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ABSTRACT
Based on studies developed over recent years about the use of high-frequency data for estimating volatility, this article implements the He-
terogeneous Autoregressive (HAR) model developed by Andersen, Bollerslev, and Diebold (2007) and Corsi (2009), and the Component 
(2-Comp) model developed by Maheu and McCurdy (2007) and compare them with the Generalized Autoregressive Conditional Hete-
roskedasticity (GARCH) family models in order to estimate volatility and returns. During the period analyzed, the models using intraday 
data obtained better returns forecasts of the assets assessed, both in and out-of-sample, thus confirming these models possess important 
information for a variety of economic agents. 

Keywords: Realized volatility. Volatility estimation. Intraday return. HAR.

ISSN 1808-057X

* The authors would like to thank Prof. Dr. Claudio Henrique da Silveira Barbedo from IBMEC-Rio and Banco Central do Brasil for his valuable comments.



Flávio de Freitas Val, Antonio Carlos Figueiredo Pinto & Marcelo Cabus Klotzle 

R. Cont. Fin. – USP, São Paulo, v. 25, n. 65, p. 189-201, maio/jun./jul./ago.  2014190

	 1	 Introduction

High-frequency data is the result of observations 
made available over short periods of time. For financial 
historical series, this could be described as observations 
that were made available at a daily frequency or even 
a shorter period of time, when a number of data bases 
supplying negotiation by negotiation information regar-
ding financial assets, already existed.

The availability of trader data-bases and the calculation 
advances have made this data increasingly accessible to 
researchers and traders and have generated an enormous 
growth in the empirical research in finance.

This development has opened the way for a vast ar-
ray of empirical applications, in particular on liquid fi-
nancial markets, dealing large volumes and frequency of 
negotiations and low transaction costs. Among these ap-
plications, research applied to the estimation, forecast and 
comparison of volatility of returns on financial assets with 
different frequencies stand out.

In addition, high frequency data is also being widely 
used to study questions related to the market microstruc-
ture, such as: the behavior of participants within a specific 
market, price dynamics and how they affect transactions 
and offers for purchase and sale of a particular asset, com-
petition between related markets and real time modeling of 
the market dynamics.

This article contributes to the literature studying the 
efficacy of returns estimations produced by volatility 
models of high-frequency data. Two bivariate returns 

and realized volatility models were proposed, and their 
contribution improving returns forecasts. It is worth 
pointing out that the empirical evidence suggests that the 
quadratic variation forecasters, based on high-frequency 
data, are better forecasters than the standard volatility 
estimation models. Therefore, the results presented here 
are an important aid for better volatility estimations and 
pricing of financial assets. In practical terms, models 
implemented herein can be used to validate and to re-
fine intraday price and return models. Thus, they can 
be useful in intraday investment strategies, in long-short 
strategies and in risk management, for instance to calcu-
late different conditional volatilities in order to compare 
and to improve Value at Risk methodologies.

The article is organized as follows. The next section 
is a brief overview of the relevant literature. Section 3 
describes the data used for constructing daily returns 
of the estimation of daily realized volatility (RV). In 
this estimation, the RV adjustments stand out to remo-
ve the effects of the market microstructure. Section 4 
describes the methodology and estimates return and 
RV models based on intraday data, and the reference 
models based on the daily returns. In Section 5 the em-
pirical results are presented and validated through the 
use of the intraday conditional variance to estimate the 
Capital Asset Pricing Model. And lastly, Section 6 un-
derlines the conclusions of this study. 

	 2	 Brief Overview of the Relevant Literature

Analysis of high-frequency data poses new challen-
ges for researchers, since this data possesses unique cha-
racteristics, not present in data-bases presenting lower 
frequencies. 

Since Hsieh (1991) presented one of the first variance es-
timations of daily returns taken from intraday returns of the 
S&P500 shareholder index, progress was made in a number 
of different research areas. Among other seminal articles 
which deal with the unique properties and characteristics 
of the distribution of intraday data, it is possible to quote: 
Zhou (1996), who used ultra-high-frequency data (tick by 
tick) relevant to the currency exchange markets in order 
to explain the negative autocorrelation of the first order of 
returns and to estimate volatility for high-frequency data, 
Goodhart and O’Hara (1997) which highlight the effects 
of market structure on the interpretation and analysis of 
the data, the effects of intra-day seasonal and the effects of 
time-varying volatility, and Andersen and Bollerslev (1997, 
1998a) who analyzed the behavior of intraday volatility, the 
volatility shocks due to macroeconomic pronouncements 
and the long-term persistence in the temporal series of rea-
lized volatility, also on the currency exchange market. 

Other important works, such as that of Andersen and 
Bollerslev (1998b), Andersen, Bollerslev, Diebold, and 
Ebens (2001a), Andersen, Bollerslev, Diebold, and La-

bys (2001b), Barndorff-Nielsen and Shephard (2002) and 
Meddahi (2002) established the theoretical and empirical 
properties of the quadratic variation estimation for a large 
class of stochastic processes in finance, thus making empi-
rical research feasible with a new class of estimators, among 
which realized volatility is included. 

Andersen and Benzoni (2008) relate the empirical ap-
plications derived from the measurements constructed 
from high-frequency data, highlighting at least four large 
research areas (i) volatility forecasting, with emphasis on 
research focused on improving performance of this fore-
cast, on the relevant literature related to the detection of 
jumps and on investigating problems related to micros-
tructure in the performance of forecasting; (ii) implica-
tions in the distribution of returns under the conditions of 
non-arbitrage; (iii) multivariate measures of the quadratic 
variation and (iv) realized volatility, specification and esti-
mation models.

Within these sub-areas of research, this article focuses 
on the improvement of performance of volatility forecas-
ting, in which special attention has been given to the pro-
perties of temporal series and the enhancement of estima-
tion procedures, namely, using realized volatility.

Following are some of the articles which stand out in 
this sub-area of research.
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Andersen et al. (2001a) estimate the daily realized vo-
latility of a number of shares on the Dow Jones Industrial 
Average – DJIA index. The authors obtain results which 
affirm that the unconditional distribution of the realized 
variance and covariance are highly asymmetric towards 
the right while the realized standard logarithmic deviation 
and the correlations are approximately Gaussian, as is the 
returns distribution scaled by the realized standard devia-
tions.

