Cellular and molecular exercise physiology
talking about past, present and future
DOI:
https://doi.org/10.11606/1807-5509202000030533Palavras-chave:
Exercise, Metabolism, Skeletal muscle, DNA, Protein, Molecular techniquesResumo
Exercise physiology has evolved as a main area of investigation, in which the central goal is to better understand how the physiological systems respond to an acute bout of exercise and how these systems adapt to different types of exercise training. For many years and until now, exercise physiology field have been grounded in the fundamentals of biology and human physiology. However, during the last century, scientific knowledge has changed our understanding of biological sciences, allowing the integration of different areas, and increasing the focus on many sub-areas like cellular and molecular investigation. The development of new experimental techniques in the last years provided detailed information about cell
structure and function and, as a result, we could better understand not only the human body physiology, but also many diseases and their pathophysiology. Therefore, this present review intends to discuss more about cellular and molecular exercise physiology area, focusing on historical and methodological approaches, and highlighting the future perspectives for scientific knowledge and their practical application in health and exercise.
Downloads
Referências
2. Jack H. Wilmore DLC, W. Larry Kenney. Fisiologia do Esporte e do Exercício. 5 ed. Barueri: Manole; 2013.
3. Ivy JL. Exercise Physiology: A Brief History and Recommendations Regarding Content Requirements for the Kinesiology Major. Quest. 2007;59:34-41.
4. Egan B, Zierath JR. Exercise metabolism and the molecular regulation of skeletal muscle adaptation. Cell Metabolism. 2013;17(2):162-84.
5. Thomas JR, Nelson JK, Silverman SJ. Research methods in physical activity. 17 ed. 6. Kokkinos P, Myers J. Exercise and physical activity: clinical outcomes and applications. Circulation. 2010;122(16):1637-48.
7. Berryman JW, Park RJ. Sport and exercise science: essays in the history of sports medicine. Urbana: University of Illinois Press; 1992.
8. Mendez C. Book of Bodily Exercise. Baltimore: Waverly Press (1960); 1960.
9. Tipton CM. History of Exercise Physiology: Human Kinetics; 2014.
10. McArdle WD, Katch FI, Katch VL. Exercise physiology: nutrition, energy, and human performance. 8 ed.
11. Powers SK, Howley ET. Exercise physiology: theory and application to fi tness and performance. 8th ed. New York: McGraw-Hill Humanities/Social Sciences/Languages; 2012.
12. Tricoli CLMFV. A Fisiologia em Educação Física e Esporte. Rev Bras Educ Fís Esporte. 2011;25:7-13.
13. Tani G. Atividade de pesquisa na Escola de Educação Física e Esporte da Universidade de São Paulo: passado, presente e futuro. Rev Paulista Educ Física. 1999;13:20-35.
14. Roveda F, Middlekauff HR, Rondon MU, Reis SF, Souza M, Nastari L, et al. The effects of exercise training on sympathetic neural activation in advanced heart failure: a randomized controlled trial. J Am Coll Cardiol. 2003;42(5):854-60.
15. Frank C. Mooren KV. Fisiologia do Exercício Molecular e Celular. LTDA LSE, editor. 2012.
16. Bergstrom J, Hultman E. Muscle glycogen synthesis after exercise: an enhancing factor localized to the muscle cells in man. Nature. 1966;210(5033):309-10.
17. Holloszy JO. Biochemical adaptations in muscle. Effects of exercise on mitochondrial oxygen uptake and respiratory enzyme activity in skeletal muscle. J Biol Chem. 1967;242(9):2278-82.
18. Spiegelman B. A conversation with Bruce Spiegelman. Interviewed by Ushma Neill. J Clin Invest. 2013;123(5):1845-6.
19. Hong YH, Frugier T, Zhang X, Murphy RM, Lynch GS, Betik AC, et al. Glucose uptake during contraction in isolated skeletal muscles from neuronal nitric oxide synthase mu knockout mice. J Appl Physiol. 2015;118(9):1113-21.
