards around the world (Losos 2009), little is known

about the ecology of most of them (Utsumi *et al.* 2021). Thanks to recent studies, our knowledge of the natural history, sociality, and ecology of various *Liolaemus* species is on the rise (Fox and Shipman 2003, Pincheira-Donoso 2012, Santoyo-Brito *et al.* 2021).

Liolaemus bellii (Gray, 1985) is a high-elevation, diurnal, viviparous lizard. Individuals inhabit open rocky mountainous areas in central Chile (Donoso-Barros 1966, Pincheira-Donoso and Núñez 2005). The species is abundant and conspecific tolerance suggests a social structure of dominance hierarchy (Fox and Shipman 2003). Discernable sexual dimorphism is absent in the species although males have two precloacal pores that females lack (Pincheira-Donoso and Núñez 2005). Adult *L. bellii* are medium-sized and stocky, and both sexes show irregular dorsal patterning, characterized by olive or yellowish-brown color, flecked with yellow, black, and brown (Figure 1A), sometimes with 8–10 blackish crossbars broken backward over the vertebral field (chevrons), forming an open V-like angle (Pincheira-Donoso and Núñez 2005) (Figure 1B), and sometimes without this chevron pattern (Figure 1C).

Although dorsal polymorphism in *L. bellii* is evident (Donoso-Barros 1966, Pincheira-Donoso and Núñez 2005), the influence that dorsal pattern may have on habitat use, social status, and fitness of individuals has not been tested. In this sense, *L. bellii* is an excellent model to address behavior questions and evaluate some variables that may affect perch use by conspecifics of different age classes, sexes, and dorsal pattern morphs.

In this study, we collected data from *L. bellii* in a high-elevation population in central Chile. Our objectives were to determine if lizards with a distinct chevron dorsal pattern perch higher than patternless conspecifics and, if so, if conspecific social pressures might be responsible. At the same time, we measured eight morphological variables and evaluated their effect on perch height as covariates when lizards were grouped by sex, age class, and morph.

Figure 1. Three adults of *Liolaemus bellii* observed or collected in 2017 at our field site at 2960 m a.s.l. nearby the village of El Colorado, central Chile. The two voucherized adult female specimens (**B** and **C**) show the dorsal pattern polymorphism of the species.

Materials and Methods

We collected 69 *L. bellii* from 23 to 25 February 2017 (austral Summer) at our study site (2960 m a.s.l.; 33°20' S, 70°16' W) near the village of El Colorado, Metropolitan Region, in central Chile. This site is characterized by bare rocks aligned in straight-line formations (Figure 2). The rock lines are likely human-made since our site is located on the slope and open-ground ski lines of a popular ski resort. Vegetation at the site is predominantly spiny and shrub-like (*Berberis empetrifolia* Lam., *Chuquiraga oppositifolia* D. Don, and *Azorella* sp.).

We used binoculars to scan the area and locate lizards from a distance; all specimens were caught by noosing (Ferner 2007, Cooper 2009, Santoyo-Brito *et al.* 2018) from 09:00 to 18:00 h, when lizards are active and displaying normal behavior. The body temperature (BT) readings were obtained via a quick-reading Miller & Webber (0–50°C) cloacal bulb thermometer within 30 seconds of capture. Snout–vent and tail length (SVL and TL, respectively) were measured with a ruler (error: ± 1 mm). Lizards were assigned to one of two age classes as per SVL measurements as modified from Labra *et al.* (2003): juveniles = 4.4–6.7 cm; adults > 6.7 cm). Tail break status was recorded (i.e., intact tail or naturally broken tail [i.e., result of a predation attempt or an agonistic encounter]). Mass was measured with a 30-g Pesola spring scale. Left forearm length (LFAL), front left third digit length (FLDL), left hind leg length (LHLL), and hind left fourth digit length (HLDL) were measured with digital calipers. All variables were measured by one person, ES-B.

Perch height from the ground (PH in cm) was measured with a flexible measuring tape positioned close to the base of the perch type. The categorical dorsal pattern (i.e., chevron vs. patternless; Figure 1 B and C) of each lizard was determined at the point of capture by ES-B and corroborated by HN. No intermediate pattern categories were considered in this study. Data

Figure 2. View of our study site (2960 m a.s.l.) nearby the village of El Colorado, central Chile.

normality was tested using the Kolmogorov-Smirnov test. We used the Pearson Correlation test to estimate the correlation between body-size variables (LFAL, FLDL, LHLL, HLDL, mass, and SVL). We used a Factor Analysis to reduce the dimensionality of highly correlated morphological variables. Statistical differences of PH and BT between age groups (adults vs juveniles), and of PH, BT, BODY, and TL between sex (males vs females), and morph (pattern vs. patternless) were determined by the Student's t-test. We tested for homogeneity of variances using Levene's test. If variances were not homogeneous, we used the Welch's t-test. We first conducted an exploratory analysis, a full General Lineal Model (GLM) with PH as the dependent variable and the main factors (age, sex, and morph), all two-way interactions, and the one three-way interaction, plus the covariates BODY and TL as the independent variables. Subsequently, we subsetted the data and conducted separate one-way ANCOVAs to more closely examine the individual effects of explanatory variables age, sex, and morph on PH. Interactions were evaluated in the respective model with BODY and TL as covariates. The

Pearson Chi-Square test estimated the association between age and morph, sex and morph, age and natural tail break, and sex and natural tail break in contingency tables. All statistical analyses were performed using SPSSv21 (IBM 2012).

Results

The One-Sample Kolmogorov-Smirnov Test indicated that all variables were normally distributed. The Pearson correlation matrix indicated a high correlation between LFAL, FLDL, LHLL, HLDL, mass, and SVL. Because correlation values among all six body-size indicators were highly significant, we used Factor Analysis to reduce the dimensionality (Johnson and Wichern 1998) of body variables into a new variable, BODY, in which larger values indicated a larger overall body and appendage size.

Results of the full GLM with PH as the dependent variable showed a significant ($F_{9,59} = 2.320; p = 0.026$) full model explaining PH (but explaining only 26% of its variation) and no explanatory variable was significant except for BODY ($F_{1,59} = 8.22; p = 0.006$). In

other words, the interaction age*sex, age*morph, sex*morph, and age*sex*morph played no significant role in the determination of PH.

Statistical Analyses by Age Class

The independent sample t-test and Welch's t-test indicated no statistical difference in PH or BT between adults (47) and juveniles (22) (both $p > 0.05$; descriptive statistics in Table 1).

Table 1. Perch height and body temperature [mean \pm SD (range)] statistics of 69 *Liolaemus bellii* collected at 2960 m a.s.l. nearby the village of El Colorado, central Chile. Lizards are grouped by age. Abbreviations: N = number of individuals, PH = perch height, and BT = body temperature.

Age	PH (cm)	BT (°C)
Adults ($N = 47$)	23.21 ± 12.97 (0–62.00)	31.7 ± 2.68 (24.00–36.20)
Juveniles ($N = 22$)	18.00 ± 16.60 (0–50.00)	31.61 ± 1.66 (29.90–36.00)

Setting Age as the independent variable, BODY as the covariate, and PH as the dependent variable, the one-way ANCOVA showed a statistical difference in perch height use in relation to BODY ($F_{1,65} = 10.02$; $p = 0.002$), but not Age. The interaction Age*BODY was not significant. In a second analysis setting Age as the independent variable, TL as the covariate, and PH as the dependent variable, the one-way ANCOVA showed a statistical difference in perch height use in relation to TL ($F_{1,65} = 6.30$; $p = 0.015$), but not Age. The interaction Age*TL also was not significant. Larger lizards (i.e., bigger BODY) and those with longer tails occupied significantly higher perches. The lack of interactions indicates that the effect of BODY and TL was the same for juveniles and adults.

Statistical Analyses by Sex

The independent sample t-test indicated no statistical difference in PH, BT, BODY, or TL between males (32) and females (37) (all $p > 0.05$; descriptive statistics in Table 2).

Setting sex as the independent variable, BODY as the covariate, and PH as the dependent variable, the one-way ANCOVA showed a statistical difference in perch height use in relation to BODY ($F_{1,65} = 10.98$; $p = 0.002$), but not sex. The interaction sex*BODY also was not significant. In a second analysis setting sex as the independent variable, TL as the covariate, and PH as the dependent variable, the one-way ANCOVA showed a statistical difference in perch height use in relation to TL ($F_{1,65} = 6.98$; $p = 0.010$), but not sex. The interaction between sex*TL was not significant. Larger lizards (i.e., bigger BODY) and those with longer tails occupied significantly higher perches. The lack of interactions indicates that the effect of BODY and TL was the same for males and females.

Statistical Analyses by Morph

The independent sample t-test indicated no statistical difference in PH, BT, BODY, or TL between patternless (19) and chevron patterned morphs (50) (all $p > 0.05$; descriptive statistics in Table 3).

Setting morph as the independent variable, BODY as the covariate, and PH as the dependent variable, the one-way ANCOVA showed a statistical difference in perch height use in relation to BODY ($F_{1,65} = 9.45$; $p = 0.003$), but not morph. The interaction morph*BODY also was not significant. In a second analysis setting morph as the independent variable, TL as the covariate, and PH as the dependent variable, the one-way ANCOVA showed a statistical difference in perch height use in relation to TL ($F_{1,65} = 6.12$; $p = 0.016$), but not morph. The interaction between morph*TL was not significant. Larger lizards (i.e., bigger BODY) and those with longer tails occupied significantly

Table 2. Descriptive morphometrics, body temperature, and perch height [mean \pm SD (range)] statistics of 69 *Liolaemus bellii* collected at 2960 m a.s.l. nearby the village of El Colorado, central Chile. Lizards are grouped by sex. Abbreviations: *N* = number of individuals, PH = perch height, BT = body temperature, BODY = reduced dimensionality of body variables, and TL = tail length.

Sex	PH (cm)	BT (°C)	BODY (no unit)	TL (mm)
Males (<i>N</i> = 32)	20.71 \pm 13.43 (0–50.00)	31.54 \pm 2.20 (26.00–36.20)	0.11 \pm 1.06 (-2.10–1.93)	97.28 \pm 20.24 (55.00–132.00)
Females (<i>N</i> = 37)	22.27 \pm 15.19 (0–62.00)	31.78 \pm 2.56 (24.00–35.20)	-0.10 \pm 0.94 (-2.58–1.25)	94.83 \pm 18.95 (67.00–139.00)

Table 3. Descriptive morphometrics, body temperature and perch height [mean \pm SD (range)] statistics of 69 specimens of *Liolaemus bellii* collected at 2960 m a.s.l. nearby the village of El Colorado, central Chile. Lizards are grouped by morph. Abbreviations: *N* = number of individuals, PH = perch height, BT = body temperature, BODY = reduced dimensionality of body variables, and TL = tail length.

Morph	PH (cm)	BT (°C)	BODY (no unit)	TL (mm)
Patternless (<i>N</i> = 19)	21.36 \pm 12.28 (0–42.00)	31.20 \pm 2.22 (26.00–35.30)	0.27 \pm 0.79 (-1.95–1.44)	96.23 \pm 21.40 (64.00–139.00)
Chevron (<i>N</i> = 50)	21.62 \pm 15.13 (0–62.00)	31.85 \pm 2.45 (24.00–36.20)	-0.10 \pm 1.05 (-2.58–1.93)	95.86 \pm 18.89 (55.00–134.00)

higher perches. The lack of interactions indicates that the effect of BODY and TL was the same for patternless and lizards with pattern.

Pearson Chi-square results indicated there was a significant relationship between age and morph. The patternless morph becomes more prevalent as lizards age (Pearson Chi-square = 5.51, *df* = 1, *p* = 0.019) (Table 4). The dorsal pattern does not appear to be a sexual dimorphism. Sex did not significantly relate to morph in individuals of *L. bellii* (Pearson Chi-square = 0.42, *df* = 1, *p* = 0.521).

Interestingly, 40 of the 69 lizards had a naturally broken tail (Table 4). Of those, 7 were juveniles and 33 were adults, 20 were males and 20 were females, and 13 were patternless and 27 had chevron patterns. Natural tail break was statistically different only between age classes (Pearson Chi-square = 9.07, *df* = 1, *p* = 0.003), with adults having proportionately more broken tails than juveniles (Table 5).

Discussion

Dorsal polymorphism in *L. bellii* is evident (Donoso-Barros 1966, Pincheira-Donoso and Núñez 2005). In our preliminary full model GLM analysis, contrary to our expectations, dorsal pattern morph did not relate to perch height (PH), but BODY did. Interestingly, the interaction age*sex, age*morph, sex*morph, and age*sex*morph played no significant role in the determination of PH. However, when the data were subsetted and analyzed by age, sex, or morph, we found that both BODY and TL significantly influenced PH. Thus, regardless of their age, sex, and morph, lizards with a bigger BODY and longer tail occupied higher perches, suggesting that the combination of both variables may play a social role in *L. bellii*.

How TL influences PH is not clear. Tail loss (i.e., decreased regenerated tail length) has been negatively associated with dominance in side-

Table 4. Tail status (i.e., intact, and naturally broken tail) of 69 specimens of *Liolaemus bellii*, grouped by age, sex, and morph collected at 2960 m a.s.l. nearby the village of El Colorado, central Chile. *N* = number of individuals.

Age	Sex	Morph	<i>N</i>	Intact tail	%	Naturally broken tail	%
Adult	Male	Patternless	9	2	22.2	7	77.8
		Chevron	10	1	10.0	9	90.0
	Female	Patternless	8	3	37.5	5	62.5
		Chevron	20	8	40.0	12	60.0
Juvenile	Male	Patternless	1	0	0.0	1	100.0
		Chevron	12	9	75.0	3	25.0
	Female	Patternless	1	1	100.0	0	0.0
		Chevron	8	5	62.5	3	37.5

Table 5. Observed vs expected counts of 69 *Liolaemus bellii* collected at 2960 masl nearby the village of El Colorado, central Chile. Pearson Chi-square = 9.07, *df* = 1, *p* = 0.003.

		Intact tail	Naturally broken tail	Total
Adult	Observed	14.0	33.0	47.0
	Expected	19.8	27.2	47.0
Juvenile	Observed	15.0	7.0	22.0
	Expected	9.2	12.8	22.0

blotched lizards (Fox *et al.* 1990). According to Fox and Shipman (2003) *L. bellii* is not territorial. Although the specific social organization of the population we studied has not yet been determined, its high density suggests hierarchical dominance. Nevertheless, during visits to our field site and surrounding areas, we never observed aggression between sexes or between individuals of the same or a different age class. From our field observations and results, one can infer that bigger *L. bellii* (controlling for age or sex) with longer tails (controlling for age or sex) may be dominant individuals occupying the less abundant taller rocks, which offer higher perches.

Our results indicate that the patternless morph is significantly more prevalent in older

individuals, indicating an ontogenetic loss of dorsal pattern in *L. bellii*. Even though a rather high frequency of tail breaks occurred in the population, there was no suggestion that dorsal pattern was related to tail loss. Not surprisingly, adults suffered significantly more tail losses than juveniles. Tail loss in different *Liolaemus* species has been interpreted as the result of failed predation events (Jaksic and Fuentes 1980, Medel *et al.* 1988, Utsumi *et al.* 2021). It seems reasonable that adults who have lived longer would have more evidence of tail breaks than juveniles (Tinkle and Ballinger 1972, Núñez and Yáñez 1984, Bateman and Fleming 2009). At the high elevation of our study site, visually oriented bird predators that prey on lizards are two

abundant species of shrike-tyrants, *Agriornis montanus* (d'Orbigny and Lafresnaye, 1837) and *Agriornis lividus* (Kittlitz, 1835); the less abundant American Kestrel, *Falco sparverius* Linnaeus, 1758 (Ridgely and Tudor 1994), and the very common Rufous-banded Miner, *Geositta rufipennis* (Burmeister, 1860) (Santoyo-Brito *et al.* 2014). During March–April, *A. montanus*, *A. lividus*, and *G. rufipennis* are abundant in the area. This abundance of visual predators might explain the high frequency of natural tail loss in our population.

In conclusion, morph is not sex-related nor related to perch height, but still might be involved in social relations among individuals since bigger lizards with longer tails perched significantly higher, and the patternless morph was found significantly more often in older lizards. Morph was related to age but not to the frequency of broken tails.

Acknowledgments

This research was made possible due to financial funding by The National Geographic Society, Delta Foundation, and Oklahoma State University. Research was conducted according to ACUP AS-15-14 approved by Oklahoma State University IACUC, and followed the protocol approved by SAG (Resolución Exenta N° 3/2016).

References

Abdala, C., A. S. Quinteros, R. Semhan, A. L. B. Arroyo, J. Schulte, M. M. Paz, M. R. Ruiz-Monachesi, A. Laspur, Alvaro J. Aguilar-Kirigin, R. G. Poblete, P. V. Faundez, J. Valdés, S. Portelli, R. Santa Cruz, J. Aparicio, N. García, and R. Langstroth. 2020. Unravelling interspecific relationships among highland lizards: first phylogenetic hypothesis using total evidence of the *Liolaemus montanus* group (Iguania: Liolaemidae). *Zoological Journal of the Linnean Society* 189: 349–377.

Anibaldi, C., L. Luiselli, and F. M. Angelici. 1998. Notes on the ecology of a suburban population of rainbow lizards in coastal Kenya. *African Journal of Ecology* 36: 199–206.

Avery, R. A. 1991. Temporal dynamics of a vigilance posture in the ruin lizard *Podarcis sicula*. *Amphibia-Reptilia* 12: 352–356.

Baird, T. A. and C. L. Sloan. 2003. Interpopulation variation in the social organization of female collared lizards, *Crotaphytus collaris*. *Ethology* 109: 879–894.

Bateman, P. W. and P. A. Fleming. 2009. To cut a long tail short: a review of lizard caudal autotomy studies carried out over the last 20 years. *Journal of Zoology* 277: 1–14.

Cooper, W. E., Jr. 2009. Flight initiation distance decreases during social activity in lizards (*Sceloporus virgatus*). *Behavioral Ecology and Sociobiology* 63: 1765–1771.

Deodhar, S. and K. Isvaran. 2018. Why do males use multiple signals? Insights from measuring wild behavior over lifespans. *Frontier in Ecology and Evolution* 6: 75.

Donoso-Barros, R. 1966. *Reptiles de Chile*. Santiago. Universidad de Chile. 458 pp.

Eifler, D. and S. Fogarty. 2006. Perch selection by post-breeding female Collared Lizards (*Crotaphytus collaris*). *Amphibia-Reptilia* 27: 461–463.

Farallo, V. R. and M. R. J. Fornster. 2012. Predation and the maintenance of color polymorphism in a habitat specialist squamate. *PlosOne* 7: e30316.

Ferner, J. W. 2007. *A Review of Marking and Individual Recognition Techniques for Amphibians and Reptiles*. Herpetological Circulars 35. Society for the Study of Amphibians and Reptiles. 72 pp.

Fox, S. and P. A. Shipman. 2003. Social behavior at high and low elevations. Pp. 310–355 in S. Fox, J. K. McCoy, and T. L. Baird (eds.), *Lizard Social Behaviour*. London. The Johns Hopkins University Press.

Fox S., N. A. Heger, and L. S. Delay. 1990. Social cost of tail loss in *Uta stansburiana*: lizard tails as status-signaling badges. *Animal Behaviour* 39: 549–554.

Hoffman, E. A. and M. S. Blouin. 2000. A review of colour and pattern polymorphism in anurans. *Biological Journal of the Linnean Society* 70: 633–665.

IBM Corp. Released 2012. IBM SPSS Statistics for Windows, Version 21.0. Armonk, NY: IBM Corp.

Jaksić, F.M. and E. R. Fuentes. 1980. Correlates of tail losses in twelve species of *Liolaemus* lizards. *Journal of Herpetology* 14: 137–141.

Johnson, F.A and D.W. Wichern. 1998. *Applied Multivariate Statistical Analysis*. Prencite Hall. 773 pp.

Labra, E., S. Cortez, and H. M. Niemeyer. 2003. Age and season affect chemical discrimination of *Liolaemus bellii* own space. *Journal of Chemical Ecology* 29: 2615–2620.

Losos, J. B. 1990. Ecomorphology, performance capability and scaling in West Indian *Anolis*: An evolutionary analysis. *Ecological Monographs* 60: 369–388.

Losos, J. B. 2009. *Lizards in an Evolutionary Tree: Ecology and Adaptive Radiations of Anoles*. Berkely and Los Angeles. University of California Press. 528 pp.

Mayr, E. 1963. *Animal Species and Evolution*. Cambridge. Belknap Press. 811 pp.

Medel R. G., J. E. Jiménez, S. F. Fox, and F. M. Jaksic. 1988. Experimental evidence that high population frequencies of lizard tail autotomy indicate inefficient predation. *Oikos* 53: 321–324.

Medina, I., J. B. Losos, and D. L. Mahler. 2017. Evolution of dorsal pattern variation in Greater Antillean *Anolis* lizards. *Biological Journal of the Linnean Society* 120: 427–435.

Miranda, J. P. and G. V. Andrade. 2003. Seasonality in diet, perch use, and reproduction of the gecko *Gonatodes humeralis* from Eastern Brazilian Amazon. *Journal of Herpetology* 37: 433–438.

Núñez, H. 1996. *Autoecología Comparada de dos Especies de Lagartijas de Chile Central*. Publicación Ocasional, Museo Nacional de Historia Natural (Chile) 50: 5–60.

Núñez, H. and L. Yáñez. 1984. Colas de lagartijas del género *Liolaemus*: autotomía e influencia en la predación. *Studies on Neotropical Fauna and Environment* 19: 1–8.

Ortega, J., P. López, and J. Martín. 2014. Conspicuous blue tails, dorsal pattern morphs and escape behaviour in hatchling Iberian wall lizards (*Podarcis hispanicus*). *Biological Journal of the Linnean Society* 113: 1094–1106.

Oxford, G. and R. G. Gillespie. 1998. Evolution and ecology of spider coloration. *Annual Review of Entomology* 43: 619–643.

Pincheira-Donoso, D. 2012. *Selección y Evolución Adaptativa. Fundamentos Teóricos y Empíricos Desde la Perspectiva de los Lagartos*. Santiago. Ediciones Universidad Católica de Chile. 445 pp.

Pincheira-Donoso, D. and H. Núñez. 2005. *The Chilean Species of the Genus Liolaemus Wiegmann, 1834 (Iguania, Tropiduridae, Liolaeminae). Taxonomy, Systematics and Evolution*. Santiago. Museo Nacional de Historia Natural de Chile, Publicaciones Ocasionales. 486 pp.

Pounds, J. A. and J. F. Jackson. 1983. Utilization of perch sites by sex and size classes of *Sceloporus undulatus undulatus*. *Journal of Herpetology* 17: 287–289.

Radder, R., S. Saidapur, and B. A. Shanbhag. 2006. Big boys on top: Effects of body size, sex and reproductive state on perching behavior in the tropical rock dragon, *Psammophilus dorsalis*. *Animal Biology* 56: 311–321.

Ramírez-Bautista, A. and M. Benabib. 2001. Perch height of the arboreal lizard *Anolis nebulosus* (Sauria: Polychrotidae) from a tropical dry forest of Mexico: Effect of the reproductive season. *Copeia* 2001: 187–193.

Ridgely, R. S. and G. Tudor. 1994. *The Birds of South America. Volume 2. The Suboscine Passerines*. University of Texas Press. 940 pp.

Santos, X., J. S. Azor, S. Cortés, E. Rodríguez, J. Larios, and J. M. Peleguezuelos. 2018. Ecological significance of dorsal polymorphism in Batesian mimic snake. *Current Zoology* 64: 745–753.

Santoyo-Brito, E., S. Fox, and H. Núñez. 2014. Predation by the Rufous-banded Miner, *Geositta rufipennis*, on the lizard *Liolaemus leopardinus*. *Boletín del Museo Nacional de Historia Natural, Chile* 63: 69–72.

Santoyo-Brito, E., S. Fox, and H. Núñez. 2018. Age estimation through skeletochronology and mark-recapture of free-living *Liolaemus leopardinus* (Squamata: Liolaemidae) from Chile. *Phyllomedusa* 17: 101–112.

Santoyo-Brito, E., S. Perea-Fox, H. Núñez, and S. Fox. 2021. Maternal care and secretive behavior of neonates in the highly social lizard *Liolaemus leopardinus* (Squamata: Liolaemidae) from the central Chilean Andes may relate to size-specific bird predation. *Behaviour* 158: 195–223.

Scott, N. J. 1976. The choice of perch dimensions by lizards of the genus *Anolis* (Reptilia, Lacertilia, Iguanidae). *Journal of Herpetology* 10: 75–84.

Smith, G. R. and R. E. Ballinger. 2001. The ecological consequences of habitat and microhabitat use in lizards: A review. *Contemporary Herpetology* 2001: 1–13.

Steffen, J. E. 2010. Perch height differences among female *Anolis polylepis* exhibiting dorsal pattern polymorphism. *IRCF Reptiles & Amphibians* 17: 172–174.

Stellatelli, O. A., C. Block, D. L. Moreno-Azócar, L. E. Vega, J. P. Isasch, and F. B. Cruz. 2016. Scale dependency of *Liolaemus* lizards' home range in response to different environmental variables. *Current Zoology* 62: 521–530.

Tinkle, D. W. and R. E. Ballinger. 1972. *Sceloporus undulatus*: A study of the intraspecific comparative demography of a lizard. *Ecology* 53: 570–584.

Utsumi, K., C. Staley, M. A. Eifler, H. Núñez, and D. A. Eifler. 2021. Color variation and habitat use in *Liolaemus silvai*. *South American Journal of Herpetology* 21: 80–84.

Vicenzi, N., R. Massarelli, N. Ibargüengoytía, and V. Corbolán. 2021. Basking and retreat site selection of *Phymaturus palluma*, a rock-dwelling lizard in the Highlands of Aconcagua. *Anais de Academia Brasileira de Ciências* 93: e20190662.

Zucker, N. 1986. Perch height preferences of male and female Tree Lizards, *Urosaurus ornatus*: a matter of food competition or social role? *Journal of Herpetology* 20: 547–533.

Editor: Jaime Bertoluci

Habitat and microhabitat use by *Crossodactylus schmidti* (Anura: Hylodidae) in Atlantic Rainforest streams

Michel Varajão Garey,¹ Camila Souza Batista,² and Jessica De Lara Jeziorny^{1,3}

¹ Universidade Federal da Integração Latino-Americana, Instituto Latino-Americano de Ciências da Vida e da Natureza, Laboratório de Ecologia de Metacommunidades. 85870-901, Foz do Iguaçu, PR, Brazil. E-mail: michel.garey@unila.edu.br.

² Universidade Estadual de Santa Cruz, Laboratório de Herpetologia Tropical. 45662-900, Ilhéus, BA, Brazil. E-mail: biocsouza@gmail.com.

³ Descomplica Uniamérica Centro Universitário. 85853-000, Foz do Iguaçu, PR, Brazil. E-mail: jessica.jeziornny@gmail.com.

Abstract

Habitat and microhabitat use by *Crossodactylus schmidti* (Anura: Hylodidae) in Atlantic Rainforest streams. A combination of biotic and abiotic factors influences the habitat and microhabitat selection by anurans. To analyze the habitat and microhabitat use by adults of *Crossodactylus schmidti*, we sampled 13 streams in the Atlantic Rainforest of Iguaçu National Park, Southern Brazil, between November 2014 and August 2015. We recorded abundance data and measured structural environmental variables of the streams related to habitat selection on three occasions in each stream. Data collection occurred along a 50-meter transect in each stream. Additionally, two samplings were conducted specifically to obtain microhabitat usage data, sampling only the same three streams on each sampling. We employed Generalized Least Squares analysis to assess spatial variation in abundance as a function of environmental structural variables, considering models with and without spatial structuring. We applied the Multinomial Goodness-of-Fit Test to elucidate the types of microhabitats most utilized by the frogs. Our analysis revealed that considering or not the spatial autocorrelation in the variation in *C. schmidti* abundance, none of the predictor variables was significant. The results obtained demonstrate that the analyzed environmental variables are not important for habitat selection of *C. schmidti*, and the spatial configuration and distance among streams are not determinants for abundance distribution. At the habitat scale, this species exhibits a random distribution independent of spatial and environmental features. Regarding microhabitats, individuals were predominantly found inhabiting streams in pool areas characterized by rocky substrate or organic matter accumulation. Conservation strategies for this species should encompass the scale-dependent relationships.

Keywords: Brazil, Distribution, Frogs, Habitat selection, Spatial dynamics.

Received 31 July 2024

Accepted 05 November 2024

Distributed December 2024

Resumo

Uso do habitat e micro-habitat por *Crossodactylus schmidti* (Anura: Hylodidae) em riachos da Mata Atlântica. Uma combinação de fatores bióticos e abióticos influencia a seleção de habitat e micro-habitat por anuros. Para analisar o uso de habitat e micro-habitat por adultos de *Crossodactylus schmidti*, amostramos 13 riachos na Mata Atlântica no Parque Nacional do Iguaçu, sul do Brasil, entre novembro de 2014 e agosto de 2015. Registraramos dados de abundância e medimos variáveis ambientais estruturais dos riachos relacionadas à seleção de habitat pelos anuros em três ocasiões em cada riacho. A coleta de dados ocorreu ao longo de um transepto de 50 m em cada riacho. Além disso, foram realizadas duas coletas especificamente para a obtenção de dados do uso de micro-habitat, amostrando somente os mesmos três riachos em cada amostragem. Nós empregamos a análise Generalized Least Squares para avaliar a variação espacial na abundância em função das variáveis ambientais estruturais dos riachos, considerando modelos com e sem estruturação espacial. Nós aplicamos o Multinomial Goodness-of-Fit Test para elucidar os tipos de micro-habitat mais utilizados pelas rãs. Nossa análise revelou que, considerando ou não a autocorrelação espacial na variação da abundância de *C. schmidti*, nenhuma das variáveis preditoras foi significativa. Os resultados obtidos demonstram que as variáveis ambientais analisadas não são importantes para a seleção de habitat de *C. schmidti*, e a configuração espacial e a distância entre os riachos não são determinantes para a distribuição da abundância. Portanto, na escala do habitat, esta espécie exibe uma distribuição aleatória independente das características ambientais e espaciais. Em relação aos micro-habitats, os indivíduos foram encontrados predominantemente ocorrendo em áreas de remanso dos riachos, contendo substrato rochoso ou com acúmulo de matéria orgânica. Dada a variação na seleção de habitat entre as escalas avaliadas, as estratégias de conservação para esta espécie devem levar em conta as relações dependentes da escala.

Palavras-chave: Brasil, Dinâmica espacial, Distribuição, Rãs, Seleção de hábitat.

Introduction

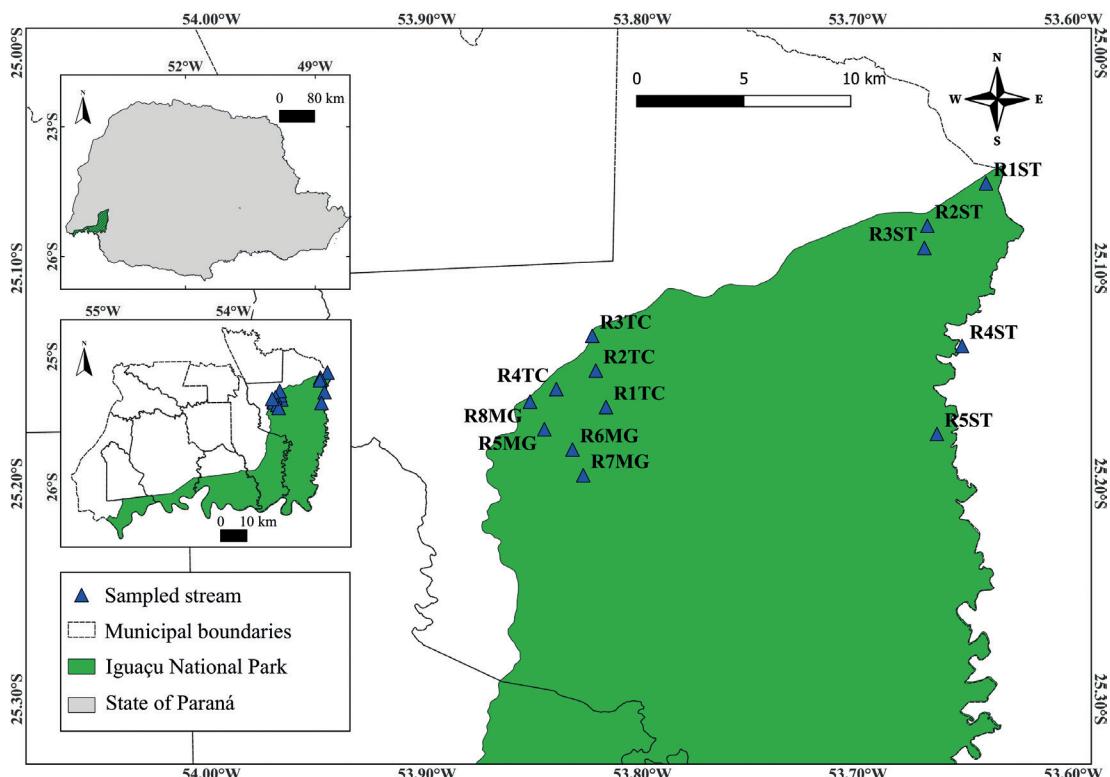
Habitats and microhabitats exhibit variation in conditions and quality within natural ecosystems. Individuals are expected to optimize their survival and reproductive success by selecting suitable habitats and, within these environments, favorable microhabitats (Arlt and Pärt 2007). The selection of habitat and microhabitat is influenced by a combination of biotic and abiotic factors, as well as individual organism characteristics (Rosenzweig 1981, Morris 2003). Biotic factors influencing habitat selection include the presence of predators, parasites, and competitors (Binckley and Reseratris 2005, Tolvanen *et al.* 2017, Rushing *et al.* 2021), as well as the quantity and quality of food resources (e.g., Nielsen *et al.* 2010, Rushing *et al.* 2021). Regarding abiotic factors, conditions (e.g., temperature), habitat structure, and surrounding landscape also play significant roles in habitat selection (Pelinson *et al.* 2016,

Marques *et al.* 2019). Individual characteristics such as sex (Chinchilla-Lemus *et al.* 2020), life stage (Wells 2007), and individual behavior (e.g., prior experience) (Liford and Cecala 2017) can influence habitat selection. Habitat selection represents a complex behavioral decision-making process directly impacting individuals' fitness (Freitas *et al.* 2016) and spatial distribution (Morris 2003).

In amphibians, habitat and microhabitat selection play a crucial role because reproductive success and population maintenance of this group are directly linked to the surrounding environment (Murphy 2003). Among abiotic factors influencing habitat selection by adult anurans, structural features of the habitat appear to be paramount (Watson *et al.* 2003, Carisio *et al.* 2014), as they directly impact the selection of calling, courtship, and spawning sites (Parris 2001, Touchon and Warkentin 2008, Buxton and Sperry 2017). In lotic environments utilized by anurans for reproduction, width and depth serve

as indicators of available habitat for individuals. In streams, a greater abundance of adult anurans is anticipated in water bodies of intermediate sizes, as these habitats are expected to exhibit greater microhabitat heterogeneity (Hopey and Petranka 1994, Parris 2001). Canopy cover is another significant variable that is associated with species adaptation to forested or open areas (Van Buskirk 2005). Light penetration directly affects primary productivity and the nutritional quality of food ingested by tadpoles (Schiesari 2006). Water flow speed is another critical variable in lotic environments because higher speeds create a noisier environment, thereby interfering more with intraspecific acoustic communication (Vielliard and Cardoso 1996) and potentially carrying away tadpoles and adults. Success in occupying lotic environments is associated with, among other factors, the need for behavioral and/or acoustic adaptations that promote intraspecific communication (Heyer *et al.* 1990, Goutte *et al.* 2013) and local permanence (Wells 2007). Lotic environments exhibit structural variation, and the selection of appropriate habitat for reproduction is expected to confer specific advantages to males in acquiring a mate and subsequently maintaining the local population.

Amphibians typically select specific locations within their habitat, known as microhabitats, to occupy, vocalize, and spawn (Buxton and Sperry 2017, Melo *et al.* 2018, Flores *et al.* 2024). The selection of microhabitats by anurans is of paramount importance for their reproductive success and overall ecological fitness. Similar to habitat selection, anurans exhibit discerning preferences for particular microhabitats based on several environmental features, including water flow speed, depth, substrate type, and vegetation structure (Eterovick 2003, Melo *et al.* 2018, Flores *et al.* 2024). The ability of anurans to selectively utilize microhabitats that best suit their ecological requirements is crucial for maximizing fitness and ensuring population persistence in heterogeneous environments (Buxton and Sperry 2017).


The family Hylodidae comprises 48 described species (Frost 2024) of diurnal frogs commonly found in forest streams (Jordão-Nogueira *et al.* 2006, Caldart *et al.* 2010, but see Caldart *et al.* 2011a). One of these species is *Crossodactylus schmidti* Gallardo, 1961, a frog occurring in southern Brazil, southern Paraguay, and northern Argentina (Caldart *et al.* 2010, Lucas and Garcia 2011, Bastiani *et al.* 2012, Frost 2024). The species is currently classified as “Least Concern” by IUCN (2023), but its population trend is declining mainly due to habitat loss, modification, and fragmentation, and pollution (IUCN 2023). *Crossodactylus schmidti* has a snout–vent length of 28 mm and 2.5 g of body mass, and it is cryptically colored. It inhabits forest streams and is considered a habitat specialist, with individuals strongly associated with well-preserved habitats (Bastiani *et al.* 2012). Males vocalize throughout the year, with monthly variation positively influenced by accumulated precipitation and air temperature (Caldart *et al.* 2016). The species occupies rocky stream habitats wherein males prefer to utilize exposed rocks for acoustic and visual communication (Caldart *et al.* 2011b, 2016). *Crossodactylus schmidti* preys on arthropods, primarily ants, beetles, and dipterans (Caldart *et al.* 2012). Conversely, it serves as prey for spiders and snakes with both diurnal and nocturnal habits (Caldart *et al.* 2011). Despite being a species with considerable ecology and natural history information available (e.g., Caldart *et al.* 2010, 2011a, b, 2012, 2016, Bastiani *et al.* 2012), studies are lacking that evaluate the relationship between habitat and microhabitat features and the occurrence of individuals of *C. schmidti*. This study addresses two questions: (1) What is the relative influence of stream environmental features on the spatial variation of abundance in *C. schmidti*? (2) Is there differential utilization of existing microhabitats within streams by adult *C. schmidti*? Understanding distribution patterns among and within habitats is crucial for establishing effective conservation measures.

Materials and Methods

Study Area

The study was conducted in Iguaçu National Park (INP), a conservation unit located in the western region of the state of Paraná, southern Brazil ($25^{\circ}05'$ – $25^{\circ}41'$ S, $53^{\circ}40'$ – $54^{\circ}38'$ W; Figure 1). The INP covers 185,265 ha across five municipalities: Céu Azul, Foz do Iguaçu, Matelândia, São Miguel do Iguaçu, and Serranópolis do Iguaçu. The vegetation comprises Semideciduous Seasonal Forests, Mixed Ombrophilous Forests, and Alluvial Pioneer Formations of the Atlantic Rainforest

(Souza *et al.* 2017). Specifically, in the area where the present study was conducted, the vegetation is predominantly Mixed Ombrophilous Forest. The climate in the region is classified as Cfa (temperate and humid) according to Köppen's classification (Alvares *et al.* 2013), with four well-marked seasons. Precipitation is evenly distributed throughout the year, with no dry season, and a higher volume of rainfall in the summer, resulting in an annual precipitation total of around 1800 mm (Nitsche *et al.* 2019). The average annual temperature varies between 20°C and 22°C , with summer averaging 26°C and winter averaging 17°C (Nitsche *et al.* 2019).

Figure 1. Map showing the location of Iguaçu National Park (green area) in the state of Paraná in southern Brazil and the distribution of sampling units at Iguaçu National Park (blue triangles). In detail, the distribution of sampling units (blue triangles) represents the location of each sampled stream. Each acronym represents a specific stream.

Habitat Data

We sampled 13 streams in primary forest of the INP, all of which were situated within Araucaria Moist Forest areas in the municipality of Céu Azul (Table 1; Figure 1). We chose to sample only small to medium-sized streams (first to third order) (Caldart *et al.* 2016) because no specimens of *Crossodactylus schmidti* were found in larger streams in previous monitoring efforts in INP (e.g., Iguaçu River) (M. V. Garey pers. obs.). We conducted our sampling during daylight and twilight periods (8:00 to 19:00 h). We established a 50-m transect in each stream, considering that this transect size has already been used in other studies with amphibians (e.g., Hazell *et al.* 2004, Wassens *et al.* 2013). The transect was permanently established upstream of the access point to the water body to minimize the impacts of researchers' presence on anurans and water. We sampled each transect three times: the first between November and December 2014, the second in January 2015, and the third in August 2015. The definition of sampling events was conducted considering climatic conditions (i.e., forecasted light rain on sampling days) and logistics. Two samplings were performed during the warmer and rainier period, while another occurred during the cooler and less rainy period. This decision was made due to uncertainty regarding whether the studied population would follow the same pattern reported for another population of the species in a more southern region (Caldart *et al.* 2016).

We collected data on the abundance of *C. schmidti* (response variable) and environmental variables describing habitat structure (predictor variables) in each stream transect. Two researchers sampled the transects for 30 min each, totaling an hour of search effort per transect per sampling campaign. During the diurnal and nocturnal searches, all encountered adult individuals were counted. Adults were defined as having SVL > 20 mm (Bastiani *et al.* 2012). The species abundance in each stream was considered equal to that of the campaign where

the highest number of individuals was recorded in each stream. This procedure was adopted to mitigate the risk of overestimating abundance due to recounting individuals between different campaigns, as individuals were not marked. However, we know that the population size in each stream is larger than our observations suggest (see Greener *et al.* 2017), and that males and females may only visit the breeding site occasionally (Boyle *et al.* 2021). Considering that the visual encounter survey probably represents only a portion of the population's abundance, this limitation should be kept in mind.

We measured five environmental variables in each transect to characterize the habitat: maximum depth, width, water flow speed, predominant substrate type, and percentage of canopy cover (Table 1). We recorded environmental variables every 10 m in each transect, with six samples per stream per campaign. Water flow speed and percentage of canopy cover were measured at the middle of the stream. Maximum depth and substrate type were assessed across the entire width of the stream at each abiotic variable collection point. Maximum depth and stream width were measured in centimeters using a tape measure. We estimated water flow speed (cm/s) using the floating object method (Kauffman *et al.* 2009), where we recorded the time (s) taken for a 2-cm diameter Styrofoam ball to travel one meter. We visually classified substrate type into one of seven categories: bedrock (rock outcrop), boulder (larger rock fragments > 8 cm), coarse gravel (2–8 cm), fine gravel (1–2 cm), organic matter (i.e., leaves and stems), clay, and sand. Canopy cover was estimated by capturing photographs of the canopy with a Fujifilm FinePix XP10 camera positioned horizontally at a standardized height (approximately 140 cm above ground level). We converted the obtained images to binary black ("not sky") and white ("sky") and analyzed the proportion of white pixels in each photo, representing an estimate of visible canopy fraction or the percentage of canopy openness

Table 1. The abundance of individuals of *Crossodactylus schmidti*, structural environmental characteristics, and the location of the 13 lotic water bodies sampled in Iguacu National Park, western Paraná state, Brazil. Values are presented as mean \pm standard deviation (range). Wfs = Water flow speed (cm/s). Sw = Stream width (cm). Cc = Canopy cover (%).

Stream	Abundance	Wfs	Sw	Depth (cm)	Substrate	Cc	Latitude	Longitude
R1ST	13	22.47 \pm 17.38 (12.18–46.08)	75 \pm 36 (34–159)	10 \pm 5 (5–26)	Clay	0.61 \pm 0.08 (0.41–0.73)	-25.060555	-53.640555
R2ST	8	12.89 \pm 18.80 (0.00–37.03)	100 \pm 67 (30–308)	8 \pm 3 (3–16)	Clay and organic matter	0.63 \pm 0.07 (0.63–0.75)	-25.080277	-53.667777
R3ST	7	33.33 \pm 31.17 (19.04–78.74)	178 \pm 152 (62–720)	8 \pm 3 (3–17)	Boulder	0.60 \pm 0.12 (0.38–0.79)	-25.090555	-53.669166
R4ST	1	30.49 \pm 42.76 (13.25–100)	257 \pm 151 (66–486)	6 \pm 2 (3–11)	Boulder	0.65 \pm 0.04 (0.59–0.72)	-25.136111	-53.651666
R5ST	6	15.80 \pm 25.66 (0.00–55.86)	121 \pm 45 (41–179)	9 \pm 7 (1–23)	Boulder	0.68 \pm 0.05 (0.57–0.76)	-25.176944	-53.663333
R1TC	0	10.65 \pm 35.85 (2.85–68.49)	204 \pm 81 (102–370)	18 \pm 10 (5–38)	Coarse gravel	0.67 \pm 0.03 (0.61–0.76)	-25.164444	-53.816944
R2TC	20	22.94 \pm 37.74 (12.79–82.64)	142 \pm 106 (16–411)	5 \pm 3 (1–13)	Clay and organic matter	0.69 \pm 0.05 (0.62–0.79)	-25.147500	-53.821666
R3TC	57	10.34 \pm 19.79 (5.38–49.02)	77 \pm 19 (43–121)	11 \pm 5 (5–19)	Clay	0.66 \pm 0.05 (0.56–0.76)	-25.131388	-53.823333
R4TC	16	9.70 \pm 10.15 (3.90–27.70)	120 \pm 60 (16–272)	9 \pm 3 (6–16)	Clay and organic matter	0.64 \pm 0.06 (0.56–0.74)	-25.156111	-53.840000
R5MC	6	44.64 \pm 52.96 (22.42–142.86)	439 \pm 233 (170–985)	20 \pm 14 (3–56)	Boulder	0.54 \pm 0.09 (0.39–0.68)	-25.174722	-53.845555
R6MG	50	13.02 \pm 58.70 (4.01–109.89)	256 \pm 113 (84–490)	14 \pm 6 (6–28)	Bedrock	0.61 \pm 0.05 (0.53–0.69)	-25.184166	-53.832500
R7MG	49	11.38 \pm 11.84 (4.13–32.05)	206 \pm 174 (78–650)	12 \pm 6 (5–25)	Coarse gravel and clay	0.67 \pm 0.06 (0.55–0.75)	-25.196111	-53.827500
R8MG	8	9.31 \pm 16.01 (3.71–40.00)	143 \pm 85 (37–329)	9 \pm 4 (2–16)	Boulder	0.68 \pm 0.07 (0.52–0.78)	-25.161944	-53.852222

per point (Smith and Ramsay 2018). We analyzed the images using Image J software (Abramoff *et al.* 2004).

Microhabitat Data

We conducted two campaigns to collect data on the microhabitats used by adult *C. schmidti* in the streams of Iguaçu National Park. The first sampling was conducted in April, and the second in September 2014. For this sampling, we selected only three of the 13 streams, and we traversed transects of these three streams during both campaigns. We selected the streams for convenience, prioritizing those with easier access and shorter walking time to reach the sampling point, and ensuring they were at least 1 km apart from each other. Along the stream transect, we characterized the occurrence location (i.e., the microhabitat used) of each adult individual recorded based on seven variables: (i) position of the individual concerning the stream (i.e., inside or outside of the water), (ii) distance of the individual from the stream margin (cm), (iii) type of microhabitat (i.e., pool, riffle, or fast-flowing), (iv) substrate type (i.e., rock, coarse gravel, fine gravel, organic matter, or sand), (v) stream width (cm), (vi) maximum depth (cm), and (vii) water flow speed in the microhabitat (cm/s).

