Are green walls a suitable environmental compensation in densifying cities? Quantifying the urban microclimate effects at the pedestrian level in Sao Paulo
DOI:
https://doi.org/10.11606/issn.2317-2762.posfauusp.2022.195441Palavras-chave:
Green walls, Urban greenery, Urban microclimates, Urban policies, ENVI-met, Environmental compensationResumo
In the city of Sao Paulo, green spaces are few and uneven. Between 2015-2018, to increase greenery, the municipality promoted green walls as an environmental compensation solution for the loss of urban trees. This study aimed to quantify the impact of these green façades on urban microclimate at the pedestrian level, considering the following variables: air temperature, air humidity, and mean radiant temperature. We reviewed local planning documents and the microclimatic performance of green wall technologies, establishing the effects of wall greening based on simulations — using the ENVI-met V4 Science model. Although the main difference was measured 15 cm far from the walls’ surface, the 60 cm away differences from the green wall were insignificant. The results indicate: (a) the impact of the green walls on outdoor microclimates at the pedestrian level is minimum, and (b) Sao Paulo’s policy for environmental compensation using green walls was poorly supported by scientific evidence. Therefore, green walls are a highly questionable alternative for environmental compensation from the perspective of urban microclimate. As much as promoting green walls for potential benefits is desirable, they are unsuitable to compensate the range of ecosystem services lost by the elimination of trees.
Downloads
Referências
ACERO, Juan A., KOH, Elliot. J. Y., Li, XianXiang, RUEFENACHT, Lea A., PIGNATTA, Gloria, NORFORD, Leslie. K. (2019). Thermal impact of the orientation and height of ver-tical greenery on pedestrians in a tropical area. Building Simulation, 12(6), 973–984. https://doi.org/10.1007/s12273-019-0537-1
ALCHAPAR, Noelia L., PEZZUTTO, Claudia C., CORREA, Erica. N., CHEBEL LABAKI, Lucila (2017). The impact of different cooling strategies on urban air tempera-tures: the cases of Campinas, Brazil and Mendoza, Argentina. Theoretical and Applied Climatology, 130(1-2), 35–50. https://doi.org/10.1007/s00704-016-1851-5
ANTONYOVÁ, Anna, ANTONY, Petter, KORJENIC, Azra (2017). Evaluation the hygro-thermal effects of integration the vegetation into the building envelope. Energy and Build-ings, 136, 121–138. https://doi.org/10.1016/j. enbuild.2016.12.021
BESIR, Ahmet. B., CUCE, Erdem. (2018). Green roofs and facades: A comprehensive re-view. Renewable and Sustainable Energy Reviews, 82, 915–939. https://doi. org/10.1016/j.rser.2017.09.106 BOA SORTE, Pedro D. (2016). Simulação Térmica de Paredes Verdes Compostas de Vege-tação Nativa do Cerrado (Dissertação de Mestrado). Universidade de Brasília, Brasília.
BONAN, Gordon (2016). Ecological climatology: Concepts and applications (3. ed.). New York: Cambridge University Press. Retrieved from http://dx.doi.org/10.1017/CBO9781107339200
BOWLER, Diana E., BUYUNG-ALI, Lisette, KNIGHT, Teri M., PULLIN, Andrew S. (2010). Urban greening to cool towns and cities: A systematic review of the empirical evi-dence. Landscape and Urban Planning, 97(3), 147–155. https://doi.org/10.1016/j.landurbplan.2010.05.006 PosFAUUSP 10 Pos FAUUSP, São Paulo, v. 29, n. 55, e195441, jul-dez 2022.
BROWN, Scott C., LOMBARD, Joanna, WANG, Kefeng, BYRNE, Margaret M., TORO, Mattew, PLATER-ZYBERK, Elizabeth, FEASTER, Daniel J., KARDYS, Jack, NARDI, Maria I., PEREZ-GOMEZ, Gianna, PANTIN, Hilda, SZAPOCZNIK, José (2016). Neigh-borhood Greenness and Chronic Health Conditions in Medicare Beneficiaries. American Journal of Preventive Medicine, 51(1), 78–89.https://doi.org/10.1016/j.amepre.2016.02.008
BRUSE, Michael, FLEER, Heribert (1998). Simulating surface–plant–air interactions inside urban environments with a three dimensional numerical model. Environmental Modelling & Software, 13, 373–384. https://doi. org/10.1016/S1364-8152(98)00042-5
BUCKERIDGE, Marcos, LOCOSSELI, Giuliano, CARDIM, Ricardo (2018). Blog do Buckeridge _Árvores versus paredes verdes. Retrieved from https://msbuckeridge.wordpress.com
CHEN, J. M., BLACK, T. A. (1992). Defining leaf area index for non-flat leaves. Plant, Cell and Environment, 15(421-429).
