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ABSTRACT 

 

This paper aims at establishing a theoretical construction between the concept of learning by using and 

the concepts of Technological Readiness Level (TRL) and System Readiness Level (SRL). The 

concept of learning by using reveals that the technical change that takes place in complex systems is 

given by the sum of small improvements in many different technological disciplines integrated in a 

specific configuration of this system. This kind of learning results from the iterative combination of 

scientific and technological knowledge, which is generated by the extensive use of products and their 

associated production processes. A stock of this combined knowledge might be required to cope with 

emergent properties of complex systems. The pattern of complex systems evolution involves the 

balance of technological and scientific frontiers as well as the fulfillment of customer expectation. 

Every innovation involves systemic uncertainty, which is positively correlated to the magnitude of the 

change introduced into the complex system. Maturity level of technological solutions allows 

organizations to assess pragmatically strategic risk exposure of implementing complex system 

innovation. The concept of SRL represents a proficuous tool to unveil emergent properties, which 

consider both the TRL of individual elements and how they are integrated into a complex system. 

 

Keywords: Complexity; Innovation management; Learning by using; Systems architecture; 

Technology maturity. 
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1. INTRODUCTION 

 

Innovation is by nature a complex process, that is to say, a process that comprises a large 

number of variables of various different kinds. Variables involve not only the natural laws and 

measurable dimensions (Kline & Rosenberg, 1986), but also abstract or intangible variables such as: 

a low maturity of various technologies and their inter-relationships; managerial characteristics; and 

the relationships between the areas involved in the innovation process; and even areas inside and 

outside the organization not directly involved in the innovation process. Considering this innovation 

process as a complex system project (Hobday, 2000), it is necessary to consider those that will be 

affect by the project, and even the system’s operational environment (Zandi, 2000). Another aspect 

that brings more complexity to these highly dynamic projects is the large number of elements 

involved in the innovation process, which constantly change their characteristics (Sterman, 1992). 

Thus, it is possible to note that the relationship between complexity and uncertainty of an innovative 

complex system project brings huge challenges to its decision-making process. 

In the classical behavior theory, it is considered that the decision-making process are based 

entirely on rational principles which seek to optimize processes, i.e., utility maximization, but the 

fact that innovation is complex and uncertain means that it is not possible to achieve maximum 

return on each activity, so the adoption of the theory of bounded rationality in this case is positive: 

"However the strong positive case for the classical theory replacing by the model of bounded 

rationality begins to emerge when we examine their situations involving decision- making under 

uncertainty and imperfect competition” (Simon, 1978, pp. 349). It is important to consider that the 

capacity of mental models is limited since it is impossible to understand or analyze all the 

possibilities in a complex system, thus changing the focus of the decision-making process of utility 

maximization to the search for satisfactory results to achieve projects main goals, sacrificing or 

ignoring some aspects of the problem in this process (Simon, 1978). 

Despite all the fantastic qualities of a mental model like the flexibility; ability to deal with 

information of different natures; and constantly adapt, their weaknesses are also notable. Mental 

models are not explicit; cannot be examined or evaluated by others; it is difficult to see its premises; 

the same phenomenon interpretations may vary by observer; and also contradictions and ambiguities 

may remain unresolved in these models (Sterman, 1992). 

The weaknesses of mental models become even more relevant when one is dealing with 

complex systems projects. The large number of information requires that of decisions different areas 

are taken by their respective experts. From this perspective, the need for tangible models that can be 
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evaluated by the group involved in decision-making becomes clear. Therefore the models must 

overcome the limitations of mental models. Thus they must have the following characteristics: be 

explicit; its premises should be prone to those involved in the review and revision; and they allow 

the simultaneous connection between many different factors of the project (Sterman, 1992). 

This paper proposes a theoretical construction to bridge the concept of technological 

maturity (Mankins, 2009) to the chain-linked innovation model (Kline & Rosenberg, 1986). This 

theoretical construction aims at increasing the ability of managers to understand the nuances and 

subtleness of the innovation process in order to provide decision-making yardsticks that cope with 

the uniqueness of complex systems projects. 