Statistical Analysis

We applied the Variance Inflation Factor (VIF) to evaluate the presence of multicollinearity among habitat environmental variables from the 13 sampled streams. A variable with a VIF value higher than three was deemed multicollinear (Zuur *et al.* 2009). The variable “substrate type” was excluded from subsequent analyses due to multicollinearity. Following the removal of this variable, the remaining variables showed no signs of multicollinearity. Subsequently, these remaining variables were standardized using Z-scores, ensuring that all variables had a mean of zero and a standard deviation of one (Legendre

and Legendre 2012). This standardization procedure was implemented due to the variables being measured in different units.

We conducted Generalized Least Squares (GLS) analysis to assess the variables associated with the variation in abundance of *C. schmidti* across the streams. This method addresses both heteroscedasticity and residual autocorrelation (Pinheiro and Bates 2000), but it does not account for variation in detection probability (Mazerolle *et al.* 2007). We chose this approach because GLS models allow for explicit incorporation of spatial autocorrelation by adjusting a variance-covariance matrix to fit the data characteristics better (Dormann *et al.* 2007). Since autocorrelation is a significant source of bias, the explicit modeling of spatial autocorrelation is expected to substantially enhance the accuracy of abundance distribution predictions (Guélat and Kéry 2018). To incorporate spatial structure, we included latitude and longitude data obtained at the center of each stream transect. We tested one non-spatial model and four models with different potential spatial correlation structures: spherical, exponential, Gaussian, and rational quadratics (Zuur *et al.* 2009). The selection of the most predictive model for abundance variation was based on three criteria: (1) models with ΔAICc less than 2.0, (2) inclusion in the set of best-supported models with combined Akaike weights of 0.70 (70% confidence set), and (3) relative likelihood higher than 0.7 (Burnham and Anderson 2002, Burnham *et al.* 2011). Spatial autocorrelation in model residuals was quantified using Moran's I test (Dormann *et al.* 2007). These analyses were conducted using R version 4.2.2 (R Core Team 2022) with the nlme (Pinheiro and Bates 2023) and qpcR (Spiess 2018) packages.

The occurrence frequencies of adults of *C. schmidti* in microhabitats with different structural environmental features were compared using the Multinomial Goodness-of-fit Test (McDonald 2014). We evaluated three microhabitat characteristics: (i) the position of the individual concerning the stream, (ii) the type of

microhabitat, and (iii) the substrate type. This test involves assessing the fit of a probabilistic model to a set of observed data when sample size is small (McDonald 2014).

Results

We observed adult *Crossodactylus schmidti* in 12 of the 13 sampled streams, totaling 361 individuals. In streams occupied by *C. schmidti*, an average of 20.08 ± 19.97 individuals were found, ranging from 1 to 57 individuals per stream. These streams had a water flow speed of 18.95 ± 11.14 cm/s (range: 9.32–44.64), a maximum width of 167.46 ± 81.16 cm (range: 74.94–334.98), a maximum depth of 10.02 ± 4.07 cm (range: 4.49–20.05), and canopy coverage of $64 \pm 4\%$ (range: 54–69) (Table 1). Tadpoles of *C. schmidti* were observed in all streams where adults were found. Males engaged in vocalization activities were recorded, indicating utilization of these habitats as breeding sites.

Among the four models evaluated in the GLS analysis, both the non-spatial and Gaussian Correlation Structure models performed equally well in predicting the spatial variation in the abundance of *C. schmidti* in streams of the Atlantic Rainforest (Table 2). In the non-spatial model, only the intercept was significant, suggesting that none of the variables was individually important in explaining the abundance data without considering spatial autocorrelation. In the model with a Gaussian autocorrelation structure, none of the environmental variables were significant (Table 3), indicating that the abundance distribution of *C. schmidti* in streams is independent of both environmental and spatial factors.

Within the analyzed habitats, individuals predominantly occupied microhabitats within the stream, mainly in pool areas (54.16%), followed by riffle areas (37.5%) and fast-flowing sections (8.33%) ($p = 0.0013$, exact multinomial test, Appendix I). Individuals were observed to prefer microhabitats mainly composed of rock substrate (33.33% of cases) or organic matter (33.33%),

with clay areas being less frequently occupied (8.33%) ($p < 0.00001$). During observations, adults were mostly found alone (75% of observations), with two adults present in the same microhabitat 25% of the time (Appendix I). Individuals were consistently found within the stream at an average distance of 23.41 ± 35.10 (0–130) cm from the margin. In these microhabitats occupied by adults, the stream had an average width of 136.75 ± 48.86 (45–228) cm, depth of 4.77 ± 2.70 (1–12) cm, and water flow speed of 19.60 ± 21.76 (0–86.96) cm/s.

Discussion

Adults of *Crossodactylus schmidti* were found in 92% of the rocky streams sampled in Iguaçu National Park. The spatial variation in the abundance of *C. schmidti* was equally explained by the model that does not consider spatial autocorrelation and by the model considering the spatial structuring of abundance. When considering or disregarding spatial structure, we found that none of the environmental variables was associated with spatial variation in the abundance of *C. schmidti*. This result suggests that individuals were randomly distributed in relation to the measured variables. The absence of a relationship observed in the model without spatial structure does not imply that there is no habitat selection by the species. Instead, selection may be predominantly influenced by environmental variables not considered in the present study, such as physicochemical characteristics of the water and biotic variables. For example, individuals of *C. gaudichaudii* Duméril and Bibron, 1841 are more likely to be found in streams with higher water temperatures and lower pH (Pereira-Ribeiro *et al.* 2023). Unfortunately, we were unable to assess physicochemical characteristics due to the lack of a multiparameter probe. Furthermore, anurans generally avoid habitats with potential predators and competitors (Buxton and Sperry 2017, Van Buskirk and Smith 2021).

Table 2. Outputs of the five models, one with a non-spatial structure and four with different correlation structures, for analyzing the relationship between the abundance of *Crossodactylus schmidti* and the environmental variables of the streams. ΔAICc = difference in Akaike's Information Criteria; Weight = weights of Akaike's Information Criteria; Relative likelihood = demonstrate the probability of one model being in favor over the other.

	df	AIC	ΔAIC	Weight	Relative likelihood
Non-spatial	6	94.2959	0.0	0.4224	1.0000
Gaussian	8	95.7291	1.4321	0.2063	0.7884
Spherical	8	96.4412	2.1453	0.1445	0.3420
Rational quadratics	8	96.5476	2.2517	0.1370	0.3244
Exponential	8	97.3947	3.0989	0.0897	0.2124

Table 3. The models' outputs were derived from the analyses of spatial variation in the abundance of *Crossodactylus schmidti* by environmental variables of streams in the Atlantic Rainforest of Iguaçu National Park. SE = standard error.

	Estimate	SE	t-value	p-value
<i>Non-spatial</i>				
Intercept	19.1345	5.9474	3.2173	0.0123
Water flow speed	-15.6946	11.1079	-1.4130	0.1954
Width	4.2976	9.4307	0.4557	0.6607
Deep	-2.5034	9.2745	-0.2699	0.7941
Canopy cover	-7.3951	10.0225	-0.7379	0.4817
<i>Gaussian</i>				
Intercept	19.1251	8.3516	2.2899	0.0513
Water flow speed	-11.6149	7.0416	-1.6495	0.1377
Width	2.0765	9.5453	0.2175	0.8332
Deep	-4.9967	5.2347	-0.9545	0.3678
Canopy cover	-8.4582	6.7685	-1.2496	0.2467

Habitat selection by anurans, particularly for breeding sites, tends to be strongly associated with the structural environmental features of water bodies (Welch and MacMahon 2005, Carisio *et al.* 2014, Thomas *et al.* 2019). Studies on stream-dwelling anurans have observed the importance of environmental and structural stream features such as water velocity, substrate type, depth, and width of the stream in species

occurrence and abundance (e.g., Eterovick 2003, Oliveira and Eterovick 2010). In the present study, it was not possible to demonstrate the existence of preferential habitat selection by *C. schmidti* because the variation in the abundance of this species was independent and random with respect to environmental features. Despite anurans being considered organisms with limited dispersal capability (Smith and Green 2005,

Wells 2007), the inclusion of spatial autocorrelation in the abundance models did not alter the result of statistical analysis. Caution must be exercised in the conclusions because GLSs do not take into account some factors that may affect abundance data collection. For example, the visual encounter survey often records lower abundances than are actually present in the stream when compared to other methods (e.g., removal sampling) (Greener *et al.* 2017), individuals may only visit the breeding site occasionally (Boyle *et al.* 2021), differences in individual detection among collectors, climatic and environmental variations that may occur between data samples, and the recounting of individuals (Mazerolle *et al.* 2007). In our study, all samples were taken by the same researchers, and individual counting was done jointly; thus, this factor did not result in bias in our study. However, environmental and structural variations may have caused bias. We observed in the field that structural variations in streams between data samples were small. Climate variation within the same campaign was also small (e.g., temperature and humidity), likely having little influence on the counting of individuals of *C. schmidti*, but variation between campaigns was more significant, which may have influenced the recorded abundance (Caldart *et al.* 2016). The recounting of individuals in the same stream or between streams in the same campaign probably did not occur due to the distance between streams and the search always being conducted against the water flow. Between campaigns, the recounting of an individual may have occurred, but with a low probability due to the limitation in the dispersal capacity of anurans (Smith and Green 2005).

At the microhabitat scale, we observed that adults of *C. schmidti* preferentially occur in stream interiors, particularly in shallow areas with rocky substrates or organic matter accumulation located in pools. The utilization of these microhabitat types by the population in Iguacu National Park coincides with observations from other populations of *C. schmidti* (Caldart *et*

al. 2010, Bastiani *et al.* 2012) and in other populations of the genus *Crossodactylus* (Almeida-Gomes *et al.* 2007, 2012). *C. schmidti* occupies these microhabitats for calling and visual communication (Almeida-Gomes *et al.* 2007, Caldart *et al.* 2010), where individuals remain partially submerged or at water level (Caldart *et al.* 2010; present study). Rocky substrates used as calling sites are strategically important in predation risk situations, including for tadpoles, because they allow easy access to water and small underwater chambers (Caldart *et al.* 2010) or even burrows located on stream banks (Pimenta *et al.* 2008). This species uses underwater chambers as spawning sites (Haddad *et al.* 2013); thus, the presence of adults in these locations may be influenced by the availability of suitable oviposition sites. Another advantage of using rocky microhabitats may be increased visibility for visual communication behaviors, which is common in many species of this genus (Caldart *et al.* 2010). The secondary use of pool microhabitats by individuals of *C. schmidti* coincides with reports for individuals of *C. trachystomus* (Reinhardt and Lütken, 1862) (Pimenta *et al.* 2008). According to Pimenta *et al.* (2008), individuals of the genus *Crossodactylus* tend to avoid occupying fast-flowing areas, especially during periods of heavy rainfall, prioritizing marginal areas with lower water volume. The preference for pool areas may be related to the energetic cost of remaining in swift-flowing areas, reducing the risk of being washed away during rainy periods. Another potential explanation is related to acoustic communication, as ambient noise can mask and interfere with acoustic communication (Goutte *et al.* 2013), which tends to be less pronounced in pool areas.

We found that adults of *C. schmidti* occur in forested streams within Iguacu National Park, exhibiting a complex spatial structure. The species can be considered specialized in forest environments (Caldart *et al.* 2010, Bastiani *et al.* 2012), but generalist in terms of the streams it inhabits, as it occupies a wide range of streams. Furthermore, they can be considered specialists

in the type of microhabitat they occupy, as they consistently inhabit similar microhabitats across different streams. These patterns may be related to the behavioral and reproductive adaptations of the species, such as specialized vocalization adapted to the typical noises of this environment (Caldart *et al.* 2011b), visual communication strategies (Caldart *et al.* 2010), and efficient escape behaviors against predation. Future studies could benefit from the inclusion of additional populations, evaluation of oviposition sites, microhabitat choice by tadpoles, and other variables that might play a significant role in habitat selection for this species, such as physicochemical variables of the water. It is crucial for future studies to consider broader spatial and temporal scales by expanding the transects to incorporate greater within-stream variability and the gradient of stream features that this species can inhabit. Simultaneously addressing spatial autocorrelation and imperfect detection by sampling unmarked individuals across multiple sites or observing individual behaviors—such as using photographic documentation of pattern variations to estimate population size, track migration, and assess the likelihood of individuals utilizing different microhabitats—could provide a better understanding of potential threats faced by this species.

Acknowledgments

We would like to thank the Iguaçu National Park staff and Instituto Chico Mendes de Conservação da Biodiversidade (ICMBio) for providing collection permits (SISBIO/40772-1 and 40772-2) and logistical support. MVG thanks the UNILA (editais PRPPG nº205/2021, and PRPPG nº 77/2022) and CNPq (PPBio - Process #441157/2023-8 and PELD – Chamada CNPq/CONFAP-FAPs/PELD nº 23/2024) for financial support. We also thank everyone who helped us in the field. We thank Alexandre Vogliotti and Cleto Kaveski Peres for critical reading and suggestions on the initial version of

the manuscript. We thank Carlos Eduardo Villar Santos for creating the map shown in Figure 1. This manuscript is part of the Project: Projeto Floriano: desvendando a biodiversidade “intangível”.

References

Abramoff, M. D., P. J. Magalhães, and S. J. Ram. 2004. Image processing with ImageJ. *Biophotonics International* 11: 36–42.

Almeida-Gomes, M., M. Van Sluys, and C. F. D. Rocha. 2007. Calling activity of *Crossodactylus gaudichaudii* (Anura: Hylodidae) in an Atlantic Rainforest area at Ilha Grande, Rio de Janeiro, Brazil. *Belgian Journal of Zoology* 137: 203–207.

Almeida-Gomes, M., R. C. Laia, F. H. Hatano, M. Van Sluys, and C. F. D. Rocha. 2012. Population dynamics of tadpoles of *Crossodactylus gaudichaudii* (Anura: Hylodidae) in the Atlantic Rainforest of Ilha Grande, southeastern Brazil. *Journal of Natural History* 46: 2725–2733.

Alvares, C. A., J. L. Stape, P. C. Sentelhas, J. D. M. Gonçalves, and G. Sparovek. 2013. Köppen's climate classification map for Brazil. *Meteorologische Zeitschrift* 22: 711–728.

Arlt, D. and T. Pärt. 2007. Nonideal breeding habitat selection: a mismatch between preferences and fitness. *Ecology* 88: 792–801.

Bastiani, V. I. M., P. C. A. Garcia, and E. M. Lucas. 2012. *Crossodactylus schmidti* Gallardo, 1961 (Anura: Hylodidae) in Santa Catarina state, southern Brazil: A new record and comments on its conservation status. *Check List* 8: 262.

Binckley, C. A. and W. J. Resetarits. 2005. Habitat selection determines abundance, richness and species composition of beetles in aquatic communities. *Biology Letters* 1: 370–374.

Boyle, C. M., E. H. Gourevitch, and J. R. Downie. 2021. Breeding site attendance and breeding success in *Phyllomedusa trinitatis* (Anura: Phyllomedusidae). *Phyllomedusa* 20: 53–66.

Burnham, K. P. and D. R. Anderson. 2002. *Model Selection and Multimodel Inference: A practical information-theoretic approach*. 2nd ed. New York. Springer. 518 pp.

Burnham, K. P., D. R. Anderson, and K. P. Huyvaert. 2011. AIC model selection and multimodel inference in behavioral ecology: some background, observations, and comparisons. *Behavioral Ecology and Sociobiology* 65: 23–35.

Buxton, V. L. and J. H. Sperry. 2017. Reproductive decisions in anurans: A review of how predation and competition affects the deposition of eggs and tadpoles. *BioScience* 67: 26–38.

Caldart, V. M., S. Iop, M. C. Rocha, and S. Z. Cechin. 2010. Extension of the geographical distribution of two anuran species for Rio Grande do Sul State, Brazil, with comments on natural history. *Biota Neotropica* 10: 143–147.

Caldart, V. M., S. Iop, T. G. Santos, and S. Z. Cechin. 2011a. Diurnal and nocturnal predators of *Crossodactylus schmidti* Gallardo, 1961 (Anura, Hylodidae) in southern Brazil. *North-Western Journal of Zoology* 7: 342–345.

Caldart, V. M., S. Iop, and S. Z. Cechin. 2011b. Vocalizations of *Crossodactylus schmidti* Gallardo, 1961 (Anura, Hylodidae): advertisement call and aggressive call. *North-Western Journal of Zoology* 7: 118–124.

Caldart, V. M., S. Iop, and C. Z. Cechin. 2012. Feeding ecology of *Crossodactylus schmidti* (Anura: Hylodidae) in southern Brazil. *Zoological Studies* 51: 484–493.

Caldart, V. M., S. Iop, R. Lingnau, and S. Z. Cechin. 2016. Calling activity of a stream-breeding frog from the austral neotropics: Temporal patterns of activity and the role of environmental factors. *Herpetologica* 72: 90–97.

Carisio, L., R. Sacchi, D. Seglie, and R. Sindaco. 2014. Habitat selection in the fossorial toad *Pelobates fuscus insubricus* (Amphibia: Pelobatidae): does the soil affect species occurrence? *Acta Herpetologica* 9: 51–59.

Chinchilla-Lemus, W., V. H. Serrano-Cardozo, and M. P. Ramírez-Pinilla. 2020. Reproductive activity, microhabitat use, and calling sites of *Pristimantis bacchus* (Anura: Craugastoridae). *Amphibia-Reptilia* 41: 1–11.

Dormann, C. F., J. M. McPherson, M. B. Araújo, R. Bivand, J. Bolliger, G. Carl, R. G. Davies, A. Hirzel, W. Jetz, and W. D. Kissling. 2007. Methods to account for spatial autocorrelation in the analysis of species distributional data: a review. *Ecography* 30: 609–628.

Eterovick, P. C. 2003. Distribution of anuran species among montane streams in southeastern Brazil. *Journal of Tropical Ecology* 19: 219–228.

Flores, G. M. A., A. B. A. Flores, R. J. I. B. Mabitasan, J. M. F. Lopus, and L. J. Paguntalan. 2024. Abundance and microhabitat association of *Barbourula busuangensis* (Anura: Bombinatoridae) in Busuanga Island, Philippines. *Phyllomedusa* 23: 65–78.

Freitas, C., E. M. Olsen, H. Knutson, J. Albretsen, and E. Moland. 2016. Temperature-associated habitat selection in a cold-water marine fish. *Journal of Animal Ecology* 85: 628–637.

Frost, D. R. (ed.). 2024. Amphibian Species of the World: an online reference. Version 6.2. Electronic Database accessible at: <http://research.amnh.org/vz/herpetology/amphibia/Amphibia/Anura/Hylodidae>. American Museum of Natural History, New York, USA. Captured on 22 May 2024.

Greener, M. S., R. Shepherd, P. A. Hoskisson, H. Asmath, and J. R. Downie. 2017. How many Trinidad stream frogs (*Mannophryne trinitatis*) are there, and should they be regarded as vulnerable to extinction? *Herpetological Journal* 27: 5–11.

Goutte, S., A. Dubois, and F. Legendre. 2013. The importance of ambient sound level to characterize anuran habitat. *Plos One* 8: e78020.

Guélat, J. and M. Kéry. 2018. Effects of spatial autocorrelation and imperfect detection on species distribution models. *Methods in Ecology and Evolution* 9: 1614–1625.

Haddad, C. F. B., L. F. Toledo, C. P. A. Prado, D. Loebmann, J. L. Gasparini, and I. Sazima. 2013. *Guia dos Anfíbios da Mata Atlântica*. São Paulo. Anolis Books. 544 pp.

Hazell, D., J. M. Hero, D. Lindenmayer, and R. Cunningham. 2004. A comparison of constructed and natural habitat for frog conservation in an Australian agricultural landscape. *Biological Conservation* 119: 61–71.

Heyer, W. R., A. S. Rand, C. A. G. Cruz, O. L. Peixoto, and C. E. Nelson. 1990. Frogs of Boracéia. *Arquivos de Zoologia* 31: 231–410.

Hopey, M. E. and J. W. Petrranka. 1994. Restriction of wood frogs to fish-free habitats: How important is adult choice? *Copeia* 1994: 1023–1025.

IUCN (International Union for Conservation of Nature). 2023. The IUCN Red List for threatened species. Amphibians. Electronic Database accessible at: <http://www.iucnredlist.org/details/56355/0>. Captured on 16 November 2023.

Jordão-Nogueira, T., D. Vrcibradic, J. A. L. Pontes, M. Van Sluys, and C. F. D. Rocha. 2006. Natural history traits of *Crossodactylus aeneus* (Anura, Leptodactylidae, Hylodinae) from an Atlantic Rainforest area in Rio de Janeiro state, southeastern Brazil. *South American Journal of Herpetology* 1: 37–41.

Kauffman, G. J., A. C. Belden, K. J. Vonck, and A. R. Homsey, A. R. 2009. Link between impervious cover and base flow in the White Clay Creek Wild and Scenic watershed in Delaware. *Journal of Hydrologic Engineering* 14: 324–334.

Legendre, P. and L. L. Legendre. 2012. *Numerical Ecology*. 3rd ed. Amsterdam. Elsevier. 1006 pp.

Liford, A. N. and K. K. Cecala. 2017. Does riparian disturbance alter stream amphibian antipredator behaviors? *Canadian Journal of Zoology* 95: 75–79.

Lucas, E. M. and P. C. A. Garcia. 2011. Amphibia, Anura, Hylidae Rafinesque, 1815 and Hylodidae Günther, 1858: Distribution extension and new records for Santa Catarina, southern Brazil. *Check List* 7: 13–16.

Marques, N. C. S., L. Rattis, and F. Nomura. 2019. Local environmental conditions affecting anuran tadpoles' microhabitat choice and morphological adaptation. *Freshwater Research* 70: 395–401.

Mazerolle, M. J., L. L. Bailey, W. L. Kendall, J. A. Royle, S. J. Converse, and J. D. Nichols. 2007. Making great leaps forward: accounting for detectability in herpetological field studies. *Journal of Herpetology* 41: 672–689.

McDonald, J. H. 2014. *Handbook of Biological Statistics*. 3rd ed. Baltimore. Sparky House Publishing. 296 pp.

Melo, L. S. O., M. V. Garey, and D. C. Rossa-Feres. 2018. Looking for a place: how are tadpoles distributed within tropical ponds and streams? *Herpetology Notes* 11: 379–386.

Morris, D. W. 2003. Toward an ecological synthesis: a case for habitat selection. *Oecologia* 136: 1–13.

Murphy, P. J. 2003. Context-dependent reproductive site choice in a Neotropical frog. *Behavioral Ecology* 14: 626–633.

Nielsen, S. E., G. McDermid, G. B. Stenhouse, and M. S. Boyce. 2010. Dynamic wildlife habitat models: Seasonal foods and mortality risk predict occupancy-abundance and habitat selection in grizzly bears. *Biological Conservation* 143: 1623–1634.

Nitsche, P. R., P. H. Caramori, W. S. Ricce, and L. F. D. Pinto. 2019. *Atlas Climático do Estado do Paraná*. Londrina. IAPAR. 210 pp.

Oliveira, F. F. R. and P. C. Eterovick. 2010. Patterns of spatial distribution and microhabitat use by syntopic anuran species along permanent lotic ecosystems in the Cerrado of southeastern Brazil. *Herpetologica* 66: 159–171.

Parris, K. M. 2001. Distribution, habitat requirements and conservation of the cascade treefrog (*Litoria pearsoniana*, Anura: Hylidae). *Biological Conservation* 99: 285–292.

Pelinson, R. M., M. V. Garey, and D. C. Rossa-Feres. 2016. Effects of grazing management and cattle on aquatic habitat use by the anuran *Pseudopaludicola mystacalis* in agro-savannah landscapes. *Plos One* 11: e0163094.

Pereira-Ribeiro, J., T. Linhares, Á. C. Ferreguetti, J. Cozer, H. G. Bergallo, and C. F. D. Rocha. 2023. Water conditions influence the detectability of *Crossodactylus gaudichaudii* (Anura, Hylodidae) in streams of the Atlantic Forest. *Austral Ecology* 48: 1405–1412.

Pimenta, B. V. S., M. Wachlevski, and C. A. G. Cruz. 2008. Morphological and acoustical variation, geographic distribution, and conservation status of the spinythumb frog *Crossodactylus bokermanni* Caramaschi and Sazima, 1985 (Anura, Hylodidae). *Journal of Herpetology* 42: 481–492.

Pinheiro, J. C., and D. M. Bates. 2000. *Mixed-Effects Models in S and S-PLUS*. New York. Springer. 548 pp.

Pinheiro, J. C. and D. M. Bates. 2023. nlme: Linear and Nonlinear Mixed Effects Models. R package version 3.1-163.

R Development Core Team. 2022. R: A language and environment for statistical computing. Version 4.2.2. URL: <https://www.r-project.org/>

Rosenzweig, M. L. 1981. A theory of habitat selection. *Ecology* 62: 327–335.

Rushing, C. S., T. Brandt Ryder, J. J. Valente, T. Scott Sillett, and P. P. Marra. 2021. Empirical tests of habitat selection theory reveal that conspecific density and patch quality, but not habitat amount, drive long-distance immigration in a wild bird. *Ecology Letters* 24: 1167–1177.

Schiesari, L. 2006. Pond canopy cover: a resource gradient for anuran larvae. *Freshwater Biology* 51: 412–423.

Smith, A. M. and P. M. Ramsay. 2018. A comparison of ground-based methods for estimating canopy closure for use in phenology research. *Agricultural and Forest Meteorology* 252: 18–26.

Smith, M. A. and D. Green. 2005. Dispersal and the metapopulation paradigm in amphibian ecology and conservation: Are all amphibian populations metapopulations? *Ecography* 28: 110–128.

Souza, R. F. D., S. D. A. Machado, F. Galvão, and A. Figueiredo. 2017. Fitossociologia da vegetação arbórea do Parque Nacional do Iguaçu. *Ciência Florestal* 27: 853–869.

Spies, A. 2018. qpcR: Modelling and Analysis of Real-Time PCR Data. R package version 1.4-1.

Thomas, A., S. Das, and K. Manish. 2019. Influence of stream habitat variables on distribution and abundance of tadpoles of the endangered Purple frog, *Nasikabatrachus sahyadrensis* (Anura: Nasikabatrachidae). *Journal of Asia-Pacific Biodiversity* 12: 144–151.

Tolvanen, J., J. T. Forsman, and R. L. Thomson. 2017. Reducing cuckoo parasitism risk via informed habitat choices. *Auk* 134: 553–563.

Touchon, J. C. and K. M. Warkentin. 2008. Reproductive mode plasticity: aquatic and terrestrial oviposition in a treefrog. *Proceedings of the National Academy of Sciences* 105: 7495–7499.

Van Buskirk, J. 2005. Local and landscape influence on amphibian occurrence and abundance. *Ecology* 86: 1936–1947.

Van Buskirk, J. and D. C. Smith. 2021. Ecological causes of fluctuating natural selection on habitat choice in an amphibian. *Evolution* 75: 1862–1877.

Vielliard, J. M. and A. J. Cardoso. 1996. Adaptação de sinais sonoros de anfíbios e aves a ambientes de riachos com corredeiras. Pp. 97–119 in *Herpetología neotropical: Acta Del II Congresso Latino-Americano de Herpetología*. Mérida. Universidad de Los Andes, Consejo de Desarrollo, Humanístico y Tecnológico.

Wassens, S., A. Walcott, A. Wilson, and R. Freire. 2013. Frog breeding in rain-fed wetlands after a period of severe drought: implications for predicting the impacts of climate change. *Hydrobiologia* 708: 69–80.

Watson, J. W., K. R. McAllister, and D. J. Pierce. 2003. Home ranges, movements, and habitat selection of Oregon Spotted Frogs (*Rana pretiosa*). *Journal of Herpetology* 37: 292–300.

Welch, N. E. and J. A. MacMahon. 2005. Identifying habitat variables important to the rare Columbia spotted frog in Utah (USA): an information-theoretic approach. *Conservation Biology* 19: 473–481.

Wells, K. D. 2007. *The Ecology and Behavior of Amphibians*. Chicago. University of Chicago Press. 1400 pp.

Zuur, A. F., E. N. Ieno, N. J. Walker, and A. A. Savelieve. 2009. *Mixed Effects Models and Extensions in Ecology with R*. New York. Springer. 596 pp.

Editor: J. Roger Downie

Appendix 1. Microhabitats used by individuals of *Crossodactylus schmidti*, along with their respective environmental features and the positioning of individuals in relation to streams. The data were obtained from 24 microhabitats within the streams of Iguaçu National Park, southern Brazil.

Micro-habitat	Abundance	Position	Water flow speed (cm/s)	Width (cm)	Depth (cm)	Substrate	Type	Distance from shore (cm)
1	1	Outside	28.82	95	8	Coarse and fine gravel	Riffle	0
2	1	Outside	28.49	93	12	Rock	Riffle	10
3	1	Outside	4.17	200	7	Organic matter and coarse gravel	Pool	103
4	2	Inside	0.00	190	7	Sand	Riffle	98
5	2	Inside	0.00	63	8	Sand	Pool	8
6	1	Inside	0.00	86	7	Organic matter	Pool	10
7	1	Inside	28.09	104	6	Organic matter	Pool	7
8	1	Inside	2.73	154	1	Organic matter	Pool	2
9	1	Outside	55.25	45	3	Rock	Riffle	4
10	1	Outside	4.04	155	6	Rock	Pool	8
11	1	Outside	15.65	160	3	Rock	Pool	5
12	2	Inside	14.04	170	3	Organic matter	Pool	15
13	1	Outside	23.53	228	5	Organic matter	Pool	35
14	1	Inside	40.65	70	5	Sand and fine gravel	Riffle	30
15	1	Inside	25.91	210	2	Rock and sand	Riffle	130
16	1	Inside	0.00	153	3	Organic matter	Pool	17
17	1	Outside	86.98	145	4	Rock	Riffle	30
18	2	Inside	0.00	150	3	Organic matter	Pool	3
19	1	Outside	39.37	76	3	Fine gravel	Riffle	8
20	1	Inside	24.21	144	2	Rock	Fast-flowing	7
21	2	Inside	0.00	181	3	Rock	Pool	8
22	1	Outside	10.24	150	8	Rock	Fast-flowing	5
23	2	Inside	38.31	127	2	Rock and organic matter	Riffle	5
24	1	Inside	0.00	133	3	Organic matter	Pool	14

Appendix II. Six of the 13 streams sampled in Iguaçu National Park for the study of the population of *Crossodactylus schmidti* (A–F), along with photographs of individuals in various microhabitats within the streams (G–J).

Altitudinal variation in limb size across seven populations of *Rana kukunoris* (Anura: Ranidae) fails to obey Allen's rule

Tao Yang, Wen H. Shi, and Tong L. Yu

Xinyang Normal University, College of Life Science. Xinyang, SD 464000, China. E-mail: yutonglei_00000@163.com.

Abstract

Altitudinal variation in limb size across seven populations of *Rana kukunoris* (Anura: Ranidae) fails to obey Allen's rule. In terms of body size patterns, most research has focused on studying intra- and interspecific variation following the “Bergmannian” patterns. Allen’s rule, closely connected to these patterns, has historically been given comparatively less attention. In this study, our aim was to assess the validity of Allen’s rule, which suggests that the relative size of limb length should decrease as altitude increases. Here, we investigated the geographical variation in limb length among populations of the Plateau Brown Frog, *Rana kukunoris*, across seven distinct altitudes on the eastern Tibetan plateau. Our findings demonstrated a significant positive correlation between forelimb length of males relative to body size and altitude, contradicting the pattern predicted by Allen’s rule. In our study system, we observed a negative correlation between elevation and temperature seasonality as well as water deficit, but a positive correlation with annual total precipitation, speculating that alternative selective forces may play a role in driving the increase in extremity length at high elevations. Long forelimbs only appear in high-altitude environments, not in aggregations with a high operational sex ratio (OSR), suggesting that individuals in stressful environments (e.g., high altitude or latitude) would drive the differentiation in relative extremity length.

Keywords: Body proportion, Environmental factor, Geographical variation, Operational sex ratio, Plateau Brown Frog.

Resumo

Variação altitudinal no tamanho dos membros em sete populações de *Rana kukunoris* (Anura: Ranidae) não obedece à regra de Allen. Em termos de padrões de tamanho do corpo, a maior parte da investigação tem-se centrado no estudo da variação intra e interespecífica segundo os padrões “Bergmannianos”. A regra de Allen, intimamente ligada a esses padrões, tem merecido comparativamente menos atenção. Neste estudo, nosso objetivo foi avaliar a validade da regra de Allen, que sugere que o tamanho relativo do comprimento dos membros deve diminuir à medida que a altitude aumenta. Aqui, investigamos a variação geográfica do comprimento dos membros entre

Received 05 March 2024

Accepted 26 August 2024

Distributed December 2024

populações da rã-castanha-do-planalto, *Rana kukunoris*, em sete altitudes distintas no planalto tibetano oriental. Nossos resultados demonstram uma correlação positiva significativa entre o comprimento dos membros anteriores dos machos relativamente ao tamanho do corpo e à altitude, contradizendo o padrão previsto pela regra de Allen. Em nosso sistema de estudo, observamos uma correlação negativa entre a altitude e a sazonalidade da temperatura, bem como o déficit hídrico, mas uma correlação positiva com a precipitação anual total, sugerindo que forças seletivas alternativas podem desempenhar um papel na condução do aumento do comprimento das extremidades em altitudes elevadas. Os membros anteriores longos só aparecem em ambientes de grande altitude e não em agregações com uma elevada razão sexual operacional, sugerindo que ambientes estressantes (por exemplo, grande altitude ou latitude) levariam à diferenciação no comprimento relativo das extremidades.

Palavras-chave: Fator ambiental, Proporção corporal, Rã-castanha-do-planalto, Razão sexual operacional, Variação geográfica.

Introduction

Body size and body size proportions (e.g., extremity length) often exhibit ecogeographical patterns by adaptation to climate (Ballinger and Nachman 2022), such as those described by Bergmann's and Allen's rules (Bergmann 1847, Allen 1877). Bergmann's rule (1847) postulates that organisms inhabiting colder climates generally exhibit a larger body size compared to those in warmer climates. Allen's rule (1877) states that endotherms living in colder environments tend to have shorter appendages (e.g., ears, snout, tail, limbs) than those living in warmer environments (Tabh and Nord 2023). Both rules are supported by empirical studies (Ashton *et al.* 2000, Alhajeri *et al.* 2020), which show that endothermic animals with equal volume can possess varying surface areas, which can either facilitate or hinder their temperature regulation (Jin and Liao 2015). The gradient in body proportions arises from the allometric growth of prominent body parts across different geographic regions (Bidau and Marti 2008, Jin and Liao 2015, Hinckley *et al.* 2022). This phenomenon typically gives rise to latitudinal and/or altitudinal trends in body proportions, leading to the relative shortening of protruding body parts at higher latitudes and altitudes (Hinckley *et al.* 2022).

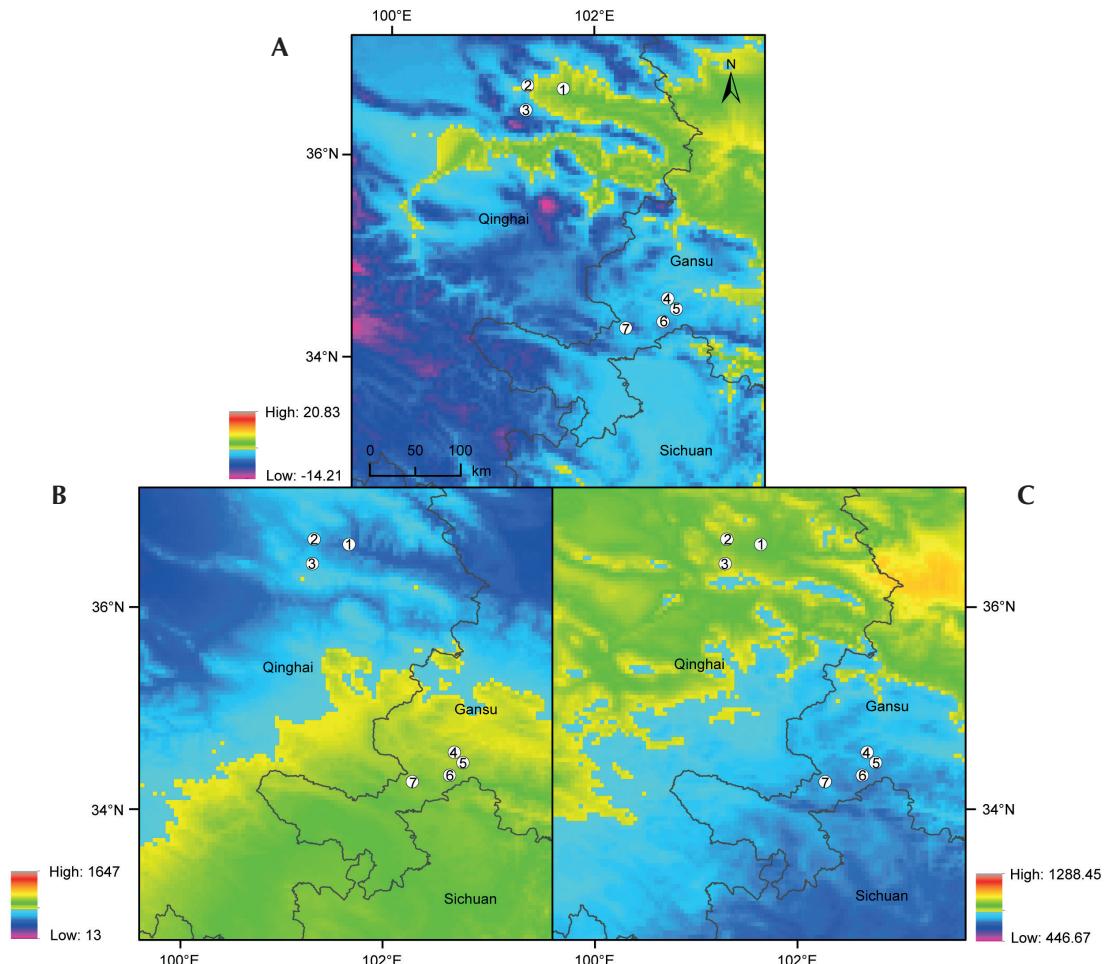
Ectotherms follow Bergmann's and Allen's rules because they are even more dependent on external temperature than endotherms (Volynchik 2014). Subsequent studies have shown that ectotherms, either vertebrate or invertebrate, may show geographic body size patterns that sometimes align with these rules' predictions (Ray 1960, Blanckenhorn and Demont 2004, Bidau and Marti 2007a,b). Especially regarding Bergmann's rule, which has primarily focused on the analysis of intra- and interspecific patterns conforming to the Bergmannian trend, it is noteworthy that Allen's rule has traditionally received relatively less attention (Bidau and Marti 2008).

Allen's rule has been proposed to be valid in ectotherms (Ray 1960). For example, Allen's rule has been tested in a limited number of ectothermic taxa, including arthropods (Bidau and Marti 2008), amphibians (Alho *et al.* 2011), and lizards (Langkilde 2009, Jin and Liao 2015). In ectotherms, the thermoregulatory adaptation hypothesis is less clear than in endotherms. Ectotherms primarily elevate their body temperature through exposure to external sources of heat and minimize heat absorption with a relatively smaller body surface area (Alho *et al.* 2011). This characteristic can be advantageous in thermally variable environments, allowing ectotherms to avoid overheating in hot

microhabitats while conserving thermal energy in colder ones (Angilletta 2009).

Male-male competition is common in some amphibian species (Black and Brunson 1971, Davies and Halliday 1979, Lamb 1984, Reading and Clarke 1983, Hoglund 1989, Luo *et al.* 2016, Deng *et al.* 2020, de Sa *et al.* 2020). Male competition for females is expected when the operational sex ratio (OSR, the ratio of sexually competing males to fertilizable females) is male-biased (Emlen 1976, Kvarnemo and Ahnesjo 1996). As the OSR becomes increasingly biased in breeding aggregations, competitors are expected to exhibit escalating levels of aggressiveness in their efforts to defend mates (Weir *et al.* 2011). In a highly male-biased OSR, amplexant males with larger limbs form more secure pairings and are less likely to be dislodged. As a result, the size of the forelimb and hind limb of male toads may affect pairing competition (Lee 2001, Lee and Corrales 2002). Larger limbs might be expected in a highly male-biased OSR, indicative of strong competition. Relatively longer limbs in amphibians can be related to the locomotor capacity, and this, in turn, may influence the ability to avoid predators (Tejedo *et al.* 2000), help maintain communication between populations (Trochet *et al.* 2019), enhance spermatophore transfer during courtship (Morrison and Hero 2003), or aid in dispersal ability at high elevations (Phillips *et al.* 2006).

In this study, we investigated variation in limb characteristics of both female and male Plateau Brown Frogs, *Rana kukunoris* Nikolskii, 1918, along a broad elevational gradient (2000–4400 m a.s.l.) (Fei *et al.* 2012). These frogs are consequently exposed to a wide range of environmental factors. The main objectives of this work were to: (1) investigate whether the species adheres to the prediction put forth by Allen's rule, which suggests that populations at higher elevations possess relatively shorter limbs; and (2) verify whether a correlation exists between limb length and the population-specific OSR.


Materials and Methods

Study Species

Rana kukunoris is a frog species endemic to the eastern Tibetan Plateau and exhibits a broad distribution at elevated elevations (ranging from 2000 to 4400 m a.s.l.) (Fei *et al.* 2012). Similar to many other amphibian species, *R. kukunoris* exhibits female-biased size dimorphism (Yu *et al.* 2022a). Previous analysis of several populations of *R. kukunoris* found a negative relationship between body size and altitude (Yu *et al.* 2022b), which follows Bergmann's rule. This species is a typical explosive breeder (Wells 2007) and experiences a brief breeding period lasting from 9 to 21 days (Yu *et al.* 2018). Due to the colder temperatures at higher altitudes, the breeding time of high-altitude brown frogs is delayed, providing us with additional time to investigate the correlation between altitude and the development of limbs in sexually mature individuals.

Study Sites and Sample Collection

We collected a total of 417 *R. kukunoris* (157 females and 260 males) from seven populations (ranging from 2297 to 3441 m in altitude; breeding populations below 2500 m and above 3500 m are uncommon) between 2011 and 2013 during reproductive periods in the eastern Tibetan Plateau of southwest China, which includes areas such as eastern Qinghai and southern Gansu (101°34'–102°69' E, 34°29'–36°68' N; Figure 1, Table 1). Annual mean temperature (AMT), annual total precipitation (ATP), temperature seasonality (TS), and precipitation seasonality (PS) were extracted from WorldClim at a resolution of $0.167^\circ \times 0.167^\circ$ grid cells (Hijmans *et al.* 2005). AET and PET were extracted at a grid cell resolution of $0.5^\circ \times 0.5^\circ$, following the methodology of Willmott and Matsuura (2001). In these locations, we observed a positive correlation between altitude and ATP by calculating Pearson's

Figure 1. Topographic map showing the location of the seven study populations of *Rana kukunoris* on the eastern Tibetan plateau. Climatic layers are (A) annual mean temperature, (B) annual total precipitation, and (C) temperature seasonality.

correlation coefficients, while there was a negative correlation between TS and water deficit (WD, PET minus AET) (Table 2). For all sites, frogs were captured randomly and by hand with gloves every other day during their breeding seasons, particularly when they were in amplexus or actively seeking mates. Usually, sampling at each site was carried out over a period of one to three days. We verified the maturity of all individuals by directly observing the secondary

sexual characteristics, such as the presence of nuptial pads on the first finger in males or an enlarged abdomen for females. Furthermore, owing to the reduced water temperature experienced during the breeding season, most sexually mature individuals congregate at the breeding ponds.

Snout-vent length (SVL), forelimb length (FL) measured from the axilla to the tip of the longest toe on the left forelimb (Yu and Lu

Table 1. Study site details, including altitude, latitude, environmental predictors, morphological traits, and sample sizes for seven high-altitude populations of *Rana kukunoris* in the Tibet Plateau. SVL: Snout-vent length, AMT: Annual mean temperature, TS: Temperature seasonality, ATP: Annual total precipitation, PS: Precipitation seasonality, PET: Potential evapotranspiration, AET: Actual evapotranspiration, WD: Water deficit.

Sites	Altitude (m)	Longitude (degrees)	Latitude (degrees)	OSR	Sex	SVL (mm)	Forelimb length (mm)	Hind leg length (mm)	AMT	TS	ATP	PS	PET	AET	WD
1. Dabaoz'i'cun	2297	101.65	36.65	1.55	F	61.75 ± 6.84(8)	30.81 ± 4.46(8)	77.05 ± 7.07(8)	5.3	3347	399	92	45.07	30.93	14.138
2. Shiyaz'huang	2594	101.34	36.68	1.93	F	62.56 ± 7.23(20)	28.10 ± 3.16(20)	73.08 ± 6.40(20)	3.5	8374	419	95	34.45	30.37	4.079
3. Damoshi'cun	2789	101.44	36.49	2.00	F	61.19 ± 6.48(70)	28.41 ± 4.42(70)	73.29 ± 7.45(70)	0.2	7965	440	94	31.83	28.27	3.559
4. Zechazhan	3049	102.69	34.49	1.97	F	66.05 ± 4.49(20)	32.55 ± 3.07(20)	78.40 ± 5.78(20)	1.5	7198	614	84	29.71	29.7	0.003
5. Shibadao'wan	3060	102.69	34.47	1.67	F	61.59 ± 6.27(11)	30.45 ± 3.78(11)	75.55 ± 6.71(11)	1.4	7178	620	84	29.71	29.70	0.003
6. Shilin' zhan	3188	102.68	34.37	2.20	F	58.66 ± 5.40(28)	29.36 ± 4.73(28)	73.43 ± 4.35(28)	1.0	7129	631	85	29.71	29.7	0.003
7. Guoguo' ri	3441	102.31	34.29	1.88	M	53.33 ± 2.93(10)	28.85 ± 2.73(10)	67.90 ± 4.91(10)	0.8	7125	642	87	31.95	31.94	0.005

Table 2. Correlation coefficients between each environmental variable. AMT: Annual mean temperature, TS: Temperature seasonality, ATP: Annual total precipitation, PS: Precipitation seasonality, PET: Potential evapotranspiration, AET: Actual evapotranspiration, WD: Water deficit. ** $p < 0.001$, * $p < 0.05$.

Parameters	Altitude	AMT	TS	ATP	PS	PET	AET	WD
Altitude		-0.806*	-0.919**	0.923**	-0.713	-0.796*	0.142	-0.878**
AMT	-0.806*		0.704	-0.634	0.417	0.879**	0.407	0.845*
TS	-0.919**	0.704		-0.988**	0.923**	0.742	-0.048	0.801*
ATP	0.923**	-0.634	-0.988**		-0.925**	-0.722	0.159	-0.803*
PS	-0.713	0.417	0.923**	-0.925**		0.549	-0.094	0.606
PET	-0.796*	0.879**	0.742	-0.722	0.549		0.382	0.979**
AET	0.142	0.407	-0.048	0.159	-0.094	0.382		0.184
WD	-0.878**	0.845*	0.801*	-0.803*	0.606	0.979**	0.184	

2010), and hindlimb length (HL) measured from the posterior midline trunk to the tip of the fourth toe on the left hindlimb (Xia *et al.* 2011) were recorded for each captured frog. The measurements were carried out using a plastic ruler, with an accuracy of up to 1 millimeter. During the process, efforts were made to fully extend the frog's limbs. To minimize any potential errors, all measurements were conducted by the same person (TLY). Body mass of each frog was measured using an electronic balance to the nearest 0.01 g. Measured single or paired frogs were temporarily placed in a designated holding container within the field laboratory, such as a 15-Liter capacity barrel, to prevent duplicate sampling and the transmission of diseases. During the three-years study period, five of the six populations were surveyed only once, thereby substantially diminishing the likelihood of duplicate sampling. Upon completion of all necessary field measurements, individuals were promptly and safely returned to their original spawning grounds, ensuring their return to their natural habitat with minimal interference.