Andersen, Bollerslev, Diebold, and Labys (2003) offer 
a general structure for using intraday high-frequency data 
to measure, model and forecast the volatilities and returns 
distributions at a daily frequency or over lower periods.

Ghysels, Santa-Clara, and Valkanov (2005) introduce a 
new estimator which forecasts the monthly variance using 
the past daily squared returns and name it Mixed Data 
Sampling (MIDAS).

Andersen et al. (2007) affirm that more and more li-
terature confirms gains in the volatility forecast of finan-
cial assets using measurements based on high-frequency 
data. They implement a new volatility measure (bipower 
variation measure) and corresponding non-parametric 
tests for jumps. The empirical analysis of exchange rates, 
shares returns index and rates for bonds suggest that the 
volatility component due to jumps is very important and 
less persistent than the continuous component, and that 
the separation of jump movements from soft movements 
(continuous) results in a significant improvement in the 
out-of-sample volatility forecast. In addition to this, many 
significant jumps are associated with new announcements 
of macroeconomic events. 

Maheu and McCurdy (2007) propose a flexible and par-
simonious model of the combined dynamic of the return 
and the market risk to forecast the time-varying market 
equity premium. This volatility model allows its compo-
nents to have different decay ratios, generating average re-
turns forecasts and allowing variance targeting. 

Corsi (2009) proposes an additive volatility model of 
components defined in different time horizons. This model 
possesses components which are auto-regressive in realized 
volatility and is named the Heterogeneous Autoregressive 
Model of Realized Volatility – HAR-LOG(RV). Easy to im-
plement, the simulated results show that this model mana-
ges to reproduce the principle characteristics of returns on 
financial assets (long memory, fat tails and self-similarity). 
In addition, empirical results show excellent forecast per-
formance. 

Few articles have studied the benefits of incorporating 
RV into returns distribution. Among them, we have An-
dersen et al. (2003) and Giot and Laurent (2004), who con-
sider the value of RV for estimations and to calculate the 
Value at Risk, comparing the performance of one ARCH 
model, which uses daily returns, with the performance of 
a model based on the daily realized volatility – which uses 
intraday returns – in shares index portfolios and exchange 
rates. These approaches separate the dynamics of returns 
and volatilities and assume that RV is a sufficient measure 
to represent the conditional variance of returns. Ghysels et 
al. (2005) point out that the high-frequency volatility mea-
sures identify the tradeoff between risk and return at lower 
frequencies. 

Among the studies applied to the Brazilian market, 
Moreira and Lemgruber (2004) evaluate the use of high 
frequency data in volatility forecasting and in VaR using 
GARCH models in daily and intraday horizons. Among the 
results, they highlighted that the intraday data can bring 
significant improvements to the one-day VaR. The most 
noteworthy article in the Brazilian market is that developed 
by Wink Junior and Valls Pereira (2012) which, in a pione-
ering manner, choose the optimal intraday time interval, 
deal with the question of noise generated by the market mi-
crostructure and implement two recent models, which use 
high-frequency data to estimate and forecast the volatility 
of five representative shares of the Bovespa Index.

	 3	Data  and Estimation of Realized Volatility

In this study, the prices negotiated for the PETR4 
and VALE5 shares were used, the two most liquid sha-
res on the Brazilian share market. The prices of the ne-
gotiations of these shares were obtained directly from 
BM&FBOVESPA.

The sample data covers the period through December 
1st, 2009 and March 23, 2012 for both shares.

After removing errors from the negotiation data, a 5 mi-
nute grid was constructed inside the negotiation timeframe 
of the electronic auction, finding the price negotiated equal 
to or afterwards closer to each interval on the grid. From 
this grid, 5 minute continually composed returns were 
constructed (log returns). These returns were multiplied 
by 100, and denoted as rt,i = 1,..., I ,where I is the number 
of intraday returns on the day t. For this 5 minute grid, the 
average is I=83 for each day of negotiation. This routine ge-
nerated, respectively, 47,334 and 47,322 five minute returns 
for the PETR4 and VALE5 over the 573 days in which the 

shares were negotiated.
The increment of the quadratic variation is a natural 

measure of the ex-post variance within a specific period 
of time. The realized variance, also known as realized vo-
latility is one of the most popular quadratic variation es-
timators, calculated as the sum of squared returns over a 
specific period of time.

Thus, given the intraday returns rt,i = 1,..., I, a non- ad-
justed daily estimator of the RV is

However, in the presence of market microstructure dy-
namics, the RV can be distorted and is an inconsistent esti-
mator for quadratic variation (Bandi & Russell, 2004). The-
refore, the daily realized volatility was adjusted using the 
moving average method, used by Andersen et al. (2001a) 
and later generalized by Hansen, Large, and Lunde (2008) 
and also implemented in the Brazilian shares market by 

RVt,u = Σ r2
t,i	                                              3.1

I

i=1
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Wink Junior and Valls Pereira (2012).
Thus, in the event the intraday return of an asset follows 

a moving average process of the order (MA(q)) given by rt,m 
= εt - θ1 εt-1,m -... - θq εt-q,m , Hansen et al. (2008) show that, consi-
dering some hypotheses, the estimator that corrects the non-
adjusted RV bias, based on the MA(q) process, is given by:

So in order to have no gap between interday and 
intraday volatility measures, the daily returns rt used 
in the GARCH family models, were calculated by the 
logarithmic difference of the last price of the day and 
the last price of the previous day, both captured in the 
5 minute grid. These returns were also multiplied by 
100. 

Figure 1 shows that the realized volatilities of the shares 
analyzed possess significant serial autocorrelation.

RVt,MAq =                              RVt,u	
                                          3.2

^
(1- θ1 - ... - θq )

2^

1+ θ1
2 + ... + θq

2^  ^

 Figure 1   Autocorrelation of the PETR4 and VALE5 Realized Volatilities

Table 1 shows the descriptive statistics for the daily re-
turns and for the estimated daily RV using the 5 minute 
grid. There is a certain bias in the non-adjusted RV. Follo-
wing the analysis of the daily RV correlograms and the cri-
terion adopted by Maheu and McCurdy (2011) to remove 

this bias, an MA process with 8 gaps (q=8) appears necessa-
ry for the PETR4 returns, while q=11 is appropriate for the 
VALE5 returns. From here on, RVt = RVt, MAq will be used 
with q=8 and q=11 for the estimations, respectively, of PE-
TR4 and VALE5.