The need for a better understanding of the innovation in complex systems projects is given 

by the fact that today the industry and academia expend a lot of resources developing technologies, 

but just a small fraction of these technologies reach the commercial success incorporated into 

products (Atkinson, 1999). A great deal of them remains in academia as a scientific demonstration or 

becoming a commercial failure after a costly process of technological development. 

 

 

2. SYSTEM READINESS ASSESSMENT  

 

The design of an innovative system depends on the evolution of technical knowledge, "The 

development of new functionalities of a system typically depends on a previous successful advanced 

technology research and development efforts" (Mankins, 2009, p. 1216). Systemic and rigorous 

assessment of the understanding level or expertise of the organization in front to a new technology 

allows risks mitigation in a project, assisting the project manager in prioritizing resources for the 

development of critical technologies that prove to be immature at an early stage of the project. 

If we adopt a low maturity technology that potentially may solve project’s problem when it 

became fully developed, it represents a low cost at that point. But what should be considered is that 

it represents a high commitment of budget proportion in the later phases of the projects, as show in 

Fig. 1 (Forsberg, Mozz & Cotterman, 2005), in the early stages of the project, such as the system 

concept review, the project will have spent around 1% of the total budget, but will have committed 

approximately 70% of the total. By the time of preliminary design review, 85% of project funds will 

be committed, changes in the architecture in this stage have a deep impact in the project success 

given that there is no space in the budget for new developments. Thus, the expenditure profile 

proposed by Forsberg et al. (2005) show in figure 1, exposes a major concern in evaluating the 
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maturity of the technologies involved in the project architecture as early as possible to access the 

risks and, by consequence, the opportunities involved in the project 

 

Figure 1 Typical profile of expenses in a project: committed versus spent 

Source: Forsberg et al., 2005 

 

To assess the maturity of a technology the TRL (Technology Readiness Level) methodology 

was developed in the seventies by NASA, which currently consists of a rating of nine levels shown 

in Table 1. The evaluation is done through a list of requirements that qualify technology to the next 

level, the level assigned to technology is the highest level that has the requirements met (Mankins, 

2009). This methodology is widely accepted and applied, and spread to the most diverse branches of 

developed economies. 

Table 1  NASA Technological Readiness Levels 

TRL Definition 

1 Basic principles observed and reported 

2 Technology concept and/or application formulated 

3 Analytical and experimental critical function and/or characteristic proof of concept 

4 Component and/or breadboard validation in a laboratory environment 

5 Component and/or breadboard validation in a relevant environment 

6 System/subsystem model or prototype demonstration in a relevant environment 

7 System prototype demonstration in an operational environment 

8 Actual system completed and qualified through test and demonstration 

9 Actual system proven through successful mission operations 

Source: Mankins, 2009 
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Complex systems depend on the technological evolution in several and concomitant 

disciplines. These technologies will be integrated in a specific configuration so that these systems 

achieve its goals through the matching of the features derived from these technologies. However this 

integration of disciplines cannot generate accidental effects that affect the purpose of the system 

mission itself “Yet, the emergence of large complex systems created through the integration of 

diverse technologies has created the need for a more modern maturity metric” (Sauser, Gove, Forbes 

& Ramirez-Marques, 2010). These are the emergent properties that comes from the interaction 

between system’s elements in the operational environment (Hobday, 1998; Zandi, 2000). Systemic 

uncertainty (Rosenberg, 2006) stems from emergent properties of complex systems (Turner & 

Cochrane, 1993). Thus it is also necessary to improve the understanding of the interrelationships 

between these technologies and their implications for the system as a whole. Sauser, Forbes, Long 

and Macgrory (2009) proposes the use of a scale, that is similar to the TRL, to evaluate in a scale of 

nine levels the maturity of integration as show in table 2, the IRL (Integration Readiness Level), 

evaluating the integration of a technology with each other peer-to-peer. 