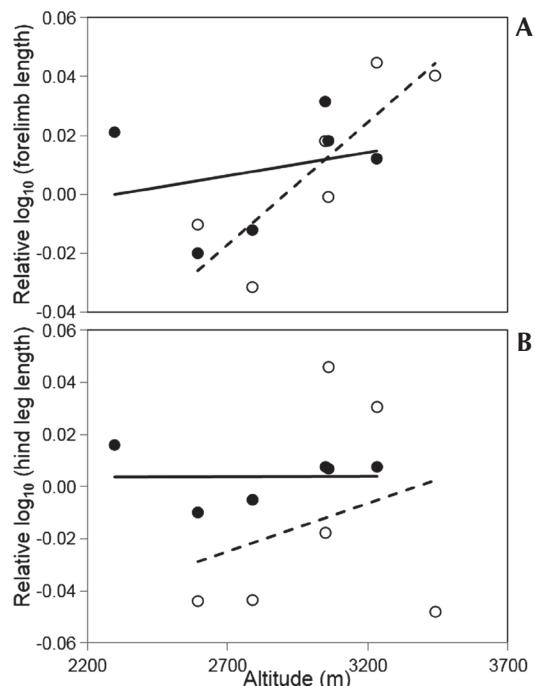
We calculated operational sex ratio (OSR) within each population. OSR was determined by

dividing the number of males by the number of females capable of reproduction (i.e., those capable of carrying eggs) present at a breeding site over a specific period, usually spanning several days (Emlen and Oring 1977).

Statistical Analyses

We used log10 transformation of the SVL, FL, and HL of each individual to achieve normality. The One-Sample Kolmogorov-Smirnov Test was used to test whether data met normal distribution. We used one-way analyses of variance (ANOVAs) and Welch's t-tests to analyze variation of SVL, FL, and HL between populations or between sexes. Linear mixed models (LMMs) were used to quantify the relationship between FL/HL and SVL. To test for altitudinal variation of FL/HL we used LMMs where FL/HL was treated as the dependent variable, SVL, and altitude as covariates, and population as a random effect.

We used LMMs where FL/HL was treated as the dependent variable, SVL, altitude, and OSR as covariates, and population as a random effect to test whether FL/HL covaried with OSR, as an indicator of competition levels. In the subsequent


analyses of reproductive traits against competition levels, altitude was not included in the simplified models because it was a non-significant fixed effect. The software IBM SPSS Statistics 20.0 (IBM Corp., Armonk, NY, USA) was used for all analyses.

Results

Mean body size, FL, and HL differed significantly among the populations for each sex (male, SVL, $F_{5,254} = 12.381, p < 0.001$; FL, $F_{5,150} = 7.171, p < 0.001$; HLL, $F_{5,254} = 30.310, p < 0.001$; female, SVL, $F_{5,151} = 13.251, p = 0.008$; FL, $F_{5,151} = 3.532, p = 0.005$; HLL, $F_{5,151} = 2.386, p = 0.041$). Females were significantly larger in SVL, FL, and HL than males in 4, 2, and 3 of 5 populations (all $p < 0.05$). LMMs showed that mean body size of both sexes was not significantly negatively correlated with altitude (male: $t = -1.265, df = 4.609, p = 0.266$; female: $t = -0.296, df = 5.253, p = 0.779$) when controlling for population (random effect: $Z = 1.280, p = 0.200$; $Z = 1.051, p = 0.293$).

Further, LMMs showed that FL (male: $t = 7.728, df = 153.844, p < 0.001$; female: $t = 5.052, df = 154.640, p < 0.001$) and HL (male: $t = 11.546, df = 255.107, p < 0.001$; female: $t = 9.079, df = 150.588, p < 0.001$) of both sexes was significantly positively correlated with SVL when controlling for population (MFL, random effect: $Z = 1.369, p = 0.171$; MHLL, $Z = 1.541, p = 0.123$; FFL, random effect: $Z = 0.983, p = 0.325$; FHLL, $Z = 0.646, p = 0.518$). After removing the effect of SVL (male, fixed effect: $t = 8.299, df = 142.177, p < 0.001$; female, $t = 5.075, df = 152.704, p < 0.001$) and population (male, random effect: $Z = 0.957, p = 0.339$; female, $Z = 0.795, p = 0.427$), the LMMs revealed that FL of males was significantly positively correlated with altitude ($t = 2.954, df = 5.439, p = 0.029$; Figure 2), but FL of females was not correlated with altitude ($t = 0.796, df = 4.831, p = 0.464$). When

controlling for the effect of SVL (male, fixed effect: $t = 11.568, df = 254.334, p < 0.001$; female, $t = 9.097, df = 143.322, p < 0.001$) and population (male, random effect: $Z = 1.371, p = 0.170$; female, $Z = 0.434, p = 0.664$), the LMMs revealed that HL was not correlated with altitude (male, $t = 0.729, df = 4.044, p = 0.506$; female, $t = 0.688, df = 3.953, p = 0.530$; Figure 2).

Figure 2. Relationship between altitude and (A) forelimb length and (B) hind limb length in seven populations of *Rana kukunoris*. Solid lines (filled circles): females; dashed line (open circles): males. Data points are female and male population means. Relative \log_{10} was generated from regression of \log_{10} (forelimb length) or \log_{10} (hind limb length) on \log_{10} (male body size).

The LMMs showed that FL (male: $t = 0.834, df = 6.218, p = 0.435$; female: $t = -1.640, df = 3.492, p = 0.187$) or HL (male: $t = -0.206, df = 2.934, p = 0.850$; female: $t = -1.479,$

$df = 3.695, p = 0.219$) was not correlated with the OSR when controlling for population (MFL, random effect: $Z = 0.885, p = 0.376$; FFL, $Z = 0.385, p = 0.700$; MHLL, random effect: $Z = 1.196, p = 0.232$; FHLL, $Z = 0.134, p = 0.894$) and the fixed effect of SVL (MFL, $t = 8.317, df = 146.979, p < 0.001$; FFL, $t = 5.111, df = 142.289, p < 0.001$; MHLL, $t = 11.574, df = 254.008, p < 0.001$; FHLL, $t = 9.032, df = 131.632, p < 0.001$), and altitude (MFL, $t = 2.757, df = 4.623, p = 0.043$; FFL, $t = 1.922, df = 2.828, p = 0.156$; MHLL, $t = 0.395, df = 3.012, p = 0.719$; FHLL, $t = 1.627, df = .679, p = 0.213$). In a reduced model controlling only for population (MFL, random effect: $Z = 1.231, p = 0.218$; FFL, $Z = 0.969, p = 0.333$; MHLL, random effect: $Z = 1.387, p = 0.166$; FHLL, $Z = 0.969, p = 0.333$), and SVL (MFL, $t = 7.953, df = 152.997, p < 0.001$; FFL, $t = 4.982, df = 153.886, p < 0.001$; MHLL, $t = 11.555, df = 254.680, p < 0.001$; FHLL, $t = 4.982, df = 153.886, p < 0.001$), FL or HL did not increase with the OSR (MFL, $t = 0.677, df = 5.330, p = 0.527$; FFL, $t = -0.515, df = 5.987, p = 0.625$; MHLL, $t = -0.191, df = 3.953, p = 0.858$; FHLL, $t = -0.634, df = 6.870, p = 0.546$).

Discussion

Based on Allen's rule, we would anticipate that natural selection would favor relatively shorter extremities in colder environments, leading to a negative correlation between altitude and relative limb length. However, our research outcomes obtained from the study on the wild population of Plateau Brown frogs contradicted this simple prediction, as we observed a clear linear correlation between altitude and forelimb length of males after adjusting for snout-vent length. This correlation indicates the presence of an underlying environmental pattern that produces a pattern that is the opposite of Allen's rule.

Ectotherms with varying surface area to volume ratios exhibit varying rates of heat

exchange, potentially leading to disparate selection pressures in distinct thermal environments (Jin and Liao 2015). The relative lengths of extremities, particularly limb segments, in four lacertid species—*Phoenicolacerta laevis* (Gray, 1878), *Ophisops elegans* (Ménétries, 1832), *Acanthodactylus boskianus* (Daudin, 1802), and *Mesalina guttulata* (Lichtenstein, 1823)—have been observed to generally increase in hotter environments in accordance with Allen's rule (Volynchik 2014). Amphibians, as thermoconformers, are typically dependent on moist conditions due to their permeable skin, which poses a risk of desiccation, and the fact that their larval life history is usually aquatic (Olalla-Tarraga and Rodriguez 2007, Ficetola *et al.* 2010). In this study system, we observed that only the relative forelimb length of males increased with elevation, deviating from the expected pattern according to Allen's rule. Our finding suggests that in amphibians, the primary purpose of limbs is evidently not thermoregulation (Alho *et al.* 2011).

The environmental effects encountered during the larval stage can also extend into the adult phase (Blouin and Brown 2000, Gomez-Mestre *et al.* 2010). Different climatic or biotic factors, such as increased rainfall and water abundance, reduced nutrient availability, decreased predation pressure, and alterations in food quality and abundance (Hinckley *et al.* 2022), may potentially encourage a shift toward more terrestrial foraging at higher elevations. This pattern is similar to the observed trend along altitudinal gradients in the Plateau Brown frog. We found a negative correlation between elevation and annual mean temperature, temperature seasonality, and potential evapotranspiration as well as water deficit, but a positive correlation with annual total precipitation, thus indicating that alternative selective forces may be responsible for driving the increase in extremity length at high elevations (Kitayama 1992).

The forelimb length of Plateau Brown frogs exhibited variation along the elevational gradient

after accounting for snout–vent length. As anticipated under the converse of Allen's rule, we observed a positive correlation between relative forelimb length and elevation. This result was consistent with previous studies (Jin and Liao 2015, Jaffe *et al.* 2016). Conversely, at higher elevations, having relatively longer forelimbs also could potentially provide several advantages. First, longer forelimbs could assist in effectively lifting the body, allowing for better maneuverability in steep terrains. Additionally, longer forelimbs could enlarge the field of view, enabling individuals to see further distances and detect potential threats such as predators or competitors. Moreover, elongated forelimbs might confer advantages during courtship by preventing frequent attempts by single males to displace amplexing males, ultimately increasing their breeding success. Long forelimbs only appear in high-altitude environments, not in aggregations with a high OSR, suggesting that harsh environments (high altitude or latitude) could drive the differentiation in relative extremity length.

In conclusion, our findings demonstrate a significant correlation between altitude and the relative lengths of forelimbs, which is inconsistent with Allen's rule. The varying environmental and biotic factors, such as increased rainfall and water abundance, reduced nutrient availability, decreased predation pressure, and alterations in food quality and abundance at high elevations, are likely interacting and influencing the observed increase in extremity length at high elevations.

Acknowledgments

We express our sincere gratitude to the dedicated staff of the Gahai-Zecha National Nature Reserve for their invaluable field assistance. The Gahai-Zecha National Nature Reserve Management Bureau approved this project (approval number GHZCRMB/03-212014) and gave permission for fieldwork. The study was funded by National Natural Science

Foundation of China (Grant No. 31741019). All field measurements were conducted in strict adherence to the ethical guidelines set forth by the Animal Ethics Committee at Xinyang Normal University, ensuring the welfare and ethical treatment of the animals involved. We affirm that all animals utilized in this study were handled with utmost care and in accordance with ethical standards, following the guidelines established by the relevant institutional animal care regulations in China.

References

Alho, J. S., G. Herczeg, A. T. Laugen, K. Rasanen, A. Laurila, and J. Merila. 2011. Allen's rule revisited: quantitative genetics of extremity length in the common frog along a latitudinal gradient. *Journal of Evolutionary Biology* 24: 59–70.

Allen, J. A. 1877. The influence of physical conditions in the genesis of species. *Scientific American* 63: 26217–26219.

Alhajeri, B. H., Y. Fourcade, N. S. Upham, and H. Alhaddad. 2020. A global test of Allen's rule in rodents. *Global Ecology and Biogeography* 29: 2248–2260.

Angilletta, M. J. 2009. *Thermal Adaptation: A Theoretical and Empirical Synthesis*. Oxford. Oxford University Press. 302 pp.

Ashton, K. G., M. C. Tracy, and A. Queiroz. 2000. Is Bergmann's rule valid for mammals? *American Naturalist* 156: 390–415.

Ballinger, M. A. and M. W. Nachman. 2022. The contribution of genetic and environmental effects to Bergmann's rule and Allen's rule in house mice. *American Naturalist* 199: 691–704.

Bergmann, C. 1847. Über die Verhältnisse der Wärmekönomie der Thiere zu ihrer Grösse. *Göttinger Studien* 1: 595–708.

Bidau, C. J. and D. A. Marti. 2007a. *Dichroplus vittatus* Bruner, 1900 (Acrididae, Melanoplinae) follows the converse to Bergmann's rule although male morphological variability increases with latitude. *Bulletin of Entomological Research* 97: 69–79.

Bidau, C. J. and D. A. Marti. 2007b. Clinal variation of body size in *Dichroplus pratensis* (Orthoptera: Acrididae): inversion of Bergmann's and Rensch's Rules. *Annals of the Entomological Society of America* 100: 850–860.

Bidau, C. J. and D. A. Marti. 2008. A test of Allen's rule in ectotherms: the case of two south American melanopline grasshoppers (Orthoptera: Acrididae) with partially overlapping geographic ranges. *Neotropical Entomology* 37: 370–380.

Black, J. H. and R. B. Brunson. 1971. Breeding behavior of the boreal toad, *Bufo boreas boreas* (Baird and Girard), in Western Montana. *Great Basin Naturalist* 31: 109–113.

Blackburn, T. M., K. J. Gaston, and N. Loder. 1999. Geographic gradients in body size: a clarification of Bergmann's rule. *Diversity and Distributions* 5: 165–174.

Blanckenhorn, W. U. and M. Demont. 2004. Bergmann and converse Bergmann latitudinal clines in arthropods: two ends of a continuum? *Integrative and Comparative Biology* 44: 413–424.

Blouin, M. S. and S. T. Brown. 2000. Effects of temperature-induced variation in anuran larval growth rate on head width and leg length at metamorphosis. *Oecologia* 125: 358–361.

Cartar, R. V. and R. I. G. Morrison. 2005. Metabolic correlates of leg length in breeding arctic shorebirds: the cost of getting high. *Journal of Biogeography* 32: 377–382.

Davies, N. B. and T. R. Halliday. 1979. Competitive mate searching in male common toads, *Bufo bufo*. *Animal Behaviour* 27: 1253–1267.

Deng, K., Q. L. He, Y. Zhou, B. C. Zhu, T. L. Wang, J. C. Wang, and J. G. Cui. 2020. Male serrate-legged treefrogs adjust competition strategies according to visual or chemical cues from females. *Journal of Experimental Biology* 223: jeb229245.

de Sa, F. P., C. F. Haddad, M. M. Gray, V. K. Verda, M. T. C. Thomé, M. T. Rodrigues, and K. R. Zamudio. 2020. Male-male competition and repeated evolution of terrestrial breeding in Atlantic Coastal Forest frogs. *Evolution* 74: 459–475.

Emlen, S. T. 1976. Lek organization and mating strategies in the bullfrog. *Behavioral Ecology and Sociobiology* 1: 283–313.

Emlen, S. and L. Oring. 1977. Ecology, sexual selection, and the evolution of mating systems. *Science* 197: 215–223.

Fei, L., C. Y. Ye, and J. P. Jiang. 2012. Colored atlas of Chinese amphibians and their distributions. Pp. 310 in J. Li and Y. M. Mo (eds.), *Hyla simplex simplex* Boettger. Sichuan. Sichuan Publishing House of Science & Technology.

Ficetola, G. F., S. Scali, M. Denoel, G. Montinaro, T. D. Vukov, M. A. Zuffi, and E. Padoa-Schioppa. 2010. Ecogeographical variation of body size in the newt *Triturus carnifex*: comparing the hypotheses using an information-theoretic approach. *Global Ecology and Biogeography* 19: 485–495.

Gomez-Mestre, I., V. L. Saccoccia, T. Iijima, E. M. Collins, G. G. Rosenthal, and K. M. Warkentin. 2010. The shape of things to come: linking developmental plasticity to post-metamorphic morphology in anurans. *Journal of Evolutionary Biology* 23: 1364–1373.

Griffing, J. P. 1974. Body measurements of black-tailed jackrabbits of southeastern New Mexico with implications of Allen's rule. *Journal of Mammalogy* 55: 674–678.

Hijmans, R. J., S. E. Cameron, J. L. Parra, P. G. Jones, and A. Jarvis. 2005. Very high resolution interpolated climate surfaces for global land areas. *International Journal of Climatology, Journal of the Royal Meteorological Society* 25: 1965–1978.

Hinckley, A., I. Sanchez-Donoso, M. Comas, M., Camacho-Sanchez, M. T., Hawkins, N. H. Hasan, and J. A. Leonard. 2022. Challenging ecogeographical rules: phenotypic variation in the Mountain Treeshrew (*Tupaia montana*) along tropical elevational gradients. *PLoS ONE* 17: e0268213.

Hoglund, J. 1989. Pairing and spawning patterns in the common toad, *Bufo bufo*: the effects of sex ratios and the time available for male-male competition. *Animal Behaviour* 38: 423–429.

Jaffe, A. L., S. C. Campbell-staton, and J. B. Losos. 2016. Geographical variation in morphology and its environmental correlates in a widespread North American lizard, *Anolis carolinensis* (Squamata: Dactyloidae). *Biological Journal of the Linnean Society* 117: 760–774.

James, F. C. 1970. Geographic size variation in birds and its relationship to climate. *Ecology* 51: 365–390.

Jin, Y. T. and P. H. Liao. 2015. An elevational trend of body size variation in a cold-climate agamid lizard, *Phrynocephalus theobaldi*. *Current Zoology* 61: 444–453.

Kitayama K. 1992. An altitudinal transect study of the vegetation on Mount Kinabalu, Borneo. *Springer* 102: 149–171.

Kvarnemo, C. and I. Ahnesjo. 1996. The dynamics of operational sex ratios and competition for mates. *Trends in Ecology and Evolution* 11: 404–408.

Lamb, T. 1984. Amplexus displacement in the southern toad, *Bufo terrestris*. *Copeia* 1984: 1023–1025.

Langkilde, T. 2009. Invasive fire ants alter behavior and morphology of native lizards. *Ecology* 90: 208–217.

Lee, J. C. 2001. Evolution of a secondary sexual dimorphism in the toad, *Bufo marinus*. *Copeia* 2001: 928–935.

Lee, J. C. and A. D. Corrales. 2002. Sexual dimorphism in hindlimb muscle mass is associated with male reproductive success in *Bufo marinus*. *Journal of Herpetology* 36: 502–505.

Luo, Z., C. Li, H. Wang, H. Shen, M. Zhao, Q. Gu, C. Liao, Z. Gu, and H. Wu. 2016. Male-male competition drives sexual selection and group spawning in the Omei treefrog, *Rhacophorus omeimontis*. *Behavioral Ecology and Sociobiology* 70: 593–605.

Morrison, C. and J. M. Hero. 2003. Geographic variation in life-history characteristics of amphibians: a review. *Journal of Animal Ecology* 72: 270–279.

Olalla-Tárraga, M. Á. and M. Á. Rodríguez. 2007. Energy and interspecific body size patterns of amphibian faunas in Europe and North America: anurans follow Bergmann's rule, urodeles its converse. *Global Ecology and Biogeography* 16: 606–617.

Phillips, B. L., G. P. Brown, J. K. Webb, and R. Shine. 2006. Invasion and the evolution of speed in toads. *Nature* 439: 803.

Ray, C. 1960. The application of Bergmann's and Allen's rule to the poikilotherms. *Journal of Morphology* 106: 85–109.

Reading, C. J. and R. T. Clark. 1983. Male breeding behaviour and mate acquisition in the common toad *Bufo bufo*. *Journal of Zoology* 201: 237–246.

Rensch, B. 1938. Some problems of geographical variation and species-formation. *Proceedings of the Linnean Society of London* 150: 275–285.

Tahb, J. K. R. and A. Nord. 2023. Temperature-dependent developmental plasticity and its effects on Allen's and Bergmann's rules in endotherms. *Integrative and Comparative Biology* 63: 758–771.

Tejedo, M., R. D. Semlitsch, and H. Hotz. 2000. Covariation of morphology and jumping performance in newly metamorphosed water frogs: effects of larval growth history. *Copeia* 2000: 448–458.

Trochet, A., M. Deluen, R. Bertrand, O. Calvez, A. Martinez-Silvestre, I. Verdaguer-Foz, M. Mossoll-Torres, J. Souchet, E. Darnet, H. L. Chevalier, O. Guillaume, and F. Aunret. 2019. Body size increases with elevation in Pyrenean newts (*Calotriton asper*). *Herpetologica* 75: 30–37.

Volynchik, S. 2014. Climate-related variation in body dimensions within four lacertid species. *International Journal of Zoology* 2014: 1–14.

Weir, L. K., J. W. A. Grant, and J. A. Hutchings. 2011. The influence of operational sex ratio on the intensity of competition for mates. *American Naturalist* 177: 167–176.

Wells, K. D. 2007. The ecology and behavior of amphibians. *Quarterly Review of Biology* 83: 416–417.

Willmott, C. J. and K. Matsuura. 2001. Terrestrial water budget data archive: monthly time series (1950–1999). Electronic Database accessible at http://climate.geog.udel.edu/~climate/html_pages/README.wb_ts2.html. Captured on 30 January 2024.

Xia, R., X. M. Huang, S. H. Yang, Y. C. Xu, L. Ying, and T. D. Dahmer. 2011. Morphometric discrimination of wild from farmed Dybowski's frog (*Rana dybowskii*) based on hindlimb length. *Journal of Forestry Research* 22: 269–274.

Yom-Tov, Y., S. Yom-Tov, J. Wright, C. J. R. Thorne, and R. D. Feu. 2006. Recent changes in body weight and wing length among some British passerine birds. *Oikos* 112: 91–101.

Yu, T. L. and X. Lu. 2010. Mating patterns of Minshan's toad (*Bufo minshanicus*) from three populations along an altitudinal gradient. *Zoological science* 27: 856–860.

Yu, T. L., Y. Xu, M. Busam, and Y. H. Deng. 2018. Maternal investment decreases under stressful environments in 11 plateau brown frog (*Rana kukunoris*) populations. *Ethology Ecology and Evolution* 30: 168–177.

Yu, T. L., Y. J. Li and J. D. Zhang. 2022a. Evolution of sexual dimorphism in the plateau brown frog fails to obey Rensch's rule. *Herpetological Journal* 32: 27–33.

Yu, T. L., G. Jia, H. Q. Sun, W. H. Shi, X. L. Li, H. B. Wang, M. R. Huang, S. Y. Ding, J. P. Chen, and M. Zhang. 2022b. Altitudinal body size variation in *Rana kukunoris*: the effects of age and growth rate on the plateau brown frog from the eastern Tibetan Plateau. *Ethology, Ecology and Evolution* 34: 120–132.

Editor: Thiago R. Carvalho

The advertisement call of *Espadarana prosoblepon* (Anura: Centrolenidae) from a population in the Central Andes of Colombia

Valentina Rodríguez-Correa, Santiago González-Alzate, Marco Rada, and Fernando Vargas-Salinas

Universidad del Quindío, Programa de Biología, Grupo de Evolución, Ecología y Conservación (EECO). Armenia, Colombia.
E-mail: valentinarodriguezcorrea18@gmail.com.

Abstract

The advertisement call of *Espadarana prosoblepon* (Anura: Centrolenidae) from a population in the Central Andes of Colombia. The advertisement call of the glass frog *Espadarana prosoblepon* has been described for populations from Costa Rica in Central America and Ecuador in South America, but not for populations in Colombia. Because having a detailed description of the advertisement call of several populations of the same species is important for taxonomy, phylogenetics, ecology, behavior, and evolution, we describe the advertisement call of a population of *E. prosoblepon* in Colombia, South America. We analyzed 58 temporal and spectral features of 220 advertisement calls emitted by 31 males recorded between October–December 2023 at the “Cedro Rosado” Botanical Garden in Armenia, Department of Quindío, Central Andes of Colombia. In general, the advertisement call of *E. prosoblepon* in our study population consisted of 2–4 pulsed notes (beeps) with modulated frequency. The mean duration of the call was 230 ms (range 190–430 ms) and of the notes was 40.1 ms (31.0–48.7 ms), separated by intervals of 143.5 ms (71.5–181 ms). The dominant frequency of the call was 5.2 kHz (4.9–5.6 kHz). Our results suggest slight differences in note duration between the studied population in Colombia and populations of *E. prosoblepon* in Costa Rica and Ecuador. Further studies are necessary to test for potential effects of temperature and body size on call features both at the intra- and interpopulation levels. Given the wide latitudinal and altitudinal geographic distribution of *E. prosoblepon*, intraspecific geographic variation in its call is possible.

Keywords: Acoustic communication, Advertisement call, Amphibians, bioacoustics, intraspecific geographical variation.

Resumo

Canto de anúncio de *Espadarana prosoblepon* (Anura: Centrolenidae) de uma população dos Andes Centrais da Colômbia. O canto de anúncio da rã-de-vidro *Espadarana prosoblepon* foi descrito para populações da Costa Rica, na América Central, e do Equador, na América do Sul, mas não para populações da Colômbia. Como ter uma descrição detalhada do canto de anúncio de várias

Received 21 June 2024

Accepted 14 November 2024

Distributed December 2024

populações da mesma espécie é importante para a taxonomia, filogenia, ecologia, comportamento e evolução, descrevemos o canto de anúncio de uma população de *E. prosoblepon* da Colômbia. Analisamos 58 características temporais e espectrais de 220 cantos de anúncio emitidas por 31 machos gravados entre outubro e dezembro de 2023 no Jardim Botânico “Cedro Rosado”, em Armenia, Departamento de Quindío, Andes Centrais da Colômbia. Em geral, o canto de anúncio de *E. prosoblepon* da população estudada consistiu de 2–4 notas pulsadas (bipes) com frequência modulada. A duração média do canto foi de 230 ms (intervalo 190–430 ms) e das notas foi de 40,1 ms (31,0–48,7 ms), separados por intervalos de 143,5 ms (71,5–181 ms). A frequência dominante do canto foi de 5,2 kHz (4,9–5,6 kHz). Nossos resultados sugerem pequenas diferenças na duração da nota entre a população estudada na Colômbia e as populações de *E. prosoblepon* da Costa Rica e do Equador. São necessários mais estudos para testar os potenciais efeitos da temperatura e do tamanho do corpo nas características do canto, tanto intra como interpopulacional. Dada a ampla distribuição geográfica latitudinal e altitudinal de *E. prosoblepon*, é possível que haja variação geográfica intraespecífica em seu canto.

Palavra-chave: Anfíbios, Bioacústica, Canto nupcial, Comunicação acústica, Variação geográfica intraespecífica.

Introduction

Centrolenidae is a Neotropical clade of 166 species of arboreal frogs that have nocturnal habits and breed along streams (Frost 2024). Among centrolenids, one of the most studied species is *Espadarana prosoblepon* (Boettger, 1892) (Figure 1). This species is distributed from sea level to approximately 1800 m elevation from the eastern region of Honduras in Central America to Colombia and Ecuador in South America (Basto-Riascos *et al.* 2017a, Frost 2024, MR pers. obs.). Adult females of this species have a body size (snout–vent length, SVL) between 25–31 mm, while in adult males it varies between 23–28 mm (Basto-Riascos *et al.* 2017a). Although variation in morphological characters includes a dorsal color pattern that is uniformly green or has blue and yellow spots (Guayasamin *et al.* 2020), the most significant diagnostic character of *E. prosoblepon* is the presence of a well-developed blade-shaped *crista dorsalis* of the humerus in adult males (Savage 2002, Kubicki 2007, Guayasamin *et al.* 2020; Figure 1). Studies on *Espadarana prosoblepon* cover aspects of phylogenetic relationships (Guayasamin *et al.* 2009, 2020), population dynamics (Robertson *et al.* 2008, Angeli *et al.*

2015), male-male agonistic behavior (Krohn and Voyles 2014, Hedman and Hughey 2015, Rios-Soto *et al.* 2017), sexual selection (Jacobson 1985, Basto-Riascos *et al.* 2017b, Goyes-Vallejos *et al.* 2021), parental care (Goyes-Vallejos *et al.* 2022, 2024), and oviposition site preference and external morphological attributes of embryos through ontogeny (Salazar-Nicholls and Del Pino 2015, Ortiz-Ross *et al.* 2020). This species has been included in macroevolutionary studies about diversification and ecology (Hutter *et al.* 2013, Castroviejo-Fisher *et al.* 2014, Delia *et al.* 2017, Escalona *et al.* 2019, Mendoza-Henao *et al.* 2023, Valencia-Aguilar *et al.* 2024, Vargas-Salinas *et al.* 2024).

The advertisement call of *E. prosoblepon* has been described based on populations from Costa Rica in Central America (Jacobson 1985, Savage 2002, Kubicki 2007) and Ecuador in South America (Freile *et al.* 2020, Guayasamin *et al.* 2020), but those studies only provide a brief description of a few of call features and its variation of relatively few individuals. Despite being one of the most widely distributed glass frog species, no quantitative and detailed call description based on Colombian populations exists (Rivera-Correa *et al.* 2021, Duarte-Marín *et al.* 2022). Call descriptions based on

Figure 1. An adult male *Espadarana prosoblepon* in the “Cedro Rosado” Botanical Garden in Armenia, Department of Quindío, Central Andes of Colombia. Note the pattern of black and yellow dots on the dorsum, which is distinctive among individuals, and the ventrolateral projection of the *crista ventralis* of the humerus (humeral spine) present only in reproductive males. Specimen not collected.

populations of Costa Rica and Ecuador have not examined the potential relationship of call features with body temperature and body size. Anurans are ectothermic vertebrates and the functioning of the muscles involved in air pumping for call production is influenced by temperature; in addition, body size determines spectral call features such as dominant frequency (Gerhardt and Huber 2002). Interspecific differences and variation in advertisement call features within and between populations of the same species may be a consequence of differences in environmental temperature and body size (Ryan and Wilczynski 1991, Gerhardt and Huber 2002, Lingnau and Bastos 2007).

Having a detailed description of the advertisement call from several populations of a frog species allows inferences to be made in taxonomy (Padial *et al.* 2008, Köhler *et al.* 2017), phylogenetics (Duellman 2007, Schneider and Sinsch 2007), ecology, behavior, and evolution (Cocroft and Ryan 1995, Bosch *et al.* 2003, Robillard *et al.* 2006, Both and Grant 2012). Furthermore, a detailed characterization of the

advertisement call and its interpopulation variability allows optimization of the mathematical algorithms used for monitoring populations based on automated recordings (López-Baucells *et al.* 2019). Herein, we describe the advertisement call of *E. prosoblepon* from an urban forest fragment in the Central Andes of Colombia. We also test for the influence of temperature and body size in call features of the advertisement call.

Materials and Methods

Study Site

The study was conducted from 10 October to 19 December 2023, in an urban forest fragment known as the “Cedro Rosado” Botanical Garden (04°32'40" N, 75°46'13" W; 1490–1530 m a.s.l.), located at the University of Quindío, Armenia, Colombia. This forest has an area of 15 ha, with an average annual temperature of 19°C, relative humidity between 65–75%, and a bimodal rainfall distribution with an average annual precipitation of 2436 mm (Rodríguez 1999).

Recordings were made with a Sennheiser ME66/K6 unidirectional microphone located at 50–150 cm in front of calling males and connected to a Tascam DR-40X digital recorder. We recorded body size (snout–vent length, SVL) and temperature of the calling frog with a Mitutoyo digital caliper (precision ± 0.01) and an Extech Series 42510 infrared thermometer (precision 0.1°C), respectively. All recordings were performed between 19:00–00:00 h. We identified males individually based on the pattern of yellow and black dorsal dots to avoid pseudoreplication (Figure 1).

Calls were recorded in .wav format, digitized at 16 bits resolution and 44.1 kHz sampling rate; measurements of call features were made using the software RAVEN Pro 1.6 (Yang 2024). Spectrograms were created with a Fast Fourier Transformation window of 256 points and Blackman algorithm. The following call features were quantified (*sensu* Köhler *et al.* 2017): call duration (ms), number of notes, note duration

(ms), interval between notes (ms), note emission rate (number of notes/call duration), dominant frequency of the note (kHz), and low and high call frequency of the note (kHz). Low and high frequencies of the note were measured at 20 dB (re 20 mPa) below the peak intensity of the dominant frequency, which is the value at which the signal energy could still be clearly distinguished from the background noise. We recorded dominant, low, and high frequency at the initial, middle, and final part of each note. Harmonic bands were evident in some recordings; we recorded the frequency of them when applicable. We recorded mean \pm standard deviation and range obtained from all calls per male. None of the recorded individuals was collected. Copies of recordings obtained in this study were deposited in the Environmental Sound Collection of the Instituto de Investigación de Recursos Biológicos Alexander von Humboldt (IAvH-CSA), Villa de Leyva, Boyacá, Colombia, and the codes attached to the recordings range from IAvH-CSA-39409 to IAvH-CSA-39439 (<http://colecciones.humboldt.org.co/sonidos/>).

Call features of advertisement calls of anurans are generally inter-correlated; therefore, after verifying such inter-correlation in our data, the number of variables (spectral and call features) was reduced by conducting a principal component analysis (PCA) with Varimax-rotation (Johnson and Wichern 2014). Since we detected and quantified the frequency of harmonics for some males but not others, these call features were not included in the PCA. The number of resulting components was determined considering an explained variance greater than 80% and eigenvalues > 1 (Cliff 1988, Peres-Neto 2005). The principal components (PCs) obtained from this analysis were used as dependent variables in four multiple linear regressions (Zar 1984). Each of these regressions was performed to test the relationship between call features in the PCs with temperature and body size as independent variables. Both the PCA and the multiple regression analysis were performed using the software SPSS v.21.0.0.0 (SPSS Inc 1999).

Results

The following description is based on 220 calls recorded from 31 males of *Espadaranaprosoblepon*. The advertisement call of this species consists of 2.1 ± 0.2 “beeps” in average (range 2–4 beeps) pulsatile notes with amplitude and frequency modulation (Figure 2). Notes last 40.1 ± 4.8 ms (range 31.0–48.7 ms; $N = 31$ males), and consecutive notes are separated by silent intervals of 143.5 ± 18.7 ms (71.5–181 ms). Mean call duration was 230 ± 40 ms (190–430 ms), and call duration increased with the number of notes per call (Pearson correlation: $r = 0.81, p < 0.001$). Note emission rate was 9.2 ± 0.9 calls/s (7.4–11 calls/s). The dominant frequency of the first note was 5.3 ± 0.2 kHz (4.9–5.6 kHz), of the second note was 5.2 ± 0.2 kHz (4.9–5.6 kHz), and of the third note was 5.1 ± 0.1 kHz (4.9–5.2 kHz; $N = 3$). Only one male emitted a call with four notes; the mean dominant frequency of this fourth note was 5.1 kHz. The low frequency of the first note was 4.8 ± 0.2 kHz (4.5–5.2 kHz; $N = 31$), and the high frequency was 5.8 ± 0.2 kHz (5.6–6.1 kHz); for the second note the low frequency was 4.8 ± 0.2 kHz (4.4–5.1 kHz), and the high frequency was 5.8 ± 0.2 kHz (5.5–6.1 kHz); and for the third note the low frequency was 4.8 ± 0.2 kHz (4.6–5.0 kHz; $N = 3$), and the high frequency was 5.6 ± 0.1 kHz (5.5–5.8 kHz; $N = 3$). The low and high frequency for the fourth note was 4.8 kHz and 5.9 kHz, respectively ($N = 1$ male). After pooling the data of dominant, low, and high frequency for all the notes and males, we determined that the mean dominant call frequency of *E. prosoblepon* in the studied population was 5.2 ± 0.2 kHz (4.9–5.6 kHz; $N = 31$), the low frequency was 4.8 ± 0.2 kHz (4.5–5.2 kHz), and the high frequency was 5.8 ± 0.2 kHz (5.6–6.1 kHz). Detailed data of the dominant, low, and high frequency at the initial, middle, and final part of each note is summarized in Table 1. We recorded up to three harmonics in the call of some males; the first harmonic was at 10.3 ± 0.4 kHz (9.7–

11.1 kHz; $N = 30$), the second harmonic was at 15.6 ± 0.6 kHz (14.3–16.7 kHz; $N = 26$), and the third harmonic was at 14.9 kHz in only one male.

The variability in the 26 advertisement call features included in the PCA was summarized into four PCs (Table 2). PC1 and PC2 grouped all the spectral features of the call, while PC3 and PC4 grouped temporal features of the call. When we tested the relationship of these PCs with temperature and body size (Figure 3), we found that temperature does not relate to PC1 ($\beta = 0.001$, $t = 0.006$, $p = 0.995$), PC2 ($\beta = 0.018$, $t = 0.097$, $p = 0.923$), and PC3 ($\beta = -0.017$, $t = -0.1$, $p = 0.921$), but relates


in a negative way with PC4 ($\beta = -0.58$, $t = -3.83$, $p = 0.001$), while body size does not relate to PC1 ($\beta = -0.073$, $t = -0.388$, $p = 0.701$), PC2 ($\beta = -0.043$, $t = -0.229$, $p = 0.820$) and PC4 ($\beta = 0.166$, $t = 1.094$, $p = 0.283$), but relates in a negative way with PC3 ($\beta = -0.455$, $t = -2.703$, $p = 0.012$).

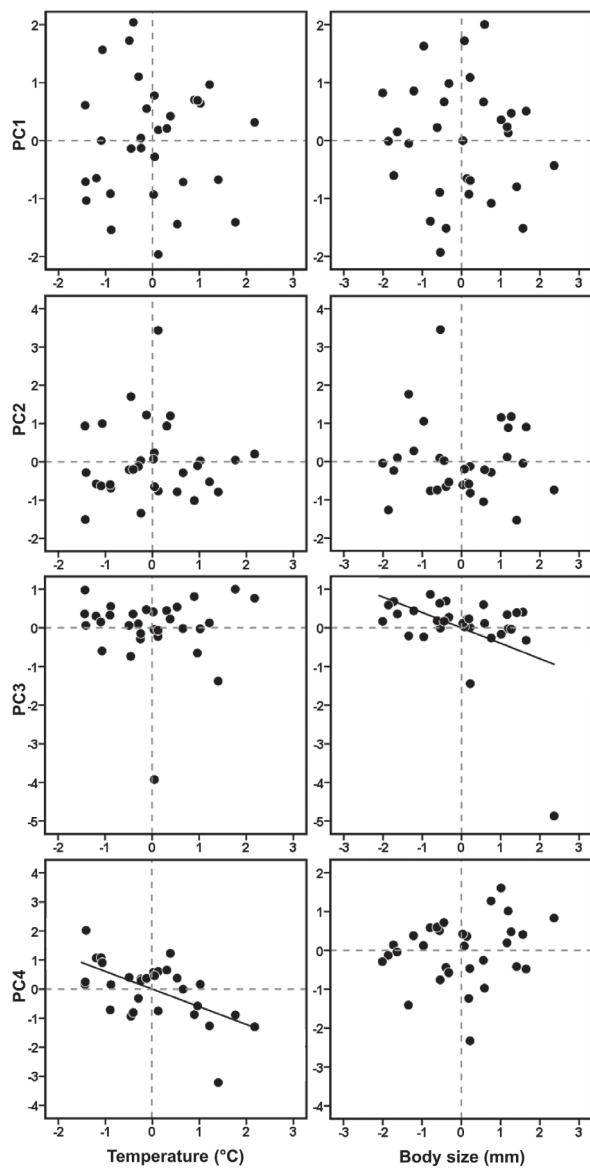
Discussion

The genus *Espadarana* is composed of five species (Frost 2024). The advertisement call has been described for *E. prosoblepon* (Jacobson 1985, Savage 2002, Kubicki 2007, Freile *et al.* 2020, Guayasamín *et al.* 2020), *E. andina*

Table 1. Summary of the dominant, low, and high frequency (kHz) values per note of the advertisement call of the glass frog *Espadarana prosoblepon* in the “Cedro Rosado” Botanical Garden in Armenia, Department of Quindío, Central Andes of Colombia. Data are presented as mean \pm standard deviation and range. Sample size (number of males recorded, N) varies because not all males emitted advertisement calls with the same number of notes. See text for other temporal and spectral features of the calls.

	Note 1 $N = 31$	Note 2 $N = 31$	Note 3 $N = 5$	Note 4 $N = 1$
Initial part of the note				
Dominant frequency	5.23 ± 0.17 (4.91 – 5.51)	5.22 ± 0.17 (4.99 – 5.49)	5.12 ± 0.14 (4.99 – 5.34)	5.17 ± 5.17
Low frequency	4.81 ± 0.19 (4.48 – 5.20)	4.82 ± 0.18 (4.40 – 5.24)	4.73 ± 0.15 (4.59 – 4.99)	4.68
High frequency	5.67 ± 0.18 (5.37 – 6.05)	5.64 ± 0.19 (5.35 – 6.03)	5.54 ± 0.09 (5.43 – 5.68)	5.55
Middle part of the note				
Dominant frequency	5.45 ± 0.16 (5.17 – 5.81)	5.43 ± 0.17 (5.17 – 5.76)	5.20 ± 0.08 (5.17 – 5.34)	5.68
Low frequency	5.06 ± 0.15 (4.82 – 5.42)	5.01 ± 0.16 (4.65 – 5.37)	4.81 ± 0.15 (4.59 – 4.98)	4.78
High frequency	5.87 ± 0.17 (5.56 – 6.21)	5.85 ± 0.19 (5.53 – 6.15)	5.66 ± 0.11 (5.60 – 5.85)	5.99
Final part of the note				
Dominant frequency	5.53 ± 0.18 (5.26 – 5.97)	5.45 ± 0.22 (5.10 – 5.98)	5.23 ± 0.16 (5.11 – 5.51)	5.51
Low frequency	5.06 ± 0.20 (4.79 – 5.47)	4.96 ± 0.18 (4.62 – 5.36)	4.76 ± 0.16 (4.64 – 5.05)	4.63
High frequency	5.96 ± 0.22 (5.65 – 6.42)	5.94 ± 0.24 (5.60 – 6.53)	5.66 ± 0.11 (5.55 – 5.83)	6.00

Figure 2. Spectrograms and oscillograms showing general aspects of the structure of the advertising call of *Espadarana prosoblepon* (Centrolenidae). Call emitted by a male (body size = 27.83 mm; temperature = 21.1°C) recorded at 19:40 h on 11 November 2023. Plot A shows one call with four notes (beeps); plot B and C show a zoom of the first and the second notes in the call illustrated in plot A, respectively. The scales differ between the plots.


(Rivero, 1968) (Señaris and Ayarzagüena 2005, Cabanzo-Olarte and Ortega-Chinchilla 2017), *E. audax* (Lynch and Duellman, 1973) and *E. callistomma* (Guayasamin and Trueb, 2007) (Guayasamin *et al.* 2020), but not for *E. durrellorum* (Cisneros-Heredia, 2007) (Cisneros-Heredia 2007, Guayasamin *et al.* 2020). The advertisement call of *E. prosoblepon* follows a type trii call structure, as do other species in the genus *Espadarana* (Duarte-Marín *et al.* 2022). Some specific differences occur in features such as call duration, note duration, number of notes per call, and dominant frequency (Table 2). For instance, the number of notes per call in *E. prosoblepon* (2–5 notes) is similar between sister

species, *i.e.*, *E. callistomma* (3–4 notes), but higher than in *E. andina* and *E. audax* (1 note). A similar pattern is detected for call duration (Table 3). This tendency could reflect a low-to-absent phylogenetic signal in these temporal call features (Escalona *et al.* 2019, Vargas-Salinas *et al.* 2024). Comparisons beyond those summarized in Table 2 are not possible at present because different call features have been recorded for the taxa. Call descriptions of *E. andina*, *E. audax*, and *E. callistomma* (Table 2) do not include data and analysis of potential effects of temperature and body size.

Our call description includes other features in addition to those described previously for

Table 2. Results of the principal component analysis summarizing variation in 26 advertisement call features for males of the glass frog *Espadarana prosoblepon* in a population located in central Andes of Colombia. Variables (call features) were assigned to a principal component if their loading was > 10.61 (highlighted in bold font). Note that a negative load value indicates that the variable (i.e., call feature) relates in a negative way with the corresponding PC. When applicable, temporal call features were measured in ms and spectral call features in kHz.

Call features	Principal Components			
	PC1	PC2	PC3	PC4
Initial high frequency Note 2	0.96	0.13	-0.05	-0.03
Initial high frequency Note 1	0.94	0.15	0.10	-0.13
Initial dominant frequency Note 2	0.93	0.24	-0.00	-0.09
Initial dominant frequency Note 1	0.91	0.22	0.17	-0.15
Low frequency of the whole call	0.93	0.31	0.07	-0.08
Middle high frequency Note 2	0.90	0.35	0.23	-0.07
Middle dominant frequency Note 2	0.90	0.40	0.06	-0.04
Initial low frequency Note 2	0.89	0.20	-0.01	-0.13
Dominant frequency of the whole call	0.87	0.10	0.12	0.04
Middle dominant frequency Note 1	0.86	0.40	0.14	0.07
Initial low frequency Note 1	0.85	0.24	0.31	-0.06
High frequency of the whole call	0.85	0.46	0.13	0.00
Middle high frequency Note 1	0.85	0.40	0.11	0.07
Middle low frequency Note 1	0.80	0.44	0.13	0.06
Middle low frequency Note 2	0.78	0.47	0.08	0.03
Final high frequency Note 2	0.71	0.47	0.08	0.00
Final low frequency Note 2	0.69	0.55	0.08	0.07
Final dominant frequency Note 2	0.67	0.63	0.06	-0.09
Final high frequency Note 1	0.52	0.79	0.13	-0.00
Final dominant frequency Note 1	0.52	0.78	0.14	-0.02
Final low frequency Note 1	0.44	0.71	0.33	0.06
Number of notes	-0.12	-0.19	-0.94	-0.15
Call duration	-0.10	-0.11	-0.90	0.41
Note emission rate	0.04	-0.03	0.41	-0.88
Interval between notes	-0.09	0.24	0.07	0.85
Duration of notes	-0.01	-0.40	0.09	0.63
Eigenvalue	17.323	2.473	1.908	1.152
Percentage of variance explained	66.627	9.511	7.339	4.429

Figure 3. Partial regression plots showing the relationship between call features (summarized in four principal components, PCs) with temperature (first column) and body size (second column) of males of the glass frog *Espadaranaprosoblepon*. Values in y-axis (left) and x-axis (bottom) are residuals of the multiple regression analysis. The regression line is shown only in those plots for which there was a significant relationship between variables at an alpha = 0.05. PC1 and PC2 summarize spectral call features while PC3 and PC4 summarize temporal call features. Details of call features included in each PC are indicated in Table 2. Note that the inverse relationship between body size and PC3 is highly influenced by an outlier corresponding to the largest recorded male (body size = 29.92 mm) with the higher average value of number of notes (3 notes) and call duration (427 ms). When the multiple regression analysis was run without this male, the relationship of PC3 with temperature disappeared ($\beta = -0.021$, $t = -0.115$, $p = 0.910$) and with body size remained as non-significant ($\beta = -0.271$, $t = -1.466$, $p = 0.154$).

Table 3. Summary of some advertisement call features (number of notes per call, note duration, call duration, dominant frequency) in glass frogs of the genus *Espadarana*. Data are presented as mean \pm standard deviation and range. Sample size refers to number of males recorded/number of calls analyzed. * Values of this range correspond to the mean dominant frequency at the beginning of the note and the end of the note.

