How do the barriers that prevent orhinder the applicability of artificialintelligence impact its use in aninsurance company
DOI:
https://doi.org/10.1108/inmr-03-2022-0042Palavras-chave:
Artificial intelligence, Alignment, Model, Applicability, InsuranceResumo
PurposeThe purpose of this paper is to report on how the barriers that prevent or hinder the applicability of artificial intelligence (AI) impact its use in an insurance company.
Design/methodology/approachThrough bibliographic research, this paper maps the literature to identify the barriers to the use of AI by companies. After this, a qualitative single-case study, with descriptive characteristics, is conducted in an insurance company to verify if it is ready to adopt AI. Secondary data based on surveys of information technology consultancies were also used to provide greater consistency to the research.
FindingsThis analysis showed that investments in these kinds of projects encounter organizational, financial and social barriers, such as a culture not focused on innovation, a lack of strategic IT alignment, a lack of knowledge of the potential or even the ability to carry out an adequate feasibility analysis. Based on the barriers presented by the case and AI initiatives, the researched company is using AI for automation and execution rather than using its transformative potential to be an agent of change across the organization. Most of the barriers to the adoption of AI are organizational rather than technical.
Research limitations/implicationsThe limitation of this study is it presents a single-case study, but this involves local cultural problems because companies are not open to supplying internal information to external researchers.
Originality/valueThe value of this article lies in examining a real case in Latin America, raising the barriers to the adoption of AI, which has a different environment from Europe and the USA, presenting a company that has the freedom to choose local or international technologies.
Downloads
Referências
Accenture (2020). We, the post-digital people. Available from: https://www.accenture.com/content/dam/accenture/final/a-com-migration/pdf/pdf-120/accenture-technology-vision-for-insurance-2020-summary.pdf
Ala-Pietilä, P., Bauer, W., Bergmann, U., Bieliková, M., Bonefeld-Dahl, C., Bonnet, Y., & Bouarfa, L. (2019). A definition of artificial intelligence: Main capabilities and scientific disciplines. Available from: https://ec.europa.eu/newsroom/dae/document.cfm?doc_id=56341
Anshari, M., Almunawar, M. N., Masri, M., & Hrdy, M. (2021). Financial technology with AI- enabled and ethical challenges. AI & Society, 1-7. Available from: https://link.springer.com/article/10.1007/s12115-021-00592-w
Capgemini Research Institute (2020). The AI-powered enterprise:Unlocking the potential of AI at scale. Available from: https://www.capgemini.com/wp-content/uploads/2021/02/State-of-AI_Report_Web-2.pdf
Chui, M., Manyika, J., Miremadi, M., Henke, N., Chung, R., Nel, P., & Malhotra, S. (2018). Notes from the AI frontier: Insight from hundreds of use cases: Discussion Paper. Available from: https://www.mckinsey.com/~/media/mckinsey/featured%20insights/artificial%20intelligence/notes%20from%20the%20ai%20frontier%20applications%20and%20value%20of%20deep%20learning/notes-from-the-ai-frontier-insights-from-hundreds-of-use-cases-discussion-paper.pdf
COSTA, R. A. F. A. (2023). Insights do Gartner TGI: como superar 5 desafios da inteligência artificial que impedem a inovação. In San Diego, na Califórnia, para representar a Niteo no Gartner Tech Growth & Innovation Conference (Gartner TGI). LinkedIn, 14 E 15 DE JUNHO. Available from: https://www.linkedin.com/pulse/insights-do-gartner-tgi-como-superar-5-desafios-da-artificial-costa/?originalSubdomain=pt
Cubric, M. (2020). Drivers, barriers and social considerations for AI adoption in business and management: A tertiary study. Technology in Society, 62, 101257. doi: 10.1016/j.techsoc.2020.101257.
di Vaio, A., Palladino, R., Hassan, R., & Escobar, O. (2020). Artificial intelligence and business models in the sustainable development goals perspective: A systematic literature review. Journal of Business Research, 121, 283–314. doi: 10.1016/j.jbusres.2020.08.019.