Having the TRL levels of the technologies used in a given system, and the IRL of these 

technologies with each other, Sauser, Ramirez-Marquez, Magnaye and Tan (2008) propose the 

indicator of the maturity of the system architecture, SRL (System Readiness Level), the calculation 

consist in arranging the TRL values of technologies in a vector nx1 (1), and IRL values in a nxn matrix 

(2). 
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The vector containing the SRL values is obtained by multiplying the vector TRL by the array 

IRL, then dividing each value by n, each SRL vector value represents the level of maturity of each 

technology in relation to the rest of the system, and then it is possible to calculate the total maturity 

level of the system architecture (3). 
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Table 2 - Integration Readiness Levels proposed 

IRL Definition 

9 Integration is Mission Proven through successful mission operation. 

8 Actual integration is completed and Mission Qualified though test and 

demonstration, in the system environment. 

7 The integration of technologies has been verified and validated with sufficient 

detail to be actionable. 

6 The integrating technologies can Accept Translate, and Structure information 

for its intended application. 

5 There is sufficient Control between technologies necessary to establish, 

manage, and terminate the integration. 

4 There is sufficient detail in the Quality and Assurance of the integration 

between technologies. 

3 There is compatibility (i.e. common language) between technologies to 

orderly and efficient integrate and interact. 

2 There is some level of specificity to characterize the interaction (i.e. Ability to 

influence) between technologies through their interface. 

1 An interface between technologies has been identified with sufficient detail to 

allow characterization of the relationship. 

Source: Sauser et.al. (2009) 

 

For a more effective comparison, Sauser et al. (2008) suggests the use of normalized values. 

Table 3 presents the proposed correlation between normalized SRL values and stages of life cycle of 

a project. 

The extensive use of the maturity assessment methods has proven their reliability as indicators 

of risk in a project. But likewise this use has exposed its weaknesses, such as: the lack of attention to 

feedback processes in development; the individual approach to technology; and the specificity of the 

contexts in TRL scales. 
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Table 3 System Maturity Levels 

SRL Acquisition Phase Definitions 

0.90 to 1.00 Operations & Support 

Execute a support program that meets operational support 

performance requirement and sustains the system in the most 

cost-effective manner over its total lifecycle. 

0.70 to 0.89 Production Achieve operational capability that satisfies mission needs 

0.60 to 0.79 
System Development & 

Demonstration 

Develop system capability or (increments thereof); reduce 

integration and manufacturing risk; ensure operational 

supportability; reduce logistics footprint; implement human 

systems integration; design for production; ensure affordability 

and protection of critical program information; and demonstrate 

system integration, interoperability, safety and utility. 

0.40 to 0.59 Technology Development 
Reduce technology risks and determine appropriate set of 

technologies to integrate into a full system. 

0.10 to 0.39 Concept Refinement Refine initial concept; develop system/technology strategy. 

Source: Sauser et.al. (2009) 

 

 

 

3. LEARNING BY USING 

 

Innovation take place through numerous small learning processes (Rosenberg, 2006). The 

model traditionally adopted to represent an innovation process, the linear model, considers the 

innovation process as a sequential chain of events as shown briefly in Fig. 2., This model treat the 

flow of information as a one-way path, that is, scientific research feeds the development which in 

turn feeds the production, and never the other way. The linear model assumes that the innovation 

process occurs smoothly and continuously. This version of the linear model also believes that 

innovation is fostered only by scientific research. Kline and Rosenberg (Kline & Rosenberg, 1986) 

states that "In an ideal world of omniscient technical people, one would get the design of the 

innovation workable and optimized the first team. In the real world of inadequate information, high 

uncertainty, and fallible people, nothing like this happens." (Kline & Rosenberg, 1986, p. 286). In 

fact this statement is in line with the bounded rationality assumptions, as stated by Simon, in his 

classical Nobel Prize Lecture “And the failures of omniscience are largely failures of knowing all 

the alternatives, uncertainty about relevant exogenous events, and inability to calculate 

consequences. There was needed a more positive mechanism of choice under conditions of bounded 

rationality” (Simon, 1978, p. 356). 
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Figure 2 Linear model 

Source: Rosenberg, 2006 

 

In the real world, the innovation process bears little resemblance to the linear model, 

"Innovation is complex, uncertain and somewhat disorderly, and subject to changes of many sorts." 