20. Brooks SV, Faulkner JA. Contractile properties of skeletal muscles from young, adult and aged mice. J Physiol. 1988;404:71-82.
21. Voltarelli VA, Bacurau AV, Bechara LR, Bueno CR, Bozi LH, Mattos KC, et al. Lack of beta2-AR improves exercise capacity and skeletal muscle oxidative phenotype in mice. Scandinavian J Med Sci Sports. 2012;22(6):e125-32.
22. Moreira JB, Bechara LR, Bozi LH, Jannig PR, Monteiro AW, Dourado PM, et al. High- versus moderate-intensity aerobic exercise training effects on skeletal muscle of infarcted rats. J Appl Physiol (1985). 2013;114(8):1029-41.
23. Pediaditakis P, Kim JS, He L, Zhang X, Graves LM, Lemasters JJ. Inhibition of the mitochondrial permeability transition by protein kinase A in rat liver mitochondria and hepatocytes. Biochem J. 2010;431(3):411-21.
24. Anderson EJ, Neufer PD. Type II skeletal myofi bers possess unique properties that potentiate mitochondrial H(2) O(2) generation. Am J Physiol Cell Physiol. 2006;290(3):C844-51.
25. Makrecka-Kuka M, Krumschnabel G, Gnaiger E. High-resolution respirometry for simultaneous measurement of oxygen and hydrogen peroxide fluxes in permeabilized cells, tissue homogenate and isolated mitochondria. Biomolecules. 2015;5(3):1319-38.
26. Gnaiger E. Mitochondrial pathways and respiratory control: an introduction to OXPHOS Analysis. In: 2012 OMP, editor. Oroboros Instruments GmbH. 3rd ed. Innsbruck, Austria: Steiger Druck GmbH, Axams, Austria; 2012.
27. Booth FW. Perspectives on molecular and cellular exercise physiology. J Appl Physiol (1985). 1988;65(4):1461-71.
28. Crick F. Central dogma of molecular biology. Nature. 1970;227(5258):561-3.
29. Watson JD, Crick FH. Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid. Nature. 1953;171(4356):737-8.
30. Harvey Lodish AB, Zipursky SL, Matsudaira P, Baltimore D, Darnell J. Molecular Cell Biology. New York: W. H. Freeman & Co Ltd; 2000.
31. Mahmood T, Yang PC. Western blot: technique, theory, and trouble shooting. N Am J Med Sci. 2012;4(9):429-34.
32. Mullis K, Faloona F, Scharf S, Saiki R, Horn G, Erlich H. Specifi c enzymatic amplifi cation of DNA in vitro: the polymerase chain reaction. Cold Spring Harb Symp Quant Biol. 1986;51 Pt 1:263-73.
33. Bechara LR, Moreira JB, Jannig PR, Voltarelli VA, Dourado PM, Vasconcelos AR, et al. NADPH oxidase hyperactivity induces plantaris atrophy in heart failure rats. Intern J Cardiol. 2014;175(3):499-507.
34. Voltarelli VA, Bechara LR, Bacurau AV, Mattos KC, Dourado PM, Bueno CR, Jr., et al. Lack of beta2 -adrenoceptors aggravates heart failure-induced skeletal muscle myopathy in mice. J Cell Mol Med. 2014;18(6):1087-97.
35. Cunha TF, Bechara LR, Bacurau AV, Jannig PR, Voltarelli VA, Dourado PM, et al. Exercise training decreases NADPH oxidase activity and restores skeletal muscle mass in heart failure rats. J Appl Physiol (1985). 2017.
36. Bozi LH, Jannig PR, Rolim N, Voltarelli VA, Dourado PM, Wisloff U, et al. Aerobic exercise training rescues cardiac protein quality control and blunts endoplasmic reticulum stress in heart failure rats. J Cell Mol Med. 2016;20(11):2208-12.