 Table 1   Summary statistics: daily returns and realized volatilities

Mean Variance Skewness Kurtosis Minimum Maximum

PETR4

rt -0.090 3.121 -0.404 1.359 -7.596 5.328

RVu 3.155 11.124 4.580 28.561 0.417 32.743

RVma1 0.629 0.443 4.580 28.561 0.083 6.532

RVma2 0.023 0.001 4.580 28.561 0.003 0.237

RVma3 0.083 0.008 4.580 28.561 0.011 0.863

RVma4 0.083 0.008 4.580 28.561 0.011 0.863

RVma4 0.330 0.121 4.580 28.561 0.044 3.420

RVma5 1.031 1.188 4.580 28.561 0.136 10.699

RVma6 1.746 3.405 4.580 28.561 0.231 18.115

RVma7 2.223 5.521 4.580 28.561 0.294 23.067

RVma8 3.083 10.624 4.580 28.561 0.408 31.999

RVma9 3.645 14.844 4.580 28.561 0.482 37.823

RVma10 0.083 0.008 4.580 28.561 0.011 0.863

RVma10 3.951 17.443 4.580 28.561 0.522 41.001
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Mean Variance Skewness Kurtosis Minimum Maximum

VALE5

rt -0.011 3.015 -0.364 3.009 -9.958 5.815

RVu 2.866 14.783 6.344 56.496 0.303 46.845

RVma1 0.967 1.684 6.344 56.496 0.102 15.812

RVma2 0.166 0.050 6.344 56.496 0.018 2.717

RVma3 0.000 0.000 6.344 56.496 0.000 0.001

RVma4 0.204 0.075 6.344 56.496 0.022 3.328

RVma5 0.499 0.448 6.344 56.496 0.053 8.155

RVma6 0.646 0.750 6.344 56.496 0.068 10.555

RVma7 0.699 0.879 6.344 56.496 0.074 11.421

RVma8 1.568 4.427 6.344 56.496 0.166 25.635

RVma9 1.646 4.878 6.344 56.496 0.174 26.908

RVma10 1.830 6.029 6.344 56.496 0.193 29.917

RVma11 3.016 16.374 6.344 56.496 0.319 49.302

RVma12 3.468 21.650 6.344 56.496 0.367 56.691

continued

	 4	 Methodology

In this article, bivariate models were proposed ba-
sed on two alternative ways in which the RV is related 
to the conditional variance of returns and the GARCH 
family models are the reference for performance analy-
sis of intraday models. 

As in Maheu and McCurdy (2011), two functional 
forms were proposed for the bivariate models of the 
returns and the RV. The first model uses the hetero-
geneous autoregressive (HAR) function of the lagged 
log(RV) (Corsi, 2009; Andersen, Bollerslev, & Diebold, 
2007). The second model allows the components of the 
log(RV) to have different decay ratios (Maheu and Mc-
Curdy, 2007). 

A way to connect the RV to the returns variance was 
also considered, imposing the restriction that the conditio-
nal variance of the daily returns be equal to the conditional 
expectation of the daily RV.

As with EGARCH and TGARCH models, bivariate 
models allow the so called leverage effect, or asymme-
tries, of the negative innovations versus the positive in-
novations of the returns. 

One way to confirm that the intraday information con-
tributes to the improvement of the estimations of the re-
turns distributions is to compare the estimates of the bi-
variate models of the return and log(RV) specified in the 
estimates of the GARCH family models:

GARCH: σ2
t = ω + β σ2

t-1 + αe2
t-1 	 	       4.2

EGARCH:  	 	       4.3log (σ2
t) = ω + βlog(σ2

t-1) + γ       +α
et-1σt-1

et-1σt-1

TGARCH: σ2
t = ω + β σ2

t-1 + αe2
t-1 + γe2

t-1 It-1  where It = 0 if 
et < 0  and 0 otherwise     		        4.4

rt = ρ1rt-1 + ρ2rt-2 + θ1et-1 + θ2et-2 + et ,  
      et = σt ut, ut ~ NID (0,1)		        4.1

The main comparison method implemented uses the 
root mean squared errors and the Modified Diebold and 
Mariano (1995) test, based on the work of Harvey, Ley-
bourne, and Newbold (1997). Intuitively, better estimated 
models will have less forecast errors and, if compared with 
the other inferior performance models, will present statis-
tical differences in their errors. Therefore, to assess the mo-
dels implemented in this article, we focused on the relative 
accuracy of those models when estimating the in-sample 
and the out-of-sample returns.

One important aspect of the approach used is the pos-
sibility to directly compare traditional volatility specifica-
tions, such as GARCH family models, with the bivariate 
returns models and RV, because the implemented models 
possess one common criterion – returns forecast. The ave-
rage and the statistical test of these forecast errors allow us 
to investigate the relative contribution of the RV in the fo-
recasts. 

	 4.1	 Bivariate Returns Models and Realized 
Variance.

In this subsection, two combined specifications of the 
daily return and the RV were implemented. These bivariate 
models are differentiated by their alternative conditions over 
the RV dynamic. In each case, restrictions between the equa-
tions connect the returns variance to the RV specification.