(Kline and Rosenberg, 1986, p.275). The Chain-Linked model presented in Fig. 3, proposed 

originally by Kline (1985) was expanded and discussed by Kline and Rosenberg (1986), covers the 

main complexities involved in an innovation process. In this model, scientific knowledge is not the 

impeller of the innovation. On the contrary, there is the prospection of the needs of the market that 

boost scientific research. In this model, the feedback loops are taken into account; the search is no 

longer part of the main innovation chain and is present in all stages of the process. In this model, 

research acts when the stock knowledge does not meet the requirements of the innovation process. 

 

Figure 3 Chain Linked Model 

Source: Kline and Rosenberg (1986) 
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The chain-linked model stresses the idea that "the project needs to be conceptualized as a 

history-dependent and organizationally-embedded unity of analysis" (Engwall, 2003, p.790). While 

a project is a temporary effort of an organization to achieve a goal specified (Lundin & Soderholm, 

1995; Shenrar & Dvir, 2010), a project-based organization cannot be treated in the traditional project 

life cycle. The organizational and project learning that results from the innovation process needs to 

feed the organization's knowledge base (Cicmil, Williams, Thomas & Hodgson., 2006), reducing the 

risks arising from system’s complexity. 

 

 

4. EMERGENT PROPERTIES OF COMPLEX SYSTEMS 

 

In any system, the whole is greater than the sum of its parts, that is to say, the aggregated 

explanation of the component parts of a system, does not explain all aspects of the resulting system’s 

behavior. We call emergent properties these aspects of the interaction between different technologies, 

and between the system and its environment. In fact, the emergence does not mean that the 

collective behavior cannot be captured by the behavior of the part, it does mean that the collective 

behavior can be captured by the behavior of the part only if it is examined in the context, or in other 

words, with the component integrated and functioning in the full system in the operational 

environment (Bar-Yam, 2003). 

Emergency not always bring complexity to the system, in some cases, the whole is simpler 

than the parts. This phenomenon is known as emergent simplicity (Bar-Yam, 2003).A useful 

example is the solar system, the planets orbiting the sun have a quite simple and predictable 

behavior, despite possible disturbs like comets or asteroids. However the Earth as a single system is 

extremely complex, impossible to predict precisely how many important phenomena will behave in 

the near future.  

Unfortunately the emergent simplicity is quite rare when it comes to innovation regarding 

complex systems development. The commonplace in project management is the opposite situation: 

emergent complexity (Bar-Yam, 2003). 

Most of these aspects are unattainable with traditional analysis, and can compromise the 

effectiveness or even the operation of a system. In the case of a highly complex systems composed 

of innovative technologies, the likelihood of emergent properties increases as we expand the 

spectrum of technologies and environmental variables (Zandi, 2000). Thus it is essential to have in 

hands a tool that allows a synthetic analysis of the risks associated with complex systems innovation 
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process. 

There is in the literature a variety of ways to define the complexity of a system. Attempts to 

define the complexity were already present in astronomy for millennia and more recently in biology, 

economics, psychology and various other branches of science. Simon (1996) proposes the study of 

complexity as a phenomenon in itself and not necessarily a characteristic of a particular complex 

system. However, the complexity appears to be a very general phenomenon and therefore do not 

have much content itself. Therefore, complex systems classes may be the focus of attention on the 

study of complexity. It is possible to list several critical factors which defines the character of an 

innovative product and its complexity, independent of the factors or the rates used, it is certain that 

the innovation will always bring high complexity to the subject (Hobday, 1998). 