Dutt, R. (2020). Artificial intelligence in healthcare. In K. Memarzadeh, & A. Bohr (Eds.), Artificial Intelligence in Healthcare (pp. 271–293). Academic Press. doi: 10.1016/B978-0-12-818438-7.00011-3.
EIOPA (2021). Open insurance: Accessing and sharing insurance-related data - discussion paper. Available from: https://www.eiopa.europa.eu/system/files/2021-01/open-insurance-discussion-paper-28-01-2021.pdf
Eling, M., Nuessle, D., & Staubli, J. (2021). The impact of artificial intelligence along the insurance value chain and on the insurability of risks. The Geneva Papers on Risk and Insurance - Issues and Practice, 47(2), 205–241. doi: 10.1057/s41288-020-00201-7.
Emerald Publishing (n.d.). Use secondary data and archival material. Available from: https://www.emeraldgrouppublishing.com/how-to/research/data-analysis/use-secondary-data-and-archival-material
EY, E. Y. study (2019). AI important to a company’s success, but lack of skilled personnel remains a barrier. Available from: https://publish-ey-prod-cdn.adobecqms.net/en_gl/news/2019/08/ey-study-ai-important-to-a-companys-success-but-lack-of-skilled-personnel-remains-a-barrier
Ferreira, L. M. (2019). O impacto das tendências tecnológicas na indústria de seguros do mercado Brasileiro e a comparação com a visão das empresas do setor.
Goode, V., Crego, N., Cary, M. P., Thornlow, D., & Merwin, E. (2016). Improving quality and safety through use of secondary data: Methods case study. Western Journal of Nursing Research, 39(11), 1477–1501. doi: 10.1177/0193945916672449.
Hagendorff, T., & Wezel, K. (2020). 15 challenges for AI: Or what AI (currently) can't do. AI & Society, 35(2), 355–365. doi: 10.1007/s00146-019-00886-y.
Henriques, M., De Vasconcelos, J. B., Pestana, G., & Rocha, A. (2019). IT-business strategic alignment in social era. Iberian Conference on Information Systems and Technologies, CISTI, 2019-June(June). (Vol. 9, pp. 19–22). doi: 10.23919/CISTI.2019.8760883.
IBM (2022). Estudo IBM 41% das empresas no Brasil já implementar. IBM. Available from: https://www.ibm.com/blogs/ibm-comunica/estudo-ibm-41-das-empresas-no-brasil-ja-implementaram-ativamente-inteligencia-artificial-em-seus-negocios/#:∼:text=S%C3%A3o%20Paulo%20%E2%80%93%2028%20de%20Setembro,que%20implementaram%20ativamente%20a%20tecnologia
KPMG (2023). Generative AI:From buzz to business value an exclusive KPMG survey shows how top leaders are approaching this transformative technology. Available from: https://advisory-marketing.us.kpmg.com/speed/genai2023.html
Krogstie, J., Jaccheri, L., Rana, N., & Mikalef, P. (2021). Title: Editors’ reflections and introduction to the special section on ‘artificial intelligence and business value'. Journal: International Journal of Information Management. 57, 102313. doi: 10.1016/j.ijinfomgt.2021.102313.
Kruse, L., Wunderlich, N., & Beck, R. (2019). Artificial intelligence for the financial services industry: What challenges organizations to succeed. Proceedings of the 52nd Hawaii International Conference on System Sciences. (6, 6408–6417). doi: 10.24251/hicss.2019.770.
Levy, Y., & Ellis, T. J. (2006). A systems approach to conduct an effective literature review in support of information systems research. Informing Science, 9, 181–212. doi: 10.28945/479.
Lima, J. da C. (2022). Desafios para a adoção de Inteligência Artificial pelo Sistema Único de Saúde (SUS): ética, transparência e interpretabilidade, Tese apresentada ao Programa de Pós-Graduação em Informação e Comunicação em Saúde do Instituto de Comunicação e Informação Científica e Tecnológica emSaúde (ICICT) Rio de Janeiro. Available from: https://www.arca.fiocruz.br/handle/icict/55992
Maciá Pérez, F., Berna Martinez, J. V., & Lorenzo Fonseca, I. (2021). Strategic IT alignment projects. Towards good governance. Computer Standards and Interfaces, 76, 103514. doi: 10.1016/j.csi.2021.103514.