The corollary one of Andersen et al. (2003) shows that, 
in realistic empirical conditions, the conditional expecta-
tion of the quadratic variation (QVt) is equal to the condi-
tional variance of the returns, i.e., Et-1 (QVt) = Vart-1 (rt)   σt

2. 
If the RV is a non-biased estimator of quadratic variation, 
it follows that the conditional variance of the returns can 
be linked to RV as σt

2 = Et-1 (RVt), where the combination of 
information is defined as øt-1   {rt-1, RVt-1, rt-2, RVt-2, ... r1, RV1}. 
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Supposing that RV possesses a log-normal distribution, the 
restriction takes on the form:

4.1.1	 Heterogeneous auto-regressive specification: 
HAR Model.

The first model implemented possesses a bivariate spe-
cification for the daily returns and RV in which the con-
ditional returns are driven by normal innovations and the 
dynamic of log (RVt) is captured by a heterogeneous au-
toregressive function (HAR) of the lagged log (RVt). Corsi 
(2009) and Andersen et al. (2007) use the HAR functions 
aiming to capture the dependence of long-term memory 
parsimoniously. Motivated by these studies, we defined:

For example, (RVt-22,22) is estimated calculating the ave-
rage of log (RV) for the last 22 days, i.e., from t-22 to t-1, 
log(RVt-5,5) considers the average of the last five days. 

This takes the specification of the daily returns and RV 
with the dynamic of log(RVt) being modeled as an asym-
metrical HAR function of the past log(RV)1. This bivariate 
system is summed up as follows:

This bivariate specification of the daily returns and RV 
imposes the restriction equation that relates the conditio-
nal variance of daily returns with the conditional expecta-
tion of daily RV, as shown in (4.5).

Since the data-base analyzed in this article is that 
of shares returns, it is important to allow asymmetrical 
effects into the volatility. To facilitate comparisons with 
the EGARCH reference model, the parameterization in 
equation (4.8) includes the asymmetric term γet-1 asso-
ciated with the innovations of the et-1 returns. The im-
pact coefficient for negative innovations of the returns 
will be γ. Typically,  γ < 0, which means the negative 
innovations of returns imply larger conditional varian-
ce for the next period.

4.1.2	 Component-Log(RV) Specification: 2–Comp 
Model.

This bivariate specification for daily returns and RV 
possesses conditional returns guided by normal inno-
vations, but the dynamic of log(RV) is captured by two 
components (2-Comp) with a different decay ratio, as 
shown in Maheu and McCurdy (2007). In particular, 
this bivariate system can be represented in the equa-
tion:

σt
2 = Et-1 (RVt) = exp (Et-1 log(RVt) +      Vart-1(log(RVt))           4.51

2

log(RVt-1,1)   log(RVt-1)	 	       4.6

log(RVt-h,h)          Σ log(RVt-h+i)1
h

h-1

i=0

1 The temporal RV series for the assets used here are stationary according to the unit root test, which rejects the null hypothesis of non-stationarity.

rt = ρ1rt-1 + ρ2rt-2 + θ1et-1 + θ2et-2 + et ,  
      et = σt ut, ut ~ NID (0,1)		        4.7

log (RVt) = ω + ø1 log (RVt-1) + ø2 log (RVt-5) + 
                   ø3 log (RVt-22) +  γet-1 +  ηvt, vt ~ NID (0,1)      4.8

Again, a restriction was imposed by equation (4.5) whi-
ch related the conditional variance of the daily returns with 
the conditional expectation of the daily RV. For this specifi-
cation, the dynamic of daily log(RV) was parameterized by 
equations (4.10) and (4.11), substituting the HAR function 
in equation (4.8).

The average of the return time series was estimated 
by ARMA (p, q) models, using the R software func-
tion auto.arima. All other estimates were made using 
the software eviews 7.1. Aiming to combine parsimony 
and robustness of these estimates, we established the 
maximum lag length (p+q) of 4 and automatic lag leng-
th selection using the Schwarz Information Criterion 
(BIC). Thus, for the average of the series we have an AR 
(1) modeling the daily and weekly series of VALE5 and 
PETR4 and an ARMA (2,2) for weekly and monthly se-
ries of both assets.

The bivariate systems were estimated in two steps. Ini-
tially the equations of means were estimated and then the 
return innovations were modeled by different volatility 
models.

Volatility forecasts were made by a sequence of one-step 
ahead forecasts, using the current values for lagged depen-
ded variable and return forecasts considering ri,t = fi,t + ei,t, 
ei,t = σi,t ut, ut ~ NID(0,1) where fi,t is the estimated equation 
for the mean process for asset i in time t, ei,t is the return 
innovation for the asset i in time t and αi,t is the estimated 
conditional standard deviation for the asset i in time t.

Aiming to do a practical exercise for the applicabi-
lity of the models presented here, we use the conditio-
nal variance estimated by the monthly 2-Comp model, 
which returned the lowest error predictions among 
analyzed models, in the Capital Asset Pricing Model 
– CAPM estimation. The CAPM developed by Sharpe 
(1964), Treynor (1961), Lintner (1965) and Black, Jen-
sen, and Scholes (1972) has become in recent decades 
the most widespread model for determination of asset 
prices (Barros, Famá, & Silveira, 2002). This model sta-
tes that assets are priced compatible with a trade-off 
between non-diversifiable risk and expectations of re-
turn.

The CAPM can be formally presented as E(ri) = rf + βi 
(E(rm) - rf) where E(ri) is the expected return on asset i over 
a single time-period, rf is the riskless rate of interest rate 
over the period, E(rm) is the expected return on the market 
over the period, and                         identifies the exposure of 
asset i to the market.

To estimate β we used: (i) the statistical covariance Cov 
(rm, ri) of PETR4 and VALE5 regarding BOVA11 in a mo-

rt = ρ1rt-1 + ρ2rt-2 + θ1et-1 + θ2et-2 + et ,  
      et = σt ut, ut ~ NID (0,1)		        4.9

2

i=1
log (RVt) = ω + Σ ø1 si,t +  γet-1 +  ηvt , vt ~ NID (0,1) 4.10

si,t = (1-αi )log (RVt-1) + αi si,t-1 ,  0 < αi ,t <1 ,  i=1,2 4.11

Cov (rm, ri)
σ2 (rm)

β = 

~
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ving window of 22 days and (ii) the conditional variance 
σ2(rm) estimated by the 2-Comp model in this same time 
frame. The Interbank Certificate of Deposits - CDI was se-
lected to represent the risk free interest rate risk, following 
the work of Barros, Famá, and Silveira (2002). 