Considering that the emerging complexity of a system represents in some ways the inability 

to predict ex-ante the behavior of a system in its operating environment (both the inner functioning 

of the system and the elements of the operating environment), we can say that complexity of a 

system is directly related to the integration maturity level of its technological elements and therefore 

the system architecture maturity (Sauser et al., 2008). Systems whose architecture integration 

features are highly known and controllable are also very predictable, so should be considered with 

lower systemic uncertainty, since cause-and-effect relationships are already mapped. On the contrary, 

a system whose characteristics are little known and therefore not fully controllable are difficult to 

predict and should be treated as highly uncertain from the systemic standpoint, since cause-and-

effect relationships are not clear, they are subject to causal ambiguity (Chagas Jr. & Campanario, 

2014). 

 

 

5. IRL AND SRL AS SYSTEMIC UNCERTAINTY INDICATORS 

 

The IRL/SRL methods cover the major aspects of complexity that brings uncertainty to the 

project. First, the size of the system heavily influences the indicator. However, as the maturity of the 

architecture increases, the systemic uncertainty is progressively unveiled. Second, emergent 

properties are evaluated in each technological interconnection inside the system; a diligent maturity 

assessment will predict ex-ante a large portion of the unwanted emergent properties. Third, this 

method can evaluate interaction of any nature, so SRL is a common language to communicate 

amongst very distinct areas. At last but not at least, this method can evaluate the interaction between 
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the system and the operational environment. The limit to determine all the emergent properties lays 

just upon the bounded rationality of the managers and experts. 

In summary, maturity levels in the system does not represent directly the level of complexity 

of the system, they represent the uncertainty that emerges from complexity aspects embedded in the 

system, namely  systemic uncertainty (Rosenberg, 2006). And through this method, these levels can 

be easily translated into manageable risks (Chagas Jr. & Campanario, 2014) 

 

 

6. DISCUSSION 

 

The evaluation of TRL is an effective tool to assess risk derived from key immature 

technologies present in the scope of a project. But the TRL methodology consists in dividing the 

system into components and the evaluation of these individually, characteristic of an analytical 

process. However, when dealing with complex systems projects, the interaction between its 

technological elements may lead to unpredicted and unwanted emergent properties (Chagas Jr. & 

Campanário, 2014), which represent some degree of immaturity of the system architecture. This 

question added to the non-linearity feature of these systems poses challenges of major extent to 

managers and to the decision-making processes in these projects (Sterman, 1992). 

The synthetic aspect of the IRL and SRL methodology allows visualizing the risk of 

unpredicted and unwanted emergent properties very consistently. But this methodology is still in line 

with the linear model, that is to say, it is expected that a particular investment of resources bring the 

technologies, their interrelationships and consequently the system architecture from a less mature 

level to a more mature level through a research process and development. However, when dealing 

with a real system, there are temporal environmental conditions which can cause a development to 

stagnate, regress or even being canceled, turning the project a failure. For example: technological 

dead-ends; loss of market interest; technological obsolescence. Thus, it is essential that the maturity 

assessment methodologies incorporate the knowledge gained in the manufacture and operation of 

both the project itself and previous projects. This proposal indicates that the system maturity 

assessment can be used as a tool with a reach far more effective than the universalistic approach of 

traditional management. It should consider organizations and projects as open systems, dependent 

on the organizational history (Engwall, 2003). The chain-linked model consistently describes these 

complexities of the innovation process. 

Given these limitations, this paper proposes a theoretical construction that represents the 
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union of the chain-linked model and maturity assessment tools shown in Figure 4. In this 

construction, the paths of the innovation process present in the chain-linked model are associated 

with the need to mature all the technologies involved and their integration into a specific 

configuration of a system architecture. The assessment of maturity must be presented throughout the 

process in order to indicate the need and the criticality of the research for the progressive maturity of 

system development. 