CITY OF SEATTLE. Director’s Rule 30-2015. Standards for Landscaping, including Green Factor. Department of Planning & Development, Seattle, 2015.
COELHO, Leonardo L. (2009). A Contribuição das Compensações Ambientais para a Consti-tuição de um Sistema de Espaços Livres Públicos na Cidade de São Paulo. Paisagem E Ambiente: Ensaios, 143–164. Retrieved from http://www.revistas.usp.br/paam/article/view/77351
COMIN, Alvaro, OLIVEIRA, Maria Carolina V., TORRESFREIRE, Carlos, ABDAL, Ale-xandre. (2010, March). City and economy: Changes in Sao Paulo metropolitan context. Centro de Estudos da Metrópole.
COUTTS, Andrew M., WHITE Emma C., TAPPER, Nigel. J., BERINGER, Jason, LIVESLEY, Stephen J. (2016). Temperature and human thermal comfort effects of street trees across three contrasting street canyon environments. Theoretical and Applied Clima-tology, 124(1-2), 55–68. https://doi.org/10.1007/s00704-015-1409-y
DAEMEI, Abdollah B., AZMOODEH, Maryam, ZAMANI, Zahra, KHOTBEHSARA, El-ham M. (2018). Experimental and simulation studies on the thermal behavior of vertical greenery system for temperature mitigation in urban spaces. Journal of Building Engineer-ing, 20, 277–284. https://doi.org/10.1016/j.jobe.2018.07.024
DUARTE, Denise. H.S., SHINZATO, Paula, GUSSON, Carolina d. S., ALVES, Carolina A. (2015). The impact of vegetation on urban microclimate to counterbalance built density in a subtropical changing climate. Urban Climate, 14, 224–239. https://doi.org/10.1016/j.uclim.2015.09.006
ENVI-met (2020, February 18). ENVI-met software. Retrieved from https://www.envi-met.com/
FANG, Hongliang, BARET, Frédéric, PLUMMER, Stephen, SCHAEPMAN-STRUB, Ga-briela (2019). An Overview of Global Leaf Area Index (LAI): Methods, Products, Validation, and Applications. Reviews of Geophysics, 57(3), 739–799. https://doi.org/10.1029/2018RG000608
FERREIRA, Luciana S., DUARTE, Denise H.S. (Eds.) (2018). Exploring the Potential Of WUDAPT Local Climate Zone Maps to Detect Vegetation Loss: A Study for Sao Paulo Metropolitan Region from 2002 to 2017. PLEA 2018.
FERREIRA, Luciana S. (2019). Vegetacao, temperatura de superfície e morfologia urbana: Um retrato da regiao metropolitana de Sao Paulo (Tese). Universidade de Sao Paulo, Sao Paulo. Retrieved from https://teses.usp.br/teses/ disponiveis/16/16132/tde-02102019-173844/publico/ TELUCIANASCHWANDNERFERREIRA_rev.pdf
FOLHA DE SÃO PAULO (2020). Prefeitura de SP vai pagar R$ 1,07 milhão para remover jardins de quatro prédios.
GILL, S.E., HANDLEY, J.F., ENNOS, A.R., PAULEIT, S. (2007). Adapting Cities for Cli-mate Change: The Role of the Green Infrastructure. BUILT ENVIRONMENT, Vol 33 (1) // 33(1), 115–133. https://doi.org/10.2148/benv.33.1.115
GUNAWARDENA, Kanchane R., STEEMERS, Koen (2019). Living wall influence on mi-croclimates: an indoor case study. Journal of Physics: Conference Series, 1343. https://doi.org/10.1088/1742-6596/1343/1/012188
GUNAWARDENA, Kanchane R., STEEMERS, Koen (2020). Urban living walls: reporting on maintenance challenges from a review of European installations. Architectural Science Review, 138, 1–10. https://doi.org/10.1080/00038628.2020.1738209
GUSSON, Carolina S., DUARTE, Denise H.S. (2016). Effects of Built Density and Urban Morphology on Urban Microclimate -Calibration of the Model ENVI-met V4 for the Sub-tropical Sao Paulo, Brazil. Procedia Engineering, 169, 2–10. https://doi.org/10.1016/j.proeng.2016.10.00 PosFAUUSP 11 Pos FAUUSP, São Paulo, v. 29, n. 55, e195441, jul-dez 2022.
IBGE (2020). Estimativas da População | IBGE. Retrieved from https://www.ibge.gov.br/estatisticas/sociais/populacao/9103-estimativas-de-populacao. html?=&t=downloads
INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA (2010). IBGE | Censo 2010. Retrieved from https://censo2010.ibge.gov.br/
KRUUSE, Annika. GRaBS expert paper 6: The green space factor and the green points sys-tem. Town and Country Planning Association. Malmo, 2011.