To represent the market portfolio, we choose the ex-
change traded fund BOVA11, considering that its expected 
return for the next period is a function of the preceding 

2    Bovespa Index (Ibovespa) is the most important indicator of average prices of shares traded on the São Paulo Stock Exchange and it is made up of stocks with the highest trading volume in recent months.

period return. Among the qualities of BOVA11 we have: 
(i) it is effectively traded in an active market, enabling the 
extraction of realized volatility and its use in intraday vola-
tility models, (ii) it has an average correlation of more than 
99% with the Ibovespa2 in the analyzed period, (iii) it is an 
asset with increasing liquidity, with average daily turnover 
of R$44.1mi in 2011, and by far the most traded ETF in the 
Brazilian market.

	 5	 Empirical Results

In this chapter, we will present the estimated results of 
models for the 1, 5 and 22 day time models.

Table 2 presents estimates of the GARCH family mo-
dels. The Schwarz Information Criterion (BIC) indicates 
that asymetric models are as well adjusted to the data as 
the estimated GARCH model, which was confirmed in 

 Table 2   GARCH, EGARCH and TGARCH model estimates 

rt = ρ1rt-1 + ρ2rt-2 + θ1et-1 + θ2et-2 + et , et = σt ut, ut ~ NID (0,1)

σt
2

 = ω + β σ2
t-1 + αe2

t-1

Horizon
Share/ 

Parameter
ρ1 ρ2 θ1 θ2 Adj. R2 ω β α γ BIC

1 day

PETR4
0.159*** 0.883* 0.07** 3.774

0.090 0.060 0.030

VALE5
0.104** 0.011 0.165** 0.835* 0.096* 3.668

0.042 0.072 0.057 0.034

5 days

PETR4
0.815* 0.661 0.243 0.849* 0.099** 4.325

0.025 0.153 0.068 0.046

VALE5
1.299* -0.664* -0.664* 0.779* 0.707 0.211*** 0.856* 0.092** 4.222

0.042 0.040 0.034 0.029 0.118 0.057 0.039

22 days

PETR4
0.908* 0.978* -0.041 0.889 0.285 0.892* 0.053** 4.483

0.017 0.043 0.044 0.215 0.062 0.029

VALE5
0.228** 0.638* 0.907* 0.276* 0.905 0.019 0.948* 0.047* 4.325

0.119 0.114 0.118 0.043 0.032 0.021 0.018

rt = ρ1rt-1 + ρ2rt-2 + θ1et-1 + θ2et-2 + et , et = σt ut, ut ~ NID (0,1)

Horizon
Share/ 

Parameter
ρ1 ρ2 θ1 θ2 Adj. R2 ω β α γ BIC

1 day

PETR4
-0.051 0.9405* 0.115** -0.138* 3.778

0.044 0.033 58.000 0.041

VALE5
0.104** 0.011 -0.005 0.904* 0.101** -0.183* 3.637

0.042 0.032 0.022 0.044 0.037

5 days

PETR4
0.815* 0.661 -0.070 0.971* 0.1314** -0.118* 4.325

0.025 0.044 0.022 0.059 0.034

VALE5
1.299* -0.664* -0.664* 0.779* 0.707 -0.032 0.937* 0.145** -0.091* 4.221

0.042 0.040 0.034 0.029 0.039 0.026 0.059 0.036

22 days

PETR4
0.908* 0.978* -0.041 0.889 0.613 0.496*** 0.245** -0.078 4.499

0.017 0.043 0.044 0.429 0.287 0.111 0.073

VALE5
0.228** 0.638* 0.907* 0.276* 0.905 -0.069* 1.003* 0.078* -0.045** 4.329

0.119 0.114 0.118 0.043 0.021 0.005 0.028 0.020

nearly all the in sample forecasts of these models. Based 
on fitted EGARCH and TGARCH models, aside from 
the monthly estimate of PETR4, all leverage effect coe-
fficients are significant at the 10% level, confirming the 
asymmetrical impact between the positive and negative 
returns of assets. 

continuous

log (σt
2) = ω + βlog(σ2

t-1) + γ        + α
et-1

σt-1

et-1

σt-1
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continued

rt = ρ1rt-1 + ρ2rt-2 + θ1et-1 + θ2et-2 + et , et = σt ut, ut ~ NID (0,1)

σt
2

 = ω + β σ2
t-1 + αe2

t-1 + γe2
t-1 It-1

Horizon
Share/ 

Parameter
ρ1 ρ2 θ1 θ2 Adj. R2 ω β α γ BIC

1 day

PETR4
0.155** 0.858* -0.003 0.152** 3.769

0.081 0.051 0.027 0.060

VALE5
0.104** 0.011 0.142* 0.879* -0.041** 0.216* 3.629

0.042 0.036 0.030 0.017 0.046

5 days

PETR4
0.815* 0.661 0.125 0.902* -0.015 0.164** 4.316

0.025 -0.015 0.048 0.032 0.054

VALE5
1.299* -0.664* -0.664* 0.779* 0.707 0.196** 0.888* 0.002 0.123** 4.213

0.042 0.040 0.034 0.029 0.079 0.041 0.031 0.051

22 days

PETR4
0.908* 0.978* -0.041 0.889 0.215 0.913* 0.031 0.026 4.497

0.017 0.043 0.044 0.157 0.048 0.031 0.039

VALE5
0.228** 0.638* 0.907* 0.276* 0.905 -0.027*** 0.979* -0.013 0.073* 4.328

0.119 0.114 0.118 0.043 0.016 0.012 0.016 0.022

Note: *, ** and *** stand for rejection of the null hypothesis at the1%, 5% and 10% significance levels, respectively.

Both asymmetric models provide similar leverage 
effects for the estimated time horizons. Considering a 
standardizes shock of 2 standard deviation, the leverage 
effect for EGARCH(1,1,1) can be estimated (Tsay, 2010) 
as                                       , and for TGARCH(1,1,1)

as                                          .