The direct link between research and invention, represented as "D" in figure 3, refers to 

immature technology identified as critical. At this point it is important to set priorities and deadlines 

for technological developments that may impact within the project deadlines and will be developed 

along the innovation process, here the contact between the project manager and the researchers is 

essential and should guide the initial development of system’s architecture. 

The process represented by the arrow "1" in figure 5 emerges from the needs identified in the 

technological readiness assessment process. The link "K" represents the search for mature available 

solutions.  At this point, contact with research institutes, academia, or other technology research 

organizations are essential.  

Exhausted the technological options available to solve the problem, is explicit the need for 

technological research, this process represented by the arrow "2" in figure 5 goes through a decision-

making process that must take into account the criticality of this technology, time for development, 

costs involved and the ability the development organization. At this point, it may be judged in a 

worst case scenario the unfeasibility of the project. 

The link "3" in figure 5 represents a technological maturation process in the research 

environment, that is to say, a process which can be verified by the increase in TRL, or in a broader 

view, the better understanding of the relationship between technologies (IRL). 

Deliveries of the research process to the main chain of innovation, represented by the arrow 

"4" in figure 5, does not necessarily occur simultaneously or completely, partial deliveries allow the 

project management updates in its architecture, review deadlines and priorities. 

The feedback functions to the research environment with data from operational environment, 

represented in the model by links "I" (machines, tools and procedures) and "S" (operation) in figure 

3, incorporate into the model the concepts of "learning by doing" and "learning by using" 

respectively. This flow of information is vital for achieving the highest level of technological 

maturity. 

Obviously at the time of an initial assessment of maturity, the functional architecture of the 

system may not contain all the necessary functions at the end of the innovation process, other 
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functions can make necessary throughout the project, requiring a new solutions research cycle or 

development. However, it is expected that the repetition of this cycle becomes increasingly less 

frequent depending on the maturity of the system architecture. A large number of new technologies 

identified in the advanced stages of the innovation process reflect an inconsiderate definition of 

system architecture, increasing the risks to the end of the project. 

Another opportunity that this theoretical construction brings to the innovation process is the 

ability to establish a reliable metric through the SRL indicating favorable times for the progress 

between the innovation stages. It cannot, for example, advance from the invention stage to the 

detailed design stage before the SRL has reached a level of maturity compatible to the challenges 

that will be imposed to the project in the detailed design and test stage. 

 

Figure 4 Chain-linked model including readiness level constraints 

 

 

The relationship between the stages of innovation process in the chain-linked model and 

maturity levels of systems proposed by Sauser et al. (2008) is shown in Fig. 5. 
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Figura 5 Relation between system readiness level and innovation process stages 

Source: Sauser et al. (2008) 

 

It is possible to note that at the stage of invention, there will be intensive consultation to the 

stock of knowledge. This expected behavior signals the need for a joint effort between the project 

manager and the experts in the areas of interest at this stage, this cooperation should be strengthened 

and facilitated to reduce the need for research and development. 

In the next stage, the detailed design, it is expected that the search for development of 

immature solutions be more solicited, since in this stage the search for mature solutions is exhausted 

and be limited to the need of new features identified as the system architecture maturation occurs. 

The intensity of the information flow and learning can then be assessed in all phases of the 

innovation process and serve as a basis for guiding future projects for better structuring of the 

organization (Cicmil, et al., 2006), this growing knowledge about the organization capabilities also 

lead to a better understanding uncertainty sources, improving the risk management process (Ward & 

Chapman, 2003). In complex system innovation, the organization are subjected to a dynamic 

environment and this understanding enable the flexibility required to cope with the environment 

behavior (Chagas Jr. & Cabral, 2010). 
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6.1 Case Study Description: VSB-30 sounding rocket 

 

The VSB-30 sounding rocket was developed by Institute of Aeronautics and Space (IAE) 

associated with German Aerospace Center (DLR) as a substitute to the former Skylark 7 (Palmério, 

Roda, Turner & Jung, 2005). VSB-30 is a two stage solid propulsion spin stabilized without active 

control capable of realizing microgravity environment experiments, this rocket was developed based 

in the previous VS-30 rocket consisting of the first stage of the well-established SONDA III rocket 

to deliver a small payload to the microgravity environment (Palmério, Silva, Turner & Jung, 2003). 