LANDSCHAFT PLANNEN & BAUEN. BECKER, Giseke, MOHREN, Richard. The Bio-tope Area Factor as an Ecological Parameter- Principles for its determination and identifi-cation of the target – excerpt. Berlin, 1990. http://www.stadtentwicklung.berlin.de/umwelt/landschaftsplanung/bff/index_en.shtml
JAAFAR, Badrulzaman, SAID, Ismail, REBA, Mohd N. M., RASIDI, Mohd H. (2013). Im-pact of Vertical Greenery System on Internal Building Corridors in the Tropic. Procedia - Social and Behavioral Sciences, 105, 558–568. https://doi.org/10.1016/j.sbspro.2013.11.059
KONG, Ling, LAU, Kevin K.-L., YUAN, Chao, CHEN, Yang, XU, Yong, REN, Chao, NG, Edward (2017). Regulation of outdoor thermal comfort by trees in Hong Kong. Sustaina-ble Cities and Society, 31, 12–25. https://doi.org/10.1016/j.scs.2017.01.018 LI, Cuimin, WEI, Jingshu, LI, Chunying. (2019). Influence of foliage thickness on thermal performance of green façades in hot and humid climate. Energy and Buildings, 199, 72–87. https://doi.org/10.1016/j.enbuild.2019.06.045
MANGONE, Giancarlo, VAN DER LINDEN, Kees (2014). Forest microclimates: Investigat-ing the performance potential of vegetation at the building space scale. Building and Envi-ronment, 73, 12–23. https://doi.org/10.1016/j. buildenv.2013.11.012
MATHEUS, Carla, CAETANO, Fernando D. N., MORELLI, Denise D. d. O., CHEBEL LABAKI, Lucila C. (2016). Desempenho térmico de envoltórias vegetadas em edificações no sudeste brasileiro. Ambiente Construído, 16(1), 71–81. https://doi.org/10.1590/s1678-86212016000100061
MORAKINYO, Tobi E., LAI, Alan, LAU, Kevin K.-L., NG, Edward (2019). Thermal bene-fits of vertical greening in a high-density city: Case study of Hong Kong. Urban Forestry & Urban Greening, 37, 42–55. https://doi.org/10.1016/j.ufug.2017.11.010
MORELLI, Denise D. d. O. (2016). Desempenho de Paredes Verdes como Estratégia Biocli-mática (Tese de Doutorado). Universidade Estadual de Campinas, Campinas.
OKE, T. R., MILLS, G., CHRISTEN, A., VOOGT, J. A. (2017). Urban Climates. Cambrid-ge: Cambridge University Press. https://doi.org/10.1017/9781139016476
PAN, Lan, WEI, Shen, CHU, L. M. (2018). Orientation effect on thermal and energy perfor-mance of vertical greenery systems. Energy and Buildings, 175, 102–112. https://doi.org/10.1016/j.enbuild.2018.07.024
R7 (2019, March 30). SP: Prefeitura não faz manutenção e prédios desistem de jardins verti-cais. R7.Com. Retrieved from https://noticias.r7.com/sao-paulo/sp-prefeituranao-faz-manutencao-e-predios-desistem-de-jardinsverticais-30032019
REDE NOSSA SÃO PAULO (2017). Muro verde de Doria na av. 23 de Maio só teria valor ecológico com 1.500 km - Rede Nossa São Paulo. Retrieved from https://www. nossasaopaulo.org.br/2017/05/04/muro-verde-de-doriana- av-23-de-maio-so-teria-valor-ecologico-com-1-500-km/
REDE SOCIAL DE CIDADES (2017). Área verde por habitante - Sao Paulo, SP. Retrieved from https://www. redesocialdecidades.org.br/
SAFIKHANI, Tabassom, ABDULLAH, Aminatuzuhariah M., OSSEN, Dilshan R., BA-HARVAND, Mohammad (2014). A review of energy characteristic of vertical greenery systems. Renewable and Sustainable Energy Reviews, 40, 450–462. https://doi.org/10.1016/j.rser.2014.07.166
SANTAMOURIS, Mattheos (2014). Cooling the cities – A review of reflective and green roof mitigation technologies to fight heat island and improve comfort in urban environ-ments. Solar Energy, 103, 682–703. https://doi.org/10.1016/j.solener.2012.07.003
SÃO PAULO (2015). RELATÓRIO_FINAL_CPI-TCA: Para investigar eventuais irregulari-dades no cumprimento dos TCAs – Termos de Compromisso Ambiental. Retrieved from http://www.camara.sp.gov.br/wp-content/uploads /dce/RELAT% C3% 93RIO_FINAL_CPI-TCA.pdf PosFAUUSP 12 Pos FAUUSP, São Paulo, v. 29, n. 55, e195441, jul-dez 2022.