Species	Number of notes per call	Call duration (ms)	Note duration (ms)	Dominant frequency of the call (kHz)	Sample size	Source
<i>E. andina</i>	1	31.8 \pm 5.5 (25.3–48.0)	31.8 \pm 5.5 (25.3–48.0)	5.7 \pm 0.1 (5.5–5.9)	4/24	Señaris and Ayarzagüena 2005
<i>E. audax</i>	1	38.0 \pm 8.2 (26.0–53.0)	38.0 \pm 8.2 (26.0–53.0)	6.1 \pm 0.4 (5.4–6.7)	2/4	Guayasamin <i>et al.</i> 2020
<i>E. callistomma</i>	3–4	380.0 \pm 66.0 (280–440)	30.0 \pm 7.0 (14.0–40.0)	(5.3–5.8)	1/10	Guayasamin <i>et al.</i> 2020
<i>E. prosoblepon</i>	2–5	–	–	–	–	Freile <i>et al.</i> 2020
<i>E. prosoblepon</i>	2	212 \pm 7 (207–223)	40 \pm 8 (32–54)	(5.8–6.3) *	1/4	Guayasamin <i>et al.</i> 2020
<i>E. prosoblepon</i>	2.1 \pm 0.2 (2–4)	230.0 \pm 40.0 (190–430)	41.1 \pm 4.8 (31.0–48.7)	5.2 \pm 0.2 (4.9–5.6)	31/220	This study

populations of *Espadarana prosoblepon* in Costa Rica (Jacobson 1985, Savage 2002, Kubicki 2007) and Ecuador (Freile *et al.* 2020, Guayasamin *et al.* 2020). Since the description by Jacobson (1985) is the most detailed and often cited, we compare our calls with results published by this author. General tendencies mentioned below agree with data shown in the other descriptions. The average dominant frequency of the call is slightly higher in the Costa Rica population (5.8 kHz, range 5.3–6.0 kHz; Jacobson 1985) than ours (5.2 kHz, range 4.9–5.6 kHz). This tendency is not attributed to interpopulation differences in body size because in any of these populations, a relationship existed between spectral features of the call and body size. The absence of an inverse relationship between male body size and call frequency in our data of *E. prosoblepon* was unexpected because in most anurans such traits relate in an inverse way (Vargas-Salinas and Amézquita 2014, Tonini *et al.* 2020). Some exceptions to this tendency occur, typically in species

associated with noisy habitats (Tonini *et al.* 2020, Maria *et al.* 2023) such as those in which glass frogs call and breed (i.e., streams). Regarding glass frogs, a weak negative relationship has been found between body size of males and dominant call frequency in studies of multiple species (Escalona *et al.* 2019, Mendoza-Henao *et al.* 2023, Vargas-Salinas *et al.* 2024). It is possible that at the intraspecific level, such an inverse relationship could be even weaker or absent in some species, in part because of a low variability in body size of males within a given population.

Note duration might show a contrary tendency than dominant frequency; that is, it was slightly shorter in the Costa Rica population (40 ms, range 25–50 ms) than in our population (41.9 ms, range 32.7–57.7 ms). This comparison should be taken as preliminary since PC3 (that includes the feature “note duration”) was inversely correlated to temperature in our study (but see Figure 3), and Jacobson (1985) did not test this potential effect. The number of notes per

call apparently do not differ between populations; Jacobson (1985) recorded up to five notes per call while we found up to four notes per call, but in the field, we were able to hear calls with five notes. A more detailed comparison of the advertisement call between populations of *E. prosoblepon* is not feasible to date, because 1) no data is available for Costa Rica populations regarding call features such as duration of interval between notes, dominant frequency per note, and minimum and maximum frequency per note (Jacobson 1985, Savage 2002, Kubicki 2007), and 2) the best description for an Ecuadorian population is based on only one male (Guayasamin *et al.* 2020).

The available information for Costa Rica populations (Jacobson 1985, Savage 2002, Kubicki 2007) and other populations from Costa Rica, Panamá (Appendix I) and Ecuador (Table 2) suggests little differentiation in advertisement call features between populations of *Espadarana prosoblepon* examined here. More recordings and data are necessary for a robust conclusion. In these studies, it will be necessary to test potential effects of temperature and body size on call features.

Acknowledgments

We thank Fonozoo and Richard Lehtinen for allowing the use of their recordings of males in Panamá and Costa Rica. Members of the Evolution, Ecology and Conservation Research Group (EECO) at the Universidad del Quindío kindly supported our fieldwork and analysis of data. Finally, thanks to the Biology Program at the Universidad del Quindío, Colombia, for supporting this research. A previous version of this manuscript was greatly improved by comments from Juan Manuel Guayasamin, Moises Escalona, and Ignacio de la Riva. We complied with all ethical norms for care and handling of specimens dictated by international and regional institutions.

References

Angeli, N. F., G. V. DiRenzo, A. Cunha, and K. R. Lips. 2015. Effects of density on spatial aggregation and habitat associations of the glass frog *Espadarana (Centrolene) prosoblepon*. *Journal of Herpetology* 49: 388–394.

Basto-Riascos, M. C., J. López-Caro, and C. A. Londoño-Guarnizo. 2017a. *Espadarana prosoblepon*. Catálogo de Anfibios y Reptiles. *Asociación Colombiana de Herpetología* 3: 52–61.

Basto-Riascos, M. C., J. López-Caro, and F. Vargas-Salinas. 2017b. Reproductive ecology of the glass frog *Espadarana prosoblepon* (Anura: Centrolenidae) in an urban forest of the Central Andes of Colombia. *Journal of Natural History* 51: 2535–2550.

Bosch, J., R. Márquez, and L. Boyero. 2003. Behavioural patterns, preference, and motivation of female midwife toads during phonotaxis tests. *Journal of Ethology* 21: 61–66.

Both, C. and T. Grant. 2012. Biological invasions and the acoustic niche: the effect of bullfrog calls on the acoustic signals of white-banded tree frogs. *Biology Letters* 8: 714–716.

Cabanzo-Olarte, L. C. and J. E-O. Ortega-Chinchilla. 2017. Advertisement call of the Glass Frog *Espadarana andina* (Anura: Centrolenidae). *Herpetological Review* 48: 514–516.

Castroviejo-Fisher, S., J. M. Guayasamin, A. Gonzalez-Voyer, and C. Vilà. 2014. Neotropical diversification seen through glassfrogs. *Journal of Biogeography* 41: 66–80.

Cisneros-Heredia, D. F. 2007. A new species of glassfrog of the genus *Centrolene* from the foothills of Cordillera Oriental of Ecuador. *Herpetozoa* 20: 27–34.

Cliff, N. 1988. The eigenvalues-greater-than-one rule and the reliability of components. *Psychological Bulletin* 103: 276.

Cocroft, R. B. and M. J. Ryan. 1995. Patterns of advertisement call evolution in toads and chorus frogs. *Animal behaviour* 49: 283–303.

Delia, J., L. Bravo-Valencia, and K. Warkentin. 2017. Patterns of parental care in Neotropical glassfrogs: fieldwork alters hypotheses of sex-role evolution. *Journal of Evolutionary Biology* 30: 898–914.

Duarte-Marin, S., M. Rada, M. Rivera-Correa, V. Caorsi, E. Barona, G. González-Durán, and F. Vargas-Salinas. 2022. Tic, Tii and Trii calls: advertisement call descriptions for eight glass frogs from Colombia and analysis of the structure of auditory signals in Centrolenidae. *Bioacoustics*: 1–38.

Duellman, W. E. 2007. Amphibian life histories: their utilization in phylogeny and classification. Pp. 2843–2892 in H. Heatwole and M. Tyler (eds.), *Amphibian Biology*. Australia. Surrey Beatty & Sons.

Escalona Sulbarán, M. D., P. Ivo Simões, A. González-Voyer, and S. Castroviejo-Fisher. 2019. Neotropical frogs and mating songs: The evolution of advertisement calls in glassfrogs. *Journal of Evolutionary Biology* 32: 163–176.

Freile, J. F., L. A. Coloma, A. Terán-Valdez, D. Acosta-López, E. E. Tapia, and G. Pazmiño-Otamendi. 2020. Anfibios de Junín. *Publicación Miscelánea del Centro Jambatu 1. Quito, Ecuador*. Imprenta Mariscal.

Frost, D. R. 2024. Amphibian Species of the World: An Online Reference. Version 6.2 (6 January 2023). Electronic Database accessible at <https://amphibiansoftheworld.amnh.org/Amphibia/Anura/Centrolenidae/>. American Museum of Natural History, New York, USA. Captured on 09 March 2024.

Gerhardt H. C. and F. Huber (eds.). 2002. *Acoustic Communication in Insects and Anurans: Common Problems and Diverse Solutions*. University of Chicago Press. 554 pp.

Goyes Vallejos, J. and A. D. Hernández-Figueroa. 2022. Influence of environmental factors and body condition on the post-oviposition behavior in the emerald glass frog *Espadarana prosoblepon* (Centrolenidae). *PeerJ* 10: e13616.

Goyes Vallejos, J., J. Gómez, A. D. Hernández-Figueroa, R. Vera, and D. M. Green. 2021. Fertilization success suggests random pairing in frogs with regard to body size. *Behavioral Ecology and Sociobiology* 75: 1–8.

Goyes Vallejos, J., J. S. Siles, V. Calero, N. Rodríguez, and G. Machado. 2024. Not enough time: short-term female presence after oviposition does not improve egg survival in the emerald glass frog. *Animal Behaviour* 213: 161–171.

Guayasamin, J. M., D. F. Cisneros-Heredia, R. W. McDiarmid, P. Peña, and C. R. Hutter. 2020. Glassfrogs of Ecuador: Diversity, evolution, and conservation. *Diversity* 12: 1–285.

Guayasamin, J. M., S. Castroviejo-Fisher, L. Trueb, J. Ayarzagüena, M. Rada, and C. Vila. 2009. Phylogenetic systematics of glassfrogs (Amphibia: Centrolenidae) and their sister taxon *Allophryne ruthveni*. *Zootaxa* 2100: 1–97.

Hedman, H. and M. Hughey. 2015. Body size, humeral spine size, and aggressive interactions in the emerald glass frog, *Espadarana prosoblepon* (Anura: Centrolenidae) in Costa Rica. *Mesoamerican Herpetology* 2: 500–508.

Hutter, C. R., J. M. Guayasamin, and J. J. Wiens. 2013. Explaining Andean megadiversity: the evolutionary and ecological causes of glassfrog elevational richness patterns. *Ecology Letters* 16: 1135–1144.

Jacobson, S. K. 1985. Reproductive behavior and male mating success in two species of glass frogs (Centrolenidae). *Herpetologica* 41: 396–404.

Johnson R. A. and Wichern D. W (eds.). 2014. *Applied Multivariate Statistical analysis*. Vol. 6. London. Pearson. 767 pp.

Köhler, J., M. Jansen, A. Rodriguez, P. J. Kok, L. F. Toledo, M. Emmrich, F. Glaw, C. F Haddad, M.-O. Roedel, and M. Vences. 2017. The use of bioacoustics in anuran taxonomy: theory, terminology, methods and recommendations for best practice. *Zootaxa* 4251: 1–124.

Krohn, A. R., and J. Voyles. 2014. A short note on the use of humeral spines in combat in *Espadarana prosoblepon* (Anura: Centrolenidae). *Alytes* 31: 83–85.

Kubicki B. (eds.) 2007. *Glass Frogs of Costa Rica*. Santo Domingo de Heredia. Editorial INBio. 299 pp.

Lingnau, R. and R. P. Bastos. 2007. Vocalizations of the Brazilian torrent frog *Hylodes heyeri* (Anura: Hylodidae): repertoire and influence of air temperature on advertisement call variation. *Journal of Natural History* 41: 1227–1235.

López-Baucells, A., L. Torrent, and R. Rocha. 2019. Stronger together: combining automated classifiers with manual post-validation optimizes the workload reliability trade-off of species identification in bat acoustic surveys. *Ecological Informatics* 49: 45–53.

Maria, B., J. F. Tonini, R. Rebouças, and L. F. Toledo. 2023. Hidden shifts in allometry scaling between sound production and perception in anurans. *PeerJ* 11: e16322.

Mendoza-Henao, A. M., K. R. Zamudio, J. M. Guayasamin, M. Escalona, and G. Parra-Olea. 2023. Environment rather than character displacement explains call evolution in glassfrogs. *Evolution* 77: 355–369.

Ortiz-Ross, X., M. E. Thompson, E. Salicetti-Nelson, O. Vargas-Ramírez, and M. A. Donnelly. 2020. Oviposition site selection in three Glass Frog species. *Copeia* 108: 333.

Padial, J. M., J. Köhler, A. Muñoz, and I. De la Riva. 2008. Assessing the taxonomic status of tropical frogs through bioacoustics: geographical variation in the advertisement calls in the *Eleutherodactylus discoidalis* species group (Anura). *Zoological Journal of the Linnean Society* 152: 353–365.

Peres-Neto, P. R., D. A. Jackson and K. M. Somers. 2005. How many principal components? Stopping rules for determining the number of non-trivial axes revisited. *Computational Statistics Data Analysis* 49: 974–997.

Rios-Soto, J., A. M. Ospina-L, M. C. Basto-Riascos, J. López-Caro, and F. Vargas-Salinas. 2017. Description of the distress call in *Espadarana prosoblepon* and the post-amplexus vocal display in *Centrolene savagei* (Anura: Centrolenidae). *Herpetology Notes* 10: 27–29.

Rivera-Correa, M., A. M. Ospina-L, M. Rojas-Montoya, K. Venegas-Valencia, L. A. Rueda-Solano, P. D. A. Gutiérrez-Cárdenas, and F. Vargas-Salinas. 2021. Cantos de las ranas y los sapos de Colombia: estado actual del conocimiento y perspectivas de investigación en ecoacústica. *Neotropical Biodiversity* 7: 350–363.

Robertson, J. M., K. R. Lips, and E. J. Heist. 2008. Fine scale gene flow and individual movements among subpopulations of *Centrolene prosoblepon* (Anura: Centrolenidae). *Revista de Biología Tropical* 56: 13–26.

Robillard, T., G. Höbel, and C. H. Gerhardt. 2006. Evolution of advertisement signals in North American hylid frogs: vocalizations as end-products of calling behavior. *Cladistics* 22: 533–545.

Rodríguez, C. 1999. Biodiversidad del relichto “Cedro Rosado” de la Universidad del Quindío. *Biología y Educación* 9: 17–18.

Ryan, M. J. and W. Wilczynski. 1991. Evolution of intraspecific variation in the advertisement call of a cricket frog (*Acris crepitans*: Hylidae). *Biological Journal of the Linnean Society* 44: 249–272.

Salazar-Nicholls, M.-J. and E.M. del Pino. 2015. Early development of the glass frogs *Hyalinobatrachium fleischmanni* and *Espadarana callistomma* (Anura: Centrolenidae) from cleavage to tadpole hatching. *Amphibian & Reptile Conservation* 8: 89–106.

Savage, M. J. 2002. *The Amphibians and Reptiles of Costa Rica. A Herpetofauna Between Two Continents, Between Two Seas*. Chicago and London. Chicago University Press. 954 pp.

Schneider, H. and U. Sinsch. 2007. Contributions of bioacoustics to the taxonomy of the Anura. *Amphibian Biology* 7: 2892–2932.

Señaris, J. C. and J. Ayarzagüena. 2005. Revisión taxonómica de la familia Centrolenidae (Amphibia; Anura) de Venezuela [Taxonomic review of the Centrolenidae family (Amphibia; Anura) from Venezuela]. Sevilla (España). Comité español del programa MAB de la UNESCO.

Tonini, J. F. R., D. B. Provete, N. M. Maciel, A. R. Morais, S. Goutte, L. F. Toledo, and R. A. Pyron. 2020. Allometric escape from acoustic constraints is rare for frog calls. *Ecology and Evolution* 10: 3686–3695.

Valencia-Aguilar, A., E. Ringler, S. Lüpold, J. M. Guayasamin, and C. P. Prado. 2024. Evolutionary trade-offs between testes size and parenting in Neotropical glassfrogs. *Proceedings of the Royal Society B* 291: 20240054.

Vargas-Salinas, F. and A. Amézquita. 2014. Stream noise, call frequency, and the composition of anuran species assemblages. *Evolutionary Ecology* 28: 341–359.

Vargas-Salinas, F., C. A. Londoño-Guarnizo, S. Duarte-Marin, O. L. Torres-Suárez, and A. Amézquita. 2024. Uncoupled evolutionary patterns in spectral and temporal components of acoustic signals in anurans associated to streams. *Ethology*: e13510.

Yang, K. L. 2024. Raven Pro: Interactive Sound Analysis Software. Center for Conservation Bioacoustics. Versión 1.6.5. URL: <https://ravensoundssoftware.com/>

Zar J. H. (eds.). 1998. *Biostatistical Analysis*. 4th ed. Englewood Cliffs. Prentice Hall. 859 pp.

Editor: Ignacio De la Riva

Appendix I. Summary advertisement call features for two males belonging to populations of *Espadarana prosoblepon* in Bocas del Toro, Panamá (code Fonozoo.com = ID: 19092, FZ-SOUND-CODE: 7616) and Las Cruces biological station, Costa Rica (code Fonozoo.com = ID: 22957, FZ-SOUND-CODE: 12939). Body size of the recorded male was not given in either case. When applicable, temporal call features are expressed in ms and spectral call features in kHz.

Attributes	Bocas del Toro, Panama	Las Cruces, Costa Rica
Temperature (°C)	16.6	–
Number of calls	1	1
Call duration	270.7	395.6
Number of notes	2	3
Duration Note 1	31.6	34.2
Duration Note 2	35.9	29.5
Duration Note 3	–	33.5
Interval between Note 1 and 2	203.1	130.1
Interval between Note 2 and 3	–	167
Dominant frequency Note 1	6.4	6.6
Dominant frequency Note 2	6.2	6.6
Dominant frequency Note 3	–	6.5
Low frequency Note 1	5.5	6
High frequency Note 1	7.2	7.5
Low frequency Note 2	5.4	6
High frequency Note 2	7.0	7.3
Low frequency Note 3	–	6
High frequency Note 3	–	7.1
Initial dominant frequency Note 1	6.4	6.7
Initial dominant frequency Note 2	6.0	6.7
Initial dominant frequency Note 3	–	6.6
Initial low frequency Note 1	5.7	6.0
Initial high frequency Note 1	7.2	7.4
Initial low frequency Note 2	5.4	6.0
Initial high frequency Note 2	7.0	7.3
Initial low frequency Note 3	–	5.4
Initial high frequency Note 3	–	7.1
Middle dominant frequency Note 1	6.4	6.7
Middle dominant frequency Note 2	6.4	6.7
Middle dominant frequency Note 3	–	6.6
Middle low frequency Note 1	5.5	6
Middle high frequency Note 1	7.2	7.6
Middle low frequency Note 2	5.4	6
Middle high frequency Note 2	7.1	7.4

Appendix I. *Continued.*

Attributes	Bocas del Toro, Panama	Las Cruces, Costa Rica
Middle low frequency Note 3	—	5.9
Middle high frequency Note 3	—	7.3
Final dominant frequency Note 1	6.4	6.9
Final dominant frequency Note 2	6.4	6.6
Final dominant frequency Note 3	—	6.6
Final low frequency Note 1	5.2	6.1
Final high frequency Note 1	7.2	7.6
Final low frequency Note 2	5.4	6.2
Final high frequency Note 2	7.1	7.2
Final low frequency Note 3	—	6.1
Final high frequency Note 3	—	7

Differential antipredator behavioral responses in tadpoles of *Duttaphrynus melanostictus* (Anura: Bufonidae): an experimental demonstration

Santosh M. Mogali, Bhagyashri A. Shanbhag, and Srinivas K. Saidapur

Karnatak University, Department of Zoology Dharwad-580 003, Karnataka State, India.

E-mail: santoshmogali@rediffmail.com.

Abstract

Differential antipredator behavioral responses in tadpoles of *Duttaphrynus melanostictus* (Anura: Bufonidae): an experimental demonstration. In aquatic systems, many prey animals including larval anurans predominantly use chemical cues to assess predation risk. In such systems, a variety of predators (e.g., insects or their larvae, sympatric carnivorous/omnivorous tadpoles) can affect the behavioral responses and life history of prey tadpoles. Many anuran tadpoles are able to discriminate chemical cues of different predators and exhibit differential antipredator behavioral responses according to the perceived risk. The behavioral responses of tadpoles of *Duttaphrynus melanostictus* to different predators (predaceous insects, *Lethocerus* sp., omnivorous tadpoles of *Euphlyctis cyanophlyctis*, and carnivorous tadpoles of *Hoplobatrachus tigerinus*) were studied in the laboratory. The predator's diet-derived metabolites released in the excreta of the predators after consumption of conspecific (*D. melanostictus*) prey tadpoles were used to simulate predation threat. The *D. melanostictus* tadpoles showed antipredator behavioral responses i.e., reduced swimming movements and overall time spent swimming, and had a higher burst speed in response to water-borne cues released from the excreta of all predators that were fed with conspecific prey. Further, *D. melanostictus* tadpoles showed the strongest antipredator behavioral responses to cues released by carnivorous, active predatory tadpoles, *H. tigerinus*, moderate responses to the cues of the sit-and-wait carnivorous insect, *Lethocerus* sp. and low responses to those of omnivorous *E. cyanophlyctis* tadpoles. The hierarchy of antipredator behavioral responses in *D. melanostictus* tadpoles to different predators is *H. tigerinus* > *Lethocerus* sp. > *E. cyanophlyctis* > chemical blank solution. The findings of the present study thus show that tadpoles of *D. melanostictus* appear to modulate the intensity of their defense behavior in accordance with the level of threat posed by each predator.

Keywords: Anuran larvae, Chemical and visual cues, Dietary metabolites, Predator, Prey, Reduced activity, Swimming speed.

Received 22 May 2024

Accepted 12 November 2024

Distributed December 2024

Resumo

Respostas comportamentais antipredador diferenciais em girinos de *Duttaphrynus melanostictus* (Anura: Bufonidae): uma demonstração experimental. Nos sistemas aquáticos, muitas presas, incluindo larvas de anuros, utilizam predominantemente sinais químicos para avaliar o risco de predação. Nesses sistemas, uma variedade de predadores (por exemplo, insetos ou suas larvas, girinos carnívoros/onívoros simpátricos) pode afetar as respostas comportamentais e a história de vida dos girinos. Muitos girinos são capazes de discriminar sinais químicos de diferentes predadores e apresentam respostas comportamentais antipredadores diferenciadas de acordo com o risco percebido. As respostas comportamentais dos girinos de *Duttaphrynus melanostictus* a diferentes predadores (insetos predadores, *Lethocerus* sp., girinos onívoros de *Euphlyctis cyanophlyctis* e girinos carnívoros de *Hoplobatrachus tigerinus*) foram estudadas em laboratório. Os metabólitos derivados da dieta do predador liberados nas excreções após o consumo de girinos de presas conspécíficas (*D. melanostictus*) foram utilizados para simular a ameaça de predação. Os girinos de *D. melanostictus* apresentaram respostas comportamentais antipredadores, isto é, reduziram os movimentos e o tempo total gasto na natação e tiveram uma maior velocidade de explosão em resposta a sinais de água liberados pelos excrementos de todos os predadores que foram alimentados com presas específicas. Além disso, os girinos de *D. melanostictus* apresentaram as respostas comportamentais anti-predador mais fortes aos sinais liberados pelos girinos predadores carnívoros e ativos, *H. tigerinus*, respostas moderadas aos sinais do inseto carnívoro *Lethocerus* sp. e respostas baixas às dos girinos onívoros de *E. cyanophlyctis*. A hierarquia das respostas comportamentais antipredador nos girinos de *D. melanostictus* a diferentes predadores é *H. tigerinus* > *Lethocerus* sp. > *E. cyanophlyctis* > solução tampão. Os resultados do presente estudo mostram que os girinos de *D. melanostictus* parecem modular a intensidade do seu comportamento de defesa de acordo com o nível de ameaça representado por cada predador.

Palavras-chave: Atividade reduzida, Larvas de anuros, Metabólitos da dieta, Pistas químicas e visuais, Predador, Presa, Velocidade de natação.

Introduction

Anuran amphibians often breed opportunistically in ephemeral water bodies during the rainy season, and the larval anurans live in such waters until metamorphosis (Saidapur 2001, Cogălniceanu *et al.* 2012, Goldberg *et al.* 2012, Mogali *et al.* 2020). Hence, tadpoles of different anuran species that co-occur in such waters face threats from desiccation, crowding, competition for food and space, and most importantly predation (Skelly 1997, Loman 1999, Lardner 2000, Benard 2004, Mogali *et al.* 2011, 2016, 2020). Ephemeral ponds can house diverse types of predators, the most common of which are aquatic insects and their larvae, and omnivorous and carnivorous predatory tadpoles (Heyer *et al.* 1975, Skelly 1997, Relyea 2001a, Saidapur 2001, Mogali *et al.* 2020). Furthermore, in the ephemeral water bodies where different species

of tadpoles reside, the water is often turbid or filled with aquatic vegetation or leaf litter, causing poor visibility (Hoff *et al.* 1999, Mogali 2018, Mogali *et al.* 2023a,b). Moreover, most species of anuran tadpoles are near sighted (Kiesecker *et al.* 1996, Hoff *et al.* 1999, Mogali 2018). In such conditions, chemical cues are more useful than visual cues to detect food or predators (Kiesecker *et al.* 1996, Nystrom and Abjornsson 2000, Hickman *et al.* 2004, Fraker 2008, Saidapur *et al.* 2009). Earlier studies have shown that the source of chemical cues emanating from predators and detected by prey tadpoles may differ (Takahara *et al.* 2008, Smith and Awan 2009, Ferrari *et al.* 2010). Chemical cues may arise from the starved predators, kairomones (Petránka *et al.* 1987, Schoeppner and Relyea 2005, Mogali 2018), dietary metabolites derived following consumption of conspecific prey and released through feces (Wilson and Lefcort 1993,

Laurila *et al.* 1997, Chivers and Mirza 2001, Kiesecker *et al.* 2002, Mogali *et al.* 2012, Scherer and Smee 2016), alarm pheromones released by injured or damaged prey (Hews and Blaustein 1985, Hews 1988, Summey and Mathis 1998, Schoeppner and Relyea 2005, Carlson *et al.* 2015), or a combination of these factors (Schoeppner and Relyea 2009a,b). Earlier studies also revealed that anuran tadpoles showed a variety of antipredator behaviors when exposed to chemical cues of predators including increased activity levels or high swimming speed to escape predators (Hews 1988, Van Buskirk and McCollum 2000, Dayton *et al.* 2005, Mogali *et al.* 2021), reduction in activity levels (Lawler 1989, Saidapur *et al.* 2009, Mogali *et al.* 2012), formation of dense aggregations or schools (Spieler and Linsenmair 1999), or increased use of refuge sites (Stauffer and Semlitsch 1993, Relyea 2003, Hossie and Murray 2010, Mogali *et al.* 2022), depending on the species.

The Asian common toad, *Duttaphrynus melanostictus* (Schneider, 1799) (Anura: Bufonidae), is widely distributed in India. In South India, during early monsoon season, it generally breeds in ephemeral water bodies along with other sympatric anuran species (Mogali *et al.* 2011, 2017, 2023a). The temporary water bodies where herbivorous tadpoles of *D. melanostictus* reside are also home to a variety of invertebrate predators such as dragonfly and damselfly larvae, giant water bugs, crabs, and beetles as well as vertebrate predators including an omnivorous [*Euphlyctis cyanophlyctis* (Schneider, 1799)], and carnivorous tadpoles [*Hoplobatrachus tigerinus* (Daudin, 1802)]. During our regular field visits, we noticed that herbivorous tadpoles of *D. melanostictus* are preyed upon by all these predators. Earlier studies suggest that different predators present different levels of predation risk to prey tadpoles (Relyea 2001a,b). Hence, in the present work, we studied the behavioral responses of *D. melanostictus* tadpoles to chemical cues (of a dietary origin) of three different types of predators. They are giant water bugs, *Lethocerus* sp. (Hemiptera: Belostomatidae) which are sit-

and-wait insect predators exclusively carnivorous in nature, tadpoles of *E. cyanophlyctis* (Anura: Dic平glossidae), which are omnivorous in nature and basically feed on detritus or algae and also on other sympatric anuran tadpoles including *D. melanostictus*. On the other hand, tadpoles of *H. tigerinus* (Anura: Dic平glossidae) are primarily predators; they are carnivorous, active in nature, feeding on other sympatric anuran tadpoles.

In the present study we hypothesized that *D. melanostictus* tadpoles which coexist with all these predators in the natural water bodies should show antipredatory behavioral responses to predators' chemical cues. Additionally, we hypothesized that the antipredatory responses of *D. melanostictus* tadpoles should depend on the level of threat presented by each type of predator. We expected that *D. melanostictus* tadpoles would show strong antipredator behavioral responses to *H. tigerinus* tadpoles because these tadpoles are basically carnivorous in nature, active hunters and also detect their prey by means of both visual and chemical senses (Saidapur *et al.* 2009). We expected moderate antipredator behavioral responses in *D. melanostictus* tadpoles to *Lethocerus* sp. because these are carnivorous insects but sit-and-wait predators. We expected weak antipredator responses to *E. cyanophlyctis* because these are omnivorous tadpoles mainly feeding on detritus or decayed matter or algae, and also on other sympatric tadpoles. Evaluating these hypotheses will provide novel information in the field of behavioral ecology of anuran tadpoles.

Materials and Methods

Three egg clutches of *Duttaphrynus melanostictus* were collected from an ephemeral pond in the Karnatak University Campus, Dharwad (latitude 15.440407° N, longitude 74.985246° E), Karnataka state, India in the early monsoon period and were immediately transported to the laboratory. They were placed separately in plastic tubs (32 cm diameter and 14

cm depth) containing 5 L of aged (dechlorinated) tap water. The eggs from all clutches hatched synchronously at stage 19 (Gosner 1960) the next day. The tadpoles were mixed and reared for stocking in two separate glass aquaria (75 × 45 × 15 cm) containing 20 L of aged tap water. Approximately two hundred tadpoles were stocked in each aquarium. Tadpoles of *D. melanostictus* from stage 25 (Gosner 1960) onwards were fed with sufficient amount of boiled spinach. The carnivorous predatory insect, *Lethocerus* sp. ($N = 20$; 42.50 ± 0.60 mm total length, mean \pm SE), omnivorous tadpoles of *Euphlyctis cyanophlyctis* (Gosner stages 33–34; $N = 20$; 42.02 ± 0.65 mm total length) and carnivorous tadpoles of *Hoplobatrachus tigerinus* (Gosner stages 33–34; $N = 20$; 41.15 ± 0.40 mm total length) were collected with the help of net from the same temporary pond where the eggs of *D. melanostictus* were obtained. All three species of predators were reared individually to avoid cannibalism in separate plastic tubs (19 cm diameter and 7 cm depth) containing 0.5 L of aged tap water. Tadpoles of *E. cyanophlyctis* are omnivorous in nature so they were provided with boiled spinach and tadpoles of *D. melanostictus*. The tadpoles of *H. tigerinus* and the insect, *Lethocerus* sp. are carnivorous and were therefore fed exclusively with tadpoles of *D. melanostictus*. The behavioral responses of the prey (*D. melanostictus*) were studied by exposing them to stimulus solutions of dietary metabolites of predators (either *E. cyanophlyctis* or *Lethocerus* sp. or *H. tigerinus*) exclusively fed with conspecific tadpoles (*D. melanostictus*). The preparation of stimulus solution was as follows.

Preparation of Dietary Cues of Conspecific Origin

Dietary cues of E. cyanophlyctis fed conspecific tadpoles.—A single *E. cyanophlyctis* tadpole was placed in a plastic tub ($N = 10$ tubs; 19 cm diameter and 7 cm depth) containing 200 mL of aged tap water along with four

tadpoles of *D. melanostictus* at Gosner stages 29–30 (at about 08:30 h). The tadpoles of *E. cyanophlyctis* consumed all the tadpoles provided to them by the evening (18:30 h). On the following day between 09:30 h and 11:30 h, predators were removed and the water from the tubs was filtered using fine cheesecloth. The filtrate served as the stimulus solution containing the diet-derived excretory metabolites or substances of predators (*E. cyanophlyctis*) fed conspecific prey and are unlikely to have contained the alarm cues of prey. Prey alarm cues are known to be labile in nature (Peacor 2006, Ferrari *et al.* 2008, Chivers *et al.* 2013). Thus, it is unlikely that prey alarm cues were present in the stimulus solution because all prey were consumed more than 15 h before the solution was collected.

Dietary cues of Lethocerus sp. fed conspecific tadpoles.—A single *Lethocerus* sp. was placed in a plastic tub ($N = 10$ tubs; 19 cm diameter and 7 cm depth) containing 200 mL of aged tap water along with four tadpoles of *D. melanostictus* at Gosner stages 29–30 (at about 08:30 h). *Lethocerus* sp. consumed all the tadpoles provided to them by the evening (18:30 h). On the following day filtrate was obtained and served as a stimulus solution.

Dietary cues of H. tigerinus fed conspecific tadpoles.—A single *H. tigerinus* tadpole was placed in a plastic tub ($N = 10$ tubs; 19 cm diameter and 7 cm depth) containing 200 mL of aged tap water along with four tadpoles of *D. melanostictus* at Gosner stages 29–30 (at about 08:30 h). The tadpoles of *H. tigerinus* consumed all the tadpoles provided to them by the evening (18:30 h). On the following day filtrate was obtained and served as a stimulus solution.

Behavioral Responses of D. melanostictus Tadpoles to Dietary Cues of Different Predators

Behavioral responses of D. melanostictus tadpoles to dietary cues of omnivorous tadpole

predator, *E. cyanophlyctis* fed with *D. melanostictus*.—The behavioral responses of *D. melanostictus* tadpoles to dietary cues (water conditioned with predators fed with conspecific tadpoles) were recorded by placing a single tadpole (*D. melanostictus*; Gosner stage 29–30; mean total length 24.15 ± 0.35 mm) in a rectangular glass tank ($28 \times 15 \times 15$ cm) containing 600 mL of aged tap water. A video camera (Sony, DCR-SR300/E) was fixed above the tank such that it recorded the entire area. The video camera was connected to a computer with the Ethovision Video Tracking System (Noldus Information Technology, The Netherlands) to track movements of the tadpole before and after addition of stimulus solution (dietary cues) to the test tank. The Ethovision system was used to record swimming activities such as maximum swimming speed (V_{\max}), distance traversed by the tadpole, number of swimming spurts and time spent swimming during an entire trial. For each trial, a new tadpole of *D. melanostictus* was first introduced into the tank and left undisturbed for 5 min. A burette was placed ~ 1 cm above the water level and 50 mL of aged tap water (chemical blank solution) was then added at the rate of ~ 1 mL/s to simulate the disturbance the later chemical cue would make. The burette was then removed gently. Movement of the tadpole was then recorded for 5 min using Ethovision to record its baseline activity in the absence of any cues. After tracking baseline activity, 50 mL of stimulus solution containing dietary cues of the predator (*E. cyanophlyctis*) fed with *D. melanostictus* tadpoles was added as described above. Movement of the tadpole was recorded for another 5 min to determine the activity pattern after exposure to dietary cues.

Similarly, the behavioral responses of *D. melanostictus* tadpoles to dietary cues were recorded for the other predators, the carnivorous insect, *Lethocerus* sp. and carnivorous tadpoles, *H. tigerinus* fed with *D. melanostictus*. The testing procedure was exactly the same as that of the earlier one. A new test tadpole was used for each trial. Twenty-five trials were conducted for

each group (25 trials \times 3 types of predators = 75 trials altogether).

Statistical Analysis

After checking for normality, initially data were analyzed using one-way MANOVAs for various swimming activities (response variables are maximum swimming speed, frequency of swimming spurts, time spent swimming and total distance moved). After getting significant MANOVAs, Further the data on the behavioral responses of *D. melanostictus* tadpoles to chemical blank solution vs. different predator type (*Euphlyctis cyanophlyctis*, *Lethocerus* sp., *Hoplobatrachus tigerinus*) and similarly stimulus solution vs. predator type were analyzed separately by one-way ANOVA followed by Tukey's HSD *post-hoc* test. Finally, the data on the behavioral responses of *D. melanostictus* tadpoles, before and after addition of the stimulus solution (dietary cues) of each predator were compared separately by using the paired-samples *t* test. All the statistical tests were performed using SPSS ver. 16.0.

Results

Intensity of Behaviors in *D. melanostictus* Tadpoles to Different Predators

The results of the one-way MANOVAs clearly showed that each swimming activities (V_{\max} , no. of swimming spurts, time spent swimming and total distance moved) of *D. melanostictus* tadpoles are statistically significant difference by predator type (*Euphlyctis cyanophlyctis*, *Lethocerus* sp., *Hoplobatrachus tigerinus*) and treatment type (chemical blank solution, stimulus solution) (Table 1). Further, results of one-way ANOVA with Tukey's HSD *post-hoc* test revealed that there was no significant difference in the various swimming activities (V_{\max} , no. of swimming spurts, time spent swimming and total distance moved) of *D. melanostictus* tadpoles between chemical blank

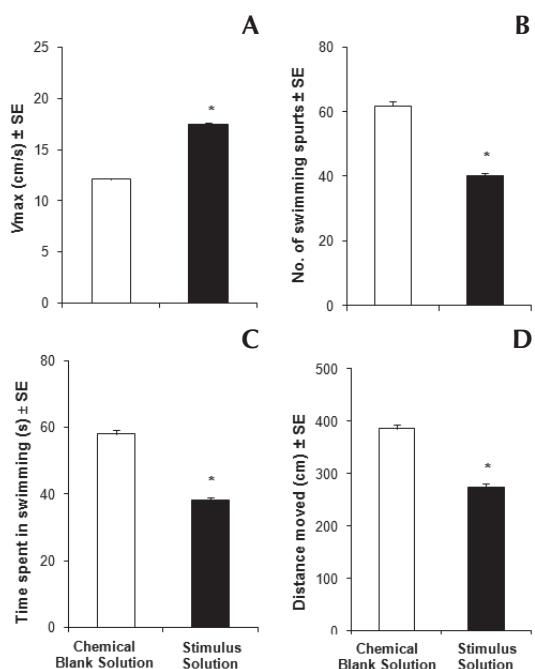
solution vs. different predator type (*Euphlyctis cyanophlyctis*, *Lethocerus* sp., *Hoplobatrachus tigerinus*) (Table 2). However, there was a significant difference in the V_{max} swimming spurs, time spent swimming and total distance travelled by *D. melanostictus* tadpoles between stimulus solution vs. different predator type

(Table 2). The test tadpoles exposed to the stimulus solution of *H. tigerinus* exhibited significantly higher V_{max} ($p < 0.01$) but overall significantly reduced their activity i.e., spent less time swimming ($p < 0.01$) with reduced number of swimming spurs ($p < 0.01$) and moved a shorter distance ($p < 0.01$) compared to any

Table 1. Results of one-way MANOVAs for various swimming activities of *Duttaphrynus melanostictus* tadpoles (the response variables are maximum swimming speed, frequency of swimming spurs, time spent in swimming and total distance moved) to chemical cues of predator type (*Euphlyctis cyanophlyctis*, *Lethocerus* sp., *Hoplobatrachus tigerinus*) and treatment type (chemical blank solution, stimulus solution). Asterisks indicate significant difference.

Source	Wilks' Lambda	F	p
Swimming speed (V_{max} , cm/s)	0.087	770.60	< 0.01*
Number of swimming spurs	0.079	855.60	< 0.01*
Time spent swimming (s)	0.081	836.92	< 0.01*
Distance moved (cm)	0.119	544.30	< 0.01*

Table 2. Results of one-way ANOVAs with Tukey's HSD post hoc tests for various swimming activities of *Duttaphrynus melanostictus* tadpoles (the response variables are maximum swimming speed, frequency of swimming spurs, time spent in swimming and total distance moved) to chemical blank vs. predator type (*Euphlyctis cyanophlyctis*, *Lethocerus* sp., *Hoplobatrachus tigerinus*) and stimulus solution vs. predator type. Dissimilar letters along the same column indicate significant difference between different treatment groups.


One-way ANOVA for chemical blank vs. predator type				
Predator type	Swimming speed (V_{max} , cm/s)	No. swimming spurs	Time spent swimming (s)	Distance moved (cm)
<i>Euphlyctis cyanophlyctis</i>	11.80 \pm 0.08a	65.92 \pm 1.43a	63.10 \pm 1.31a	399.11 \pm 8.81a
<i>Lethocerus</i> sp.	11.75 \pm 0.07a	65.60 \pm 1.46a	63.59 \pm 1.45a	399.63 \pm 8.52a
<i>Hoplobatrachus tigerinus</i>	11.82 \pm 0.07a	67.00 \pm 1.35a	65.43 \pm 1.57a	394.48 \pm 5.22a
F value	F _{2,72} = 0.226	F _{2,72} = 0.267	F _{2,72} = 0.795	F _{2,72} = 0.112
p value	p = 0.798	p = 0.766	p = 0.456	p = 0.894
One-way ANOVA for stimulus solution vs. predator type				
Predator type	Swimming speed (V_{max} , cm/s)	No. swimming spurs	Time spent swimming (s)	Distance moved (cm)
<i>Euphlyctis cyanophlyctis</i>	18.48 \pm 0.70a	31.00 \pm 0.56a	29.36 \pm 0.55a	256.48 \pm 3.89a
<i>Lethocerus</i> sp.	21.15 \pm 0.22b	22.36 \pm 0.70b	21.05 \pm 0.68b	195.97 \pm 3.51b
<i>Hoplobatrachus tigerinus</i>	24.55 \pm 0.30c	14.52 \pm 0.53c	13.47 \pm 0.49c	148.51 \pm 3.83c
F value	F _{2,72} = 151.768	F _{2,72} = 183.101	F _{2,72} = 187.64	F _{2,72} = 197.846
p value	p < 0.01	p < 0.01	p < 0.01	p < 0.01

other groups (Table 2B). The test tadpoles exposed to the stimulus solution of *Lethocerus* sp. exhibited significantly higher V_{\max} ($p < 0.01$) and overall reduced their swimming activities ($p < 0.01$) compared to the stimulus solution of *E. cyanophlyctis* and stimulus free solution (Table 2B). The test tadpoles exposed to the stimulus solution of *E. cyanophlyctis* exhibited significantly higher V_{\max} ($p < 0.01$) and overall reduced their swimming activities ($p < 0.01$) compared to the chemical blank solution or stimulus-free solution (Table 2B). The degree of antipredator behavioral responses of test tadpoles (*D. melanostictus*) was greatest when exposed to dietary cues of carnivorous *H. tigerinus*, followed by carnivorous *Lethocerus* sp. (intermediate) and least to omnivorous *E. cyanophlyctis* (Table 2B).

Behavioral Responses of *D. melanostictus* Tadpoles to Dietary Cues of Different Predators

*Behavioral Responses of *D. melanostictus* tadpoles to dietary cues of omnivorous tadpole predator, *E. cyanophlyctis* fed with *D. melanostictus*.*—Upon exposure to dietary cues of omnivorous tadpole predator, *E. cyanophlyctis* fed with conspecific prey (*D. melanostictus*), test tadpoles (*D. melanostictus*) showed a significant increase in V_{\max} ($t = -39.540$, $df = 24$, $p < 0.01$; Figure 1A), and a significant decrease in the number of swimming spurs ($t = 11.864$, $df = 24$, $p < 0.01$; Figure 1B), time spent swimming ($t = 11.613$, $df = 24$, $p < 0.01$; Figure 1C) and total distance moved ($t = 9.261$, $df = 24$, $p < 0.01$; Figure 1D) when compared to their baseline activities in stimulus-free water (Figure 1).

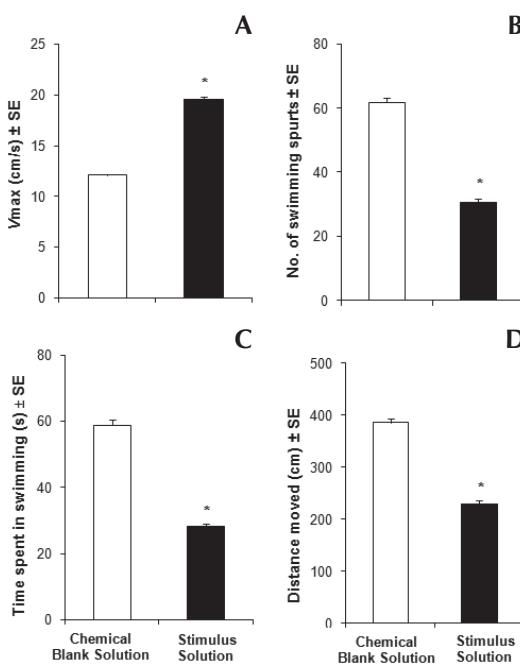
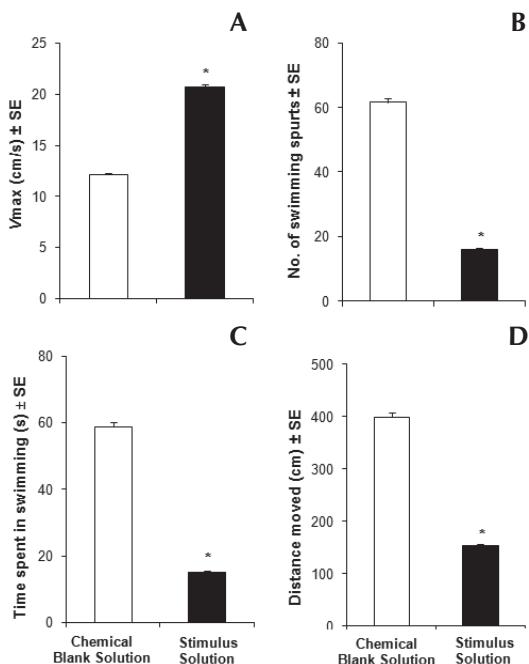

*Behavioral responses of *D. melanostictus* tadpoles to dietary cues of carnivorous insect predator, *Lethocerus* sp. fed with *D. melanostictus*.*—Upon exposure to dietary cues of the carnivorous insect predator, *Lethocerus* sp. fed with conspecific prey (*D. melanostictus*), test tadpoles (*D. melanostictus*) showed a significant increase in V_{\max} ($t = -24.771$,

Figure 1. Maximum swimming speed (V_{\max}) (A), Swimming spurs (B), Time spent in swimming (C), and Distance moved (D) by tadpoles of *Duttaphrynus melanostictus* exposed to chemical blank solution (aged tap water) or stimulus solution (dietary cues) of predator, *Euphlyctis cyanophlyctis* fed with conspecific tadpoles. Data are represented as mean \pm SE; $N = 25$ trials; data analyzed by paired-samples *t*-test. Asterisks over the bars indicate significant difference between the treatment groups.


$df = 24$, $p < 0.01$; Figure 2A), and a significant decrease in the number of swimming spurs ($t = 15.906$, $df = 24$, $p < 0.01$; Figure 2B), time spent swimming ($t = 14.968$, $df = 24$, $p < 0.01$; Figure 2C) and total distance moved ($t = 14.079$, $df = 24$, $p < 0.01$; Figure 2D) when compared to their baseline activities in stimulus-free water (Figure 2).

*Behavioral responses of *D. melanostictus* tadpoles to dietary cues of carnivorous tadpole predator, *H. tigerinus* fed with *D. melanostictus*.*—

Figure 2. Maximum swimming speed (V_{\max}) (A), Swimming spouts (B), Time spent in swimming (C), and Distance moved (D) by tadpoles of *Duttaphrynus melanostictus* exposed to chemical blank solution (aged tap water) or stimulus solution (dietary cues) of predator, *Lethocerus* sp. fed with conspecific tadpoles. Data are represented as mean \pm SE; $N = 25$ trials; data analyzed by paired-samples *t*-test. Asterisks over the bars indicate significant difference between the treatment groups.