The VSB-30 comprises a S30 motor that was used in theVS-30 na SONDA III; a S31 motor 

as a booster, that is a shorter version of the S30 with a faster burning propellant (Carvalho, Damiani, 

Follador & Guimarães, 2012); a fin set to stabilize the flight; a spin-up system that induces rotation 

after the lifting; and an event sequencer. 

 

6.2 Case Study Methodology 

 

This case study was realized in March 2015 and consisted of the literature review, including 

papers, restricted access reports and interviews with experts involved in the development of VSB-30. 

The aim of this research was to look for empirical evidence for supporting the theoretical 

construction herein proposed.  The supporting information required to corroborate the maturity level 

as used by the U.S. Department of Defense are described in table 4 (DoD, 2011). 

The IRL evaluation criteria used consists of seventh nine items proposed by Sauser (2009) 

and should be proved through main integration and risk evaluation documents like interface control 

document (ICD), integration plan, concept of operations and integrations test reports. 
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Table 4 TRL supporting information 

Source: DoD, 2011 

 

 

7. RESULTS 

 

The technology maturity assessment of the VSB-30 technologies reveals that this rocket have 

highly mature technologies. The rocket completed fifteen successful missions already (IAE, 2015), 

mission reports data indicates that the architecture components worked individually as expected., 

Indeed using the TRL method in the subsystems, its found that the all subsystems completed the 

highest level of maturity (Table 5). 

It is important to note that the S30 motor was already in a high level maturity once it has 

been used extensively by other rockets; the booster is a shorter derivation of the S30 with distinct 

propellant characteristics to provide a fast burn and hence greater impulse, the S31 went through the 

TRL Supporting Information 

1 Published research that identifies the principles that underlie this technology. References to 

who, where, when 

2 Publications or other references that outline the application being considered and that provide 

analysis to support the concept. 

3 Results of laboratory tests performed to measure parameters of interest and comparison to 

analytical predictions for the critical subsystems. Reference to who, where and when these 

tests and comparisons were performed. 

4 System concepts that have been considered and results from testing laboratory-scale 

breadboard(s). References to who did this work and when. Provide na estimate of how 

breadboard hardware and test results differ from the expected system goals. 

5 Results from testing laboratory breadboard system are integrated with other supporting 

elements in a simulated operational environment. How does the “relevant environment” differ 

from expected operational environment? How do the test result compare with expectations? 

What Problems if any were encountered? Was the breadboard system refined to more nearly 

match the expected system goals? 

6 Results from laboratory testing of a prototype system that is near the desired configuration in 

terms of performance, weight, and volume. How did the test environment differ from the 

operational environment? Who performed the tests? How did the test compare with 

expectations? What problems, if any, were encountered? What are/were the plans, options, or 

actions to resolve problems before moving to the next level? 

7 Results from testing a prototype system in an operational environment. Who performed the 

tests? How did the test compare with expectations? What problems if any, were encountered? 

What are/were the plans, options, or actions to resolve problems before moving to the next 

level?  

8 Results of testing the system in its final configuration under the expected range of 

environmental conditions in which it will be expected to operate. Assessment of whether it 

will meet its operational requirements. What problems if any, were encountered? What 

are/were the plans, options, or actions to resolve problems before finalizing the design? 

9 OT&E reports 
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development cycle, being subjected to the necessary ground tests and finally proved in actual 

missions; the rotation induction system (SIR) was being developed to be used in another project, 

lacking flight test results by that time, the system performed his function in the VSB-30 as expected. 