The following Table 3 compare these asymmetric mo-
dels assuming that et-1 = ±2σt-1 so that ut-1 = ±2. The impact 

σt
2

 (ut-1 = -2)     exp [-(α-γ)(ut-1)]
σt

2(ut-1 = +2)    exp [(α+γ)(ut-1)]=

σt
2

 (ut-1 = -2)     [(α+γ)(ut-1)
2 + β]

σt
2

 (ut-1 = +2)       [α(ut-1) 2 + β]
=

 Table 3   Leverage Effect (considering 2 standard deviation)

Model Share 1 day 5 days 22 days

EGARCH
PETR4 1.74 1.60 1.37

VALE5 2.21 1.51 1.31

TGARCH
PETR4 1.72 1.78 1.10

VALE5 2.08 1.44 1.20

Tables 4 and 5, following, show the estimations of the 
HAR-Log(RV) and 2-Comp models respectively, for the 1, 
5 and 22 day time horizons. 

The results found in Table 4 are in agreement with those 
presented by Andersen et al. (2007) and Wink Junior and 
Valls Pereira (2012). The statistically significant estimates 
of the coefficients of the daily (ø1), weekly (ø2) and monthly 
(ø3) volatility components confirm the presence of high 
persistence in the volatility3. The relative weight of the daily 
volatility component decreases from the daily regressions 

to the weekly and monthly component while the monthly 
component tends to be relatively more important in the re-
gressions over longer periods4.

In addition to this, when comparing the adjusted R2 
of the HAR which includes the asymmetrical γ compo-
nent with the same standard HAR statistic (last column 
of Table 3), there is noted little improvement in the mo-
dels’ estimation, indicating that the HAR coefficients 
was already capturing some of the asymmetric dynamic 
of the asset returns. 

of a negative shock of size 2 standard deviation is more 
powerful for daily returns. Thus, the leverage effect is re-
duced when time horizons increase.

For instance, for VALE5 1 day horizon, the impact 
of a 2 standard deviation negative shock is about 121% 
and 108% higher, respectively for EGARCH and TGAR-
CH models, than that of a positive shock of the same 
magnitude, while for 22 days horizon these impacts are 
reduced for 31% and 20%.

3 Only three out of 18 volatility coefficients are not significant to a degree of 10%. These exceptions occur for the monthly volatility components estimated in equations with 1 and 5 days time horizons.
4 As noted by Andersen et al. (2007), although the structure of the HAR model does not formally possess a long memory, the combination of few volatility components is capable of reproducing a notable smooth fall 

of the autocorrelation of this volatility, being almost indistinguishable from the hyperbolic decay (long memory).



Volatility and Return Forecasting with High-Frequency and GARCH Models: Evidence for the Brazilian Market

R. Cont. Fin. – USP, São Paulo, v. 25, n. 65, p. 189-201, maio/jun./jul./ago.  2014 197

 Table 4   HAR-log(RV) model estimates

rt = ρ1rt-1 + ρ2rt-2 + θ1et-1 + θ2et-2 + et , et = σt ut, ut ~ NID (0,1)

log (RVt) = ω + ø1 log (RVt-1) + ø2 log (RVt-5) + ø3 log (RVt-22) +  γet-1 +  ηvt, vt ~ NID (0,1)

Horizon
Share/ 

Parameter
ρ1 ρ2 θ1 θ2 Adj. R2 ω ø1 ø2 ø3 γ η Adj. R2

j Adj. R2

1 day

PETR4
- - - - - 0.156** 0.290* 0.345* 0.093 -0.038** -0.021 0.3354 0.3310

- - - - - 0.064 0.060 0.091 0.090 0.017 0.026

VALE5
0.104** - - - 0.011 0.057 0.312* 0.220** 0.267* -0.058* -0.018 0.3891 0.3753

0.042 - - - 0.055 0.060 0.089 0.088 0.019 0.027

5 days

PETR4
0.815* 0.661 0.053* 0.113* 0.855* -0.016 -0.011* -0.001 0.9049 0.9040

0.025 0.019 0.018 0.028 0.028 0.004 0.008

VALE5
1.299* -0.664* -0.664* 0.779* 0.707 0.037** 0.138* 0.807* 0.022 -0.002 -0.007 0.8991 0.8990

0.042 0.040 0.034 0.029 0.019 0.020 0.030 0.030 0.005 0.009

22 days

PETR4
0.908* 0.978* -0.041 0.889 0.004 0.018* 0.039* 0.944* -0.001 0.001 0.9859 0.9859

0.017 0.043 0.044 0.006 0.006 0.009 0.008 0.001 0.002

VALE5
0.228** 0.638* 0.907* 0.276* 0.905 0.005 0.014* 0.0036* 0.949* -0.004* -0.002 0.9891 0.9888

0.119 0.114 0.118 0.043 0.005 0.005 0.008 0.008 0.001 0.002

Note: *, ** and *** stand for rejection of the null hypothesis at the1%, 5% and 10% significance levels, respectively.

However, the results presented in Table 5 show that 
the estimated 2-Comp model was able to efficiently 
capture the different volatility dynamics, with the per-
sistent coefficients α1 and α2 clearly differentiated by 
each time horizon (see Figure 2). In addition to this, 
the minor α coefficient in each equation shows less 
persistent effect, being more influenced by the more 

recent RV observations.
Thus, as in the HAR model that was used, the asym-

metric γ components of the 2-Comp model are negati-
ve but also relatively very small, indicating that these 
models without γ are also able to partially capture the 
asymmetric balance of the returns. 

 Table 5   2-Comp model estimates 

rt = ρ1rt-1 + ρ2rt-2 + θ1et-1 + θ2et-2 + et , et = σt ut, ut ~ NID (0,1)

log (RVt) = ω + Σ ø1 si,t +  γet-1 +  ηvt , vt ~ NID (0,1)

si,t = (1-αi )log (RVt-1) + αi si,t-1 ,  0 < αi ,t <1 ,  i=1,2

Horizon
Share/ 

Parameter
ρ1 ρ2 θ1 θ2 Adj. R2 ω ø1 ø2 α1 α2 γ η

1 day

PETR4
0.071* 0.544* 0.242* 0.784 0.001 -0.017** -0.007

0.023 0.093 0.064 0.007 0.011

VALE5
0.104** 0.011 0.034 0.516* 0.345* 0.408 0.904 -0.027* -0.006

0.042 0.022 0.076 0.107 0.008 0.011

5 days

PETR4
0.815* 0.661 0.027* 1.505* -0.579* 0.003 0.354 -0.005* -0.002

0.025 0.007 0.122 0.125 0.002 0.003

VALE5
1.299* -0.664* -0.664* 0.779* 0.707 0.024* -0.507* 1.432* 0.349 0.018 -0.003 -0.004

0.042 0.040 0.034 0.029 0.007 0.138 0.135 0.002 0.004

22 days

PETR4
0.908* 0.978* -0.041 0.889 0.009* -0.222* 1.199* 0.770 0.001 -0.001 -0.001

0.017 0.043 0.044 0.002 0.026 0.025 0.001 0.001

VALE5
0.228** 0.638* 0.907* 0.276* 0.905 0.006* -0.307* 1.291* 0.628 0.001 -0.002* -0.001

0.119 0.114 0.118 0.043 0.002 0.034 0.033 0.000 0.001

Note: *, ** and *** stand for rejection of the null hypothesis at the1%, 5% and 10% significance levels, respectively.