37. Meng M, Zhao X, Kong L, Wang A. Long non-coding RNA ENST00462717 suppresses the proliferation, survival, and migration by inhibiting MDM2/MAPK pathway in glioma. Biochem Biophys Res Com. 2017.
38. Cortes-Lopez M, Miura P. Emerging Functions of Circular RNAs. Yale J Biol Med. 2016;89(4):527-37.
39. Ambros V. Th e functions of animal microRNAs. Nature. 2004;431(7006):350-5.
40. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116(2):281-97.
41. Fernandes T, Roque FR, Neves VJ, Penteado JL, Silveira AC, Mesquita S, et al. Exercise training prevents skeletal muscle atrophy and dysfunction in hypertension involving a set of MicroRNAs: 3865 Board #304 June 4, 9: 30 AM - 11:00 AM. Med Sci Sports Exerc. 2016;48(5 Suppl 1):1086-7.
42. Soci UP, Fernandes T, Barauna VG, Hashimoto NY, Mota GF, Rosa KT, et al. Epigenetic control of exercise training-induced cardiac hypertrophy by miR-208. Clin Sci. 2016.
43. McCarthy JJ. MicroRNA-206: the skeletal muscle-specifi c myomiR. Biochim Biophys Acta. 2008;1779(11):682-91.
44. Lee TI, Young RA. Transcriptional regulation and its misregulation in disease. Cell. 2013;152(6):1237-51.
45. Jacob F, Monod J. Genetic regulatory mechanisms in the synthesis of proteins. J Mol Biol. 1961;3:318-56.
46. Cooper. GM. The Cell: a molecular approach. 2nd ed. University B, editor. Sunderland (MA): Sinauer Associates; 2000.
47. Puigserver P, Wu Z, Park CW, Graves R, Wright M, Spiegelman BM. A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell. 1998;92(6):829-39.
48. Scarpulla RC. Transcriptional activators and coactivators in the nuclear control of mitochondrial function in mammalian cells. Gene. 2002;286(1):81-9.
49. Arany Z. PGC-1 coactivators and skeletal muscle adaptations in health and disease. Curr Opin Genet Dev. 2008;18(5):426-34.
50. Baar K, Wende AR, Jones TE, Marison M, Nolte LA, Chen M, et al. Adaptations of skeletal muscle to exercise: rapid increase in the transcriptional coactivator PGC-1. FASEB J. 2002;16(14):1879-86.
51. Lin J, Wu H, Tarr PT, Zhang CY, Wu Z, Boss O, et al. Transcriptional co-activator PGC-1 alpha drives the formation of slow-twitch muscle fibres. Nature. 2002;418(6899):797-801.
52. Wold F. In vivo chemical modification of proteins (post-translational modifi cation). Annu Rev Biochem. 1981;50:783-814.
53. Silva AM, Vitorino R, Domingues MR, Spickett CM, Domingues P. Post-translational modifications and mass spectrometry detection. Free Radic Biol Med. 2013;65:925-41.
54. Ramos-Vara JA, Miller MA. When tissue antigens and antibodies get along: revisiting the technical aspects of immunohistochemistry the red, brown, and blue technique. Vet Pathol. 2014;51(1):42-87.
55. Wlodawer A, Minor W, Dauter Z, Jaskolski M. Protein crystallography for aspiring crystallographers or how to avoid pitfalls and traps in macromolecular structure determination. FEBS J. 2013;280(22):5705-36.
56. Sekar RB, Periasamy A. Fluorescence resonance energy transfer (FRET) microscopy imaging of live cell protein localizations. J Cell Biol. 2003;160(5):629-33.
57. Chait BT. Mass spectrometry in the postgenomic era. Annu Rev Biochem. 2011;80:239-46.
58. Garrett WE, Kirkendall DT. Exercise and sport science. Philadelphia: Lippincott Williams & Wilkins; 2000.
59. Hinkley JM, Konopka AR, Suer MK, Harber MP. Short-term intense exercise training reduces stress markers and alters the transcriptional response to exercise in skeletal muscle. Am J Physiol Regul Integr Comp Physiol. 2016.