Upon exposure to dietary cues of the carnivorous tadpole predator, *H. tigerinus* fed with conspecific prey (*D. melanostictus*), test tadpoles (*D. melanostictus*) showed a significant increase in V_{\max} ($t = -31.555$, $df = 24$, $p < 0.01$; Figure 3A), and a significant decrease in the number of swimming spouts ($t = 28.541$, $df = 24$, $p < 0.01$; Figure 3B), time spent swimming ($t = 27.237$, $df = 24$, $p < 0.01$; Figure 3C) and total distance moved ($t = 24.302$, $df = 24$, $p < 0.01$; Figure 3D) when compared to their baseline activities in stimulus-free water (Figure 3).

Figure 3. Maximum swimming speed (V_{\max}) (A), Swimming spouts (B), Time spent in swimming (C), and Distance moved (D) by tadpoles of *Duttaphrynus melanostictus* exposed to chemical blank solution (aged tap water) or stimulus solution (dietary cues) of predator, *Hoplobatrachus tigerinus* fed with conspecific tadpoles. Data are represented as mean \pm SE; $N = 25$ trials; data analyzed by paired-samples *t*-test. Asterisks over the bars indicate significant difference between the treatment groups.

Discussion

In natural aquatic environments, many prey organisms including larval anurans are at threat of predation, but the level of their threat is dependent on their defenses, which have evolved to promote their escape from predators and promote survival (Lima and Dill 1990, Kats and Dill 1998, Relyea 2001b, Schmidt and Amézquita 2001, Jara and Perotti 2010, Schalk 2016). In aquatic environments, a variety of chemical cues (e.g., kairomones of predators, alarm cues of damaged conspecifics, disturbance cues and

dietary metabolites of predators fed with conspecific prey items) affect the behavioral responses of prey (Wilson and Lefcort 1993, Wisenden 2000, Van Buskirk and Arioli 2002, Schoeppner and Relyea 2005, Ferrari *et al.* 2010, Mogali *et al.* 2012, Scherer and Smee 2016, Rivera-Harnández *et al.* 2022). The dietary cues of predators, especially those from predators fed with conspecific prey items, elicit strong antipredator behavior in many prey animals including anuran tadpoles (Kats and Dill 1998, Ferrari *et al.* 2010, Mogali *et al.* 2011, 2012, Scherer and Smee 2016). The results of the present study showed that tadpoles of *D. melanostictus* sensed dietary cues of all predators (*Lethocerus* sp., tadpoles of *E. cyanophlyctis* and *H. tigerinus*) when predators were fed with conspecific prey tadpoles and test tadpoles quickly decreased their activity levels during the trial period (i.e., less time spent in swimming, fewer swimming spurts and less distance travelled). Furthermore, it is interesting to note that whenever the *D. melanostictus* tadpole moved in the stimulus solution, their burst speed (V_{\max}) was higher than in the stimulus blank solution, indicating their efforts to escape from the perceived risk upon exposure to dietary cues of predator. Our results are in conformity with earlier studies on tadpoles of *Rana clamitans* (Latrelle, 1801) (Fraker 2009), *Rana temporalis* (Mogali *et al.* 2012) and *Clinotarsus curtipes* (Jerdon, 1853) (Mogali *et al.* 2023c). Thus, *D. melanostictus* tadpoles primarily appear to perceive *Lethocerus* sp. and tadpoles of *E. cyanophlyctis* and *H. tigerinus* as potential predators. This may be because long ecological co-existence of *D. melanostictus* tadpoles with sympatric *Lethocerus* sp. and omnivorous/carnivorous tadpoles may have led to the evolution of antipredator defense strategies in response to dietary cues of these predators.

The results of the present study also clearly showed that the antipredator behavioral responses of *D. melanostictus* tadpoles to all predators are not the same. The tadpoles of *D. melanostictus* clearly discriminated among the predators, and as a consequence they exhibited differential

antipredator behavioral responses to perceived predator risk. They showed the strongest antipredator behavioral responses to dietary cues of carnivorous tadpoles, *H. tigerinus*, intermediate antipredator behavioral responses to dietary cues of *Lethocerus* sp., and the weakest antipredator behavioral responses to dietary cues of omnivorous tadpoles, *E. cyanophlyctis*. It is clear that, among these three predators; *D. melanostictus* tadpoles react to *H. tigerinus* tadpoles as the most dangerous predators; this is probably because *H. tigerinus* are basically carnivorous and also active hunters. More importantly, they detect their prey items by means of both visual and chemical cues (Saidapur 2001, Saidapur *et al.* 2009). The tadpoles of *D. melanostictus* also react to *Lethocerus* sp. as dangerous predators. They are basically carnivorous insects, sit-and-wait predators but they detect their prey through their strong vision and mechanoreceptor movements. The tadpoles of *D. melanostictus* probably show weak antipredator responses to *E. cyanophlyctis* tadpoles because these potential predators are omnivorous in nature feeding primarily on detritus matter or algae and also on other sympatric herbivorous tadpoles and detect their prey or food items only through chemical senses but not by visual senses (Mogali *et al.* 2023d).

In summary, tadpoles of *D. melanostictus* show antipredator behavioral responses to all their naturally co-existing predators and the strength of these responses depends upon likely predation risk. The findings of our study reinforce the idea that the antipredator behaviors of anuran tadpoles incorporate complex tradeoffs between risk and benefit.

Acknowledgments

This study was supported by a grant from the Department of Science and Technology (SP/SO/AS-38/2009), New Delhi, awarded to BAS and SKS. SMM was supported as a Project Assistant in the project. The study was conducted as per the ethical guidelines of CPCSEA, New Delhi, India (registration no. 639/02/a/CPCSEA).

References

Benard, M. F. 2004. Predator-induced phenotypic plasticity in organisms with complex life histories. *Annual Review of Ecology, Evolution and Systematics* 35: 651–673.

Carlson, B. E., J. C. Newman, and T. Langkilde. 2015. Food or fear: hunger modifies responses to injured conspecifics in tadpoles. *Hydrobiologia* 743: 299–308.

Chivers, D. P. and R. S. Mirza. 2001. Importance of predator diet cues in responses of larval wood frogs to fish and invertebrate predators. *Journal of Chemical Ecology* 27: 45–51.

Chivers, D. P., D. L. Dixson, J. R. White, M. I. McCormick, and M. C. O. Ferrari. 2013. Degradation of chemical cues and assessment of risk throughout the day. *Ecology and Evolution* 3: 3925–3934.

Cogălniceanu, D., R. Băncila, R. Plăiesu, C. Samoilă, and T. Hartel. 2012. Aquatic habitat use by amphibians with specific reference to *Rana temporaria* at high elevations (Ratezat mountains national park, Romania). *International Journal of Limnology* 48: 355–362.

Dayton, G. H., D. Saenz, K. A. Baum, R. B. Langerhans, and T. J. DeWitt. 2005. Body shape, burst speed and escape behavior of larval anurans. *Oikos* 111: 582–591.

Ferrari, M. C. O., F. Messier, and D. P. Chivers. 2008. Degradation of chemical alarm cues under natural conditions: risk assessment by larval woodfrogs. *Chemoecology* 17: 263–266.

Ferrari, M. C. O., B. D. Wisenden, and D. P. Chivers. 2010. Chemical ecology of predator-prey interactions in aquatic ecosystems: a review and prospectus. *Canadian Journal of Zoology* 88: 698–724.

Fraker, M. E. 2008. The dynamics of predation risk assessment: responses of anuran larvae to chemical cues of predators. *Journal of Animal Ecology* 77: 638–645.

Fraker, M. E. 2009. The effect of prior experience on a prey's current perceived risk. *Oecologia* 158: 765–774.

Goldberg, T., E. Nevo, and D. Degani. 2012. Phenotypic plasticity in larval development of six amphibian species in stressful natural environments. *Zoological Studies* 51: 345–361.

Gosner, K. L. 1960. A simplified table for staging anuran embryos and larvae with notes on identification. *Herpetologica* 16: 183–190.

Hews, D. K. 1988. Alarm response in larval western toads, *Bufo boreas*: release of larval chemicals by a natural predator and its effect on predator capture efficiency. *Animal Behaviour* 36: 125–133.

Hews, D. K. and A. R. Blaustein. 1985. An investigation of the alarm response in *Bufo boreas* and *Rana cascadae* tadpoles. *Behavioural and Neural Biology* 43: 47–57.

Heyer, W. R., R. W. McDiarmid, and D. L. Weigmann. 1975. Tadpoles, predation and pond habitats in the tropics. *Biotropica* 7: 100–111.

Hickman, C. R., M. D. Stone, and A. Mathis. 2004. Priority use of chemical over visual cues for detection of predators by graybelly salamanders, *Eurycea multiplicata griseogaster*. *Herpetologica* 60: 203–210.

Hoff, K. V. S., A. R. Blaustein, R. W. McDiarmid, and R. Altig. 1999. Behaviour: interaction and their consequences. Pp. 215–239 in R. W. McDiarmid and R. Altig (eds.), *Tadpoles: Biology of Anuran Larvae*. Chicago. University of Chicago Press.

Hossie, T. J. and D. L. Murray. 2010. You can't run but you can hide: refuge use in frog tadpoles elicits density-dependent predation by dragonfly larvae. *Oecologia* 163: 395–404.

Jara, F. G. and M. G. Perotti. 2010. Risk of predation and behavioral response in three anuran species: influence of tadpole size and predator type. *Hydrobiologia* 644: 313–324.

Kats, L. B. and L. M. Dill. 1998. The scent of death: chemosensory assessment of predation risk by prey animals. *Ecoscience* 5: 361–394.

Kiesecker, J. M., D. P. Chivers, and A. R. Blaustein. 1996. The use of chemical cues in predator recognition by western toad tadpoles. *Animal Behaviour* 52: 1237–1245.

Kiesecker, J. M., D. P. Chivers, M. Anderson, and A. R. Blaustein. 2002. Effect of predator diet on the life history shifts of red-legged frogs, *Rana aurora*. *Journal of Chemical Ecology* 28: 1007–1015.

Lardner, B. 2000. Morphological and life history responses to predators in larvae of seven anurans. *Oikos* 88: 169–180.

Laurila, A., J. Kujasalo, and E. Ranta. 1997. Different antipredator behavior in two anuran tadpoles: effect of predator diet. *Behavioural Ecology and Sociobiology* 40: 329–336.

Lawler, S. P. 1989. Behavioral responses to predators and predation risk in four species of larval anurans. *Animal Behaviour* 38: 1039–1047.

Lima, S. L. and L. M. Dill. 1990. Behavioral decisions made under the risk of predation. A review and prospectus. *Canadian Journal of Zoology* 68: 619–640.

Loman, J. 1999. Early metamorphosis in common frog *Rana temporaria* tadpoles at risk of pond drying: an experimental demonstration. *Amphibia-Reptilia* 20: 421–430.

Mogali, S. M. 2018. Predatory cues influence the behavioural responses and metamorphic traits of *Polypedates maculatus* (Anura: Rhacophoridae). *Asian Herpetological Research* 9: 188–194.

Mogali, S. M., S. K. Saidapur, and B. A. Shanbhag. 2011. Levels of predation modulate antipredator defense behavior and metamorphic traits in the toad *Bufo melanostictus*. *Journal of Herpetology* 45: 428–431.

Mogali, S. M., S. K. Saidapur, and B. A. Shanbhag. 2012. Tadpoles of the bronze frog (*Rana temporalis*) assess predation risk before evoking antipredator defense behavior. *Journal of Ethology* 30: 379–386.

Mogali, S. M., S. K. Saidapur, and B. A. Shanbhag. 2016. Influence of desiccation, predatory cues, and density on metamorphic traits of the bronze frog *Hylarana temporalis*. *Amphibia-Reptilia* 37: 199–205.

Mogali, S. M., S. K. Saidapur, and B. A. Shanbhag. 2017. Influence of desiccation threat on the metamorphic traits of the Asian common toad, *Duttaphrynus melanostictus* (Anura). *Acta Herpetology* 12: 175–180.

Mogali, S. M., S. K. Saidapur, and B. A. Shanbhag. 2020. Behavioral responses of tadpoles of *Duttaphrynus melanostictus* (Anura: Bufonidae) to cues of starved and fed dragonfly larvae. *Phyllomedusa* 19: 93–98.

Mogali, S. M., B. A. Shanbhag, and S. K. Saidapur. 2021. Comparative vulnerability of *Indosylvirana temporalis* and *Clinotarsus curtipes* (Anura: Ranidae) tadpoles to water scorpions: importance of refugia and swimming speed in predator avoidance. *Phyllomedusa* 20: 159–164.

Mogali, S. M., B. A. Shanbhag, and S. K. Saidapur. 2022. Knowledge of predators and accessibility to refuge reduces larval mortality of the Bicolored frog, *Clinotarsus curtipes* (Anura: Ranidae). *Salamandra* 58: 157–160.

Mogali, S. M., B. A. Shanbhag, and S. K. Saidapur. 2023a. Similar antipredator behavior in tadpoles of two closely associated anuran species *Duttaphrynus melanostictus* and *Sphaerotheca breviceps* (Anura) to the common predator *Pantala flavescens* (Odonata). *Salamandra* 59: 78–82.

Mogali, S. M., B. A. Shanbhag, and S. K. Saidapur. 2023b. Antipredator responses of *Polypedates maculatus* tadpoles to kairomones from the carnivorous tadpoles of *Hoplobatrachus tigerinus*. *Salamandra* 59: 83–86.

Mogali, S. M., B. A. Shanbhag, and S. K. Saidapur. 2023c. Behavioral responses of tadpoles of *Clinotarsus curtipes* (Anura: Ranidae) to odor cues of dragonfly larvae. *Phyllomedusa* 22: 11–20.

Mogali, S. M., B. A. Shanbhag, and S. K. Saidapur. 2023d. Sensory basis of food and predator detection in the tadpoles of the Indian skipper frog *Euphlyctis cyanophlyctis* (Schneider, 1799) (Anura: Dicroidiidae): an empirical study. *Acta Zoologica Bulgarica* 75: 359–365.

Nystrom, P. and K. Abjornsson. 2000. Effect of fish chemical cues on interaction between tadpoles and crayfish. *Oikos* 88: 181–190.

Peacor, S. D. 2006. Behavioural responses of bullfrog tadpoles to chemical cues of predation risk are affected by cue age and water source. *Hydrobiologia* 573: 39–44.

Petrranka, J. W., Kats, L. B., and A. Sih. 1987. Predator-prey interactions among fish and larval amphibians: use of chemical cues to detect predatory fish. *Animal Behaviour* 35: 420–425.

Relyea, R. A. 2001a. Morphological and behavioral plasticity of larval anurans in response to different predators. *Ecology* 82: 523–540.

Relyea, R. A. 2001b. The relationship between predation risk and antipredator responses in larval anurans. *Ecology* 82: 541–554.

Relyea, R. A. 2003. Predators come and predators go: the reversibility of predator-induced traits. *Ecology* 84: 1840–1848.

Rivera-Hernández, I. A. E., A. L. Crane, M. S. Pollock, and M. C. O. Ferrari. 2022. Disturbance cues function as a background risk cue but not as an associate learning cue in tadpoles. *Animal Cognition* 25: 881–889.

Saidapur, S. K. 2001. Behavioral ecology of anuran tadpoles: the Indian scenario. *Proceedings of Indian National Science Academy* B67: 311–322.

Saidapur, S. K., D. K. Veeranagoudar, N. C. Hiragond, and B. A. Shanbhag. 2009. Mechanism of predator-prey detection and behavioral responses in some anuran tadpoles. *Chemoecology* 19: 21–28.

Schalk, C. M. 2016. Predator-induced phenotypic plasticity in an arid-adapted tropical tadpole. *Austral Ecology* 41: 409–416.

Scherer, A. E. and D. L. Smeek. 2016. A review of predator diet effects on prey defensive responses. *Chemoecology* 26: 83–100.

Schmidt, B. R. and A. Amézquita. 2001. Predator-induced behavioral responses: tadpoles of the neotropical frog *Phyllomedusa tarsius* do not respond to all predators. *Herpetological Journal* 11: 9–15.

Schoeppner, N. M. and R. A. Relyea. 2005. Damage, digestion, and defense: the role of alarm cues and kairomones for inducing prey defenses. *Ecology Letters* 8: 505–512.

Schoeppner, N. M. and R. A. Relyea. 2009a. Interpreting the smells of predation: how alarm cues and kairomones induce different prey defences. *Functional Ecology* 23: 1114–1121.

Schoeppner, N. M. and R. A. Relyea. 2009b. When should prey respond to consumed heterospecifics? Testing hypotheses of perceived risk. *Copeia* 2009:190–194.

Skelly, S. K. 1997. Tadpole communities: pond permanence and predation are powerful forces shaping the structure of tadpole communities. *American Scientist* 85: 36–46.

Smith, G. R. and A. R. Awan. 2009. The roles predator identity and group size in antipredator responses of American toad (*Bufo americanus*) and bull frog (*Rana catesbeiana*) tadpoles. *Behaviour* 146: 225–243.

Spieler, M. and K. E. Linsenmair. 1999. Aggregation behaviour of *Bufo maculatus* tadpoles as an antipredator mechanism. *Ethology* 105: 665–686.

Stauffer, H. and R. D. Semlitsch. 1993. Effects of visual, chemical and tactile cues of fish on the behavioural responses of tadpoles. *Animal Behaviour* 46: 355–364.

Summey, A. R. and A. Mathis. 1998. Alarm responses to chemical stimuli from damaged conspecifics by larval anurans: tests of three neotropical species. *Herpetologica* 54: 402–408.

Takahara, T., Y. Kohmatsu, A. Maruyama, and R. Yamaoka. 2008. Benefit of suites of defensive behavior induced by predator chemical cues on anuran tadpoles. *Behavioral Ecology and Sociobiology* 63: 235–240.

Van Buskirk, J. V. and A. McCollum. 2000. Influence of tail shape on tadpole swimming performance. *Journal of Experimental Biology* 203: 2449–2458.

Van Buskirk, J. and M. Arioli. 2002. Dosage response of an induced defense: how sensitive are tadpoles to predation risk? *Ecology* 83: 1580–1585.

Wilson, D. J. and H. Lefcort. 1993. The effect of predator diet on the alarm responses of red-legged frog *Rana aurora* tadpoles. *Animal Behaviour* 46: 1017–1019.

Wisenden, B. D. 2000. Olfactory assessment of predation risk in the aquatic environment. *Philosophical Transactions of the Royal Society London B355: 1205–1208.*

Editor: Ross Alford

SHORT COMMUNICATION

Sexual dimorphism of snout–vent length in *Liolaemus nigroviridis* (Squamata: Liolaemidae)

Jorge Mella-Romero,^{1,2} Kathia Arenas-Rodríguez,¹ and Juan Luis Allendes³

¹ Universidad de Chile, Facultad de Ciencias, Laboratorio de Conservación Biológica. Santiago, Chile. E-mail: jorgemella@ug.uchile.cl.

² Universidad de Chile, Facultad de Ciencias, Laboratorio de Ecología y Genética. Santiago, Chile.

³ Programa para la Conservación de los Murciélagos de Chile (PCMCh). Santiago, Chile.

Keywords: Black-green Tree Iguana, Body size, Highlands, Sky island lizard, South America.

Palavras-chave: América do Sul, Iguana-arborícola-verde-e-preta, Lagarto-de-ilha-do-céu, Tamanho do corpo, Terras altas.

Sexual dimorphism in body size exists in many reptile species (see e.g. Olsson *et al.* 2002, Valdecantos *et al.* 2019, Liang *et al.* 2021, Rodríguez-Rodríguez and Calderón-Espinosa 2024). *Liolaemus* Wiegmann, 1834 is the predominant reptile genus in the southern cone of South America, currently comprising at least 289 recognized species (Uetz *et al.* 2024). For several species of the group, it has been described that males are larger than females (see Cabrera *et al.* 2013, Mella 2017). However, for most species in the genus there are no quantitative studies analyzing size differences between males and females (although see Cabrera *et al.* 2013, Maia-Carneiro and Rocha 2013). Usually, snout–vent length (SVL) is one of the most commonly used characteristics for measuring body size in herpetozoans, which is the measurement from the tip of the snout to the posterior margin of the precloacal scales (Breitman *et al.* 2015).

Liolaemus nigroviridis Müller and Hellmich, 1932 is an endemic Chilean lizard inhabiting the sky islands, distributed from the southern Coquimbo Region (30° S) to the northern O’Higgins Region (34° S) (Cianferoni *et al.* 2013, Mella-Romero *et al.* 2023). *Liolaemus nigroviridis* populations inhabit the Coastal and Andean mountain ranges. The highest concentration of records for the species occurs between 2,000 and 2,800 m a.s.l. (Mella-Romero *et al.* 2023). Although *L. nigroviridis* is considered by the IUCN as Least Concern, this species would be facing threats derived from climate and land-use change (Mella-Romero *et al.* 2024a, Mella-Romero *et al.* 2024b, Moya *et al.* 2024). Natural history observations suggest that males of this species are larger and more robust than females (Donoso-Barros 1966, Mella 2017). However, this has not been quantified nor evaluated.

In this context, we hypothesize that there is sexual dimorphism in size in *L. nigroviridis*, with males of the species having a larger SVL than females.

Received 18 April 2024

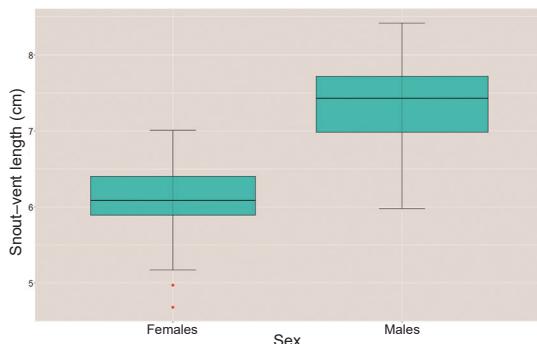
Accepted 04 September 2024

Distributed December 2024

To obtain data and test our hypothesis, we conducted herpetological sampling in the locality of Farellones ($33^{\circ}21'31.75''$ S, $70^{\circ}17'42.40''$ W), in the Andes mountains in the Metropolitan Region of Chile. On 17 December 2022, we captured 98 specimens (47 females and 51 males) of *L. nigroviridis* between 09:15 h and 19:45 h. The area covered by the study was 9 ha. The captures were performed with the permission of the pertinent national agency (SAG, R.E. N° 5116/2022) and followed the protocol authorized by the Institutional Animal Care and Use Committee (Comité Institucional de Uso y Cuidado de Animales; CICUA) of the University of Chile (Certificado N° 22605-FCS-UCH).

We considered only adult specimens (juveniles were discarded and released). Juveniles were identified by (i) head length < 13 mm (Fuentes 1976), (ii) greyish-brown tone (without greenish scales), and (iii) presence of a discontinuous vertebral line (Donoso-Barros 1966, Mella 2017). We identified adult females and males of *L. nigroviridis* by the shape of the cloaca (rounded in females, square in males), and by the presence of precloacal pores, which are present in males and absent in females (Ruiz de Gamboa 2021). For each individual, we recorded its SVL using a digital caliper (Stainless Hardened, 0.01 mm) (Breitman *et al.* 2015). Measurements were always made by one specialist (JM-R). The lizards were retained in individual cloth bags until all measurements were completed. After the measurements had been taken, *L. nigroviridis* individuals were released at the same capture site.

To determine if there are differences in body size between females and males of *L. nigroviridis* using SVL, we performed data characterization by analyzing the assumptions of normality and homoscedasticity of both data sets (Cabrera *et al.* 2013). Since the distribution of the data for female lizards differed from a normal distribution ($p < 0.05$) and complied with the homoscedasticity principle ($p > 0.05$), we applied the Mann-Whitney U test for differences between two data sets (females and males) for nonparametric data,


with the subsequent power test of the analysis. We selected a non-parametric test over data transformation since the distribution and categorization of our data fit the requirements of the Mann-Whitney U test (Conover 1999, Newbold *et al.* 2013). To perform the statistical analysis and elaborate the figures shown below, we used the software RStudio version 3.4.1 (Wickman 2016).

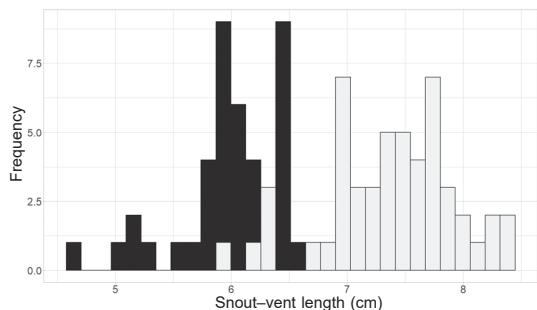
We found significant differences in SVL between females and males ($W = 2283$; $p < 0.001$) with a statistical power of 0.69 ($d = 0.5$; $p = 0.05$). Females had a mean SVL of 6.07 ± 0.49 cm (SD) with a higher frequency of data between 6.1 and 6.4 cm (min. 4.68 cm; max. 7.01 cm). For males, the mean SVL was 7.37 ± 0.56 cm (SD) with a higher frequency of data between 7.0 and 7.7 cm (min. 5.98 cm; max. 8.42 cm) (Figures 1 and 2). Females had a median of 6.08 cm, and males had a median of 7.43 cm (Figures 1 and 2).

We corroborated our hypothesis of sexual size dimorphism in *L. nigroviridis*, with males of the species having a higher SVL than females.

For some species of the genus *Liolaemus*, it is assumed that males are larger and more robust than females (see Mella 2017). Some studies report SVL, but do not analyze whether this characteristic shows sexual dimorphism (e.g. Campos-Soto *et al.* 2023). Of the studies that analyzed this variable, some do not find differences between females and males (e.g. Mella *et al.* 2023), while others do (e.g. Cabrera *et al.* 2013, Maia-Carneiro and Rocha 2013, Villamil *et al.* 2017). When sexual size dimorphism occurs in *Liolaemus*, there are cases in which males are larger, while in other cases, females are larger (Valdecantos *et al.* 2021). For example, in Cabrera *et al.* (2013), 22 species of *Liolaemus* were analyzed for sexual dimorphism in body size. In 16 of the 22 species, males were larger, while females were the larger sex in only six species. Our results showed that in *L. nigroviridis* males are significantly larger than females.

Sexual dimorphism in body size in species of lizards would be related, in ecological terms, to intra and intersexual selection (Carothers 1984,

Figure 1. Snout-vent length for females and males of *Liolaemus nigroviridis*. Red dots indicate outliers. The horizontal black line in the boxplots indicates the mean.


Olsson *et al.* 2002). Thus, males would be larger because this favors them in aggressive encounters with other males or because larger males are better evaluated by females (Carothers 1984, Carothers *et al.* 1998, Cabrera *et al.* 2013). Since males of *L. nigroviridis* are territorial (see Carothers 1987), it is very likely that having a large body size is useful in intrasexual fights and territorial vigilance, which would provide an ecological explanation for the larger body size of males in the species (Valdecantos *et al.* 2021). Although intersexual selection (e.g. courtships by the males involving physical displays;

Dunham and Wilczynski 2014) could be another explanation for sexual size dimorphism in *L. nigroviridis*, this has not been studied.

We should mention that in *Liolaemus* the SVL would not be the only characteristic of the males proposed as a subject of sexual selection, but also the head size (Vanhooydonck *et al.* 2010, Cabrera *et al.* 2013), both having relation with advantages in the territorial encounters between males (Valdecantos *et al.* 2021).

We consider that the relationship between male body size and intra or intersexual selection is an interesting avenue to investigate to answer ecological questions about *Liolaemus* species. Studies such as this one offer quantitative support to natural history observations and fill information gaps about these lizards, which constitute the most diverse reptile genus in the southern cone of South America.

Acknowledgments.—J.M.-R. thanks to ANID; CONICYT-PCHA, Doctorado Nacional/2019-21190472 for financing his postgraduate studies. K.A.-R. thanks to ANID; Magister Nacional 2023/ 22231399 for financing her postgraduate studies. J.M.-R. thanks to F. Moya, L. Alquinta, J. Mella, and P. Lamilla for their support in the fieldworks related to his doctoral thesis. We also thank Servicio Agrícola y Ganadero for the capture permit R.E. N° 5116/2022. We are especially grateful to S. Sparks and two reviewers, for their comments on the original version that optimized the manuscript.

Figure 2. Frequencies of snout-vent length data for females (black bars) and males (white bars) of *Liolaemus nigroviridis*.

References

Breitman, M. F., M. F. Bonino, J. W. Sites Jr., L. J. Avila, M. Morando. 2015. Morphological variation, niche divergence, and phylogeography of lizards of the *Liolaemus lineomaculatus* section (Liolaemini) from southern Patagonia. *Herpetological Monographs* 29: 65–88.

Cabrera, M. P., G. J. Scrocchi, and F. B. Cruz. 2013. Sexual size dimorphism and allometry in *Liolaemus* of the *L. laurenti* group (Sauria: Liolaemidae): morphologic lability in a clade of lizards with different reproductive modes. *Zoologischer Anzeiger* 252: 299–306.

Campos-Soto, R., E. Rodríguez-Valenzuela, Y. Bruna, G. Díaz-Campusano, F. Cianferoni, D. Boric-Bargetto, and F. Torres-Pérez. 2023. Phylogenetic analyses of lizards from the Chilean Humboldt Archipelago reveal a new species for the Chañaral Island (Squamata: Liolaemidae). *Animals* 13: 3576.

Carothers, J. H. 1984. Sexual selection and sexual dimorphism in some herbivorous lizards. *American Naturalist* 124: 244–254.

Carothers, J. H. 1987. Aspects of the ecology of lizards in the genus *Liolaemus* in the central Chilean cordillera. Unpublished PhD. Thesis. University of California, USA.

Carothers, J. H., P. A. Marquet, and F. M. Jaksic. 1998. Thermal ecology of a *Liolaemus* lizard assemblage along an Andean altitudinal gradient in Chile. *Revista Chilena de Historia Natural* 71: 39–50.

Cianferoni, F., R. P. Yáñez, R. E. Palma, C. F. Garín, F. Torres-Pérez. 2013. Deep divergences within *Liolaemus nigroviridis* (Squamata, Liolaemidae) lineages associated with sky islands in central Chile. *Zootaxa* 3619: 59–69.

Conover, W. J. (ed.). 1999. *Practical Nonparametric Statistics*. New York. John Wiley & Sons. 608 pp.

Donoso-Barros, R. (ed.). 1966. *Reptiles de Chile*. Santiago. Ediciones de la Universidad de Chile. 458 pp.

Dunham, L. A. and W. Wilczynski. 2014. Arginine vasotocin, steroid hormones and social behavior in the green anole lizard (*Anolis carolinensis*). *Journal of Experimental Biology* 217: 3670–3676.

Fuentes, E. R. 1976. Ecological convergence of lizard communities in Chile and California. *Ecology* 57: 3–17.

Liang, T., L. Shi, G. Bempah, and C. H. Lu. 2021. Sexual size dimorphism and its allometry in Chinese lizards. *Evolutionary Ecology* 35: 323–335.

Maia-Carneiro, T. and C. F. D. Rocha. 2013. Influences of sex, ontogeny and body size on the thermal ecology of *Liolaemus lutzae* (Squamata, Liolaemidae) in a restinga remnant in southeastern Brazil. *Journal of Thermal Biology* 38: 41–46.

Mella, J. (ed.). 2017. *Guía de Campo de Reptiles de Chile, Tomo 1: Zona Central*. Santiago. Ediciones Peñaloza APG. 308 pp.

Mella, J., J. Mella-Romero, F. Reyes, C. Muñoz, and F. Rojas-Araos. 2023. *Liolaemus morandae* Breitman, Parra, Pérez and Sites, 2011 (Iguania: Liolaemidae), nueva especie para Chile: evidencias merísticas, morfológicas y distribucionales. *Boletín del Museo Nacional de Historia Natural* 72: 5–33.

Mella-Romero, J., J. Mella, D. Véliz, and J. A. Simonetti. 2023. Análisis de registros históricos y distribución actualizada de *Liolaemus nigroviridis* Müller and Hellmich 1932 (Squamata, Liolaemidae). *Boletín del Museo Nacional de Historia Natural* 72: 1–12.

Mella-Romero, J., S. Maya-Miranda, D. Véliz, and J. A. Simonetti. 2024a. Assessing the vulnerability of a sky island lizard to climate and land-use change. *Herpetozoa* 37: 257–267.

Mella-Romero, J., S. Maya-Miranda, D. Véliz, C. Veloso, and J. A. Simonetti. 2024b. Thermal response of a sky island lizard to climate change. *Studies on Neotropical Fauna and Environment*: 1–12.

Moya, F., J. Mella-Romero, and J. A. Simonetti. 2024. Anthropization in the Andes: habitat use and selection of *Liolaemus nigroviridis* Müller and Hellmich 1932 (Squamata, Liolaemidae). *Studies on Neotropical Fauna and Environment*: 1–8.

Newbold, P., W. L. Carlson, and B. M. Thorne. (eds). 2013. *Statistics for Business and Economics*. London. Pearson. 800 pp.

Olsson, M., R. Shine, E. Wapstra, B. Ujvari, and T. Madsen. 2002. Sexual dimorphism in lizard body shape. The roles of sexual selection and fecundity selection. *Evolution* 56: 1538–1542.

Rodríguez-Rodríguez, J. D. and M. L. Calderón-Espinosa. 2024. Sexual dimorphism and female ecomorphology in *Anolis* (Squamata: Anolidae): knowledge of female morphology increases the understanding of *Anolis* diversification. *Biological Journal of the Linnean Society*: blae019.

Ruiz de Gamboa, M. 2021. *Liolaemus nigroviridis*. Pp. 262–263 in C. S. Abdala, A. Laspur, G. Scrocchi, R. Semhan, F. Lobo, and P. Valladares (eds.), *Las Lagartijas de la Familia Liolaemidae. Sistemática, Distribución e Historia Natural de Una de Las Familias de Vertebrados Más Diversa del Cono Sur de Sudamérica*. Vol. 1. Santiago. RIL Editores-Universidad de Tarapacá.

Uetz, P., P. Freed, R. Aguilar, F. Reyes, J. Kudera, and J. Hošek. (eds.). 2024. The Reptile Database, Genus: *Liolaemus*. Electronic Database accessible at https://reptile-database.reptarium.cz/advanced_search?genus=liolaemus&submit=Search. Captured on 03 June 2024.

Valdecantos, S., F. Lobo, M. G. Perotti, D. L. M. Azócar, and F. B. Cruz. 2019. Sexual size dimorphism, allometry and fecundity in a lineage of South American viviparous lizards (Liolaemidae: *Phymaturus*). *Zoologischer Anzeiger* 279: 152–163.

Valdecantos, S., F. Lobo, and F. B. Cruz. 2021. Dimorfismo sexual en Liolaemidae: dónde vemos las diferencias entre los sexos. Pp. 337–340 in C. S. Abdala, A. Laspur, G. Scrocchi, R. Semhan, F. Lobo, and P. Valladares (eds.), *Las Lagartijas de La Familia Liolaemidae. Sistemática, Distribución e Historia Natural de Una de Las Familias de Vertebrados Más Diversa del Cono Sur de Sudamérica. Vol. 1.* Santiago. RIL Editores-Universidad de Tarapacá.

Vanhooydonck, B., F. B. Cruz, C. S. Abdala, D. L. M. Azócar, M. F. Bonino, and A. Herrel. 2010. Sex-specific evolution of bite performance in *Liolaemus* lizards (Iguania: Liolaemidae): the battle of the sexes. *Biological Journal of the Linnean Society* 101: 461–475.

Villamil, J., A. Camargo, and R. Maneyro. 2017. Morphological variation and sexual dimorphism in *Liolaemus wiegmannii* (Duméril & Bibron, 1837) (Squamata: Liolaemidae) from Uruguay. *Acta Herpetologica* 12: 3–17.

Wickham, H. (ed.). 2016. *ggplot2: Elegant Graphics for Data Analysis*. New York. Springer-Verlag. 260 pp.

Editor: Jaime Bertoluci

SHORT COMMUNICATION

An observation on the diving behavior of *Cyrtodactylus consobrinus* (Squamata: Gekkonidae) from Borneo

Hao-Sen Chen,^{1,2} Ace Kevin S. Amarga^{1,4}, Yu-Sing Lin,¹ Chin-Chia Shen,¹ Indraneil Das,³ and Si-Min Lin^{1,4}

¹ National Taiwan Normal University, School of Life Science. Wenshan District, Taipei 11677, Taiwan. E-mail: lizard.dna@gmail.com.

² Formosan Wild Sound Conservation Science Center, Miaoli County, Taiwan.

³ Universiti Malaysia Sarawak, Institute of Biodiversity and Environmental Conservation. 94300 Kota Samarahan, Sarawak, Malaysia

⁴ Academia Sinica, Biodiversity Research Center, Taiwan International Graduate Program, Biodiversity Program. Nangang District, Taipei 11529, Taiwan. E-mail: ace_amarga061@yahoo.com.

Keywords: Escape strategy, Lizard, Peters' Bow-fingered Gecko, Riparian.

Palavras-chave: Comportamento de mergulho, Estratégia de fuga, Lagartixa-de-dedos-ardeados-de-peter, Ripário.

Cyrtodactylus consobrinus (Peters, 1871) is a forest-inhabiting gekkonid endemic to Southeast Asia. It has been known to occur in Peninsular Malaysia, extending to Sumatra, Pulau Sinape and Borneo (Das 2010, Uetz *et al.* 2024), while a recent study restricted the species to western Borneo (Davis *et al.* 2023a, b), where it inhabits lowland forests and often observed foraging on tree trunks (Das 2010). This species was described under the name *Gymnodactylus consobrinus* by the German naturalist Wilhelm Karl Hartwich Peters (1815–1883), based on a single specimen collected from Sarawak, currently a Malaysian state on the island of

Borneo (Peters 1871). Subsequently, it was listed under the genus *Cyrtodactylus* by Grandison (1972). Little is known about several aspects of the natural history of *C. consobrinus*, including its behavior. In this paper, we present an additional account on the anti-predator behavioral response of *C. consobrinus*.

During a field trip on 13 August 2024 in Kubah National Park (Kuching, Sarawak, Malaysia, which lies within the type locality of the species, the Matang Range), an adult *C. consobrinus* was observed resting on rock boulder at the riparian zone at 20:06 h. As the authors approached, the gecko instinctively dived into the stream and stayed underwater at a depth of 30–40 cm. The gecko was observed hiding its head on the small rock and stayed submerged for about three minutes (Figure 1). Short video clips of this observation were

Received 11 September 2024

Accepted 25 October 2024

Distributed December 2024

Figure 1. Adult *Cyrtodactylus consobrinus* submerged underwater to escape a perceived threat (yellow arrow) (Photo H.-S. Chen).

deposited as video vouchers to the Zoological Reference Collection, Lee Kong Chian Natural History Museum, National University of Singapore: ZRC (IMG) 2.685a and ZRC (IMG) 2.685b.

Diverse anti-predatory behaviors and strategies have been long reported across different vertebrate taxa as mechanisms to avoid detection, give warning to the group, and/or escape predators in active pursuit (Magurran 1990, Caro 2014, Saavedra and Amo 2020, Hernández-Palma *et al.* 2023, James *et al.* 2023). In squamate reptiles, active and passive defense traits include mimicry, aposematic displays, caudal autotomy, thanatosis, agony vocalization, and rapid locomotory escape (Cooper *et al.* 2004, Labra *et al.* 2013, Fuentes *et al.* 2021, Miranda *et al.* 2022, Kojima *et al.* 2024). Some lizard species have been recorded to utilize aquatic environment as temporary refugium to escape from predators. These semi-aquatic species, such as *Anolis aquaticus* Taylor, 1956 (Dactyloidae) and *Potamites erythrocularis* Chávez and Catenazzi, 2014 (Gymnophthalmidae), tend to dive underwater and can stay for a relatively long duration before surfacing (Arrivillaga and Quinkert 2019, Swierk 2019, Martin *et al.* 2024). Hare and Miller (2009)

tested the usefulness of diving as a measure of performance in *Oligosoma smithi* (Gray, 1845) and suggested that submergence in water was for foraging and/or escape predators. The agamid *Gonocephalus grandis* (Gray, 1845) has been reported to dive into waterbodies. This was observed by Malkmus *et al.* (2022), where *G. grandis* leaped into waterbodies when it sensed danger. Manthey and Schuster (1996) reported juveniles and females of *G. grandis* as often are found by and in water. In addition, an adult male of *G. grandis*, initially observed on a tree branch overhanging a hill stream, was observed to dive into the water at Nanga Ulai, near Betong, Sri Aman Division, Sarawak. It remained underwater for over five minutes and was thereafter collected (ZRC 2.4941).

Diving behavior as strategy for predator escape is uncommon and rarely observed and documented in the wild on non-aquatic/ non-riparian group such as gekkonids. Our observation represents the first published documentation of diving behavior as predator escape strategy of *C. consobrinus*. Earlier account on diving behavior in gekkonids as an attempt to escape predator was observed in *Cnemaspis affinis* (Stolickza, 1870) (reported as *Gonatodes affinis*), wherein Annandale (1905) reported this phenomenon based on his field observation of *C. affinis* from Peninsular Malaysia. In his account, *C. affinis* have been observed frequently slipping and subsequently submerged on water accumulated in hollow areas of tree trunks and remained submerged for a few minutes. Similarly, this behavior was also reported for *Cyrtodactylus majulah* Grismer, Wood, and Lim, 2012 (Singapore Bent-toed Gecko) from the Central Catchment Nature Reserve in Singapore (Groenewoud 2015). This species is known to inhabit the lowland secondary forests with small streams in Singapore and the Riau Archipelago of Indonesia (Grismer *et al.* 2012). In addition, *C. patiensis* Grismer, Chan, Grismer, Wood, and Belabut, 2008 (Panti Mountain Bent-toed Gecko) have

been reported by Grismer (2011) to have an escape strategy similar to *C. consobrinus* and *C. majulah*, wherein they jump into streams and run fast on the surface to evade capture.

Diving underwater as an escape strategy against predators is rare in gekkonids and merits further documentation, especially within the genus *Cyrtodactylus*. In addition, it is also interesting to investigate the duration of submergence and relative lung capacity across *Cyrtodactylus* species capable of this strategy.

Acknowledgments.—We thank Bruce Teo for company and assistance in the field; and to Kelvin K.P. Lim (National University of Singapore) for archiving our video documentation and providing us the video voucher number. ID thanks the Sarawak Forestry Corporation for permission to access an area under their jurisdiction, and the Institute of Biodiversity and Environmental Conservation, Universiti Malaysia Sarawak, and a Niche Research Grant from the Ministry of Higher Education, Government of Malaysia (NRGS/1087/2013(01)) for support.

References

Annandale, N. 1905. Notes on some Oriental geckos in the Indian Museum, Calcutta, with descriptions of new forms. *Annals & Magazine of Natural History* 15: 26–32.

Arrivillaga, C. and B. Quinkert. 2019. Observations on the diving behaviour and defensive strategies of the endemic, semi-aquatic lizard *Potamites erythrocularis* (Squamata: Gymnophthalmidae). *Herpetological Bulletin* 148: 45–46.

Caro, T. 2014. Antipredator deception in terrestrial vertebrates. *Current Zoology* 60: 16–25.

Cooper, W. E., V. Pérez-Mellado, and L. J. Vitt. 2004. Ease and effectiveness of costly autotomy vary with predation intensity among lizard populations. *Journal of Zoology* 262: 243–255.

Das, I. 2010. *A Field Guide to the Reptiles of South-east Asia*. London. New Holland Publishers (UK) Ltd. 376 pp.

Davis, H. R., I. Nashriq, K. S. Woytek, S. A. Wikramanayake, A. M. Bauer, B. R. Karin, I. G. Brennan, D. Iskandar, and I. Das. 2023a. Genomic analysis of Bornean geckos (Gekkonidae: *Cyrtodactylus*) reveals need for updated taxonomy. *Zoologica Scripta* 52: 249–263.

Davis, H. R., I. Nashriq, K. S. Woytek, S. A. Wikramanayake, A. M. Bauer, B. R. Karin, I. G. Brennan, D. T. Iskandar, and I. Das. 2023b. Redescription of two gekkonid lizard species of the *Cyrtodactylus consobrinus* (Peters, 1871) complex with comments on online supplementary material. *Bionomina* 35: 9–19.

Fuentes, R., M. Castillo, E. Belton, E. Zambrano, H. Quintero, and A. Batista. 2021. Dead snake! A strategy for survival: Thanatos in some Panamanian snakes with a review of death-feigning in American snakes. *Reptiles & Amphibians* 28: 389–398.

Grandison, A. G. C. 1972. The Gunong Benom Expedition 1967. 5. Reptiles and amphibians of Gunong Benom with a description of a new species of *Macrocalamus*. *Bulletin of the British Museum of Natural History (Zoology)* 23: 45–101.

Grismer, L. L. 2011. *Lizards of Peninsular Malaysia, Singapore, and their Adjacent Archipelago. Their Description, Distribution, and Natural History*. Frankfurt. Edition Chimaira. 728 pp.

Grismer, L. L., P. L. Wood Jr., and K. K. P. Lim. 2012. *Cyrtodactylus majulah*, a new species of Bent-toed Gecko (Reptilia: Squamata: Gekkonidae) from Singapore and the Riau archipelago. *Raffles Bulletin of Zoology* 60: 487–499.

Groenewoud, D. 2015. Singapore bent-toed gecko swimming underwater. *Singapore Biodiversity Records* 2015: 42.

Hare, K. M. and K. A. Miller. 2009. What dives beneath: diving as a measure of performance in lizards. *Herpetologica* 65: 227–236.

Hernández-Palma, T. L., L. A. Rueda-Solano, J. K. Valkonen, and B. Rojas. 2023. Predator response to the coloured eyespots and defensive posture of Colombian four-eyed frogs. *Journal of Evolutionary Biology* 36: 1040–1049.

James, F. R., C. I. Okafor, S. T. Osinubi, S. A. Manu, S. Ivande, and T. C. Omotoriogun. 2023. Antipredatory call behavior of lapwing species in an Afrotropical environment. *Avian Research* 14: 100137.

Kojima, Y., R. K. Ito, I. Fukuyama, Y. Ohkubo, and A. M. Durso. 2024. Foraging predicts the evolution of warning coloration and mimicry in snakes. *Proceedings of the National Academy of Sciences, USA* 121: e2318857121.

Labra, A., G. Silva, F. Norambuena, N. Velásquez, and M. Penna. 2013. Acoustic features of the weeping lizard's distress call. *Copeia* 2013: 206–212.

Magurran, A. E. 1990. The adaptive significance of schooling as an anti-predator defence in fish. *Annales Zoologici Fennici* 27: 51–66.

Malkmus, R., U. Manthey, G. Vogel, P. Hoffmann, and J. Kosuch. 2002. *Amphibians & reptiles of Mount Kinabalu (North Borneo)*. Königstein. Koeltz Scientific Books. 424 pp.

Manthey, U. and N. Schuster. 1996. *Agamid Lizards*. Neptune City. T. F. H. Publications. 189 pp.

Martin, A. M., C. K. Boccia, and L. Swierk. 2024. Diving behavior in semi-aquatic *Anolis* lizards results in heat loss with sex-specific cooling tolerance. *Behavioral Ecology and Sociobiology* 78: 33.

Miranda, R. B., J. Klaczko, J. F. R. Tonini, and R. A. Brandão. 2022. Escaping from predators: a review of Neotropical lizards defence traits. *Ethology, Ecology and Evolution* 35: 377–407.

Peters, W. 1871. Über neue Reptilien aus Ostafrika und Sarawak (Borneo), vorzüglich aus der Sammlung des Hrn. Marquis J. Doria zu Genua. *Monatsberichte der Königlich Preussischen Akademie der Wissenschaften zu Berlin* 1871: 566–581.

Saavedra, I. and L. Amo. 2020. The importance of chemical, visual and behavioral cues of predators on the antipredatory behavior of birds. *Journal of Avian Biology* 2020: e02431.