2

i=1
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Figure 2 presents the graphs of the historical s1,t and s2,t  series, generated by the decline of factors α1 and α2 (graph 2.1) 
and realized and estimated Log(RV) (graph 2.2) for VALE5 in the one day time horizon.

 Figure 2   Decay factors and realized and estimated log(RV) for VALE5

In order to assess the accuracy of the models used, they 
were assessed for the forecast of the following 1, 5 and 22 
day time horizons, in and out-of-sample, using the root 
mean squared error (RMSQ) measure. The Modified Die-
bold Mariano test was used5 to estimate the statistical diffe-
rences between the models. 

For the in-sample period, data collected between 
01/07/2010 and 7/29/2011 was considered (388 observa-
tions) and for the out-of-sample, data between 08/01/2011 

and 03/21/2012 (160 observations).
Table 6 presents the RMSQ of the forecasts in the 

three defined time horizons. The 2-Comp model re-
turned better forecasts for all time horizons, and HAR 
returned the second best forecast for the 5 and 22 day 
horizons. But are these results statistically better than 
the GARCH family models? Table 7 tries to answer these 
and other questions.

5 This statistical test consists of testing the null hypothesis of equality between the quadratic error mean of two forecasts, using the critical values of a t-Student distribution with (n-1) degrees of liberty.

 Table 6   Root mean squared error

In-sample

Horizon Model GARCH EGARCH TGARCH HAR-log(RV) 2-Comp

1 day

PETR4

2.15 2.16 2.16 2.19 1.91

5 days 2.88 2.89 2.87 2.56 2.34

22 days 3.13 3.13 3.13 2.72 2.49

1 day

VALE5

2.14 2.12 2.14 2.17 1.89

5 days 2.76 2.74 2.76 2.49 2.26

22 days 3.04 3.04 3.03 2.69 2.44

Out-of-sample

Horizon Model GARCH EGARCH HAR-RV HAR-log(RV) 2-Comp

1 day

PETR4

3.07 2.97 3.15 3.02 2.59

5 days 4.55 4.31 4.55 3.85 3.44

22 days 4.19 4.00 4.20 3.80 3.42

1 day

VALE5

3.14 3.06 3.37 3.19 2.63

5 days 3.85 3.80 3.98 3.58 3.09

22 days 4.40 4.32 4.47 3.91 3.49

Table 7 shows the p-values of the Modified Diebold Ma-
riano Statistical Test. 

Regarding the return forecasts in both in and out of 

the sample periods, the p-values show that: (i) 2-Comp 
model provides the best forecasts in the three time ho-
rizons; (ii) HAR model has the second best prediction 

Fig. 2.1 - S1 and S2 estimated series for VALE5 in 1 day horizon Fig. 2.2 - Realized and Estimated log(RV) for VALE5 in 1 day horizon

1.6

1.2

0.8

0.4

0.0

-0.4

2.0

1.6

1.2

0.8

0.4

0.0

-0.4

-0.8
Aug. Sep. Oct. Nov. Dec. Jan. Feb. Mar.

2011 2012

Daily S1
Daily S2

Realized log(RV)
Estimated log(RV)

Aug. Sep. Oct. Nov. Dec. Jan. Feb. Mar.
2011 2012



Volatility and Return Forecasting with High-Frequency and GARCH Models: Evidence for the Brazilian Market

R. Cont. Fin. – USP, São Paulo, v. 25, n. 65, p. 189-201, maio/jun./jul./ago.  2014 199

for the 5 and 22 day horizons. 
Considering the return forecasts in the sample pe-

riod: (i) there is no significant difference between the 
GARCH, EGARCH and HAR models in one day time 
horizon; (ii) there is no significant difference between 
the GARCH family models in 5 and 22 day time hori-
zons.

Furthermore, return forecasts only in the out of 
the sample period show: (i) in one day time horizon: 
TGARCH not kept the EGARCH performance, vis a vis 

 Table 7   Modified Diebold Mariano test (P-Value)