 

Table 5 - VSB-30 subsystems technological readiness levels 

Subsystems TRL 

Motor 9 

Booster 9 

SIR 9 

Fins 9 

Event Sequencer 9 

 

Similarly, applying the method proposed by Sauser to assess the IRL, the system show a high 

integration maturity level, however, to achieve the highest rank in IRL metric, its needed an elevated 

comprehension of the relationship between the components and the properties that emerges from 

these relations. Its noteworthy that the booster, the SIR and the fins forms an assembly that have 

only mechanical interactions with the main motor, also the event sequencer is responsible by the 

main motor ignition and do not have direct interaction with the booster, fins or the SIR. 

The IRL scale go beyond the successful mission operation, its needed to the organization to 

master the failure rates, the relation between operational costs and client benefits, and other 

knowledge originated in the operational environment after a large number of missions. 

The VSB-30 IRL values presented in table 6 reveals the necessity to keep studying and 

increasing the system architecture maturity. This necessity emerges from the data that obtained in 

the operational environment that shows that the dispersion of payload impact point, even attending 

the initial requirements, could be improved, allowing safer operation in smaller isolation area, easier 

payload retrieval (Garcia et al., 2011). The dispersion of impact point is relevant in the operation in 

Esrange launch site in Sweden, where the payload impact occurs in ground and a large dispersion 

area represents safety risks, and in Alcantara launch site in Brazil, where the payload fall in the 

water, the larger dispersion area means a larger maritime isolation effort and a difficult retrieval 

mission. 
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Table 6 -VSB-30 IRL values 

IRL 

M
o

to
r 

B
o

o
st

er
 

S
IR

 

F
in

s 

S
eq

u
en

ce
r 

Motor 9 8 8 8 8 

Booster 8 9 8 9 9 

SIR 8 8 9 8 9 

Fins 8 9 8 9 9 

Sequencer 8 9 9 9 9 

 

Applying the calculation proposed by Sauser, the vector SRL (4) is found and the total SRL 

calculated is 0.94. These values reveals that the system as a whole is highly mature, however, there 

is some opportunities to improve even further the comprehension about the system function and the 

influence of its parts in the trajectory and thus the impact point dispersion. 

              
 























0.975

0.95

0.925

0.95

0.9

=SRL
           (4) 

These information that arises from operational environment, represents de “f”, in figure 3, 

where the operational data drives improvements in the project itself, and also represents the “F” 

flow where the data feeds the organization base of knowledge to future developments toward client’s 

needs and operational efficiency. 

 

 

8. CONCLUSION 

 

The theoretical construction proposed in this article allows one to visualize the maturity 

assessment methodologies as management tools able to consolidate in the research environment the 

technological knowledge obtained in the operating environment. To do so, it is required that the 

innovation process adopt the evaluation of maturity as a guide to the decision-making. On the other 

hand, from the viewpoint of maturity assessment, the adoption of chain-linked innovation model 
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makes it necessary to adapt this methodology adding requirements that arise from feedback 

processes for maturity assessment. We argue herein that maturity assessment should be increasingly 

considered as environmental context-dependent. 

The learning-by-using approach adds to the innovation process the effects of feedback loop 

of operational environment data to research and development environments. This approach enriches 

technology assessment, adding flexibility to the process. While traditional TRL method is a one-way 

path the chain-linked model allows the development to receive inputs from the operational 

environment and the market. 

The adoption of this model allows the generation of valuable knowledge that stems from 

subtle complex systems dynamics that may not be realized straightforwardly. Not only the quality 

and the intensity of the flow of information within the organizational structure is assessed, but also 

allows the management team to be aware of  the sources of these needs, the critical points and 

priorities of technological development. This theoretical construction allows the use of both models 

in the development of innovative complex systems projects bringing objectiveness as important 

decision-making yardsticks. 

Another relevant contribution of the theoretical construction herein presented is to reveal the 

necessity of reporting operational data in the most accurate possible way, so the organization will be 

able to improve the system efficiency and direct the future projects toward an architecture to satisfy 

the client’s needs. 
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