Swierk, L. 2019. *Anolis aquaticus* (= *Norops aquaticus*) (Water anole). Underwater breathing. *Herpetological Review* 50: 134–135.

Uetz, P., P. Freed, R. Aguilar, F. Reyes, and J. Hošek (eds.). 2024. The Reptile Database. <https://reptile-database.reptarium.cz>. Captured on 13 August 2024.

Editor: Jaime Bertoluci

SHORT COMMUNICATION

Spawning site plasticity in *Cycloramphus boraceiensis* (Anura: Cycloramphidae)

Lucas Machado Botelho,¹ Vanessa Kruth Verdade,² Luís Felipe Toledo,³ and Edelcio Muscat¹

¹ Projeto Daenix. Estrada do Rio Escuro, 4754. 11680-000, Ubatuba, SP, Brazil. E-mails: lucasbotelho77@gmail.com; edelciomuscat@terra.com.br.

² Universidade Federal do ABC, Centro de Ciências Naturais e Humanas (CCNH), Laboratório de Evolução e Diversidade (LED). 09280-560, Santo André, SP, Brazil. E-mail: vverdade@gmail.com.

³ Universidade Estadual de Campinas, Instituto de Biologia, Departamento de Biologia Animal, Laboratório de História Natural de Anfíbios Brasileiros (LaHNAB). 13083-970, Campinas, SP, Brazil. E-mail: toledosapo@gmail.com.

Keywords: Amphibians, Atlantic Forest, Brazil, Natural history, Reproductive mode, Rocky streams, Tadpoles.

Palavras-chave: Anfíbios, Brasil, Girinos, História natural, Mata Atlântica, Modo reprodutivo, Riachos rochosos.

Reproductive biology is likely the most studied subject in amphibian natural history (e.g., Womack *et al.* 2022). In part, this observation is explained by the conspicuous and easy-to-observe breeding behavior of amphibians, but also because a standardized classification system exists for amphibian reproductive modes (recently reviewed by Nunes-de-Almeida *et al.* 2021). This classification lists 74 reproductive modes (RM) for amphibians, and 71 RM for anurans (Nunes-de-Almeida *et al.* 2021). Based on the variation in the number of RM proposed by different authors (e.g., Duellman and Trueb 1986, Haddad and Prado 2005, Nunes-de-Almeida *et al.* 2021), it is clear that given the diversity of reproductive strategies, more information will be valuable.

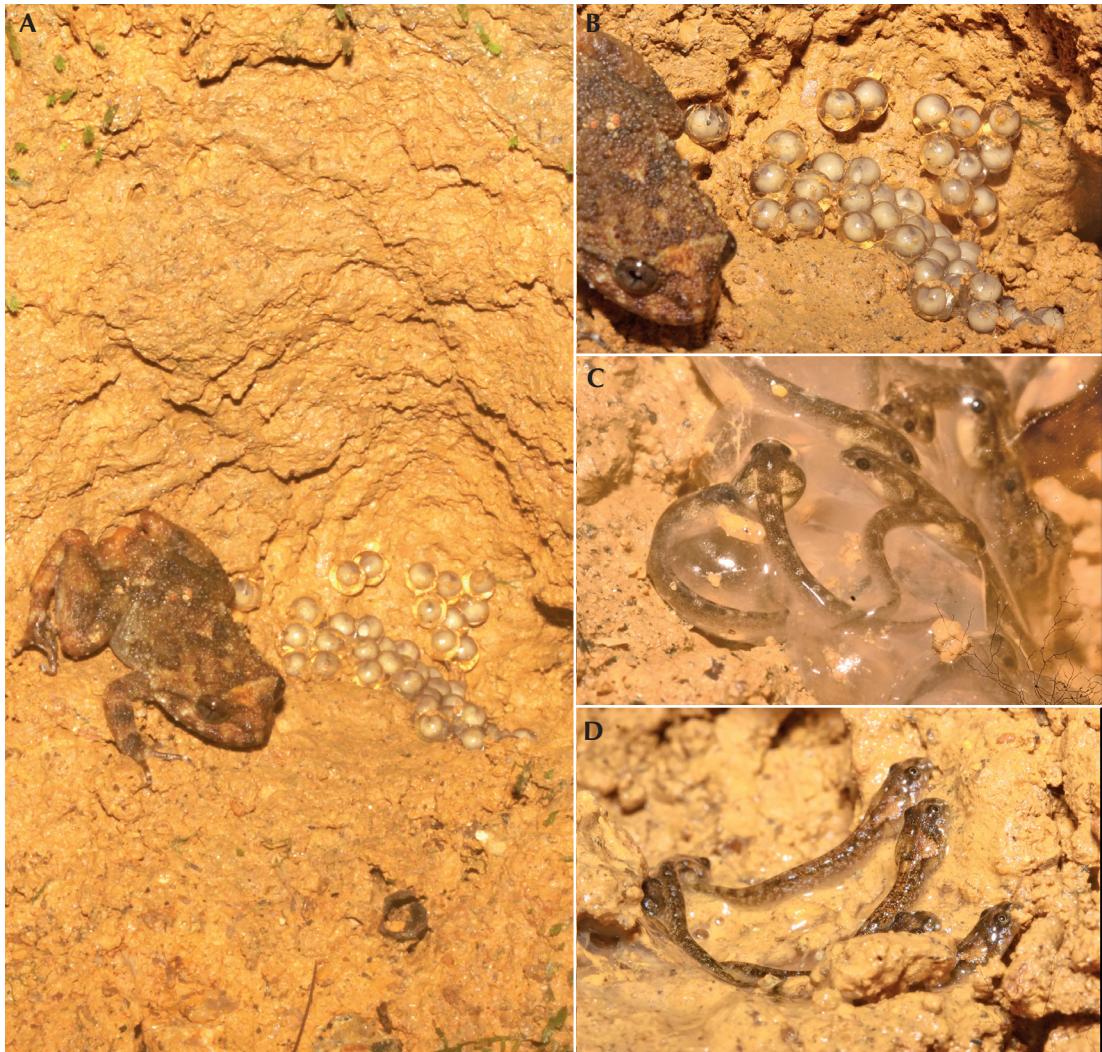
The reproductive strategies of species in the genus *Cycloramphus* Tschudi, 1838 roughly fall into two categories: terrestrial, in which tadpoles are nidicolous (Lutz 1944, Heyer and Crombie 1979, Almeida-Silva *et al.* 2019, Verdade *et al.* 2023) or semi-terrestrial, in which tadpoles are saxicolous, exotrophic, and mostly associated with streams (Heyer 1983a,b, Haddad and Sazima 1989, Lima *et al.* 2010, Silva and Overnay 2012, Nunes-de-Almeida *et al.* 2016, Verdade *et al.* 2019). Terrestrial reproduction has evolved independently multiple times from saxicolous species according to the phylogeny of the genus (Sá *et al.* 2020). Variation observed in the reproduction of saxicolous species are classified under RM 17, in which females lay eggs on humid rock surfaces or inside rock crevices above the water in streams, and RM 19 for *Cycloramphus dubius* (Miranda-Ribeiro, 1920), in which eggs are deposited on wet rocks or between roots at the edges or within streams, according to Nunes-de-Almeida *et al.* (2021).

Received 19 June 2024

Accepted 09 August 2024

Distributed December 2024

The semi-terrestrial tadpoles of *Cycloramphus* spp. were thought to have restricted microhabitats, but recent observations in the field (e.g., *C. boraceiensis* Heyer, 1983; Pedrozo *et al.* 2024) and in captivity (e.g., *C. bandeirensis*; Verdade *et al.* 2019) have expanded our knowledge of their microhabitats and other features. Egg site deposition, development, and diet of *Cycloramphus* tadpoles are more variable than once thought. Egg masses of saxicolous species of *Cycloramphus* have been found on humid rocks, or more rarely, on plant stems near the splash zone of waterfalls within streams. We present herein natural history observations made in the field that increase our knowledge of variation of spawning sites of *C. boraceiensis*.


We conducted observations in the Projeto Dacnis private reserve, an area of 136 ha located within lowland Atlantic Forest in the municipality of Ubatuba, state of São Paulo, Southeastern Brazil (23°27'46" S, 45°07'58" W; WGS-84; 15–500 m a.s.l.). The region is characterized by paludal forests (patches of forests with waterlogged soil) in lowland areas and patches of primary and secondary dry forests on steep terrain. Climate in the region is classified as humid subtropical without distinct seasonality (Rolim *et al.* 2007). In 14 years monitoring the area, we found two saxicolous species in forest streams: *Thoropa taophora* (Miranda-Ribeiro, 1923) and *C. boraceiensis*, both with semi-terrestrial tadpoles that can be diagnosed by differences in body shape, position of eyes, and color pattern (Heyer *et al.* 1990, Moura *et al.* 2019, Colaço *et al.* 2021).

We monitored three spawning events, one in a cavity in the soil (Figure 1A–D) and two in a hole in a liana stem (Figure 2A–B). We encountered the first mass of eggs of *C. boraceiensis* on 13 October 2015 and observed the development of the embryos in three visits over two weeks. Forty eggs were laid on soil in a dry cavity in a vertical ravine 2 m from the stream. An adult male was observed near the clutch (Figure 1B). After six days, the larvae remained in the egg capsules but with visible

eyes and body pigmentation (Figure 1C). After another six days, the tadpoles were well developed, moving among the gelatinous mass from the empty egg capsules (Figure 1D). Following a heavy rain on 28 October 2015, neither the eggs, tadpoles, nor the adult male were seen at the spawning site, having been washed away.

On 4 May 2023, we observed a second egg mass of *C. boraceiensis* inside a hole in a liana stem that was hanging approximately 30 cm above a dripping rocky wall. The spawning site was kept consistently humid by a small trickle of water running down the liana and by spray from a nearby small waterfall. We counted 36 eggs at a very early stage of development (Figure 2B). We visited the site another three times. On 8 May 2023, we observed eye pigmentation and the emergence of gills on the embryos inside the egg capsules (Figure 2C). After 7 days, free-living tadpoles were clustered inside the liana hole (Figure 2D), and from 19 May 2023 onward tadpoles were found on the rocky wall below the liana stem (Figure 2E). An adult *C. boraceiensis* remained close to the spawning site inside a small crevice on the rocky wall throughout the observation period. Seven months later, on 14 December 2023, another egg mass was located in the same liana hole, again with an adult nearby. Unfortunately, we were unable to determine if it was the same frog observed in May. Site fidelity is a possibility in stream-associated *Cycloramphus* spp., as high quality reproductive sites may be a limiting resource.

Our observations are the first to describe an egg mass of a saxicolous stream-associated species of *Cycloramphus* in a dry cavity on soil away from wet rocks or the splash zone of a waterfall. Our observations of spawning on the stems of lianas confirm those reported for *C. boraceiensis* (Pedrozo *et al.* 2024). Based on the current reproductive mode classification system of Nunes-de-Almeida *et al.* (2021), *C. boraceiensis* would be categorized in RM 17 (for saxicolous species of the genus), RM 19 (previously known only for *C. dubius*), and RM

Figure 1. (A) Egg mass of *Cycloramphus boraceiensis* in a permanently dry ravine cavity; (B) a male guarding eggs in an early stage of development; (C) larvae with visible eyes and body pigmentation; (D) hatched tadpoles still in the gelatinous mucus inside the ravine cavity.

32 (reported here for the first time) by depositing eggs in dry cavities on soil.

Our observations expand those of Pedrozo *et al.* (2024) on the use of humid cavities in the soil at the steep edges of streams for reproduction in *C. boraceiensis*. The plasticity in spawning sites observed in *C. boraceiensis*

indicates how little we know about the requirements associated with high quality sites for reproduction, and how the limitation of this resource could lead to differential survivorship of eggs and tadpoles. Understanding selective pressures induced by humidity levels, risk of displacement by heavy rainfall, and effective

Figure 2. (A) Egg mass of *Cycloramphus boraceiensis* within a consistently humid vine hole situated above a rock wall with a continuous water layer; (B) an egg mass with embryos at an early stage; (C) larvae with ocular pigmentation and gills; (D) hatched tadpoles still within the liana cavity; (E) tadpoles adhered to the rocky wall.

parental care are crucial to understanding the evolution of terrestrial reproduction in the genus. The future of populations of *Cycloramphus* spp. may include a scenario of climate change that may affect rainfall volume and periodicity.

Acknowledgments.—We would like to thank Elsie Laura Rotenberg for the final review of the text. Ariovaldo A. Giaretta, Geoff Smith, and anonymous reviewers provided comments on earlier versions of the manuscript. Grants and fellowships were provided by São Paulo Research Foundation (FAPESP #2022/11096-8) and the National Council for Scientific and Technological Development (CNPq #302834/2020-6).

References

Almeida-Silva, D., V. C. O. Rochas-Barros, R. B. Ferreira, and V. K. Verdade. 2019. The tadpole of *Zachaenius carvalhoi* Izecksohn, 1983 (Anura: Cycloramphidae). *Zootaxa* 4668: 145–147.

Colaço, G., M. Batista, G. Limp, and H. R. Silva. 2021. The tadpole of an insular population of *Cycloramphus boraceiensis* Heyer, 1983 (Anura: Cycloramphidae) with a review of larval descriptions for species in the genus. *Papéis Avulsos de Zoologia* 61: 1–11.

Duellman, W. E. and L. Trueb. 1986. *Biology of Amphibians*. New York. McGraw-Hill Book Co. 670 pp.

Haddad, C. F. B. and C. P. A. Prado. 2005. Reproductive modes in frogs and their unexpected diversity in the Atlantic Forest of Brazil. *BioScience* 55: 207–217.

Haddad, C. F. B. and I. Sazima. 1989. A new species of *Cycloramphus* from Southeastern Brazil (Amphibia: Leptodactylidae). *Herpetologica* 45: 425–429.

Heyer, W. R. 1983a. Variation and systematics of frogs of the genus *Cycloramphus* (Amphibia, Leptodactylidae). *Arquivos de Zoologia* 30: 235–339.

Heyer, W. R. 1983b. Notes on the frog genus *Cycloramphus* (Amphibia: Leptodactylidae) with descriptions of two new species. *Proceedings of the Biological Society of Washington* 96: 548–559.

Heyer, W. R. and R. I. Crombie. 1979. Natural history notes on *Craspedoglossa stejnegeri* and *Thoropa petropolitana* (Amphibia: Salientia, Leptodactylidae). *Journal of the Washington Academy of Sciences* 69: 17–20.

Heyer, W. R., A. S. Rand, C. A. G. Cruz, O. L. Peixoto, and C. E. Nelson. 1990. Frogs of Boracéia. *Arquivos de Zoologia* 31: 231–410.

Lima, A. M., M. V. Garey, R. B. Nolet, and V. K. Verdade. 2010. Natural history of the Lutz's Frog *Cycloramphus lutzorum* Heyer, 1983 (Anura: Cycloramphidae) in the Brazilian Atlantic Forest: description of the advertisement call, tadpole, and karyotype. *Journal of Herpetology* 44: 360–371.

Lutz, B. 1944. Biologia e taxonomia de *Zachaenius parvulus*. *Boletim do Museu Nacional Zoologia, Nova Série, Zoologia* 17: 1–65.

Moura, P. H. A. G., S. R. Alves Jr., D. G. S. Sousa, C. N. Correa, and I. Nunes. 2019. Redescription of the tadpole of *Thoropa taophora* (Miranda-Ribeiro) (Anura: Cycloramphidae). *Zootaxa* 4656: 397–400.

Nunes-de-Almeida, C. H. L., K. R. Zamudio, and L. F. Toledo. 2016. The semiterrestrial tadpole of *Cycloramphus rhyakonastes* Heyer, 1983 (Anura, Cycloramphidae). *Journal of Herpetology* 50: 289–294.

Nunes-de-Almeida, C. H. L., C. F. B. Haddad, and L. F. Toledo. 2021. A revised classification of the amphibian reproductive modes. *Salamandra* 57: 413–427.

Pedrozo, M., L. M. Botelho, M. T. Moroti, E. Rotenberg, L. F. Toledo, and E. Muscat. 2024. Natural history of the Flattened Waterfall Frog *Cycloramphus boraceiensis* (Anura, Cycloramphidae). *Caldasia* 46: 167–178.

Rolim, G. D. S., M. B. P. D. Camargo, D. G. Lania, and J. F. L. D. Moraes. 2007. Classificação climática de Köppen e de Thornthwaite e sua aplicabilidade na determinação de zonas agroclimáticas para o estado de São Paulo. *Bragantia* 66: 711–720.

Sá, F. P. de, C. F. B. Haddad, M. M. Gray, V. K. Verdade, M. T. C. Thomé, M. T. Rodrigues, and K. R. Zamudio. 2020. Male-male competition and repeated evolution of terrestrial breeding in Atlantic Coastal Forest frogs. *Evolution* 74: 459–475.

Silva, H. R. and D. Overnay. 2012. A new species of stream-dwelling frog of the genus *Cycloramphus* (Anura, Cycloramphidae) from the State of Rio de Janeiro, Brazil. *Zootaxa* 3407: 49–60.

Verdade, V. K., D. Almeida-Silva, and M. T. Rodrigues. 2023. The endotrophic nidicolous tadpole of *Cycloramphus eleutherodactylus* (Miranda-Ribeiro) (Anura: Cycloramphidae). *Zootaxa* 5254: 287–294.

Verdade, V. K., D. Almeida-Silva, J. Cassimiro, and M. T. Rodrigues. 2019. Rediscovering *Cycloramphus bandeirensis* (Anura: Cycloramphidae): natural history and breeding biology of a vulnerable species with a variant reproductive mode. *Phyllomedusa* 18: 159–175.

Womack, M. C., E. Steigerwald, D. C. Blackburn, D. C. Cannatella, A. Catenazzi, J. Che, M. S. Koo, J. A. McGuire, S. R. Ron, C. L. Spencer, V. T. Vredenburg, and R. D. Tarvin. 2022. State of the Amphibia 2020: a review of five years of amphibian research and existing resources. *Ichthyology and Herpetology* 110: 638–661.

Editor: Geoffrey R. Smith

SHORT COMMUNICATION

Defensive repertoire of *Leptodactylus rhodomystax* (Anura: Leptodactylidae) in the Brazilian Amazon

Antônio Rafael Lima Ramos,^{1,2} Vitoria Hellen Holanda,¹ Ricardo Alexandre Kawashita-Ribeiro,³ Vinícius Tadeu de Carvalho,¹ and Robson Waldemar Ávila¹

¹ Universidade Federal do Ceará, Departamento de Biologia, Núcleo Regional de Ofiologia. Bloco 905. Av. Humberto Monte, Pici, 60440-900, Fortaleza, CE, Brazil. E-mail: herpetoramos@gmail.com.

² Universidade Federal do Ceará, Departamento de Biologia, Programa de Sistemática, Uso e Conservação da Biodiversidade. Bloco 902. Av. Humberto Monte, Pici, 60440-900, Fortaleza, CE, Brazil.

³ Universidade Federal de Rondonópolis, Instituto de Ciências Exatas e Naturais. 78735-910, Rondonópolis, MT, and Universidade Federal do Oeste do Pará, Instituto de Ciências e Tecnologia das Águas, 68040-470, Santarém, PA, Brazil.

Keywords: Antipredatory behavior, Anuran amphibians, Defensive strategies.

Palavras-chave: Anfíbios anuros, Comportamento antipredatório, Estratégias defensivas.

Anuran amphibians are common prey for a wide variety of vertebrate and invertebrate predators (Duellman and Trueb 1994, Toledo *et al.* 2007). In response to the selective pressures exerted by these predators, this group has developed a series of antipredator defense mechanisms that may include ecological, morphological, physiological, and/or behavioral aspects (Toledo *et al.* 2011, Ferreira *et al.* 2019). These strategies can be divided into three main phases: avoiding detection by predators (e.g., camouflage), preventing attack (e.g., aposematism), and reacting during attack (e.g., use of skin secretions) (Ferreira *et al.* 2019). These strategies can be employed independently in the presence of a potential predator (e.g., venom, aposematism, camouflage) or used in the presence of and/or direct interaction with the predator (e.g., fleeing, feigning death, biting) (Edmunds 1974, Toledo *et al.* 2011).

Received 09 August 2024
Accepted 25 October 2024
Distributed December 2024

The genus *Leptodactylus* Fitzinger, 1826 is one of the most diverse groups of anurans, widely distributed across the Neotropical region (de Sá *et al.* 2014, Frost 2024). It is comprised of medium- to large-sized species that exhibit diverse ecology, occupying various environmental niches (Heyer 1979, de Sá *et al.* 2014). *Leptodactylus rhodomystax* Boulenger, 1884, belonging to the *L. pentadactylus* group, is characterized by its medium size (maximum SVL of 91.4 mm in females and 89.6 mm in males), the presence of a light stripe on the upper lip, and distinct light spots (usually yellow or white) on the posterior surface of the thigh against a dark background (Heyer 1979). This species has terrestrial and nocturnal habits, typically occupying forest environments (Barrio-Amorós *et al.* 2019, Gagliardi-Urrutia *et al.* 2022). It has a wide distribution, found in the Amazonian regions of the Guianas (including Suriname and Venezuela), extending through Brazil, Colombia, Ecuador, and Peru (Frost 2024). The defensive repertoire of this species is poorly known, with records limited to death-

feigning (Ramalho *et al.* 2019) and stretching limbs (Pedroso-Santos *et al.* 2022). Here, we present a compilation of the defensive strategies used by *L. rhodomystax*, including documentation of new behaviors employed by the species.

Data were obtained during field expeditions conducted in 2009 and 2013 in the municipalities of Canutama (06°32'02" S, 64°22'58" W, WGS 84; Figure 1B) in the state of Amazonas, Brazil, and in the municipalities of Cotriguaçu (09°51'28" S, 58°24'50" W, WGS 84; Figure 1E) and Paranaíta (09°39'54" S, 56°28'37" W, WGS 84; Figure 1A, C–D, F), both located in the state of Mato Grosso, Brazil. All strategies displayed by individuals were performed in non-natural environments during *ex situ* photographic sessions of the specimens. We photographed all defensive behaviors exhibited and classified the strategies according to the terminology proposed by Ferreira *et al.* (2019).

We recorded five types of defensive strategies performed by four individuals of *L. rhodomystax*: (1) hidden aposematism, (2) rear elevation, (3) body inflation, (4) body elevation (full and partial), and (5) skin secretion. Exhibitions of body inflation and rear elevation, along with display of the internal patterns of the thighs (hidden aposematism), were performed synergistically by Individual 1 (Figure 1B); full body elevation was exhibited simultaneously with body inflation by Individual 2 (Figure 1C, D); partial body elevation was performed by Individual 3 (Figure 1E); and skin secretions were recorded in Individual 4 (Figure 1F). The observed behaviors can be utilized in phases of attack prevention (hidden aposematism, rear elevation, body inflation, and body elevation) and counter-attack (skin secretion).

The behavior of rear elevation, also known as body-raising (Toledo *et al.* 2011), involves raising the posterior part of the body by fully or partially extending the hind legs (Ferreira *et al.* 2019). During this display, *L. rhodomystax* exhibits aposematic patterns characterized by spots, usually vibrant yellow, on the posterior region of the thighs that strongly contrast with

the black background (Figure 1A). These spots are also visible during displays of stretching limbs, a strategy that can be classified as a type of hidden aposematism (Ferreira *et al.* 2019, Pedroso-Santos *et al.* 2022).

The strategy of body inflation occurred synergistically with displays of rear elevation and full body elevation. In this behavior, the individual inflates its lungs with air, thereby increasing its size (Toledo *et al.* 2011, Ferreira *et al.* 2019). During full body elevation, the individual extends both its front and hind limbs completely to appear larger and more intimidating to potential predators (Figure 1D). In contrast, during partial body elevation, the individual extends only its front limbs, spreading them slightly apart and adopting a more upright posture. This position not only increases the individual's size but may also expose the spines located on the phalanges and chest region of sexually active males, potentially facilitating spine aggression (Toledo *et al.* 2005, Oliveira-Santos *et al.* 2023). Additional presumed functions of these mechanisms include making it more difficult for predators to ingest an individual and making it harder for predators to grasp an individual (Ferreira *et al.* 2019).

Many amphibians use skin secretions as anti-predatory defense mechanisms (Ferreira *et al.* 2019). These secretions can have odoriferous, adhesive, slippery, and/or toxic properties (Brizzi and Corti 2007, Toledo *et al.* 2005). When handled, *L. rhodomystax* can produce a foamy substance with a viscous and slippery appearance, concentrated mainly in the inguinal region (Figure 1F). Although biochemical tests to confirm the compounds in the secretion could not be conducted, we believe that it has slippery and/or toxic effects like species in the *L. pentadactylus* group, commonly known as Pepper Frogs, that produce substances rich in peptides with toxic effects (Toledo *et al.* 2005, Carrillo *et al.* 2024).

Although the strategies described here are the first records for *L. rhodomystax* (except for hidden aposematism; see Pedroso-Santos *et al.* 2022), there are reports of similar behaviors in other species within the genus, especially in the

Figure 1. Defensive strategies used by *Leptodactylus rhodomystax* in the Brazilian Amazon. (A) Posterior thigh region displaying hidden aposematic patterns; (B) rear elevation; (C–D) full body elevation with body inflation; (E) partial body elevation; (F) exudation of skin secretion. Photos: RWA (A, C, D, F), VTC (B), RAK-R (E).

L. pentadactylus group. These include displays of posture mechanisms (body elevation, body inflation, and/or rear elevation) in *L. knudseni* Heyer, 1972, *L. labyrinthicus* (Spix, 1824), *L. pentadactylus* (Laurenti, 1768), *L. rhodonotus* (Günther, 1869), *L. stenodema* Jiménez de la Espada, 1875, and *L. vastus* Lutz, 1930; skin secretion in *L. flavopictus* Lutz, 1926, *L. knudseni*, *L. labyrinthicus*, *L. pentadactylus*, *L. savagei* Heyer, 2005, and *L. vastus*; and hidden aposematic patterns in *L. knudseni*, *L. labyrinthicus*, *L. pentadactylus*, *L. rhodonotus*, and *L. vastus* (Toledo et al. 2005, 2011, Castro et al. 2017, Ferreira et al. 2019).

Even while remaining motionless, anurans can employ a variety of strategic mechanisms to deter predator attacks (Toledo et al. 2011). Postural mechanisms, such as rear elevation, are frequently accompanied by the simultaneous display of hidden aposematic coloration, skin secretion production, and body inflation (Castro et al. 2017, Ferreira et al. 2019). Our observations of *L. rhodomystax*, along with reports from other species within the *L. pentadactylus* group, suggest that species in this group may synergistically utilize this sequence of behaviors to enhance their survival against predator attacks. These findings contribute to our understanding of the defensive strategies employed by these species and the behavioral patterns adopted by phylogenetically related species.

Acknowledgments.—We thank Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for the research grant awarded to ARLR. We thank Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for a research grant (307722/2021-0) awarded to RWA.

References

Barrio-Amorós, C. L., F. J. M. Rojas-Runjaic, and J. C. Señaris. 2019. Catalogue of the amphibians of Venezuela: illustrated and annotated species list, distribution, and conservation. *Amphibian & Reptile Conservation* 13: 1–198.

Brizzi, R. and C. Corti. 2007. Cutaneous antipredatory secretions and pheromones in anurans and urodeles. *Marine and Freshwater Behaviour and Physiology* 40: 225–231.

Carrillo, J. F. C., A. G. Boaretto, D. J. Santana, and D. B. Silva. 2024. Skin secretions of Leptodactylidae (Anura) and their potential applications. *Journal of Venomous Animals and Toxins Including Tropical Diseases* 30: e20230042.

Castro, D. P., D. M. Borges-Nojosa, J. A. Oliveira, M. J. Borges-Leite, M. M. Silva, T. A. Sousa, and D. J. Harris. 2017. Defensive behavior in *Leptodactylus vastus* A. Lutz, 1930, in northeastern Brazil. *Herpetozoa* 29: 214–218.

de Sá, R. O., T. Grant, A. Camargo, W. R. Heyer, M. L. Ponssa, and E. L. Stanley. 2014. Systematics of the Neotropical genus *Leptodactylus* Fitzinger, 1826 (Anura: Leptodactylidae): Phylogeny, the relevance of non-molecular evidence, and species accounts. *South American Journal of Herpetology* 9 (Special Issue 1): 1–128.

Duellman, W. E. and L. Trueb. 1994. *Biology of Amphibians*. Baltimore. John Hopkins University. 696 pp.

Edmunds, M. 1974. *Defence in Animals: A Survey of Anti-predator Defences*. New York. Longman. 357 pp.

Ferreira, R. B., R. Lourenço-de-Moraes, C. Zocca, C. Duca, K. H. Beard, and E. D. Brodie Jr. 2019. Antipredator mechanisms of post-metamorphic anurans: a global database and classification system. *Behavioral Ecology and Sociobiology* 73: 1–39.

Frost, D. R. (ed.). 2024. *Amphibian Species of the World: An Online Reference*. Version 6.2. Electronic Database accessible at <https://amphibiansoftheworld.amnh.org/index.php>. American Museum of Natural History, New York, USA. Captured on 09 August 2024.

Gagliardi-Urrutia, G., C. García Dávila, and A. Jaramillo-Martinez. 2022. *Anfibios de Loreto*. Instituto de Investigaciones de la Amazonía Peruana (IIAP). Iquitos, Peru. 208 pp.

Heyer, W. R. 1979. Systematics of the *pentadactylus* species group of the frog genus *Leptodactylus* (Amphibia: Leptodactylidae). *Smithsonian Contributions to Zoology* 301: 1–43.

Oliveira-Santos, J. R., R. C. B. Q. Figueiredo, and G. J. B. Moura. 2023. The defense repertoire of males of *Leptodactylus vastus* Lutz 1930 in a fragment of the Atlantic Forest in northeastern Brazil. *Ethology, Ecology and Evolution* 35: 299–310.

Pedroso-Santos, F., V. A. M. B. Figueiredo, and C. E. Costa-Campos. 2022. Defensive behaviors of *Leptodactylus rhodomystax* (Anura: Leptodactylidae) from northern Brazil. *Cuadernos de Herpetología* 36: 101–103.

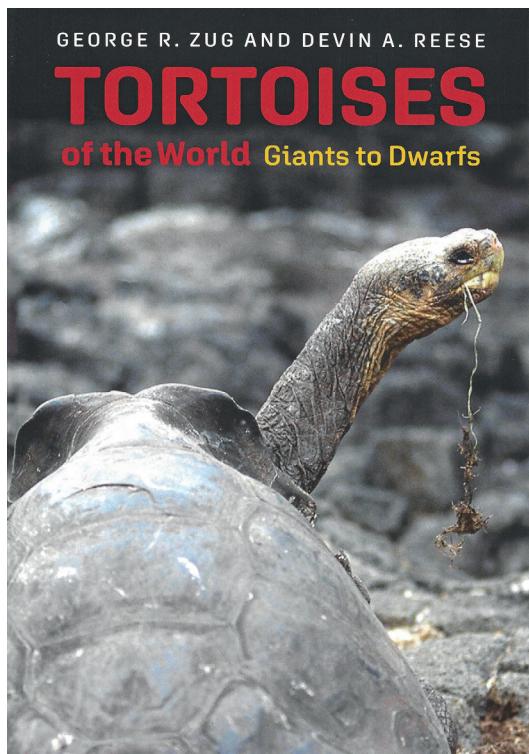
Ramalho, W. P., V. Guerra, D. Ferraz, I. F. Machado, and L. J. S. Vieira. 2019. Observations on death-feigning behaviour and colouration patterns as anti-predator mechanisms in Amazonian anurans. *Herpetology Notes* 12: 269–272.

Toledo, L. F., R. S. Ribeiro, and C. F. B. Haddad. 2007. Anurans as prey: An exploratory analysis and size relationships between predators and their prey. *Journal of Zoology* 271: 170–177.

Toledo, L. F., I. Sazima, and C. F. B. Haddad. 2011. Behavioural defences of anurans: an overview. *Ethology, Ecology and Evolution* 23: 1–25.

Toledo, L. F., A. M. Tozetti, and J. Zina. 2005. *Leptodactylus labyrinthicus* (Pepper Frog): Defensive Repertoire. *Herpetological Bulletin* 91: 29–31.

Editor: Vanessa K. Verdade


Zug, G. R. and D. A. Reese. 2024. **Tortoises of the World: Giants to Dwarfs**. Johns Hopkins University Press, Baltimore, Maryland, USA (www.press.jhu.edu). x + 228 pp.

Hardcover and e-Book. US \$49.95 ISBN: 978-1-4214-4835-0 (Hardcover), 978-1-4214-4836-7 (eBook).

The tortoise wins again. Any time you put the tortoise in a race against the hare, the tortoise wins. The best case is the race home; tortoises carry their homes with them. This book explains why in many ways, tortoises come up winners but why they are faring so very badly in the modern world.

The title suggests that the book is focused on size and perhaps the mechanisms involved in the evolution of giants (*Megalochelys* was 2 m long) and dwarfs (adults < 20 cm) that are found in various land tortoise lineages, but the focus is instead quite broad, summarizing essentially all of the biology of land tortoises, the Family Testudinidae. The authors provide a “deep look” at land tortoises using a sound-bite approach. Topics are broken down into very short sections, often half a page or less, with catchy titles. The overall message of the book is the very interesting biology and diversity of tortoises and the perils that have threatened and continue to threaten them on a global scale.

There is much in this book about the biology and anatomy of tortoises that explains their success as a group over tens of millions of years. Most are herbivores and their low metabolic rate allows them to tolerate conditions that mammalian herbivores (e.g., rabbits) cannot. The importance of the shell and how tortoises can move while carrying a large box are well explained. The very large bladder and large lungs in the top of the shell turn out to be very important in survival and dispersal. Dorsal lungs explain why tortoises float so well and land tortoise physiology includes multiple advantages that allow them to go for long periods without food or water. Among the very nice set of color

plates, is the photo of the Aldabra tortoise that walked up a beach in Tanzania covered with goose barnacles (plate 20). It provides definitive illustration that tortoises are capable of very long distance, open ocean dispersal (740 km from Aldabra to Tanzania) and supports the book's contention that over-water-dispersal has been a major feature of tortoise evolutionary history.

The authors consider the biological importance of a long life for which tortoises are famous, and then point out that this is no longer the case for many populations in the modern world. Those individuals that do survive are able to continue to reproduce for their entire lifetime which improves the likelihood that they will eventually produce offspring that survive and maintain populations.

Although it likely adds to the readability of the book, it is unfortunate that there are no citations in this volume. Instead, a .url for an

online bibliography of source material is provided. The absence of citations is unfortunate on multiple fronts. First it keeps the reader from pursuing the exact source of information for statements in the text and the authors of those works don't receive the credit they are due. It also means that the timing of discoveries about tortoise biology is lost to the reader. Perhaps most unfortunate is that a large part of the work that the authors put into the book is not available to the reader; the authors knew exactly which sources they were citing but that connection has been lost.

The evolution and diversity of tortoises is treated via chapters on modern diversity and evolution. It is pointed out that tortoises as a family are the youngest major group (~50 million years) in the turtle lineage that is at least 220 million years old. There are useful descriptions of variation in size, shape and thickness of the shell that led to the remarkable differences among species. It might have been of interest to point out that all tortoise species start out with exactly the same bones in the shell and nearly the same scales. It is remarkable that such morphological diversity should arise from a single basic starting point. The book also makes it clear that our understanding of the diversity of living tortoises is still changing. For example, in recent decades the number of *Kinixys* species has gone from 3 to 8 and the western-most gopher tortoise in North America (formerly placed in *Gopherus agassizii*) actually represents three species.

For this reviewer, a cladogram of living land tortoises would have been a very useful addition to the coverage of tortoise evolution. Although there is frequent consideration of relationships among tortoises and between tortoises and other turtles, there is nothing like a branching diagram to illustrate these important concepts. It is also unfortunate that only family-level distribution maps by continent are included. More detailed range maps would have added greatly to the volume by illustrating such points as the remarkable diversity of tortoises in southern

Africa and Madagascar and the very limited ranges of many of the species that make up that diversity.

Tortoise conservation is taken up in the final chapter. It covers topics like legal protection for tortoises, translocation, head-starting and captive colonies. It highlights some of the major ongoing conservation programs like those for Galapagos tortoises, Aldabra tortoises, the Bolson gopher tortoise, and the many African and Malagasy endemics that are among the most threatened species of turtle in the world. But the key to keeping land tortoises in the wild will be to maintain the natural ecosystems that they require. As human populations grow, and the effects of climate change result in changes in land use, the problem of maintaining good tortoise habitats will get even more serious than it is now.

There are some minor errors that should have been caught before publication. It is stated that all turtles have scutes, two families do not. It is stated that scutes are dermal in origin, they are epidermal. *Astrochelys yniphora* is said to be the world's rarest turtle, what about *Rafetus swinhoei*? It is reported that forearms are thickly scaled, but it is more than scales, many species have limbs that are armored with bone that is covered by scales.

These small problems do not detract from the very important message that land tortoises face a very challenging survival outlook. The family has a long history of remarkable dispersal and diversity, with size being a major component of variation among lineages. Tortoises help to shape entire ecosystems, and their disappearance reflects badly on the human race. The fact that interactions with humans over millennia have led to the extinction of many species and in some cases, entire lineages, is well documented. The absence of giant tortoises from continents is shown to be related to the rise of human populations and the diversity of island-dwelling giants has also been sharply reduced. A summary table of tortoise species shows that two-thirds of modern forms are extinct or face some serious

level of threat. This book clearly makes the case that without concerted conservation efforts, land tortoises will no longer be able to win the race by running slowly.

Peter A. Meylan
Eckerd College,
Collegium of Natural Sciences.
St. Petersburg, Florida 33711, USA.
E-mail: meylanpa@eckerd.edu

A

Allendes, J.L. **23(2):** 191–195
Amarga, A.K.S. **23(2):** 197–200
Arenas-Rodríguez, K. **23(2):** 191–195
Ávila, R.W. **23(2):** 207–211

B

Batista, C.S. **23(2):** 137–152
Botelho, L.M. **23(2):** 201–206

C

Carbajal-Márquez, R.A. **23(1):** 21–33
Carvalho, V.T. **23(2):** 207–211
Chaves-Acuña, W. **23(1):** 87–92
Chen, H.S. **23(2):** 197–200
Cisneros-Bernal, A.Y. **23(1):** 93–96

D

Das, I. **23(2):** 197–200
Domínguez-Veja, H. **23(1):** 79–85

F

Flores, G.M.A. **23(1):** 65–78
Flores, A.B.A. **23(1):** 65–78
Fox, S. **23(2):** 125–135

G

Garcia, C. **23(1):** 3–19
Garey, M.V. **23(2):** 137–152
Gómez-Ortiz, Y. **23(1):** 79–85
González-Alzate, S. **23(2):** 165–178

H

Holanda, V. H. **23(2):** 207–211

J

Jeziorny, J.D.L. **23(2):** 137–152
Jones, J.M. **23(1):** 21–33

K

Kavalco, K.F. **23(1):** 3–19
Kawashita-Ribeiro, R.A. **23(2):** 207–211

L

Lemos-Espinal, J.A. **23(1):** 35–42
Li, H.Y. **23(1):** 43–53

Lin, S.-M. **23(2):** 197–200
Lin, Y.S. **23(2):** 197–200
Lopus, J.M.F. **23(1):** 65–78

M

Mabitasan, R.J.I.B. **23(1):** 65–78
Mella-Romero, J. **23(2):** 191–195
Méndez-Méndez, O. **23(1):** 35–42
Menegidio, F.B. **23(1):** 3–19
Meylan, P. **23(2):** 213–215
Mogali, S.M. **23(1):** 55–64, **23(2):** 179–190
Montaño-Ruvalcaba, C. **23(1):** 21–33
Muscat, E. **23(2):** 201–206

N

Núñez, H. **23(2):** 125–135

P

Paguntalan, L.J. **23(1):** 65–78
Palacios-Aguilar, R. **23(1):** 93–96
Palacios-Resendiz, F.S. **23(1):** 93–96
Pasa, R. **23(1):** 3–19
Paterna, A. **23(2):** 101–109, 111–124

R

Rada, M. **23(2):** 165–178
Ramos, A.R.L. **23(2):** 207–211
Reyes-Olivares, E. **23(1):** 79–85
Reyes-Velasco, J. **23(1):** 21–33
Rocha, R.R. **23(1):** 3–19
Rodrigues-Oliveira, I.H. **23(1):** 3–19
Rodríguez-Correa, V. **23(2):** 165–178

S

Saidapur, S.K. **23(1):** 55–64, **23(2):** 179–190
Salas-Solano, D. **23(1):** 87–92
Sánchez-Sánchez, R. **23(1):** 35–42
Santoyo-Brito, E. **23(2):** 125–135
Shanbhag, B.A. **23(1):** 55–64, **23(2):** 179–190
Shi, W.H. **23(1):** 43–53, **23(2):** 153–163
Shen, C.C. **23(2):** 197–200
Shen, X.Q. **23(1):** 43–53
Sigala-Rodríguez, J.J. **23(1):** 21–33
Silva, I.B. **23(1):** 3–19
Smith, G.R. **23(1):** 35–42
Sunny, A. **23(1):** 79–85

T

Toledo, L.F. **23(2):** 201–206

V

Vargas-Salinas, F. **23(2):** 165–178

Verdade, V.K. **23(2):** 201–206

Y

Yang, T. **23(2):** 153–163

Yu, T.L. **23(1):** 43–53, **23(2):** 153–163

A

Abies 23(1): 79–85
 Abiotic factors 23(2): 137–152
 Abnormalities 23(1): 65–78
 Abundance 23(1): 35–41, 65–78, 79–85,
 23(2): 137–152
 Abundance data 23(2): 137–152
 Abundance distribution 23(2): 137–152
 Abundant food 23(1): 43–53
Acanthodactylus 23(2): 153–163
Acanthodactylus boskianus 23(2): 153–163
 Acclimation period 23(1): 35–41
Achoques 23(1): 79–85
 Acoustic communication 23(2): 165–178
 Active defense 23(2): 197–200
 Active predatory 23(1): 55–64
 Active pursuit 23(2): 197–200
 Activity 23(1): 21–33
 Actual evapotranspiration 23(2): 153–163
 Adaptation to climate 23(2): 153–163
 Adults 23(1): 21–33, 35–41, 65–78, 79–85,
 87–92, 93–96, 23(2): 101–109, 111–124,
 125–135, 137–152, 165–178, 191–195,
 197–200, 201–206
 Advertisement call 23(2): 165–178
Aeshnidae 23(1): 87–92
 Africa 23(1): 3–19
 African species 23(2): 213–215
Agama 23(2): 125–135
 Agamid 23(2): 197–200
 Age 23(2): 125–135
 Age class 23(1): 21–33, 23(2): 125–135
 Age-associated 23(2): 125–135
 Aggregations 23(2): 153–163
Aglyphous 23(2): 111–124
 Agonistic behavior 23(2): 165–178
 Agonistic encounter 23(2): 125–135
 Agony vocalization 23(2): 197–200
 Agricultural areas 23(1): 3–19, 65–78
 Agriculture activities 23(1): 35–41
Agrionis 23(2): 125–135
Agrionis livida 23(2): 125–135
Agrionis montana 23(2): 125–135
 AIC 23(1): 3–19
 Aile 23(1): 79–85
 Air pumping 23(2): 165–178

Air temperature 23(1): 65–78
 Akaike information criterion 23(1): 3–19
 Alarm cues 23(1): 55–64
 Aldabra tortoise 23(2): 213–215
 Allen's rule 23(2): 153–163
 Allometric 23(2): 153–163
 Alluvial Pioneer Formations 23(2): 137–152
Alnus 23(1): 79–85
Alnus acuminata 23(1): 79–85
Alsophis 23(2): 111–124
Alsophis cantherigerus 23(2): 111–124
 Altitude 23(2): 153–163
 Altitudinal geographic distribution 23(2): 165–
 178
 Altitudinal variation 23(2): 153–163
 Alveolar diastema 23(2): 111–124
 Amazonas state 23(2): 207–211
 Amazonia Forest 23(2): 207–211
 Amazonian regions 23(2): 207–211
Ambystoma 23(1): 35–41, 79–85
Ambystoma altamirani 23(1): 35–41, 79–85
Ambystoma leorae 23(1): 35–41, 79–85
Ambystoma mexicanum 23(1): 79–85
Ambystoma rivulare 23(1): 35–41, 79–85
Ambystoma rosaceum 23(1): 35–41
Ambystoma tigrinum complex 23(1): 79–85
 Ambystomatidae 23(1): 35–41, 79–85
 American Kestrel 23(2): 125–135
 Amphibia 23(1): 35–41, 43–53, 55–64, 65–78,
 79–85, 23(2): 137–152, 153–163, 165–178,
 179–190, 201–206, 207–211
 Amphibians 23(1): 35–41, 43–53, 55–64,
 65–78, 79–85, 23(2): 137–152, 153–163,
 165–178, 179–190, 201–206, 207–211
 Amplexant males 23(2): 153–163
 Amplexus 23(1): 65–78
 Analyses of Covariance 23(1): 21–33
 Analysis 23(2): 191–195
 Analyzing 23(2): 111–124
 Anatomical analyses 23(2): 111–124
 Anatomy 23(2): 111–124
 ANCOVAs 23(2): 125–135
 Andean mountain ranges 23(2): 191–195
 Andes montains 23(2): 165–178, 191–195
 Anisoptera 23(1): 87–92
 Annual mean temperature 23(2): 153–163

Annual total precipitation **23(2)**: 153–163
Anoles **23(1)**: 87–92
Anolis **23(1)**: 87–92, **23(2)**: 125–135, 197–200
Anolis aquaticus **23(2)**: 197–200
Anolis garmani **23(1)**: 87–92
Anolis biporcatus **23(1)**: 87–92
ANOVAs **23(1)**: 35–41, 43–53, **23(2)**: 153–163, 179–190
Anterior teeth **23(2)**: 111–124
Anthropogenic pressure **23(1)**: 79–85
Antipoaching measures **23(1)**: 3–19
Antipredator behavioral **23(2)**: 179–190
Anti-predator behavioral **23(2)**: 197–200
Antipredator defense **23(2)**: 125–135
Antipredator escape **23(2)**: 125–135
Anti-predator strategies **23(2)**: 197–200
Antipredatory behavior **23(2)**: 207–211
Ants **23(1)**: 87–92
Anura **23(1)**: 43–53, 55–64, 65–78, **23(2)**: 137–152, 153–163, 165–178, 179–190, 201–206, 207–211
Anuran larvae **23(2)**: 179–190
Anuran tadpoles **23(1)**: 55–64
Anurans **23(1)**: 43–53, 55–64, 65–78, **23(2)**: 137–152, 153–163, 165–178, 179–190, 201–206, 207–211
Aposematic displays **23(2)**: 197–200
Aposematism **23(2)**: 207–211
Aquarana **23(1)**: 43–53
Aquarana catesbeiana **23(1)**: 43–53
Aquarium **23(1)**: 35–41, **23(2)**: 179–190
Aquatic lifestyle **23(1)**: 65–78
Aquatic organisms **23(1)**: 43–53
Aquatic plants **23(1)**: 79–85
Aquatic systems **23(2)**: 179–190
Arboreal behavior **23(1)**: 87–92
Arboreal frogs **23(2)**: 165–178
Arboreal species **23(2)**: 125–135
Argentina **23(2)**: 137–152
Armenia municipality **23(2)**: 165–178
Arroyo del Axolotes **23(1)**: 35–41
Arthropods **23(1)**: 87–92
ARWEN v1.2 software **23(1)**: 3–19
Asia **23(1)**: 43–53, 55–64, 65–78, **23(2)**: 153–163, 179–190, 197–200