7.1 In-sample 7.2 Out-of-sample

1 day horizon 1 day horizon

GARCH EGARCH TGARCH HAR-RV (log) 2-Comp GARCH EGARCH TGARCH HAR-VR (log) 2-Comp

GARCH

PETR4

100.0% 94.4% 96.9% 67.2% 3.8% GARCH

PETR4

100.0% 8.7% 3.3% 11.6% 0.0%

EGARCH 100.0% 99.4% 81.0% 0.4% EGARCH 100.0% 0.0% 9.9% 0.0%

TGARCH 100.0% 77.0% 0.8% TGARCH 100.0% 0.0% 0.0%

HAR-RV(log) 100.0% 0.0% HAR-RV 100.0% 0.0%

2-Comp 100.0% 2-Comp 100.0%

GARCH

VALE5

100.0% 82.1% 96.3% 74.6% 0.2% GARCH

VALE5

100.0% 7.5% 0.0% 2.5% 0.0%

EGARCH 100.0% 91.6% 52.8% 0.4% EGARCH 100.0% 0.0% 0.0% 0.0%

TGARCH 100.0% 74.0.0% 0.0% TGARCH 100.0% 0.0% 0.0%

HAR-RV(log) 100.0% 0.0% HAR-RV(log) 100.0% 0.0%

2-Comp 100.0% 2-Comp 100.0%

5 days horizon 5 days horizon

GARCH

PETR4

100.0% 85.0% 95.4% 0.0% 0.0% GARCH

PETR4

100.0% 0.0% 57.4% 0.0% 0.0%

EGARCH 100.0% 93.2% 0.0% 0.0% EGARCH 100.0% 0.0% 0.0% 0.0%

TGARCH 100.0% 0.0% 0.0% TGARCH 100.0% 0.0% 0.0%

HAR-RV(log) 100.0% 0.0% HAR-RV(log) 100.0% 0.0%

2-Comp 100.0% 2-Comp 100.0%

GARCH

VALE5

100.0% 80.3% 93.2% 0.0% 0.0% GARCH

VALE5

100.0% 32.6% 0.0% 0.0% 0.0%

EGARCH 100.0% 93.0% 0.0% 0.0% EGARCH 100.0% 0.0% 0.0% 0.0%

TGARCH 100.0% 0.0% 0.0% TGARCH 100.0% 0.0% 0.0%

HAR-RV(log) 100.0% 0.0% HAR-RV(log) 100.0% 0.0%

2-Comp 100.0% 2-Comp 100.0%

22 days horizon 22 days horizon

GARCH

PETR4

100.0% 95.1% 99.4% 0.0% 0.0% GARCH

PETR4

100.0% 0.0% 91.7% 0.0% 0.0%

EGARCH 100.0% 97.3% 0.0% 0.0% EGARCH 100.0% 0.0% 0.0% 0.0%

TGARCH 100.0% 0.0% 0.0% TGARCH 100.0% 0.0% 0.0%

HAR-RV(log) 100.0% 0.0% HAR-RV(log) 100.0% 0.0%

2-Comp 100.0% 2-Comp 100.0%

GARCH

VALE5

100.0% 93.5% 89.8% 0.0% 0.0% GARCH

VALE5

100.0% 0.9% 1.5% 0.0% 0.0%

EGARCH 100.0% 97.2% 0.0% 0.0% EGARCH 100.0% 0.0% 0.0% 0.0%

TGARCH 100.0% 0.0% 0.0% TGARCH 100.0% 0.0% 0.0%

HAR-RV(log) 100.0% 0.0% HAR-RV(log) 100.0% 0.0%

2-Comp 100.0% 2-Comp 100.0%

the similar in sample forecasts of both models; GAR-
CH and EGARCH return better predictions than HAR 
model for VALE5; there are no significant forecast di-
fferences of HAR, GARCH and EGARCH models for 
PETR4; (ii) in the 5 day time horizon, the EGARCH 
model returns better predictions than TGARCH mo-
del; (iii) in the 22 day time horizon, the EGARCH mo-
del returns better predictions than the GARCH and 
TGARCH models.
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Figure 3 represents the graphs for the two best out-
of-sample forecasts for the PETR4 and VALE5 shares 
for the three time horizons. It can be observed that the 
high-frequency models implemented here present very 

similar forecasts among themselves. In addition, these 
forecasts appear to be strongly adherent to the realized 
returns in all analyzed time horizons.

 Figure 3   Realized returns and out-of-sample forecast by the HAR-Log(RV) and 2-Comp models 

Considering CAPM results, Figure 4 shows the 
behavior of estimated expected returns series and PE-
TR4 and VALE5 return series for the 22 days time hori-

zon. There is a high adherence of the estimated returns 
to realized returns, with a correlation of 65% and 90%, 
respectively, for PETR4 VALE5.

 Figure 4   Expected and observed monthly returns for PETR4 and VALE5

The following table summarizes the descriptive statis-
tics for expected and observed monthly returns of PETR4 
and VALE5. We can mention among the results that: (i) 
the distribution of the expected returns of both shares are 

asymmetric to the left and exhibit more fat tails (more lep-
tokurtic) than the realized returns and (iii) distributions of 
the realized and the estimated returns are not normal at the 
5% level of significance.
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 Table 8   Descriptive statistics for expected and observed monthly returns

Share Returns Mean Median Maximum Minimum Standard Dev. Skewness Kurtosis Jarque-Bera

PETR4
Observed (2.70) (2.48) 17.15 (24.16) 6.70 (0.26) 3.29 5.93
Expected (0.85) (0.27) 11.99 (22.31) 5.32 (1.11) 5.38 170.93

VALE5
Observed 0.50 0.42 15.95 (27.30) 7.60 (0.46) 3.59 19.42
Expected (1.19) 0.64 19.20 (46.36) 10.12 (1.48) 7.05 407.92

	 6	 Conclusions

This article proposed alternative models which used the 
daily returns and the RV, relating the RV to the variance of 
returns. In addition, it sought to explore the possible bene-
fits of using intraday data to obtain better volatility estima-
tes and forecast of returns.

The empirical applications implemented in the returns 
of PETR4 and VALE5 reveal the importance of the infor-
mation contained in the intraday returns and the use of 
log(RV). The results found confirm that: (i) bivariate mo-
dels which use high-frequency data provide a significant 
improvement in the forecasts compared with the standard 
models, from daily data, confirming the results found by 
Maheu and McCurdy (2011) on the North-American sto-
ck market; (ii) the two bivariate high-frequency models, 
in a parsimonious and singular manner, obtained success 
in modeling volatility as presented by Wink Junior and 
Valls Pereira (2012), showing excellent performance in 
the forecast of the returns and confirming results found 
in Corsi (2009).

These findings can be useful in intraday investment 
strategies, in long-short strategies and in risk management. 
HAR and 2-Comp conditional volatilities can be used, for 
instance, in order to compare and refine the performance 
of different Value at Risk methodologies.

At the end of this article, we also sought answers to 
the question: does high-frequency price models offer 
better return forecasts than the accepted models using 
closing prices?

It is possible to confirm; yes. The models using high-
frequency data implemented here appear to contribute 
to better volatility and return forecasting. These results 
were obtained in the in and out-of-sample periods using 
the root mean squared error and the Modified Diebold 
Mariano test of the one, five and twenty-two day time 
horizon forecasts. Nevertheless, the estimation of these 
models for other financial assets and longer historical 
series could confirm and validate the results obtained 
here. 
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