60. Vainshtein A, Hood DA. Th e regulation of autophagy during exercise in skeletal muscle. J Appl Physiol (1985). 2016;120(6):664-73.
61. Contributors W. Genomics. Wikipedia, the Free Encyclopedia: Wikipedia, The Free Encyclopedia; 2017.
62. Massafra V, Milona A, Vos HR, Burgering BM, van Mil SW. Quantitative liver proteomics identifies FGF19 targets that couple metabolism and proliferation. PloS one. 2017;12(2):e0171185.
63. Gallagher IJ, Jacobi C, Tardif N, Rooyackers O, Fearon K. Omics/systems biology and cancer cachexia. Semin Cell Dev Biol. 2016;54:92-103.
64. Hou L, Wang D, Chen D, Liu Y, Zhang Y, Cheng H, et al. A systems approach to reverse engineer lifespan extension by dietary restriction. Cell Metabol. 2016;23(3):529-40.
65. Hendel A, Bak RO, Clark JT, Kennedy AB, Ryan DE, Roy S, et al. Chemically modified guide RNAs enhance CRISPRCas genome editing in human primary cells. Nat Biotechnol. 2015;33(9):985-9.
66. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science. 2012;337(6096):816-21.
67. Cyranoski D. CRISPR gene-editing tested in a person for the fi rst time. Nature. 2016.
68. Reis A. CRISPR/Cas9 and Targeted Genome Editing: A New Era in Molecular Biology. From NEB expressions Issue I - New England BioLabs; 2014.
69. Schlittler M, Goiny M, Agudelo LZ, Venckunas T, Brazaitis M, Skurvydas A, et al. Endurance exercise increases skeletal muscle kynurenine aminotransferases and plasma kynurenic acid in humans. Am J Physiol Cell Physiol. 2016;310(10):C836-40.
70. Martinez-Redondo V, Jannig PR, Correia JC, Ferreira DM, Cervenka I, Lindvall JM, et al. Peroxisome Proliferator-activated Receptor gamma Coactivator-1 alpha Isoforms Selectively Regulate Multiple Splicing Events on Target Genes. J Biol Chem. 2016;291(29):15169-84.
71. Rao RR, Long JZ, White JP, Svensson KJ, Lou J, Lokurkar I, et al. Meteorin-like is a hormone that regulates immune-adipose interactions to increase beige fat thermogenesis. Cell. 2014;157(6):1279-91.
72. Booth FW, Lees SJ. Fundamental questions about genes, inactivity, and chronic diseases. Physiol Genomics. 2007;28(2):146-57.
73. Hallgren M, Vancampfort D, Stubbs B. Exercise is medicine for depression: even when the "pill" is small. Neuropsychiatr Dis Treat. 2016;12:2715-21.
74. Bueno Junior CR, Pantaleao LC, Voltarelli VA, Bozi LH, Brum PC, Zatz M. Combined effect of AMPK/PPAR agonists and exercise training in mdx mice functional performance. PloS one. 2012;7(9):e45699.
75. Kambouris M, Ntalouka F, Ziogas G, Maff ulli N. Predictive genomics DNA profi ling for athletic performance. Recent Pat DNA Gene Seq. 2012;6(3):229-39.
76. Guth LM, Roth SM. Genetic infl uence on athletic performance. Curr Opin Pediatr. 2013;25(6):653-8.
77. Bouchard C, Rankinen T, Timmons JA. Genomics and genetics in the biology of adaptation to exercise. Compr Physiol. 2011;1(3):1603-48.
Downloads
Publicado
Edição
Seção
Licença
Copyright (c) 2020 Revista Brasileira de Educação Física e Esporte
Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial 4.0 International License.
Todo o conteúdo da revista, exceto onde está identificado, está licenciado sob uma Licença Creative Commons (CC-BY)