Asian Common Toad **23(2)**: 179–190
Asian species **23(2)**: 111–124
Astrochelys **23(2)**: 213–215
Astrochelys yniphora **23(2)**: 213–215
Atlantic Forest **23(2)**: 137–152, 201–206
Atlantic Rainforest **23(2)**: 137–152
ATPase 8 **23(1)**: 3–19
Australia **23(1)**: 3–19
Austria **23(2)**: 101–109
Aves **23(2)**: 125–135
Avoiding detection **23(2)**: 207–211
Axanthism **23(2)**: 101–109
Axolotls **23(1)**: 79–85
Azorella **23(2)**: 125–135

B

Background matching **23(2)**: 125–135
Background noise **23(2)**: 165–178
Backswimmers **23(1)**: 55–64
Balkan peninsula **23(2)**: 101–109
Balkans **23(2)**: 101–109
Barangay Cheey **23(1)**: 65–78
Barangays **23(1)**: 65–78
Barbourula **23(1)**: 65–78
Barbourula busuangensis **23(1)**: 65–78
Barbourula kalimantanensis **23(1)**: 65–78
Barytelphusa **23(1)**: 55–64
Beeps **23(2)**: 165–178
Beetles **23(1)**: 55–64, 87–92, **23(2)**: 179–190
Behavior **23(1)**: 21–33, 35–41, 55–64, 65–78, 79–85, 87–92, **23(2)**: 125–135, 165–178, 179–190, 197–200, 201–206, 207–211
Behavioral responses **23(1)**: 55–64, **23(2)**: 179–190
Belostoma **23(1)**: 55–64
Belostomatidae **23(2)**: 179–190
Berberis **23(2)**: 125–135
Berberis empetrifolia **23(2)**: 125–135
Bergmann's rule **23(2)**: 153–163
“Bergmannian” patterns **23(2)**: 153–163
Betong **23(2)**: 197–200
Bioacoustics **23(2)**: 165–178
Biodiversity **23(1)**: 3–19
Biogeographic regions **23(1)**: 65–78
Biology **23(2)**: 101–109
Biology of land tortoises **23(2)**: 213–215

Biotic factors **23(2)**: 137–152, 153–163
Birds **23(2)**: 125–135
Biting **23(2)**: 207–211
Black Aesculapian Snake **23(2)**: 101–109
Black ventral coloration **23(2)**: 101–109
Black-green Tree Iguana **23(2)**: 191–195
Blackman algorithm **23(2)**: 165–178
Blade rear teeth **23(2)**: 111–124
Blade-fanged **23(2)**: 111–124
Blade-shaped crista dorsalis **23(2)**: 165–178
Boaedon **23(2)**: 111–124
Body **23(1)**: 65–78
Body elevation **23(2)**: 207–211
Body inflation **23(2)**: 207–211
Body mass **23(1)**: 43–53
Body pigmentation **23(2)**: 201–206
Body proportion **23(2)**: 153–163
Body shape **23(2)**: 201–206
Body size **23(1)**: 87–92, **23(2)**: 125–135, 153–163, 165–178, 191–195
Body size patterns **23(2)**: 153–163
Body size proportions **23(2)**: 153–163
Body temperature **23(2)**: 125–135, 165–178
Boiga **23(2)**: 111–124
Boiga dendrophila divergens **23(2)**: 111–124
Boiga irregularis **23(2)**: 111–124
Bolson gopher tortoise **23(2)**: 213–215
Bombinatoridae **23(1)**: 65–78
Book review **23(2)**: 213–215
Borneo **23(2)**: 197–200
Boyacá Department **23(2)**: 165–178
Bradinopyga **23(1)**: 55–64
Bradinopyga geminata **23(1)**: 55–64
Brazil **23(2)**: 137–152, 201–206, 207–211
Brazilian Amazon **23(2)**: 207–211
Breeding aggregations **23(2)**: 153–163
Breeding behavior **23(2)**: 201–206
Breeding ponds **23(2)**: 153–163
Brook axolotl **23(1)**: 79–85
Buccal anatomy **23(2)**: 111–124
Bufo **23(1)**: 43–53
Bufonidae **23(1)**: 55–64, **23(2)**: 179–190
Bulb thermometer **23(2)**: 125–135
Bulgaria **23(2)**: 101–109
Busuanga Island **23(1)**: 65–78
Busuanga municipality **23(1)**: 65–78

C

Calamian group of islands **23(1)**: 65–78
Calamian Islands **23(1)**: 65–78
Calauit Island **23(1)**: 65–78
Call duration **23(2)**: 165–178
Calls **23(2)**: 165–178
Camouflage **23(2)**: 207–211
Canada **23(1)**: 79–85
Cannibalism **23(1)**: 21–33, 55–64
Canopy cover **23(2)**: 137–152
Canopy habitat **23(1)**: 87–92
Canopy species **23(1)**: 87–92
Canthal scales **23(1)**: 21–33
Canutama municipality **23(2)**: 207–211
Capable of carrying eggs **23(2)**: 153–163
Captive breeding **23(2)**: 3–19, 101–109
Captive populations **23(1)**: 3–19
Captivity **23(2)**: 101–109
Capturing **23(1)**: 87–92
Carnivorous tadpoles **23(2)**: 179–190
Carretera La Laguna–Bajitos de La Laguna **23(1)**: 21–33
Catsnakes **23(2)**: 111–124
Caucasus **23(2)**: 101–109
Caudal autotomy **23(2)**: 197–200
Caudata **23(1)**: 35–41, 79–85
“Cedro Rosado” Botanical Garden **23(2)**: 165–178
Cenozoic deposits **23(1)**: 3–19
Center of biodiversity **23(1)**: 65–78
Central America **23(1)**: 87–92, **23(2)**: 165–178
Central Andes **23(2)**: 165–178
Central Catchment Nature Reserve **23(2)**: 197–200
Central Chile **23(2)**: 125–135
Central Europe **23(2)**: 101–109
Central Guerrero **23(1)**: 21–33, 93–96
Central Mexico **23(1)**: 79–85
Central Sinaloa **23(1)**: 21–33
Centrolenidae **23(2)**: 165–178
Centrolenids **23(2)**: 165–178
Ceriagrion **23(1)**: 55–64
Ceriagrion cerinorubellum **23(1)**: 55–64
Céu Azul municipality **23(2)**: 137–152
Characters **23(2)**: 101–109
Cheey **23(1)**: 65–78

Chelidae 23(1): 3–19
Chelodina 23(1): 3–19
Chelodina burungandjii 23(1): 3–19
Chelodina canni 23(1): 3–19
Chelodina colliei 23(1): 3–19
Chelodina expansa 23(1): 3–19
Chelodina longicollis 23(1): 3–19
Chelodina mccordi 23(1): 3–19
Chelodina novaeguineae 23(1): 3–19
Chelodina oblonga 23(1): 3–19
Chelodina parkeri 23(1): 3–19
Chelodina pritchardi 23(1): 3–19
Chelodina rugosa 23(1): 3–19
Chelodina steindachneri 23(1): 3–19
Chelodininae 23(1): 3–19
Chelonia 23(1): 3–19, 23(2): 213–215
Chelus 23(1): 3–19
Chelus fimbriata 23(1): 3–19
 Chemical blank solution 23(1): 55–64, 23(2): 179–190
 Chemical cues 23(2): 179–190
 Chemoreception 23(1): 55–64
 Chevrons 23(2): 125–135
 Chile 23(2): 125–135, 191–195
 Chilean lizard 23(2): 191–195
 Chilpancingo de los Bravo municipality 23(1): 93–96
 China 23(1): 43–53, 23(2): 153–163
 Chinabayan River 23(1): 65–78
 Chinese Brown Frog 23(1): 43–53
Chuquiraga 23(2): 125–135
Chuquiraga oppositifolia 23(2): 125–135
 Class 23(2): 125–135
 Classic coloration 23(2): 101–109
Clinotarsus 23(1): 55–64
Clinotarsus curtipes 23(1): 55–64
 Cloaca 23(1): 35–41
 Cloaca shape 23(1): 35–41, 23(2): 191–195
 Clutch size 23(1): 93–96
 Clutches 23(2): 179–190, 201–206
Cnemaspis 23(2): 197–200
Cnemaspis affinis 23(2): 197–200
 Codon-based Z-Test of Selection 23(1): 3–19
 Codons 23(1): 3–19
 Colder environments 23(2): 153–163
 Colima state 23(1): 21–33
 Colombia 23(2): 165–178, 207–211
 Color 23(1): 35–41
 Color changes 23(1): 87–92
 Color pattern 23(2): 125–135, 165–178, 201–206
 Color selection 23(1): 35–41
 Coloration 23(1): 79–85, 87–92
Colubridae 23(2): 101–109, 111–124
Colubroids 23(2): 101–109, 111–124
 Combination factor 23(2): 137–152
 COMEX color palette 23(1): 35–41
 Comparative analysis 23(2): 111–124
 Comparing 23(2): 111–124
 Competition 23(1): 79–85, 23(2): 153–163, 179–190
 Competition for food 23(2): 179–190
 Competition for space 23(2): 179–190
 Complete mitogenome 23(1): 3–19
 Complex behavioral 23(2): 137–152
 Complex life cycles 23(1): 43–53
 Compressed tail 23(1): 79–85
 Conditions 23(2): 137–152
 Conservation 23(1): 3–19, 21–33, 35–41, 65–78, 79–85, 23(2): 137–152, 213–215
 Conservation efforts 23(1): 21–33, 65–78
 Conservation measures 23(2): 137–152
 Conservation programs 23(1): 21–33
 Conservation status 23(1): 21–33, 23(2): 191–195
 Conservation strategies 23(1): 65–78, 23(2): 137–152
 Conserved sequence blocks 23(1): 3–19
 Conspecific origin 23(2): 179–190
 Conspecific prey 23(2): 179–190
 Conspecific species 23(1): 55–64, 23(2): 125–135, 179–190
 Consumption 23(1): 55–64
 Consumption process 23(1): 87–92
 Control Region 23(1): 3–19
 Conversion of lakes to rice fields 23(1): 3–19
 Cool mountain 23(1): 65–78
Coquimbo 23(2): 191–195
 Coron Island 23(1): 65–78
 Coron municipality 23(1): 65–78
Coronella 23(2): 111–124
Coronella austriaca 23(2): 111–124

Coronella girondica 23(2): 111–124
Correlation 23(2): 153–163
Correlation matrix 23(2): 125–135
Costa Rica 23(1): 87–92, 23(2): 165–178
Cotriguaçu municipality 23(2): 207–211
Cotton Rat 23(1): 21–33
Courtship behaviors 23(1): 87–92
Covariables 23(2): 125–135
CR or D-Loop 23(1): 3–19
Crabs 23(1): 55–64, 23(2): 179–190
Cricetidae 23(1): 21–33
Critically endangered 23(1): 3–19
Croatia 23(2): 101–109
Crossodactylus 23(2): 137–152
Crossodactylus gaudichaudii 23(2): 137–152
Crossodactylus schmidti 23(2): 137–152
Crotalus 23(1): 21–33
Crotalus aquilus 23(1): 21–33
Crotalus atrox 23(1): 21–33
Crotalus atrox group 23(1): 21–33
Crotalus cerastes 23(1): 21–33
Crotalus durissus 23(1): 21–33
Crotalus durissus group 23(1): 21–33
Crotalus ericsmithi 23(1): 21–33
Crotalus horridus 23(1): 21–33
Crotalus lannomi 23(1): 21–33
Crotalus polystictus 23(1): 21–33
Crotalus pricei 23(1): 21–33
Crotalus ruber 23(1): 21–33
Crotalus stejnegeri 23(1): 21–33
Crotalus stejnegeri group 23(1): 21–33
Crotalus triseriatus 23(1): 21–33
Crotalus tzabcan 23(1): 21–33
Crotalus viridis 23(1): 21–33
Crotalus viridis group 23(1): 21–33
Crotaphytus 23(2): 125–135
Crotaphytus collaris 23(2): 125–135
Crowding 23(2): 179–190
Cryptodira 23(1): 3–19
Cryptotis 23(1): 21–33
Cryptotis goldmani 23(1): 21–33
CSBs 23(1): 3–19
Culion Island 23(1): 65–78
Cycloramphidae 23(2): 201–206
Cycloramphus 23(2): 201–206
Cycloramphus boraceiensis 23(2): 201–206

Cycloramphus dubius 23(2): 201–206
Cyrtodactylus 23(2): 197–200
Cyrtodactylus consobrinus 23(2): 197–200
Cyrtodactylus majulah 23(2): 197–200
Cyrtodactylus patiensis 23(2): 197–200
CytB and *COXI* 23(1): 3–19
CytB sequence 23(1): 3–19

D
Dactyloidae 23(1): 87–92, 23(2): 197–200
Damselfly larvae 23(1): 55–64, 23(2): 179–190
Dasypeltis 23(2): 111–124
Data analysis 23(1): 43–53, 65–78
Data collection 23(1): 21–33, 23(2): 137–152
Data sets 23(2): 191–195
Datay Mountain Range 23(1): 65–78
Dead 23(1): 21–33
Death-feigning 23(2): 207–211
Decision making process 23(2): 137–152
Decreased predation pressure 23(2): 153–163
Decreasing carbon dioxide tension 23(1): 43–53
Deep pools 23(1): 65–78
Deer Mouse 23(1): 21–33
Defense behavior 23(1): 55–64
Defensive repertoire 23(2): 207–211
Defensive strategies 23(2): 207–211
Deforestation 23(1): 3–19, 35–41
Deformities 23(1): 65–78, 79–85
Degraded area 23(1): 35–41
Degraded habitats 23(1): 35–41
Demographic 23(1): 3–19
Dentition models 23(2): 111–124
Deposition site 23(2): 201–206
Depth 23(1): 65–78, 23(2): 137–152
Describe calls 23(2): 165–178
Description 23(1): 3–19
Desiccation 23(2): 179–190
Detection of predators 23(1): 55–64
Detection predator 23(2): 197–200
Development 23(2): 201–206
Deviation of the maxilla 23(2): 111–124
Dewlap displays 23(1): 87–92
Dharwad municipality 23(1): 55–64, 23(2): 179–190
Diagnosis differences 23(2): 201–206

Diagnostic character 23(1): 21–33, 23(2): 165–178
Dicoglossidae 23(1): 55–64, 23(2): 179–190
Diet 23(1): 21–33, 55–64, 87–92, 23(2): 179–190, 201–206
Diet variation 23(1): 21–33
Dietary cues 23(1): 55–64, 23(2): 179–190
Dietary metabolites 23(2): 179–190
Dietary origin 23(2): 179–190
Diet-derived metabolites 23(2): 179–190
Differential responses 23(2): 179–190
Digestion 23(1): 55–64
Digital caliper 23(1): 21–33, 23(2): 125–135, 165–178
Dineutus 23(1): 55–64
Dipsadidae 23(1): 93–96
Dipterocarps 23(1): 65–78
Discontinuous vertebral line 23(2): 191–195
Disjunct record 23(1): 93–96
Dispholidus 23(2): 111–124
Dissection 23(2): 111–124
Distinct chevron 23(2): 125–135
Distinctive color change 23(1): 87–92
Distinctive coloration 23(1): 87–92
Distribution 23(1): 35–41, 65–78, 23(2): 137–152
Distribution patterns 23(2): 137–152
Diurnal 23(2): 125–135
Diurnal lizard 23(1): 87–92, 23(2): 125–135
Diurnal snakes 23(2): 125–135
Diverse ecology 23(2): 207–211
Diversification 23(2): 165–178
Diversity of tortoises 23(2): 213–215
Diving behavior 23(2): 197–200
Diving underwater 23(2): 197–200
DNA datasets 23(1): 3–19
Dolichophis 23(2): 111–124
Dolichophis caspius 23(2): 111–124
Dominance hierarchy 23(2): 125–135
Dominant frequency 23(2): 165–178
Dominant phenotype 23(2): 101–109
Dorsal body blotches 23(1): 21–33
Dorsal color pattern 23(2): 165–178
Dorsal coloration 23(1): 79–85
Dorsal dots 23(2): 165–178
Dorsal polymorphism 23(2): 125–135

Dorsal scale 23(1): 21–33
Dorsum 23(1): 87–92
Dragonfly 23(1): 87–92
Dragonfly larvae 23(1): 55–64, 23(2): 179–190
Dry cavity on soil 23(2): 201–206
Dry pine forest 23(1): 21–33
Dry season 23(1): 35–41
Duration of the call 23(2): 165–178
Duttaphrynus 23(1): 55–64, 23(2): 179–190
Duttaphrynus melanostictus 23(1): 55–64, 23(2): 179–190
Duvernoy s glands 23(2): 111–124
Dwarf snakes 23(2): 111–124
Dwarfs tortoises 23(2): 213–215

E
Eastern Honduras 23(2): 165–178
Eastern Qinghai 23(2): 153–163
Eastern Tibetan plateau 23(2): 153–163
Ecogeographical patterns 23(2): 153–163
Ecological advantage 23(2): 125–135
Ecological functions 23(2): 125–135
Ecological niche 23(1): 65–78
Ecological roles 23(1): 21–33
Ecological selective forces 23(2): 125–135
Ecological terms 23(2): 191–195
Ecology 23(1): 21–33, 55–64, 65–78, 87–92, 23(2): 125–135, 137–152, 165–178, 179–190
Ecosystem 23(1): 3–19, 65–78, 79–85
Ecotone area 23(1): 21–33
Ectotherms 23(2): 153–163
Ecuador 23(1): 87–92, 23(2): 165–178, 207–211
EDGE 23(1): 3–19
Edges 23(2): 201–206
Education activities 23(1): 65–78
Effective conservation strategies 23(1): 65–78
Effects of temperature 23(2): 165–178
Egg capsules 23(2): 201–206
Egg clutches 23(2): 179–190
Egg deposition 23(1): 79–85
Egg length 23(1): 93–96
Egg mass 23(1): 43–53, 79–85
Egg mass size 23(1): 79–85
Egg number 23(1): 93–96

Egg width **23(1)**: 93–96
 Eggs **23(1)**: 65–78, 79–85, 87–92, 93–96, **23(2)**: 101–109, 179–190, 201–206
 El Colegio de la Frontera Sur **23(1)**: 21–33
 El Colorado village **23(2)**: 125–135
 El Llano locality **23(1)**: 93–96
Elaphe **23(2)**: 101–109, 111–124
Elaphe anomala **23(2)**: 111–124
Elaphe bimaculata **23(2)**: 111–124
Elaphe carinata **23(2)**: 111–124
Elaphe dione **23(2)**: 111–124
Elaphe quadrivirgata **23(2)**: 101–109
Elaphe quatuorlineata **23(2)**: 101–109, 111–124
Elaphe xiphodonta **23(2)**: 111–124
 Elapidae **23(2)**: 111–124
 Elevation range **23(1)**: 93–96, 153–163
 Elongated body **23(1)**: 79–85
Elseya **23(1)**: 3–19
Elseya albagula **23(1)**: 3–19
Elseya banderhorsti **23(1)**: 3–19
Elseya dentata **23(1)**: 3–19
Elseya irwini **23(1)**: 3–19
Elseya lavarackorum **23(1)**: 3–19
Elseya novaeguineae **23(1)**: 3–19
Elseya schultzei **23(1)**: 3–19
Elusur **23(1)**: 3–19
Elusur macrurus **23(1)**: 3–19
 Embryos **23(2)**: 165–178, 201–206
Emydura **23(1)**: 3–19
Emydura macquarii **23(1)**: 3–19
Emydura subglobosa **23(1)**: 3–19
Emydura tanybaraga **23(1)**: 3–19
Emydura victoriae **23(1)**: 3–19
 Endangered species **23(1)**: 3–19, 35–41
 Endangered turtle **23(1)**: 3–19
 Endemic species **23(1)**: 3–19, 21–33, 35–41, 65–78, 79–85, 93–96, **23(2)**: 191–195, 197–200
 Endemisms **23(1)**: 65–78
Engystomops **23(1)**: 43–53
Engystomops pustulosus **23(1)**: 43–53
 Enlarged rear teeth **23(2)**: 111–124
 Environmental challenge **23(1)**: 65–78s
 Environmental factor **23(2)**: 153–163
 Environmental features **23(2)**: 137–152
 Environmental niches **23(2)**: 207–211
 Environmental problems **23(1)**: 79–85
 Environmental Sound Collection **23(2)**: 165–178
 Environmental stresses **23(1)**: 43–53
 Environmental structural variables **23(2)**: 137–152
Eretes **23(1)**: 55–64
Eretes sticticus **23(1)**: 55–64
Erymnochelyini **23(1)**: 3–19
Erymnochelys **23(1)**: 3–19
Erymnochelys madagascariensis **23(1)**: 3–19
 Escape **23(2)**: 125–135
 Escape predators **23(2)**: 197–200
 Escape strategy **23(2)**: 197–200
Espadarana **23(2)**: 165–178
Espadarana andina **23(2)**: 165–178
Espadarana audax **23(2)**: 165–178
Espadarana callistomma **23(2)**: 165–178
Espadarana durrellorum **23(2)**: 165–178
Espadarana prosoblepon **23(2)**: 165–178
 Essential data **23(1)**: 65–78
 Ethovision system **23(1)**: 55–64
Euphlyctis **23(2)**: 179–190
Euphlyctis cyanophlyctis **23(2)**: 179–190
 Europe **23(1)**: 3–19, **23(2)**: 101–109, 111–124
 European colubroid snakes **23(2)**: 111–124
 Evolution **23(1)**: 87–92, **23(2)**: 165–178, 213–215
 Evolutionary history **23(2)**: 213–215
 Excreta **23(1)**: 55–64, **23(2)**: 179–190
 Excretory metabolites **23(1)**: 55–64
 Existence program's list of priority **23(1)**: 3–19
 Expansion **23(2)**: 101–109
 Experiment design **23(1)**: 43–53
 Experimental demonstration **23(2)**: 179–190
 Experimental evaluation **23(1)**: 35–41
 External gills **23(1)**: 79–85
 Extra-European species **23(2)**: 111–124
 Extremity length **23(2)**: 153–163

F
 Factor Analysis **23(2)**: 125–135
 Facultad de Ciencias **23(1)**: 93–96
 Faculty of Veterinary Medicine **23(2)**: 111–124

Falco sparverius 23(2): 125–135
 False smooth snakes 23(2): 111–124
 Farellones locality 23(2): 191–195
 Fast Fourier Transformation window 23(2): 165–178
 Fauna 23(1): 3–19
 Feeding 23(1): 87–92
 Feigning death 23(2): 207–211
 Female-biased 23(2): 153–163
 Females 23(1): 21–33, 35–41, 43–53, 65–78, 79–85, 87–92, 93–96, 23(2): 101–109, 111–124, 125–135, 153–163, 165–178, 191–195, 197–200
Ficus 23(1): 65–78
 Field 23(1): 21–33, 35–41, 23(2): 201–206
 Field encounters 23(1): 21–33
 Field observations 23(1): 79–85
 Field procedures 23(1): 43–53
 Fieldwork 23(1): 93–96
 Fir 23(1): 79–85
 First data 23(1): 93–96
 First description 23(1): 3–19
 First finger 23(2): 153–163
 Fisher's Exact Test 23(1): 21–33
 Fitness 23(1): 43–53, 23(2): 137–152
 Flat body 23(1): 65–78
 Flat head 23(1): 65–78
 Fleeing 23(2): 207–211
 Floating aquatic vegetation 23(1): 79–85
 Flora 23(1): 3–19
 Food abundance 23(2): 153–163
 Food availability 23(1): 43–53
 Food level 23(1): 43–53
 Food quality 23(2): 153–163
 Foothills 23(1): 21–33
 Foraging 23(2): 197–200
 Forelimb 23(1): 43–53
 Forelimb length 23(2): 153–163
 Forelimb size 23(2): 153–163
 Fossil records 23(2): 101–109
 Fossils 23(1): 3–19
 Foz do Iguaçu municipality 23(2): 137–152
 Fragmentation 23(2): 137–152
 France 23(2): 101–109
 Frequency 23(2): 165–178
 Frequency of swimming spurts 23(2): 179–190
 Freshwater habitats 23(1): 35–41
 Freshwater turtle 23(1): 3–19
 Frogs 23(1): 43–53, 55–64, 65–78, 23(2): 137–152, 153–163, 165–178, 179–190, 201–206, 207–211
 Front left third digit length 23(2): 125–135

G
 Galapagos tortoises 23(2): 213–215
 Galaxy Europe platform 23(1): 3–19
Gansu 23(2): 153–163
Gecko 23(2): 197–200
Gekkonidae 23(2): 197–200
Gekkonids 23(2): 197–200
 Gelatinous mass 23(2): 201–206
GenBank/RefSeq 23(1): 3–19
 General Lineal Model 23(2): 125–135
 Generalized Least Squares 23(2): 137–152
 Generalized Least Squares analysis 23(2): 137–152
 Generalized linear model 23(1): 43–53
 Genetic 23(1): 3–19
 Genetic analyses 23(2): 101–109
 Genetic composition 23(1): 3–19
 Genetic diversity 23(1): 3–19
 Genetic factors 23(1): 79–85
 Genetic variability 23(1): 79–85
Geochelone 23(1): 3–19
Geochelone pardalis 23(1): 3–19
 Geographical distribution 23(2): 101–109, 137–152
 Geographical variation 23(2): 153–163, 165–178
Geophis 23(1): 93–96
Geophis annuliferus 23(1): 93–96
Geophis chalybeus group 23(1): 93–96
Geophis omiltemanus 23(1): 93–96
Geophis sanniolus 23(1): 93–96
Geophis sartorii 23(1): 93–96
Geositta 23(2): 125–135
Geositta rufipennis 23(2): 125–135
GeSeq 23(1): 3–19
 Giant Water Bugs 23(1): 55–64, 23(2): 179–190
 Giants tortoises 23(2): 213–215
 Give warning to the group 23(2): 197–200

Glass aquaria **23(2):** 179–190
Glass frog **23(2):** 165–178
Glyphs **23(2):** 111–124
Goldman's Small-eared Shrew **23(1):** 21–33
Gonatodes **23(2):** 125–135
Gonatodes affinis **23(2):** 197–200
Gonatodes humeralis **23(2):** 125–135
Gonocephalus **23(2):** 197–200
Gonocephalus grandis **23(2):** 197–200
Gopherus **23(1):** 3–19, **23(2):** 213–215
Gopherus agassizii **23(2):** 213–215
Gopherus evgoodei **23(1):** 3–19
Gosner Stage **23(1):** 43–53, 55–64, **23(2):** 179–190
Gradient in body proportions **23(2):** 153–163
Graphic map **23(1):** 3–19
Grass snakes **23(2):** 111–124
Gravel **23(1):** 35–41
Greece **23(2):** 101–109
Green Jamaican anole **23(1):** 87–92
Greenish scales **23(2):** 191–195
Greyish-brown tone **23(2):** 191–195
Grooved rear teeth **23(2):** 111–124
Growth rate **23(1):** 43–53
Guerrero **23(1):** 93–96
Guerrero state **23(1):** 21–33, 79–85, 93–96
Guianas **23(2):** 207–211
Gymnodactylus **23(2):** 197–200
Gymnodactylus consobrinus **23(2):** 197–200
Gymnophthalmidae **23(2):** 197–200
Gynacantha **23(1):** 87–92

H

Habitat **23(1):** 79–85
Habitat complexity **23(1):** 35–41
Habitat data **23(2):** 137–152
Habitat loss **23(1):** 3–19, **23(2):** 137–152
Habitat preferences **23(1):** 65–78
Habitat preservation **23(1):** 3–19
Habitat requirements **23(1):** 65–78
Habitat scale **23(2):** 137–152
Habitat selection **23(2):** 137–152
Habitat structure **23(2):** 137–152
Habitat use **23(1):** 35–41, **23(2):** 125–135, 137–152
Hand captures **23(1):** 65–78

Haplotypes **23(1):** 3–19
Harmonic bands **23(2):** 165–178
Head **23(1):** 21–33, 65–78
Head length **23(1):** 21–33, **23(2):** 191–195
Head width **23(1):** 21–33
Health condition **23(1):** 79–85
Helicops **23(2):** 111–124
Helicops leopardinus **23(2):** 111–124
Helicops modestus **23(2):** 111–124
Hemipenial morphology **23(1):** 21–33
Hemiptera **23(1):** 55–64, **23(2):** 179–190
Hemorrhois **23(2):** 111–124
Hemorrhois hippocrepis **23(2):** 111–124
Hemorrhois raverbergieri **23(2):** 111–124
Henan **23(1):** 43–53
Herbivorous tadpoles **23(2):** 179–190
Heterodon **23(2):** 111–124
Heterodon nasicus **23(2):** 111–124
Heterodon platirhinos **23(2):** 111–124
Heteromyidae **23(1):** 21–33
Heteromys **23(1):** 21–33
Heteromys pictus **23(1):** 21–33
Heteroscedasticity **23(2):** 137–152
Heterozygous specimens **23(2):** 101–109
Hidden aposematism **23(2):** 207–211
Hierophis **23(2):** 111–124
Hierophis viridiflavus **23(2):** 111–124
Hierophis viridiflavus carbonarius **23(2):** 111–124
High altitude **23(2):** 153–163
High call frequency **23(2):** 165–178
High elevations **23(2):** 125–135, 153–163
High endemism **23(1):** 3–19
High food levels **23(1):** 43–53
High frequency **23(2):** 125–135
High mountain ecosystem **23(1):** 79–85
High mountain streams **23(1):** 79–85
Higher oxygen tension **23(1):** 43–53
Higher water temperatures **23(2):** 137–152
Highest peak **23(1):** 65–78
Highlands **23(1):** 93–96, **23(2):** 191–195
Hind left fourth digit length **23(2):** 125–135
Hind leg length **23(2):** 153–163
Hind limb **23(2):** 153–163
Holotype **23(1):** 21–33
Homalopsis **23(2):** 111–124

Homalopsis buccata 23(2): 111–124
Homogeneity 23(1): 21–33
Homoscedasticity 23(1): 21–33, 65–78
Homozygous 23(2): 101–109
Honduras 23(2): 165–178
Hoplobatrachus 23(1): 55–64, 23(2): 179–190
Hoplobatrachus tigerinus 23(1): 55–64, 23(2): 179–190
Housed in terraria 23(2): 101–109
Human activities 23(1): 3–19, 35–41
Humerus 23(2): 165–178
Humid rocks 23(2): 201–206
Humid subtropical region 23(2): 201–206
Humidity levels 23(2): 201–206
Hungary 23(2): 101–109
Hydrodynastes 23(2): 111–124
Hydrodynastes gigas 23(2): 111–124
Hydrology 23(1): 35–41
Hyla 23(1): 55–64
Hyla versicolor 23(1): 55–64
Hylodidae 23(2): 137–152
Hypotheses 23(1): 3–19, 23(2): 179–190, 191–195

I

IBM SPSS Statistics software 23(2): 153–163
Identification of prey 23(1): 21–33
Iguaçu National Park 23(2): 137–152
Image J software 23(2): 137–152
Implementing protected areas 23(1): 3–19
Implications for conservation 23(1): 3–19
Important Bird Areas 23(1): 65–78
India 23(1): 3–19, 55–64, 23(2): 179–190
Indian bullfrog 23(1): 55–64
Individual behavior 23(2): 137–152
Individuals' fitness 23(2): 137–152
Indonesia 23(2): 197–200
Indosylvirana 23(1): 55–64
Indosylvirana temporalis 23(1): 55–64
Infralabial scales 23(1): 21–33
Ingesting 23(1): 87–92
Inoculation of venom 23(2): 111–124
Insects 23(1): 55–64, 23(2): 179–190
Insect larvae 23(2): 179–190
Insert size 23(1): 3–19

Instituto de Investigación de Recursos Biológicos Alexander von Humboldt 23(2): 165–178
Intact tail 23(2): 125–135
Intensity of behaviors 23(2): 179–190
Interactions 23(1): 43–53, 55–64, 23(2): 207–211
Interactive effects 23(1): 43–53
Intercanthal scales 23(1): 21–33
Internasal scales 23(1): 21–33
Interpopulation level 23(2): 165–178
Intersexual selection 23(2): 191–195
Interspecific variation 23(2): 153–163
Intersupraoculars 23(1): 21–33
Interval between notes 23(2): 165–178
Intervals 23(2): 165–178
Intestinal contents 23(1): 21–33
Intrapopulation level 23(2): 165–178
Intrasexual selection 23(2): 191–195
Intraspecific competition 23(1): 43–53
Intraspecific competition 23(1): 43–53
Intraspecific geographical variation 23(2): 165–178
Intraspecific variation 23(2): 153–163
Introgression events 23(1): 3–19
Intsia 23(1): 65–78
Intsia bijuga 23(1): 65–78
Invertebrate predators 23(2): 179–190
Invertebrates 23(1): 55–64, 23(2): 179–190
IQ-TREE v2.2.2.6 software 23(1): 3–19
Irregular pattern 23(2): 125–135
Isidro Fabela municipality 23(1): 35–41
Islands 23(1): 65–78
Italy 23(2): 101–109
iTOL v6 software 23(1): 3–19
IUCN status 23(1): 3–19, 65–78, 23(2): 137–152, 191–195

J

Jalisco state 23(1): 21–33
Jump into streams 23(2): 197–200
Juveniles 23(1): 21–33, 35–41, 65–78, 23(2): 101–109, 125–135, 191–195, 197–200

K

Kairomonal cues **23(1):** 55–64
Kairomones **23(1):** 55–64
Karnatak University Campus **23(1):** 55–64, **23(2):** 179–190
Karnataka state **23(1):** 55–64, **23(2):** 179–190
Karst forest **23(1):** 65–78
Keratophagous **23(1):** 87–92
Key Biodiversity Areas **23(1):** 65–78
Key variables **23(1):** 65–78
Killed by residents **23(1):** 21–33
Kinds **23(1):** 65–78
Kinixys **23(2):** 213–215
k-mer **23(1):** 3–19
Kolmogorov-Smirnov test **23(2):** 125–135
Kubah National Park **23(2):** 197–200
Kuching **23(2):** 197–200

L

Laboratory **23(1):** 43–53, 55–64, **23(2):** 179–190
Laboratory procedures **23(1):** 43–53
Lacertidae **23(2):** 153–163
Lacertids **23(2):** 153–163
Lacunal-supralabial contact **23(1):** 21–33
Lagoons **23(1):** 79–85
Lagunas de Zempoala **23(1):** 79–85
Lakes **23(1):** 3–19
Lampropeltis **23(2):** 111–124
Lamprophiidae **23(2):** 111–124
Lamprophiids **23(2):** 111–124
Larvae **23(1):** 43–53, 55–64, 79–85, **23(2):** 153–163, 179–190, 201–206
Larvae morphology **23(1):** 79–85
Larvae size **23(1):** 79–85
Larval diet **23(1):** 79–85
Larval period **23(1):** 43–53
Larval stage **23(2):** 153–163
Las Brisas de Veragua municipality **23(1):** 87–92
Last glaciation **23(2):** 101–109
Late age **23(1):** 3–19
Late Cretaceous period **23(1):** 3–19
Late Pleistocene **23(2):** 101–109
Latitude **23(2):** 137–152, 153–163, 165–178

Latitudinal geographic distribution **23(2):** 165–178
Leaf **23(1):** 87–92
Least Concern **23(2):** 137–152, 191–195
Lee Kong Chian Natural History Museum **23(2):** 197–200
Left forearm length **23(2):** 125–135
Left hind leg length **23(2):** 125–135
Lemna **23(1):** 79–85
Lemna minor **23(1):** 79–85
Length of larval period **23(1):** 43–53
Lentic aquatic ecosystems **23(1):** 79–85
Leptodactylidae **23(2):** 207–211
Leptodactylus **23(2):** 207–211
Leptodactylus flavopictus **23(2):** 207–211
Leptodactylus knudseni **23(2):** 207–211
Leptodactylus labyrinthicus **23(2):** 207–211
Leptodactylus pentadactylus **23(2):** 207–211
Leptodactylus pentadactylus group **23(2):** 207–211
Leptodactylus rhodomystax **23(2):** 207–211
Leptodactylus rhodonotus **23(2):** 207–211
Leptodactylus savagei **23(2):** 207–211
Leptodactylus stenodema **23(2):** 207–211
Leptodactylus vastus **23(2):** 207–211
Less abundant **23(2):** 125–135
Lethocerus **23(2):** 179–190
Level of threat **23(2):** 179–190
Levels of aggressiveness **23(2):** 153–163
Levene's test **23(1):** 21–33, **23(2):** 125–135
Liana stem **23(2):** 201–206
Life cycles **23(1):** 43–53
Life history **23(1):** 21–33, 35–41, 43–53, 55–64, **23(2):** 137–152, 179–190
Life stage **23(2):** 137–152
Lifestyle **23(1):** 65–78
Limb size **23(2):** 153–163
Límón Province **23(1):** 87–92
Linear mixed models **23(2):** 153–163
Liolaemidae **23(2):** 125–135, 191–195
Liolaemus **23(2):** 125–135, 191–195
Liolaemus bellii **23(2):** 125–135
Liolaemus nigroviridis **23(2):** 191–195
Liophis **23(2):** 111–124
Liophis breviceps **23(2):** 111–124
Livestock **23(1):** 35–41

Lizards **23(1)**: 21–33, 87–92, **23(2)**: 125–135, 153–163, 191–195, 197–200
Llanos Tepoxtepec **23(1)**: 93–96
log10 transformation **23(2)**: 153–163
Long forelimbs **23(2)**: 153–163
Long life **23(2)**: 213–215
Long period of isolation **23(1)**: 3–19
Longer tails **23(1)**: 21–33, **23(2)**: 125–135
Longitude **23(2)**: 137–152
Long-tailed Rattlesnake **23(1)**: 21–33
Loreal scales **23(1)**: 21–33
Lotic aquatic ecosystems **23(1)**: 79–85
Lotic water body **23(1)**: 65–78, **23(2)**: 137–152
Low call frequency **23(2)**: 165–178
Low food levels **23(1)**: 43–53
Low toxic **23(2)**: 111–124
Lower genetic diversity **23(1)**: 3–19
Lower pH **23(2)**: 137–152
Lowland forests **23(2)**: 197–200
Lungon River **23(1)**: 65–78

M

Madagascar **23(1)**: 3–19
Madagascar Big-headed Turtle **23(1)**: 3–19
Malacatepec **23(1)**: 79–85
Malagasy endemics species **23(2)**: 213–215
Malapinggan River **23(1)**: 65–78
Malaysia **23(2)**: 197–200
Male-biased **23(2)**: 153–163
Male-male agonistic behavior **23(2)**: 165–178
Male-male competition **23(2)**: 153–163
Males **23(1)**: 21–33, 35–41, 65–78, 79–85, 87–92, 93–96
23(2): 101–109, 111–124, 125–135, 165–178, 191–195, 201–206
Malpolon **23(2)**: 111–124
Malpolon monspessulanus **23(2)**: 111–124
Mammalia **23(1)**: 21–33
Mammals **23(1)**: 21–33
Manantlán Long-tailed Rattlesnake **23(1)**: 21–33
Mann-Whitney U test **23(1)**: 21–33, 65–78, **23(2)**: 191–195
Manouria **23(1)**: 3–19
Manouria emys **23(1)**: 3–19
MANOVAs analysis **23(2)**: 179–190
Marsupials **23(1)**: 21–33

Mass **23(1)**: 21–33
Mass at metamorphosis **23(1)**: 43–53
Mass of eggs **23(2)**: 201–206
Massasauga **23(1)**: 21–33
Matang Range **23(2)**: 197–200
Matelândia municipality **23(2)**: 137–152
Mating behavior **23(1)**: 87–92
Mating opportunities **23(2)**: 125–135
Mato Grosso state **23(2)**: 207–211
Maxillary bones **23(2)**: 111–124
Maximum egg mass size **23(1)**: 79–85
Maximum Likelihood **23(1)**: 3–19
Maximum swimming speed **23(1)**: 55–64, **23(2)**: 179–190
Medium size **23(1)**: 87–92
MEGA11 **23(1)**: 3–19
Megalochelys **23(2)**: 213–215
Melanism **23(2)**: 101–109
Melanoticism **23(2)**: 101–109
Melastomataceae **23(1)**: 87–92
Mental scale **23(1)**: 21–33
Mesalina **23(2)**: 153–163
Mesalina guttulata **23(2)**: 153–163
Mesoclemmys **23(1)**: 3–19
Mesoclemmys hogei **23(1)**: 3–19
Metamorphic traits **23(1)**: 43–53
Metamorphosis **23(1)**: 43–53, **23(2)**: 179–190
Metropolitan region **23(2)**: 125–135, 191–195
Mexican Highway 80 **23(1)**: 21–33
Mexican Lancehead Rattlesnake **23(1)**: 21–33
Mexico **23(1)**: 21–33, 35–41, 79–85, 87–92, 93–96
Mexico City **23(1)**: 35–41
Mexico City **23(1)**: 79–85
Mexico state **23(1)**: 79–85
Mfold web server **23(1)**: 3–19
Michoacán state **23(1)**: 79–85
Microhabitat **23(1)**: 35–41, 65–78, **23(2)**: 137–152, 201–206
Microhabitat selection **23(2)**: 137–152
Microhabitat use **23(1)**: 65–78, **23(2)**: 137–152
Microsatellite loci **23(1)**: 3–19
Microsatellite Repeats Finder web server **23(1)**: 3–19
Mid venomous **23(2)**: 111–124
Midbody dorsal scale rows **23(1)**: 21–33

Middle Eastern **23(2)**: 101–109
 Mid-ventral incision **23(1)**: 21–33
 Migratory history **23(1)**: 3–19
 Mimicry **23(2)**: 197–200
 Mitochondrial DNA **23(1)**: 3–19
 Mitochondrial genes **23(1)**: 3–19
 Mitogenome **23(1)**: 3–19
 MITOS2 **23(1)**: 3–19
 Mixed Ombrophilous Forests **23(2)**: 137–152
 Models **23(2)**: 111–124, 137–152
 Modification **23(2)**: 137–152
 Modulated frequency **23(2)**: 165–178
 Molecular Evolutionary Genetics Analysis software **23(1)**: 3–19
 Molecular studies **23(1)**: 3–19
 Monsoon season **23(2)**: 179–190
 Montenegro **23(2)**: 101–109
 Moran's I test **23(2)**: 137–152
 Morelos state **23(1)**: 79–85
 Morphological characters **23(2)**: 165–178
 Morphological deformities **23(1)**: 65–78
 Morphological variables **23(2)**: 125–135
 Morphological variation **23(1)**: 21–33, 43–53
 Morphology **23(1)**: 21–33, 65–78, **23(2)**: 101–109, 111–124, 125–135, 153–163, 165–178
 Morphometric measurements **23(1)**: 65–78
 Morphometric variables **23(1)**: 21–33
 Morphotype **23(2)**: 101–109
 Morphs **23(2)**: 125–135
 Moss covered branches **23(1)**: 87–92
 Mount Kilien **23(1)**: 65–78
 Mountain stream Siredon **23(1)**: 35–41
 mtDNA analysis **23(1)**: 3–19
 Mud **23(1)**: 35–41
 Multicollinearity **23(2)**: 137–152
 Multi-layered canopy **23(1)**: 65–78
 Multinomial Goodness-of-Fit test **23(2)**: 137–152
 Multiple diagnostics **23(1)**: 21–33
 Multiple regression analysis **23(2)**: 165–178
 Multiple sites **23(1)**: 35–41
 Multiple test arenas **23(1)**: 35–41
 Museo de Zoología “Alfonso L. Herrera” **23(1)**: 93–96
 Mutation **23(2)**: 101–109
Myuchelys **23(1)**: 3–19
Myuchelys atisternum **23(1)**: 3–19
Myuchelys bellii **23(1)**: 3–19
Myuchelys georgesi **23(1)**: 3–19
Myuchelys latisternum **23(1)**: 3–19
Myuchelys purvisi **23(1)**: 3–19

 N
 Nanga Ulai **23(2)**: 197–200
 National University of Singapore **23(2)**: 197–200
 Natricidae **23(2)**: 111–124
Natrix **23(2)**: 111–124
Natrix helvetica **23(2)**: 111–124
Natrix tessellata **23(2)**: 111–124
 Natural history **23(1)**: 21–33, 35–41, 43–53, 79–85, 79–85, 93–96, **23(2)**: 125–135, 137–152, 153–163, 165–178, 191–195, 201–206
 Natural populations **23(1)**: 3–19
 Naturally broken tail **23(2)**: 125–135
 NCBI **23(1)**: 3–19
 Near-threatened species **23(1)**: 65–78
 Negative correlation **23(2)**: 153–163
 Nei-Gojobori model **23(1)**: 3–19
 Neotropical clade **23(2)**: 165–178
 Neotropical Rattlesnake **23(1)**: 21–33
 Neotropical snakes **23(1)**: 21–33, 93–96
 Neotropics **23(1)**: 87–92, 93–96, **23(2)**: 125–135, 137–152, 165–178, 191–195, 201–206, 207–211
 Nepidae **23(1)**: 55–64
 Nepids **23(1)**: 55–64
Nerodia **23(2)**: 111–124
 Neutrality **23(1)**: 3–19
 Nevado de Toluca Flora and Fauna Protection Area and Natural Resources Protection Area **23(1)**: 79–85
 New Busuanga **23(1)**: 65–78
 New data **23(1)**: 21–33, **23(2)**: 101–109
 New prey items **23(1)**: 21–33
 Nidicolous tadpoles **23(2)**: 201–206
 Nocturnal habits **23(2)**: 165–178
 Nominal scale characters **23(1)**: 21–33
 Non-European species **23(2)**: 111–124
 Non-grooved teeth **23(2)**: 111–124
 Non-parametric data **23(1)**: 21–33, **23(2)**: 191–195

Non-parametric test **23(1)**: 65–78
Nonsynonymous site **23(1)**: 3–19
Nonsynonymous substitutions **23(1)**: 3–19
Normality **23(1)**: 65–78
North America **23(1)**: 21–33, 35–41, 79–85, 87–92, 93–96, **23(2)**: 213–215
North of the Yangtze River **23(1)**: 43–53
Northern Argentina **23(2)**: 137–152
Northern O'Higgins region **23(2)**: 191–195
Northern Palawan **23(1)**: 65–78
Not random **23(2)**: 101–109
Note duration **23(2)**: 165–178
Note emission rate **23(2)**: 165–178
Notes **23(1)**: 87–92, **23(2)**: 165–178
Notonecta **23(1)**: 55–64
NovoPlasty v4.3.1. tool **23(1)**: 3–19
Nucleotide composition **23(1)**: 3–19
Number of notes **23(2)**: 165–178
Number of repeats **23(1)**: 3–19
Nuptial pads **23(2)**: 153–163

O

O'Higgins **23(2)**: 191–195
Oaks **23(1)**: 79–85
Oaxaca **23(1)**: 93–96
Observation **23(2)**:
Observations **23(1)**: 21–33, 35–41, 65–78, 79–85, **23(2)**: 101–109, 191–195, 197–200, 201–206, 207–211
Odonata **23(1)**: 87–92
Old World species **23(2)**: 111–124
Old-growth **23(1)**: 65–78
Oligosoma **23(2)**: 197–200
Oligosoma smithi **23(2)**: 197–200
Omlteme **23(1)**: 93–96
Omnivorous tadpoles **23(2)**: 179–190
One-Sample Kolmogorov-Smirnov test **23(2)**: 125–135, 153–163
One-way analyses of variance **23(2)**: 153–163
One-way ANCOVAs **23(2)**: 125–135
One-way ANOVA **23(2)**: 179–190
One-way MANOVAs **23(2)**: 179–190
Ontogenetic **23(1)**: 21–33
Ontogeny **23(2)**: 165–178
Open V-like angle **23(2)**: 125–135
Operational sex ratio **23(2)**: 153–163

OPHIS Museo Paleontologico e Centro Erpetologico **23(2)**: 101–109, 111–124
Ophisops **23(2)**: 153–163
Ophisops elegans **23(2)**: 153–163
Opisthoglyphous **23(2)**: 111–124
Oral structure **23(1)**: 43–53
Ordinal scale characters **23(1)**: 21–33
OrganellarGenomeDRAW software **23(1)**: 3–19
Organic matter accumulation **23(2)**: 137–152
Origin **23(2)**: 101–109
Orthriophis **23(2)**: 111–124
Orthriophis taeniurus friesi **23(2)**: 111–124
Outgroup **23(1)**: 3–19
Ovary **23(1)**: 93–96
Oviductal eggs **23(1)**: 93–96
Oviposition **23(1)**: 79–85
Oviposition site preference **23(2)**: 165–178