Mahto, M. & Miller, D. (2022), AI for work relationships may be a great untapped opportunity: AI can do more than make work better for humans—it can help make better humans for work. Deloitte Center for Integrated Research. Available from: https://www2.deloitte.com/us/en/insights/industry/public-sector/how-social-ai-is-transforming-the-workplace.html
McKinsey&Company (2018). Notes from the AI frontier: AI adoption advances, but foundational barriers remain. McKinsey&Company. Available from: https://www.mckinsey.com/midwest/∼/media/McKinsey/Featured%20Insights/Artificial%20Intelligence/AI%20adoption%20advances%20but%20foundational%20barriers%20remain/Notes-from-the-AI-frontier-AI-adoption-advances-but-foundational-barriers-remain.ashx
Moldoveanu, M. (2019). Why AI underperforms and what companies can do about it. 1–4.
Morgenstern, J. D., Rosella, L. C., Daley, M. J., Goel, V., Schünemann, H. J., & Piggott, T. (2021). AI's gonna have an impact on everything in society, so it has to have an impact on public health: A fundamental qualitative descriptive study of the implications of artificial intelligence for public health. BMC Public Health, 21(1), 1–14. doi: 10.1186/s12889-020-10030-x.
Moyo, J., Watyoka, N., & Chari, F. (2022). Challenges in the adoption of artificial intelligence and machine learning in Zimbabwe's insurance industry. In Proceedings of the 2022 Zimbabwe Conference on Information Communication & Technology (ZCICT), 9-10 November 2022. (Vol. 8, pp. 1–6). doi: 10.1109/zcict55726.2022.10045910. Available from: https://ieeexplore.ieee.org/abstract/document/10045910
Nair, K. (2019). Overcoming today's digital talent gap in organizations worldwide. Development and Learning in Organizations, 33(6), 16–18. doi: 10.1108/DLO-02-2019-0044.
Nizioł, K. (2021). The challenges of consumer protection law connected with the development of artificial intelligence on the example of financial services (chosen legal aspects). Procedia Computer Science, 192, 4103–4111, doi: 10.1016/j.procs.2021.09.185.
Pérez, J. E. (2019). INSURTECH: The impact of disruptive tools in the insurance sector. Available from: https://www.unifal-mg.edu.br/lar/system/files/imce/VERSÃO%20FINAL%20%20TCC%20JONATHAN%20PEREZ.pdf
Pumplun, L., Tauchert, C., & Heidt, M. (2020). A new organizational chassis for artificial intelligence - exploring organizational readiness factors. 27th European Conference on Information Systems - information Systems for a Sharing Society. ECIS, 2019, 0–15. Available from: https://www.researchgate.net/publication/339974755_A_New_Organizational_Chassis_for_Artificial_Intelligence-Exploring_Organizational_Readiness_Factors
Rajam, N. (2020). Policy strategies for personalising medicine “in the data. Health Policy and Technology, 9(3), 379–383. doi: 10.1016/j.hlpt.2020.07.003.