SAO PAULO. Lei municipal nº 16.402, de 22 de março de 2016. Disciplina o parcelamento, uso e ocupação do solo no Município de São Paulo. São Paulo: Diário Oficial da Cidade de São Paulo, 54 (61).
SHASUA-BAR, Limor, TSIROS, Ioannis X., HOFFMAN, Milo (2012). Passive cooling de-sign options to ameliorate thermal comfort in urban streets of a Mediterranean climate (Athens) under hot summer conditions. Building and Environment, 57, 110–119. https://doi.org/10.1016/j.buildenv.2012.04.019
SHINZATO, Paula, DUARTE, Denise H. S., YOSHIDA, Daniel (Eds.) (2016). Parametriza-tion of tropical plants using ENVI-met V.4 and its impact on urban microclimates – Sao Paulo case study.
SHINZATO, Paula, SIMON, Helge, SILVA DUARTE, Denise H., BRUSE, Michael (2019). Calibration process and parametrization of tropical plants using ENVI-met V4 – Sao Paulo case study. Architectural Science Review, 62(2), 112–125.https://doi.org/10.1080/00038628.2018.1563522
SNIR, Keren, PEARLMUTTER, David, ERELL, Evyatar (2016). The moderating effect of water-efficient ground cover vegetation on pedestrian thermal stress. Landscape and Urban Planning, 152, 1–12. https://doi.org/10.1016/j. landurbplan.2016.04.008
SOUZA, Luana R. d. (2020). Análise do Desempenho Térmico de Habitações Multifamiliares de Interesse Social com Paredes Verdes (Dissertação de Mestrado). UNIVERSIDADE FEDERAL DE OURO PRETO.
SOUZA, Caroline V. (2017). Políticas públicas para a inserção de vegetação nas cidades: compensação ambiental e indicadores de vegetação para o espaço público e privado (Inicia-cao Científica). Universidade de Sao Paulo, Sao Paulo.
WIDIASTUTI, Ratih, BRAMIANA, Chely N., BANGUN, I.R.H., PRABOWO, Bintang N., RAMANDHIKA, Mirza (2018). Vertical Greenery System as the Passive Design Strategy for Mitigating Urban Heat Island in Tropical Area: A Comparative Field Measurement Be-tween Green Facade and Green Wall. IOP Conference Series: Earth and Environmental Science, 213, 12037. https://doi.org/10.1088/1755-1315/213/1/012037
WONG, Nyuk H., KWANG TAN, Alex Y., CHEN, YU., SEKAR, Kannagi, K., TAN, Puay Y., CHAN, Derek, CHIANG, Kelly, WONG, Ngian C. (2010). Thermal evaluation of ver-tical greenery systems for building walls. Building and Environment, 45(3), 663–672. https://doi.org/10.1016/j.buildenv.2009.08.005 World Health Organization. (2012). Health Indicators of sustainable cities in the Context of the Rio+ 20 UN Conference on Sustainable Development. WHO: Geneva, Switzerland.
YANG, Feng, YUAN, Feng, QIAN, Feng, ZHUANG, Zhi, YAO, Jiawei (2018). Summer-time thermal and energy performance of a double-skin green facade: A case study in Shanghai. Sustainable Cities and Society, 39, 43–51. https://doi.org/10.1016/j.scs.2018.01.049
ZHANG, Lei, DENG Zhichao, LIANG, Lisha, ZHANG, Yu, MENG, Qinglin, WANG, Jun-song, SANTAMOURIS, Mattheos (2019). Thermal behavior of a vertical green facade and its impact on the indoor and outdoor thermal environment. Energy and Buildings, 204, 109502. https://doi.org/10.1016/j.enbuild.2019.109502
ZÖLCH, Teresa, MADERSPACHER, Johannes, WAMSLER, Christine, PAULEIT, Stephan (2016). Using green infrastructure for urban climate-proofing: An evaluation of heat mitiga-tion measures at the micro-scale. Urban Forestry & Urban Greening, 20, 305–316. https://doi.org/10.1016/j.ufug.2016.09.011
Downloads
Publicado
Edição
Seção
Licença
Copyright (c) 2022 Priscila Weruska Stark da Silva, Denise Helena Silva Duarte

Este trabalho está licenciado sob uma licença Creative Commons Attribution-NoDerivatives 4.0 International License.
O detentor dos direitos autorais é o autor do artigo. A revista exige apenas o ineditismo na publicação do artigo. O autor tem do direito de divulgar seu artigo conforme sua conveniência devendo citar a revista.
DIADORIM - Diretório de Políticas Editoriais
Como Citar
Dados de financiamento
-
Fundação de Amparo à Pesquisa do Estado de São Paulo
Números do Financiamento 2016/02825-5 -
Conselho Nacional de Desenvolvimento Científico e Tecnológico
Números do Financiamento Bolsa de Produtividade 309669/2015-4;Bolsa de estudos de mestrado