P

Painted Spiny Pocket Mouse **23(1)**: 21–33
Paired-Samples t-test **23(1)**: 55–64, **23(2)**: 179–190
Palatomaxillary arches **23(2)**: 111–124
Palawan **23(1)**: 65–78
Palawan Faunal Region **23(1)**: 65–78
Palms **23(1)**: 65–78
Paludal forests **23(2)**: 201–206
Pantala **23(1)**: 55–64
Pantala flavescens **23(1)**: 55–64
Pantehrophis **23(2)**: 111–124
Pantehrophis guttatus **23(2)**: 111–124
Panti Mountain Bent-toed Gecko **23(2)**: 197–200
Paraguay **23(2)**: 137–152
Parametric testing **23(1)**: 21–33, 65–78
Paraná state **23(2)**: 137–152
Paranaíta municipality **23(2)**: 207–211
Parasites **23(1)**: 79–85
Parental care **23(2)**: 165–178, 201–206
Passive defense **23(2)**: 197–200
Pastureland **23(1)**: 65–78
Patternless **23(2)**: 125–135
PCA **23(2)**: 165–178
PCGs **23(1)**: 3–19
PCs **23(2)**: 165–178
Pearson Chi-Square test **23(2)**: 125–135

Pearson Correlation test **23(2)**: 125–135
 Pearson's correlation coefficient **23(2)**: 153–163
Pelomedusa **23(1)**: 3–19
Pelomedusa subrufa **23(1)**: 3–19
 Pelomedusidae **23(1)**: 3–19
Pelophylax **23(1)**: 43–53
Pelophylax lessonae **23(1)**: 43–53
Peltocephalus **23(1)**: 3–19
Peltocephalus dumerilianus **23(1)**: 3–19
Pelusios **23(1)**: 3–19
Pelusios castaneus **23(1)**: 3–19
 Peninsular Malaysia **23(2)**: 197–200
 Perceived risk **23(2)**: 179–190
 Perch height use **23(2)**: 125–135
 Perch type **23(2)**: 125–135
 Perch use **23(2)**: 125–135
 Perching **23(2)**: 125–135
Peromyscus **23(1)**: 21–33
 Peru **23(2)**: 207–211
Pesola **23(2)**: 125–135
 Peters' Bow-fingered Gecko **23(2)**: 197–200
 Phenotype **23(2)**: 101–109
 Philippine Flat-Headed Frog **23(1)**: 65–78
 Philippines **23(1)**: 65–78
 Philippines Biodiversity Conservation Priority Setting and Action Plan **23(1)**: 65–78
Philodryas **23(2)**: 111–124
Philodryas baroni **23(2)**: 111–124
Phoenicolacerta **23(2)**: 153–163
Phoenicolacerta laevis **23(2)**: 153–163
Pholidosis **23(1)**: 21–33
Phrynosomatidae **23(1)**: 21–33
 Phylogenetic analysis **23(1)**: 3–19
 Phylogenetic hypothesis **23(1)**: 93–96
 Phylogenetic reconstruction **23(1)**: 3–19
 Phylogenetic relationships **23(1)**: 21–33, **23(2)**: 165–178
Phylogeny **23(1)**: 3–19
 Physicochemical characteristics **23(2)**: 137–152
Physiology **23(1)**: 65–78, 79–85
 Pine needles **23(1)**: 79–85
 Pine-oak forest **23(1)**: 21–33
Pines **23(1)**: 79–85
Pinus **23(1)**: 79–85
Pituophis **23(2)**: 111–124
Pituophis catenifer sayi **23(2)**: 111–124
 Plant stems **23(2)**: 201–206
 Plastic container **23(1)**: 43–53
 Plasticity **23(1)**: 43–53, **23(2)**: 201–206
 Plateau Brown Frog **23(2)**: 153–163
Platemys **23(1)**: 3–19
Platemys platycephala **23(1)**: 3–19
Platyceps **23(2)**: 111–124
Platyceps najadum **23(2)**: 111–124
Pleurodira **23(1)**: 3–19
 Podocnemidid **23(1)**: 3–19
 Podocnemididae **23(1)**: 3–19
Podocnemis **23(1)**: 3–19
Podocnemis expansa **23(1)**: 3–19
Podocnemis unifilis **23(1)**: 3–19
 Point of capture **23(2)**: 125–135
 Pollution **23(2)**: 137–152
 Polygamous **23(1)**: 79–85
 Polymorphic species **23(2)**: 101–109
 Polymorphism **23(2)**: 101–109, 125–135
Polypedates **23(1)**: 55–64
Polypedates maculatus **23(1)**: 55–64
 Polyphyletic group **23(1)**: 3–19
 Polyphyly **23(1)**: 3–19
 Ponds **23(1)**: 43–53, 55–64, **23(2)**: 179–190
 Pool areas **23(2)**: 137–152
 Population declines **23(1)**: 65–78
 Population declining **23(2)**: 137–152
 Population density **23(1)**: 43–53
 Population dynamics **23(1)**: 65–78, **23(2)**: 165–178
 Population size **23(1)**: 79–85
 Population status **23(1)**: 65–78
 Population structure **23(1)**: 79–85
 Populations **23(1)**: 3–19, 35–41, 79–85, **23(2)**: 101–109, 125–135, 153–163, 165–178, 213–215
 Position of eyes **23(2)**: 201–206
 Positive correlation **23(2)**: 153–163
 Positive selection **23(1)**: 3–19
 Possible origin **23(2)**: 101–109
 Posterior maxillary fangs **23(2)**: 111–124
 Post-hoc multiple comparisons **23(1)**: 43–53
 Postloreal scale **23(1)**: 21–33
 Postrostral scale **23(1)**: 21–33
 Posture mechanism **23(2)**: 207–211
Potamites **23(2)**: 197–200

Potamites erythrocularis 23(2): 197–200
Potamogeton 23(1): 43–53
Potamogeton crispus 23(1): 43–53
Potential evapotranspiration 23(2): 153–163
Prairie Rattlesnake 23(1): 21–33
Precipitation seasonality 23(2): 153–163
Precloacal pores 23(2): 125–135, 191–195
Precloacal scales 23(2): 191–195
Predation 23(1): 79–85, 23(2): 179–190
Predation attempt 23(2): 125–135
Predation pressure 23(1): 43–53
Predation risk 23(2): 125–135, 179–190
Predation threat 23(1): 55–64
Predator 23(1): 21–33, 55–64, 23(2): 179–190, 207–211
Predator-prey interactions 23(1): 55–64
Predictor variables 23(2): 137–152
Prefoveal scales 23(1): 21–33
Presence of livestock 23(1): 79–85
Preventing attack 23(2): 207–211
Preventral scales 23(1): 21–33
Prey 23(1): 21–33, 55–64, 87–92, 23(2): 179–190, 207–211
Prey items 23(1): 21–33
Prey type 23(1): 21–33
Primary dry forests 23(2): 201–206
Priority reptiles 23(1): 3–19
Projeto Dacnis Private Reserve 23(2): 201–206
Protected areas 23(1): 79–85
Protein-coding genes 23(1): 3–19
Protein-coding regions 23(1): 3–19
Proteroglyphous 23(2): 111–124
Protium 23(1): 87–92
Protium glabrum 23(1): 87–92
Psammophilus 23(2): 125–135
Psammophilus dorsalis 23(2): 125–135
Psammophis 23(2): 111–124
Pseudemydura 23(1): 3–19
Pseudemydura umbrina 23(1): 3–19
Puebla state 23(1): 79–85
Puerto Los Mazos 23(1): 21–33
Pulau Sinkep 23(2): 197–200
Pulsed notes 23(2): 165–178
Purifying Selection 23(1): 3–19

Q
Qinghai 23(2): 153–163
qpcR packages 23(2): 137–152
Quercus 23(1): 79–85
Queretaran Dusky Rattlesnake 23(1): 21–33
Quick-reading Miller & Webber 23(2): 125–135
Quindío Department 23(2): 165–178

R
R Core Team 23(2): 137–152
Rafetus 23(2): 213–215
Rainfall 23(2): 153–163
Rainy season 23(1): 87–92, 23(2): 179–190
Rana 23(1): 43–53, 23(2): 153–163
Rana chensinensis 23(1): 43–53
Rana kukunoris 23(2): 153–163
Ranatra 23(1): 55–64
Ranatra elongate 23(1): 55–64
Random distribution independent 23(2): 137–152
Random effect 23(2): 153–163
Ranidae 23(1): 43–53, 23(2): 153–163
Rapid locomotory escape 23(2): 197–200
Rare insect predator 23(1): 55–64
Rare species 23(1): 21–33, 55–64
Rarest category 23(1): 21–33
Rate of water flow 23(1): 65–78
Ratsnakes 23(2): 111–124
Rattan 23(1): 65–78
Rattanus 23(1): 65–78
Rattle morphology 23(1): 21–33
Rattlesnake 23(1): 21–33
RAVEN Pro 1.6 software 23(2): 165–178
Reacting during attack 23(2): 207–211
Read length 23(1): 3–19
Rear elevation 23(2): 207–211
Rear fangs cuffs/sheats 23(2): 111–124
Rear-fanged 23(2): 111–124
Reassessment 23(2): 111–124
Recessive gene 23(2): 101–109
Recessive mutation 23(2): 101–109
Recolonization 23(2): 101–109
Red Diamond Rattlesnake 23(1): 21–33
Reduced activity 23(1): 55–64, 23(2): 179–190
Reduced nutrient availability 23(2): 153–163
Refuge site 23(2): 125–135, 179–190

Regression slopes **23(1):** 21–33

Relationships **23(1):** 79–85

Relative extremity length **23(2):** 153–163

Relative humidity **23(1):** 65–78

Relative influence **23(2):** 137–152

Relative Synonymous Codon Usage **23(1):** 3–19

Reproduction **23(1):** 21–33, 87–92, 93–96, **23(2):** 153–163, 165–178

Reproductive biology **23(1):** 87–92, **23(2):** 201–206

Reproductive mode **23(2):** 201–206

Reproductive programs **23(1):** 3–19

Reproductive strategies **23(1):** 87–92, **23(2):** 201–206

Reptiles **23(1):** 3–19, 21–33, 87–92, 93–96, **23(2):** 101–109, 111–124, 125–135, 153–163, 191–195, 197–200

Residual autocorrelation **23(2):** 137–152

Residual forms **23(2):** 111–124

Resource availability **23(2):** 125–135

Response **23(1):** 55–64

Restocking purposes **23(1):** 3–19

Restricted population **23(1):** 79–85

Rhabdophis **23(2):** 111–124

Rhabdophis subminiatus **23(2):** 111–124

Rhabdophis tigrinus **23(2):** 111–124

Rhacophoridae **23(1):** 55–64

Rheodytes **23(1):** 3–19

Rheodytes leukops **23(1):** 3–19

Riau Archipelago of Indonesia **23(2):** 197–200

Riparian **23(2):** 197–200

Riparian zone **23(2):** 197–200

Risk of displacement **23(2):** 201–206

Rivers **23(1):** 3–19, 35–41, 65–78

Road-killed **23(1):** 21–33

Robust body **23(1):** 79–85

Rock boulder **23(2):** 197–200

Rock lines **23(2):** 125–135

Rocks **23(1):** 79–85

Rocks percentage **23(1):** 65–78

Rocky habitats **23(2):** 125–135

Rocky mountainous areas **23(2):** 125–135

Rocky streams **23(2):** 201–206

Rocky substrate **23(2):** 137–152

Rocky–muddy bottom **23(1):** 79–85

Rodentia **23(1):** 21–33

Rodents **23(1):** 21–33

Romania **23(2):** 101–109

Roots **23(1):** 79–85

rRNA genes **23(1):** 3–19

RSCU **23(1):** 3–19

RStudio software **23(2):** 191–195

Rufous-banded Miner **23(2):** 125–135

Run fast on the surface **23(2):** 197–200

Russia **23(2):** 101–109

S

Salamander **23(1):** 35–41

Sample t-test **23(2):** 125–135

San Andrés Chicahuaxtla **23(1):** 93–96

San Francisco Oxtotilpan **23(1):** 79–85

Sand **23(1):** 35–41

Sandy–muddy bottom **23(1):** 79–85

Sandy–muddy substrate **23(1):** 79–85

São Miguel do Iguaçu municipality **23(2):** 137–152

São Paulo state **23(2):** 201–206

Sarawak state **23(2):** 197–200

Saxicolous species **23(2):** 125–135, 201–206

Saxicolous tadpoles **23(2):** 201–206

Scale-dependent relationships **23(2):** 137–152

Sceloporus **23(1):** 21–33, **23(2):** 125–135

Scraper species **23(1):** 43–53

Secondary dry forests **23(2):** 201–206

Secondary forest **23(1):** 65–78

Secondary sexual characteristics **23(2):** 153–163

Secretions **23(2):** 111–124

Selection of substrate **23(1):** 35–41

Selective pressure **23(1):** 3–19

Semi-aquatic species **23(2):** 197–200

Semideciduous Seasonal Forests **23(2):** 137–152

Semi-terrestrial tadpoles **23(2):** 201–206

Sequence Read Archive **23(1):** 3–19

Serbia **23(2):** 101–109

Seromucous cells **23(2):** 111–124

Serpentes **23(1):** 21–33, 93–96, **23(2):** 101–109, 111–124

Serranópolis do Iguaçu municipality **23(2):** 137–152

Several generations **23(2):** 101–109

Sex **23(1)**: 21–33, 35–41, 43–53, **23(2)**: 125–135, 137–152
 Sex ratio **23(2)**: 153–163
 Sex-restricted **23(2)**: 125–135
 Sexual characteristics **23(2)**: 153–163
 Sexual differences **23(1)**: 21–33
 Sexual dimorphism **23(1)**: 21–33, **23(2)**: 191–195
 Sexual maturity **23(1)**: 3–19
 Sexual selection **23(2)**: 125–135, 165–178
 Shapiro-Wilk tets **23(1)**: 21–33
 Shorter larval periods **23(1)**: 43–53
 Shrews **23(1)**: 21–33
 Shrike-tyrants **23(2)**: 125–135
 Shrub-like vegetation **23(2)**: 125–135
Sibon **23(1)**: 93–96
 Side-necked Turtle **23(1)**: 3–19
 Sierra Chincua **23(1)**: 79–85
 Sierra de las Cruces **23(1)**: 79–85
 Sierra de Taxco **23(1)**: 79–85
 Sierra Madre del Sur **23(1)**: 93–96
 Sierra Nevada **23(1)**: 79–85
Sigmodon **23(1)**: 21–33
 Significant roles **23(2)**: 137–152
 Simulate predation threat **23(2)**: 179–190
 Singapore **23(2)**: 197–200
 Singapore Bent-toed Gecko **23(2)**: 197–200
 Single nucleotide polymorphisms **23(1)**: 3–19
 Sister group **23(1)**: 21–33
Sistrurus catenatus **23(1)**: 21–33
 Sit-and-wait **23(1)**: 55–64, **23(2)**: 179–190
 Sit-and-wait predators **23(1)**: 55–64
 Size **23(1)**: 21–33, 43–53, **23(2)**: 153–163
 Size at metamorphosis **23(1)**: 43–53
 Size dimorphism **23(2)**: 153–163
 Skin secretion **23(2)**: 207–211
 Skunks **23(1)**: 21–33
 Sky island lizard **23(2)**: 191–195
 Slovakia **23(2)**: 101–109
 Slow-moving rivers **23(1)**: 3–19
 Small plastic tubs **23(1)**: 55–64
 Smaller head **23(1)**: 21–33
 Smooth skin **23(1)**: 79–85
 Smooth snakes **23(2)**: 111–124
 Snakes **23(1)**: 21–33, 93–96, **23(2)**: 101–109, 111–124, 125–135
 Snout–vent length **23(1)**: 21–33, 65–78, 79–85, 93–96, **23(2)**: 125–135, 137–152, 153–163, 165–178, 191–195
 SNPs **23(1)**: 3–19
 Social advantage **23(2)**: 125–135
 Social pressures **23(2)**: 125–135
 Social role **23(2)**: 125–135
 Social status **23(2)**: 125–135
 Social structure **23(2)**: 125–135
 Sociality **23(2)**: 125–135
 Soil temperature **23(1)**: 65–78
Solenoglyphous **23(2)**: 111–124
 Solutions preparation **23(1)**: 55–64
 Soricidae **23(1)**: 21–33
 Soricomorpha **23(1)**: 21–33
 South America **23(1)**: 3–19, 87–92, **23(2)**: 125–135, 137–152, 165–178, 191–195, 201–206, 207–211
 South India **23(2)**: 179–190
 Southeast Asia **23(1)**: 65–78, **23(2)**: 197–200
 Southeastern Brazil **23(2)**: 201–206
 Southern Brazil **23(2)**: 137–152
 Southern Cone **23(2)**: 191–195
 Southern Coquimbo region **23(2)**: 191–195
 Southern Gansu **23(2)**: 153–163
 Southern Mexico **23(1)**: 87–92
 Southern Paraguay **23(2)**: 137–152
 Southern-oriental groups **23(2)**: 101–109
 Southwest China **23(2)**: 153–163
 Spain **23(2)**: 101–109
Spalerosophis **23(2)**: 111–124
 Spatial autocorrelation **23(2)**: 137–152
 Spatial distribution **23(2)**: 137–152
 Spatial dynamics **23(2)**: 137–152
 Spatial features **23(2)**: 137–152
 Spatial structuring **23(2)**: 137–152
 Spatial variation **23(2)**: 137–152
 Spawning events **23(2)**: 201–206
 Spawning site **23(1)**: 43–53, **23(2)**: 201–206
 Species abundance **23(1)**: 65–78
 Specific morphotype **23(2)**: 101–109
 Spectral features **23(2)**: 165–178
 Spectrograms **23(2)**: 165–178
 Speed/swimming velocity **23(1)**: 55–64
 Spent swimming **23(2)**: 179–190
Sphaerotheca **23(1)**: 55–64

Sphaerotheca breviceps 23(1): 55–64
 Spiders 23(1): 87–92
 Spiny lizard 23(1): 21–33
 Spiny vegetation 23(2): 125–135
Spirogyra 23(1): 43–53
 Splash zone 23(2): 201–206
 SPSS software 23(1): 43–53, 55–64, 23(2): 125–135, 165–178
 SPSS statistical tests 23(2): 179–190
Squamata 23(1): 21–33, 87–92, 93–96, 23(2): 101–109, 111–124, 125–135, 153–163, 191–195, 197–200
 Sri Aman Division 23(2): 197–200
 Stage 23(1): 35–41
 Statistica software 23(1): 21–33
 Statistical analyses 23(1): 21–33, 23(2): 153–163, 125–135, 137–152, 179–190
 Status conservation 23(2): 137–152
 Stereomicroscope 23(2): 111–124
 Stimulus solutions 23(2): 179–190
 Stomach contentes 23(1): 21–33
 Stone 23(1): 35–41
 Straight-line formations 23(2): 125–135
 Strategies 23(1): 3–19, 87–92, 23(2): 137–152, 207–211
 Stream salamander 23(1): 79–85
 Stream width 23(2): 137–152
 Streams 23(1): 35–41, 79–85, 65–78, 23(2): 137–152, 197–200, 201–206
 Stressful environments 23(2): 153–163
 Stretching limbs 23(2): 207–211
 Structural environmental variables 23(2): 137–152
 Subcaudal scales 23(1): 21–33, 93–96
subgrisea morphotype 23(2): 101–109
 Submergence in water 23(2): 197–200
 Substrate 23(1): 35–41, 23(2): 137–152
 Substrate color 23(1): 35–41
 Substrate composition 23(1): 35–41
 Substrate type 23(1): 35–41
 Success 23(1): 3–19
 Sumatra 23(2): 197–200
 Supralabial salivary gland 23(2): 111–124
 Supralabial scales 23(1): 21–33, 23(2): 111–124
 Suriname 23(2): 207–211
 Surrounding landscape 23(2): 137–152
 Survival 23(1): 43–53, 65–78
 Survival species 23(1): 65–78
 Swamps 23(1): 3–19
 Swimming movements 23(1): 55–64, 23(2): 179–190
 Swimming speed 23(2): 179–190
 Sympatric species 23(1): 55–64, 23(2): 111–124, 179–190
Syzygium 23(1): 87–92
Syzygium malaccense 23(1): 87–92

T
 Tadpoles 23(1): 43–53, 55–64, 23(2): 179–190, 201–206
 Tail bands 23(1): 21–33
 Tail length 23(1): 21–33, 93–96, 23(2): 125–135
 Tails 23(1): 21–33, 93–96, 23(2): 125–135
 Tanzania 23(2): 213–215
 TAS 23(1): 3–19
 Taxonomy 23(2): 101–109, 153–163, 165–178
 Teeth 23(2): 111–124
Telescopus 23(2): 111–124
Telescopus fallax 23(2): 111–124
 Temascaltepec 23(1): 79–85
 Temascaltepec municipality 23(1): 79–85
 Temperate subhumid to semi cold climate 23(1): 79–85
 Temperature 23(1): 65–78, 79–85, 23(2): 137–152
 Temperature range 23(1): 3–19
 Temperature seasonality 23(2): 153–163
 Temporal features 23(2): 165–178
 Temporary ponds 23(1): 55–64
 Temporary refugium 23(2): 197–200
 Termination association sequences 23(1): 3–19
 Territoriality patterns 23(1): 87–92
 Testudines 23(1): 3–19, 23(2): 213–215
 Testudinidae 23(2): 213–215
Testudo 23(1): 3–19
Testudo graeca 23(1): 3–19
Thamnophis 23(2): 111–124
Thamnophis marcianus 23(2): 111–124
Thamnophis sirtalis 23(2): 111–124
 Thanatosis 23(2): 197–200

The National Center for Biotechnology Information **23(1)**: 3–19

Thermoregulation **23(2)**: 125–135

Thoropa **23(2)**: 201–206

Thoropa taophora **23(2)**: 201–206

Thrasops flavigularis **23(2)**: 111–124

Thrasops jacksoni **23(2)**: 111–124

Threatened species **23(1)**: 3–19, 65–78

Threats **23(2)**: 179–190

Tibetan plateau **23(2)**: 153–163

Tilstoc **23(1)**: 79–85

Timber Rattlesnake **23(1)**: 21–33

Time spent swimming **23(1)**: 55–64, **23(2)**: 179–190

Tortoise lineages **23(2)**: 213–215

Tortoises **23(2)**: 213–215

Total distance moved **23(2)**: 179–190

Total length **23(1)**: 21–33

Toxicodryas **23(2)**: 111–124

tpsdig2 software **23(1)**: 43–53

Traits **23(2)**: 125–135

Transects **23(1)**: 65–78, **23(2)**: 137–152

Trans-Mexican Volcanic Belt **23(1)**: 79–85

Tree-dwelling lizards **23(1)**: 87–92

Tree trunks **23(2)**: 197–200

tRNAs **23(1)**: 3–19

Tropical deciduous forest **23(1)**: 21–33

Tropical forest **23(1)**: 21–33, 65–78, 87–92, **23(2)**: 197–200, 201–206

Tropidodipsas **23(1)**: 93–96

t-test **23(2)**: 125–135

Tukey's HSD *post-hoc* test **23(2)**: 179–190

Turbidity **23(1)**: 65–78

Turkey **23(2)**: 101–109

Turtles **23(1)**: 3–19

Twin Spotted Rattlesnake **23(1)**: 21–33

Type locality **23(1)**: 21–33, 93–96, **23(2)**: 197–200

Types of microhabitats **23(2)**: 137–152

Tzabcan Rattlesnake **23(1)**: 21–33

U

Ubatuba municipality **23(2)**: 201–206

UFBoot **23(1)**: 3–19

Ultrafast bootstrap approximation **23(1)**: 3–19

Unique characteristics **23(1)**: 65–78

Unique ecosystems **23(1)**: 3–19

Universidad Autónoma de Aguascalientes **23(1)**: 21–33

Universidad Nacional Autónoma de México **23(1)**: 93–96

University of Chile **23(2)**: 191–195

University of Quindío **23(2)**: 165–178

University of Teramo **23(2)**: 111–124

University of Texas at Arlington **23(1)**: 21–33

Urban forest fragment **23(2)**: 165–178

Urosaurus **23(2)**: 125–135

Use of the substrate **23(1)**: 79–85

V

Valle de Bravo river **23(1)**: 79–85

Variable number of tandem repeats **23(1)**: 3–19

Variance-covariance matrix **23(2)**: 137–152

Variance Inflation Factor **23(2)**: 137–152

Varimax-rotation **23(2)**: 165–178

Varying environmental **23(2)**: 153–163

Vegetation **23(1)**: 65–78, 79–85, **23(2)**: 137–152

Velocity **23(1)**: 55–64, 65–78

Venezuela **23(2)**: 207–211

Venom **23(1)**: 21–33, **23(2)**: 111–124, 207–211

Venom composition **23(1)**: 21–33

Venom glands **23(2)**: 111–124

Venomous species **23(1)**: 21–33, **23(2)**: 111–124

Ventral coloration **23(2)**: 101–109

Ventral scales **23(1)**: 21–33, **23(1)**: 93–96

Veracruz **23(1)**: 93–96

Veragua Rainforest **23(1)**: 87–92

Vertical strata **23(1)**: 87–92

ViennaRNA Web Services site **23(1)**: 3–19

Villa de Leyva municipality **23(2)**: 165–178

Viperidae **23(1)**: 21–33, **23(2)**: 111–124

Viperids **23(1)**: 21–33

Vipers **23(1)**: 21–33

Visibility **23(2)**: 125–135

Visual cues **23(2)**: 179–190

Visual encounter **23(1)**: 65–78

Viviparous **23(2)**: 125–135

VNTR **23(1)**: 3–19

Vulnerable **23(1)**: 21–33

W

Walls **23(1)**: 79–85
Warm temperature **23(1)**: 43–53
Warmer environments **23(2)**: 153–163
Water abundance **23(2)**: 153–163
Water bodies **23(1)**: 43–53, **23(2)**: 179–190
Water deficit **23(2)**: 153–163
Water exchange period **23(1)**: 43–53
Water flow **23(1)**: 35–41, 65–78
Water flow speed **23(2)**: 137–152
Water quality **23(1)**: 35–41
Water scorpions **23(1)**: 55–64
Water snakes **23(2)**: 111–124
Water temperature **23(1)**: 65–78
Water-borne cues **23(1)**: 55–64, **23(2)**: 179–190
Waterfalls **23(2)**: 201–206
Watershed **23(1)**: 65–78
Weight **23(1)**: 21–33, 65–78
Weight ratio **23(1)**: 21–33
Welch's t-tests **23(2)**: 125–135, 153–163
Western Borneo **23(2)**: 197–200
Western Diamond-backed Rattlesnake
 23(1): 21–33
Western Dusky Rattlesnake **23(1)**: 21–33
Western Ecuador **23(1)**: 87–92
Western Madagascar **23(1)**: 3–19car
Western Mexico **23(1)**: 21–33
Western Oaxaca **23(1)**: 93–96
Western Palearctic clade **23(2)**: 111–124
Wet rocks **23(2)**: 201–206
Wet season **23(1)**: 35–41

Whip snake **23(2)**: 111–124

Width **23(1)**: 65–78

Wild individuals **23(2)**: 101–109

Wildlife communities **23(1)**: 65–78

WorldClim **23(2)**: 153–163

X

Xinyang **23(1)**: 43–53

Y

Yangtze River **23(1)**: 43–53

Yellow and black dorsal dots **23(2)**: 165–178

Yellow pigment **23(2)**: 101–109

Yellow spots **23(2)**: 165–178

Young **23(1)**: 79–85

Young specimens **23(2)**: 101–109

Yucatán Peninsula **23(1)**: 93–96

Z

Zamenis **23(2)**: 101–109, 111–124

Zamenis lineatus **23(2)**: 101–109

Zamenis longissimus **23(2)**: 101–109, 111–124

Zamenis longissimus form *nigrescens*

23(2): 101–109

Zamenis longissimus var. *nigra* **23(2)**: 101–109

Zamenis persicus **23(2)**: 111–124

Zamenis scalaris **23(2)**: 111–124

Zoological Reference Collection **23(2)**: 197–
 200

Z-scores **23(2)**: 137–152

INSTRUCTIONS TO AUTHORS

General Information. *Phyllomedusa* publishes articles dealing with the entire field of herpetology. The journal also maintains sections for Short Communications and Book Reviews. Manuscripts are considered on the conditions that they: (1) have not been published elsewhere; (2) are not under consideration for publication, in whole or in part, in another journal or book; and (3) are submitted by the authors in the format and style of *Phyllomedusa* and in accordance with the specifications included in the Instructions to Authors. Manuscripts should be submitted as a single Microsoft Word document via e-mail. High-quality color images are accepted. Manuscripts must be written in English with appropriate abstracts in alternate languages. If English is not your primary language, arrange to have your manuscript reviewed for English usage before you submit it. Direct any questions about manuscript submission to the primary editor. Publication in *Phyllomedusa*, including color images, is free of charge.

Scope. Manuscripts must contain significant new findings of fundamental and general herpetological interest. Surveys and taxonomic descriptions are published only if there is sufficient new biological information or taxonomic revision to render the paper of general herpetological interest. Lower priority is accorded confirmatory studies, investigations primarily of localized interest, range extensions, technique papers with narrow application, descriptions of phenomena based on insufficient data, and descriptive work that is not placed in a significant context. Manuscripts should include a clear statement of the purpose of the study or the hypothesis that was tested.

Peer Review. At least two referees, an Associate Editor, and the Editor will review each manuscript that is deemed to fall within the scope of *Phyllomedusa*. Authors will be notified of the status of their manuscript within 90 days. Revised manuscripts accepted for publication will be edited for English usage and syntax prior to final acceptance for publication.

Manuscript Style and Format. Use the active voice when possible; thus, you should write "I/we studied the frog," rather than "The frog was studied by me/us" (passive voice). Use American spelling and punctuation. Double space the entire manuscript, including references, tables, table captions, and legends for illustrations. Use Times New Roman 12-point font, and set up document with margins of at least 2.54 cm (1 in.) on each side. Do not justify the text; it should be left aligned and ragged right. Number manuscript pages consecutively and lines continuously, following the arrangement and format outlined below exactly.

- **Title:** Bold-faced caps and lower-case Roman; sentence capped, left aligned; use colons to separate ranked taxonomic names.

- **Name(s) of author(s):** Bold-faced caps and lower-case Roman; left aligned; use serial commas. Follow example:

José Wellington Alves dos Santos^{1,2}, Roberta Pacheco Damasceno^{1,2}, and Pedro Luís Bernardo da Rocha^{2,3}

- **Institutional affiliation(s):** Light-faced caps and lower-case Roman; left aligned. Follow example:

¹ University of Kansas, Department of Ecology and Evolutionary Biology. Lawrence, Kansas 66045-7580, USA. E-mail: trueb@ku.edu.

² Universidade de São Paulo, Escola Superior de Agricultura Luiz de Queiroz, Departamento de Ciências Biológicas. 13.418-900, Piracicaba, SP, Brazil. E-mail: jaime.bertoluci@usp.br.

³ Universidad Nacional Autónoma de México, Centro de Ciencias Genómicas. Cuernavaca, Morelos, Mexico. E-mail: delibasanta@gmail.com.

- **Abstract:** Should not exceed 350 words (including lead title) and one paragraph and only is included in regular articles. Alternate-language abstracts may be included, but these must match the content of the English abstract. See example:

Abstract

Title of paper in bold-faced Roman. Content of abstract follows in light-faced Roman; left alignment.

- **Keywords:** Light-faced Roman; separate words with commas; capitalize only proper nouns; include descriptors not contained in the title in alphabetical order.

- **Body of Article:** The text of the article will include the following parts indicated by primary headings in bold-faced Roman aligned to the left (except for References, which should be centered).

Introduction

Materials and Methods

Results

Discussion

Acknowledgments

References

Secondary headings within major sections are title-capped, italics aligned left.

Tertiary headings follow a paragraph indentation; they are sentence capped, and set in italics. Tertiary headers are followed by a point and an em-dash. Follow example:

Material and Methods [Primary header]

Study Site [Secondary header]

Selection of site.—This is a Tertiary, or third-level, heading. Note that it is indented and lacks a hard return. The heading is followed by a point or period and a long (em-dash).

- **Body of Short Communication or Book Review:** These shorter articles do not include the primary headings Introduction, Materials and Methods, Results, and Discussion. "Acknowledgments" is treated as a third-level, or tertiary header.

- **Tables:** Number tables consecutively with Arabic numbers. Refer to tables in text as Table 1, Tables 2 and 3, and Tables 2–5. Exceedingly long tables should be placed in appendices. Table captions should be placed above the table. Horizontal rules may be used in the table header and at the foot of the table. No rules (horizontal or vertical) should appear in the body of a table. Consult Vol. 20 (2) of *Phyllomedusa* for proper format of table captions and contents.

- **Appendices:** Number appendices consecutively with Roman numerals. Refer to tables in text as Appendix I, Appendices II and III, and Appendices II–V. Appendix captions should be placed above the appendix content. Most appendices should follow the format instructions for tables. Extensive lists of specimens examined should be included as an appendix. Consult Vol. 18 (2) of *Phyllomedusa* for proper format and arrangement of specimens examined.

- **Figure captions or legends:** All figures must be numbered consecutively and their legends or captions formatted in *Phyllomedusa* style (Vol. 18, No. 2). The captions should be listed in order separate from the images. Refer to figures in text as Figure 1, Figures 2 and 3, Figures 2–5, Figure 4A, and Figure 4A, B. "Figure" or "Figures" are always spelled out—even in parentheses. Figures must be cited in order in the text. See specific instructions for preparation of figures.

- **Figures for review:** Embed all figures in order at the end of the Word document as PNG (Portable Network Graphic) files. Identify each with the figure number and a short caption, and indicate whether the figure is intended for reproduction at column or page width, or as a broadside.

- **Preparation of Figures for Publication.** All figures should be submitted digitally as TIF files with LZW compression, separately from the files embedded in the manuscript for review. Each figure should be submitted at the exact size intended for publication. There are three choices: **page width** (34 picas, 145 mm, 5 and 11/16 in.), **column width** (16.5 picas, 70 mm, 2 and 3/4 in.), or **broadside** (193 mm × 145 mm). All illustrations must allow room for a caption to be printed below the figure, while conforming to these measurements.

- **Labeling figures:** Labels must be consistent on a figure and among all figures included in the article. Use a sans serif font that is common to Windows and Macintosh platforms (e.g., Arial). Subunits of multipart figures must be labeled with capital letters (A, B, C) placed in the upper, left-hand area of each unit. The letters should be about 10 points large (not to exceed 12 pt); they must be identical in size and typeface on each figure included in the manuscript.

INSTRUCTIONS TO AUTHORS

Labeling within figures (e.g., anatomical parts, legends on axes of graphs, etc.) should be in the range of 8–9 pt and in a sans serif font, such as Arial. Scale bars should be labeled with their values on the face of the figure (e.g., 5 mm); the minimal size of lettering that may be used is 7 points in a sans serif font for scale bars, longitude and latitude on maps, etc.

- **Vector graphics:** *Maps, graphs, and line drawings* should be prepared with an illustration program such as Adobe Illustrator, CorelDRAW, or Deneba Canvas. Graphs and maps generated in other programs (e.g., Sigma Plot, Excel) can be imported into these illustration programs and manipulated (or used as a template to produce a new drawing) to produce an acceptable figure at the size intended for publication. Similarly, drawings executed by hand, should be scanned (300–600 dpi) and imported into an illustration program in which they can be sized and labeled for publication. Follow the instructions for labeling provided above, along with the following guidelines for illustrations at column and page widths.
 - ✓ Sized for publication, lines (strokes) should be between 0.25 and 2 points wide.
 - ✓ Tick marks on graphs should be on the outside of the axis line. Sized for publication, they are between 3 and 5 points in length and 0.25 pt in weight. Longitude and latitude marks should be on the inside of the map border.
 - ✓ All maps must have an appropriate scale in kilometers.
 - ✓ Overlapping symbols and lines must be counter shadowed with white.
 - ✓ Export completed image as a TIF document for submission.
- **Raster graphics:** *Photographs (color and gray-scale [black & white]) and tone (gray-scale) renderings* should be submitted as a RGB document in TIF format sized for publication (described above) at a resolution between 300 and 600 dpi (after reduction/sizing). To label raster images, import them into a vector graphic program, follow the directions above, and export the completed image as a TIF document for submission.

Editorial conventions.

- **Taxonomy.** All generic and specific names must appear in italics. At the first mention of a species in any paragraph, provide its complete binomial name; in subsequent references to the same species, the generic name may be abbreviated. The first citation of a species must include the authority and date, but the authority does not have to be cited in the References. Hierarchical taxa are separated with colons (e.g., Anura: Leptodactylidae). New taxonomic names should not appear in the Abstract or Keywords.
- **Dashes.** There are three kinds of dashes. Short dashes (–) are used as hyphens. En-dashes (—) are used to denote ranges (e.g., 5–10, May–September) and the minus sign in mathematics. Em-dashes (—) are used in Tertiary Headings, and frequently as a substitute for parentheses and colons. There should be no space on either side of any of these dashes.
- **Numbers and units.** All measurements are noted in Arabic, unless the number starts a sentence.
 - ✓ Measurements include distances, areas, dimensions, volumes, weights, time (e.g., hours, days, seconds, minutes), temperatures, etc. **Standard SI units are used**—e.g., time: 08:16 h; distances and areas: 7 km, 12.5 mm, 17,840 ha; geographic coordinates: 04°43'23" S; temperature: 24°C. To indicate degrees, use a degree sign (°), not a superscript oh (°). Note that degrees and minutes are straight quotation marks or prime signs; do not use curly quotes.
 - ✓ Use the **double-digit rule** for numbers other than measurements. Numbers less than 10 are spelled out—e.g., “... nine animals were sampled”; numbers of 10 and more are denoted in Arabic—e.g., “... but 10 larvae were collected.”
- **Citations.** Authorities are cited in text as follows. Single: (Caballero 1944); double: (Bursey and Goldberg 2006); three or more (Goldberg *et al.* 2002). Note use of “and” and italics for “et al.” Multiple text citations should be listed in chronological order and separated by commas—thus: (Crump 1974, Duellman 1978a–c, 1980, Duellman and Trueb 1986). Two or more publications by the same author should be cited in the following pattern: (Vanzolini 1991, 1992) or Cadle (1984a, b, 1985).

• **References.** All publications cited in the text (except taxonomic authorities) must be included in the References in alphabetical order. “Gray literature” (e.g., technical reports, theses, dissertations that have limited distribution or are difficult to identify and acquire) should be avoided. Follow the formats shown below.

✓ Normal journal articles:

Vanzolini, P. E. 1993. A new species of turtle, genus *Trachemys*, from the state of Maranhão, Brazil (Testudines, Emydidae). *Revista Brasileira de Biologia* 55: 111–125.

✓ Two authors in a journal series:

Zamudio, K. R. and H. W. Greene. 1997. Phylogeography of the bushmaster (*Lachesis muta*: Viperidae): implications for Neotropical biogeography, systematics, and conservation. *Biological Journal of the Linnean Society* 62: 421–442.

✓ More than two authors in a journal series:

Hero, J.-M., W. E. Magnusson, C. F. D. Rocha, and C. P. Catterall. 2001. Antipredator defenses influence the distribution of amphibian prey species in the central Amazon rain forest. *Biotropica* 33: 131–141.

✓ Chapter in an edited volume:

Hedges, S. B. 1999. Distribution patterns of amphibians in the West Indies. Pp. 211–254 in W. E. Duellman (ed.), *Patterns of Distribution of Amphibians: A Global Perspective*. Baltimore and London. The Johns Hopkins University Press.

✓ Unpublished thesis or dissertation:

Verdade, V. K. 2001. Revisão das espécies de *Colostethus* Cope, 1866 da Mata Atlântica (Anura, Dendrobatiidae). Unpublished M.Sc. Dissertation. Universidade de São Paulo, Brazil.

✓ Book:

McDiarmid R. W. and R. Altig (eds.). 1999. *Tadpoles. The Biology of Anuran Larvae*. Chicago and London. The University of Chicago Press. 633 pp.

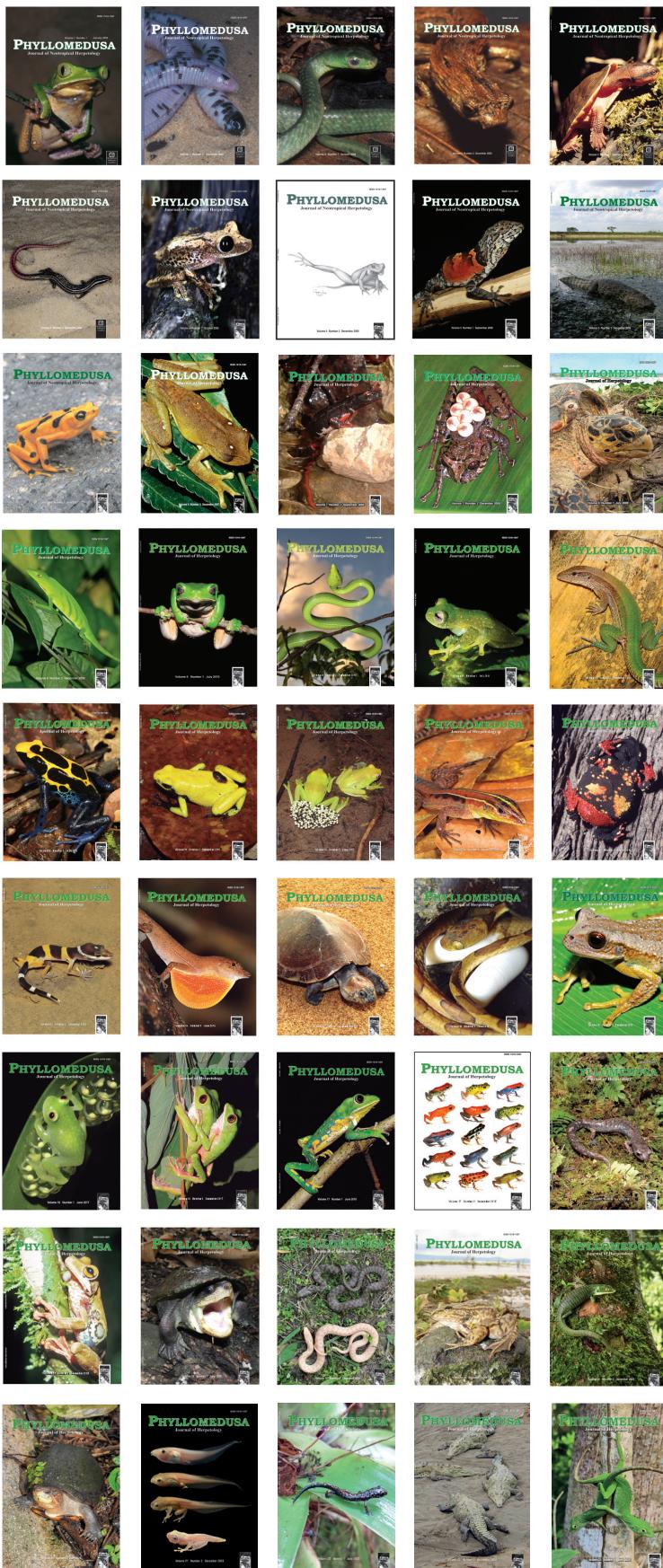
✓ Material from the World Wide Web:

Frost, D. R. (ed.). 2010. Amphibian Species of the World: an Online Reference. Version 5.4 (8 April 2010). Electronic Database accessible at <http://research.amnh.org/vz/herpetology/amphibia/> American Museum of Natural History, New York, USA. Captured on 22 August 2010.

✓ Software:

Maddison, W. P. and D. R. Maddison. 2010. Mesquite. A Modular System for Evolutionary Analysis. Version 2.73. URL: <http://mesquitemproject.org>

• **Animal care and permits.** The editorial staff of *Phylomedusa* subscribes to humane and ethical treatment of all animals; all contributors to the journal must comply with this principle. In addition, all required state and federal permits must have been obtained and must be cited in the Acknowledgments.


• **Proofs.** The publisher will undertake proofreading, unless specifically advised otherwise by the corresponding author when the contribution is accepted for publication.

• **Reprints.** Authors will receive a PDF of their contribution and are invited to distribute it freely.

• **Submission.** Send your manuscript as a single Microsoft Word file (.doc or .docx) containing the main text followed by Appendices, Tables and Figures with their respective captions via e-mail to the Editor: phylomedusa@usp.br.

Jaime Bertoluci

Editor-in-Chief

Contents

Volume 23 Number 2

July-December 2024

Articles

The Black Aesculapian Snake <i>Zamenis longissimus</i> (Serpentes: Colubridae): characters and possible origin of the <i>subgrisea</i> morphotype Alessandro Paterna	101
Analyzing and comparing the buccal anatomy of European colubroid snakes: A reassessment of dentition models Alessandro Paternaa	111
Dorsal polymorphism and perch height use by <i>Liolaemus bellii</i> (Squamata: Liolaemidae) in central Chile Enrique Santoyo-Brito, Herman Núñez, and Stanley Fox	125
Habitat and microhabitat use by <i>Crossodactylus schmidti</i> (Anura: Hylodidae) in Atlantic Rainforest streams Michel Varajão Garey, Camila Souza Batista, and Jessica De Lara Jeziorny	137
Altitudinal variation in limb size across seven populations of <i>Rana kukunoris</i> (Anura: Ranidae) fails to obey Allen's rule Tao Yang, Wen H. Shi, and Tong L. Yu	153
The advertisement call of <i>Espadarania prosoblepon</i> (Anura: Centrolenidae) from a population in the Central Andes of Colombia Valentina Rodríguez-Correa, Santiago González-Alzate, Marco Rada, and Fernando Vargas-Salinas	165
Differential antipredator behavioral responses in tadpoles of <i>Duttaphrynus melanostictus</i> (Anura: Bufonidae): an experimental demonstration Santosh M. Mogali, Bhagyashri A. Shanbhag, and Srinivas K. Saidapur	179

Short Communications

Sexual dimorphism of snout-vent length in <i>Liolaemus nigroviridis</i> (Squamata: Liolaemidae) Jorge Mella-Romero, Kathia Arenas-Rodriguez, and Juan Luis Allendes	191
An observation on the diving behavior of <i>Cyrtodactylus consobrinus</i> (Squamata: Gekkonidae) from Borneo Hao-Sen Chen, Ace Kevin S. Amarga, Yu-Sing Lin, Chin-Chia Shen, Indraneil Das, and Si-Min Lin	197
Spawning site plasticity in <i>Cycloramphus boraceiensis</i> (Anura: Cycloramphidae) Lucas Machado Botelho, Vanessa Kruth Verdade, Luis Felipe Toledo, and Edelcio Muscat	201
Defensive repertoire of <i>Leptodactylus rhodomystax</i> (Anura: Leptodactylidae) in the Brazilian Amazon Antônio Rafael Lima Ramos, Vitoria Hellen Holanda, Ricardo Alexandre Kawashita-Ribeiro, Vinícius Tadeu de Carvalho, and Robson Waldemar Ávila	207

Book Review

Zug, G. R. and D. A. Reese. 2024. Tortoises of the World – Giants to Dwarfs By Peter Meylan	213
Author index	217
Subject Index	219

Articles published in PHYLLOMEDUSA are indexed in the following databases: Web of Science (Science Citation Index Expanded), SCOPUS, Dimensions, Zoological Record, BIOSIS Previews, CABI Publishing, Current Contents (Agriculture, Biology & Environmental Sciences), and DOAJ (Directory of Open Access Journals).