Ravagnani, N. M. S., Junqueira, S. C., & Pugliesi, J. B. (2023), O USO Da Inteligência Artificial Na Indústria Automotiva: o desenvolvimento de carros autônomos seguros seguindo os princípios éticos, Revista Eletrônica De Computação Aplicada, 4(1), Available from: http://periodicos.unifacef.com.br/reca/article/view/2773
Santos, T. de J. dos, Dias, C. T., & Oliveira, L. B. de. (2019). Disrupção Tecnológica e seus Impactos no Mercado de Seguros. International Symposium on Technological Innovation. Available from: http://www.api.org.br/conferences/index.php/ISTI2019/ISTI2019/paper/viewFile/969/528
Silvestre, L. S. (2023). A aplicabilidade do seguro obrigatório de responsabilidade civil aos danos causados pela inteligência artificial. Available from: http://www.repositorio.ufal.br/jspui/handle/123456789/11696
SINDSEG - Sindicato das Seguradoras no RS (2020). Como a Inteligência Artificial está Revolucionando a Indústria de Seguros?. Available from: https://www.sindsegrs.com.br/2020/11/20/como-a-inteligencia-artificial-esta-revolucionando-a-industria-de-seguros/
Singh, R. P., Hom, G. L., Abramoff, M. D., Campbell, J. P., & Chiang, M. F. (2020). Current challenges and barriers to real-world artificial intelligence adoption for the healthcare system, provider, and the patient. Translational Vision Science and Technology, 9(2), 1–6. doi: 10.1167/tvst.9.2.45.
Tavares, E.da S., Pessôa, M.S.de P. and Ciccone, R. (2020). Tecnologias emergentes e cases do mercado segurador. In Inovação em seguros: Ética e direito, consumo, finanças, tecnologias (pp. 101–148). Rio de Janeiro: ENS. Available from: https://ens.edu.br/livraria/detalhes/inovacao-em-seguros-etica-e-direito-consumo-financas-tecnologia
Tejada-Malaspina, M., & Un Jan, A. (2019). An intangible-asset approach to strategic business-it alignment. Systems, 7(1), 17. doi: 10.3390/systems7010017.
Thesmar, D., Sraer, D., Pinheiro, L., Dadson, N., Veliche, R., & Greenberg, P. (2019). Combining the power of artificial intelligence with the richness of healthcare claims data: Opportunities and challenges. PharmacoEconomics, 37(6), 745–752. doi: 10.1007/s40273-019-00777-6.
Toledo, A. T. D., & Mendonça, M. (2023). A aplicação da inteligência artificial na busca de eficiência pela administração pública. Revista Do Serviço Público, 74(2). Available from: https://revista.enap.gov.br/index.php/RSP/article/view/6829
Yin, R. K. (2003). Estudo de Caso - Planejamento e Métodos (2nd ed.). Bookman.
Zarifis, A., Kawalek, P., & Azadegan, A. (2021). Evaluating if trust and personal information privacy concerns are barriers to using health insurance that explicitly utilizes AI. Journal of Internet Commerce, 20(1), 66–83. doi: 10.1080/15332861.2020.1832817.
Further reading
Khalifa, N., Abd Elghany, M., & Abd Elghany, M. (2021). Exploratory research on digitalization transformation practices within supply chain management context in developing countries specifically Egypt in the MENA region. Cogent Business and Management, 8(1). doi: 10.1080/23311975.2021.1965459.
Mahto, M., Miller, D., Ogawa, P., & Sniderman, B. (2022). AI for work relationships may be a great untapped opportunity AI can do more than make work better for people, It can help make people better collaborators, Deloitte, state of art: 5th edition Study. Available from: https://www2.deloitte.com/us/en/insights/industry/public-sector/how-social-ai-is-transforming-the-workplace.html
Yi, Z., Cao, X., Chen, Z., & Li, S. (2023). Artificial intelligence in accounting and finance: Challenges and opportunities. Journal of Risk and Financial Management, 11(1), 1–24. doi: 10.1109/access.2023.3333389. Available from: https://ieeexplore.ieee.org/abstract/document/10319418
Downloads
Publicado
Edição
Seção
Licença
Copyright (c) 2025 Edval da Silva Tavares, Michel Leardin, Marcelo Schneck de Paula Pessoa

Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
• O(s) autor(es) autoriza(m) a publicação do artigo na revista;
• O(s) autor(es) garante(m) que a contribuição é original e inédita e que não está em processo de avaliação em outra(s) revista(s);
• A revista não se responsabiliza pelas opiniões, ideias e conceitos emitidos nos textos, por serem de inteira responsabilidade de seu(s) autor(es);
• É reservado aos editores o direito de proceder ajustes textuais e de adequação do artigos às normas da publicação.