Análise de redes sociais contra a corrupção: estudo do orçamento público vinculado à pandemia do Covid-19
DOI:
https://doi.org/10.11606/issn.1982-6486.rco.2022.191515Palavras-chave:
Análise de redes sociais, Grafo, Corrupção, PandemiaResumo
O combate à pandemia desencadeou quase que imediatamente reações por parte de governos em todo o mundo. Recursos econômicos foram direcionados para manutenção da economia e auxílio a famílias e empresas, gerando alterações sem precedentes nos orçamentos públicos. Considerando que a corrupção é um mal que aflige todas as sociedades, abriu-se uma janela de oportunidade para desvios de recursos públicos. Nesse contexto, este estudo teve por objetivo analisar os créditos extraordinários abertos no orçamento federal de 2020 destinados ao enfrentamento da pandemia do Covid-19, capturando dados da execução orçamentária e promovendo análises em busca de sinalizações para atos de corrupção nos municípios. Para tanto, foram utilizados métodos quantitativos e qualitativos, suportados pela Análise de Redes Sociais e mineração de grafos. Os resultados indicam o potencial da abordagem com grafos na identificação de localidades mais suscetíveis à existência de atos de corrupção, uma vez que o estudo das relações entre empresas e municípios oferece insights investigativos que provavelmente não seriam alcançados por meio de modelos tradicionais de investigação. Como contribuição, os achados da pesquisa podem ser úteis para pesquisadores e profissionais que buscam métodos para fortalecer as atividades dos órgãos de fiscalização e controle, contribuindo com o aperfeiçoamento da gestão pública.
Downloads
Referências
Amani, F. A., & Fadlalla, A. M. (2017). Data mining applications in accounting: A review of the literature and organizing framework. International Journal of Accounting Information Systems, 24, 32-58. https://doi.org/10.1016/j.accinf.2016.12.004
Amaral, L. S., Gomes, D. A., Oliveira, A. C. F. M., Oliveira, M. G. F. M., Nunes, J. E. O., Silva, M. M. L., Cordeiro, N. M., Santiago, E. J. P., Santos, A. L. P., & Moreira, G. R. (2020). Cluster analysis involving the world corruption perception index: An approach applied to South America. Research, Society and Development, 9(7). https://doi.org/10.33448/rsd-v9i7.4471
Anessi-Pessina, E., Barbera, C., Langella, C., Manes-Rossi, F., Sancino, A., Sicilia, M., & Steccolini, I. (2020). Reconsidering public budgeting after the Covid-19 outbreak: key lessons and future challenges. Journal of Public Budgeting, Accounting & Financial Management, 32(5), 957-965. https://doi.org/10.1108/JPBAFM-07-2020-0115
Aranha, C. E., Rossoni, L., & Silva, W. M. (2016). Capital Social do Conselho de Administração e desempenho de empresas de capital aberto brasileiras. Revista de Administração Mackenzie, 17(1), 15-39. https://doi.org/10.1590/1678-69712016/administracao.v17n1p15-39
Aridhi, S., & Nguifo, E. M. (2016). Big Graph Mining, Frameworks and Techniques. Big Data Research, 6, 1-10. https://doi.org/10.1016/j.bdr.2016.07.002
Avis, E., Ferraz, C., & Finan, F. (2018). Do Government Audits Reduce Corruption? Estimating the Impacts of Exposing Corrupt Politicians. Journal of Political Economy, 126(5), 1912-1964. https://doi.org/10.1086/699209
Barabási, A-L. (2016). Network Science. Cambridge University Press.
Barbosa Neto, J. E., Higgins, S. S. S., Cunha, J. V. A. & Ribeiro, A. C. (2016). Capital Social e seletividade em redes de coautoria acadêmica: o caso das ciências contábeis no Brasil. Brazilian Business Review, 13(6), 239-269. https://doi.org/10.15728/bbr.2016.13.6.4
Bastian, M., Heymann, S., & Jacomy, M. (2009). Gephi: an open source software for exploring and manipulating networks. International AAAI Conference on Weblogs and Social Media. https://gephi.org/publications/gephi-bastian-feb09.pdf
Becker, G. S. (1968). Crime and Punishment: An Economic Approach. Journal of Political Economy, 76(2), 169-217. http://www.jstor.org/stable/1830482
Carraro, A., Machado, I. B., Canever, M. D.; & Boll, J. L. S. (2015). Proposta para a estimação da corrupção regional no Brasil. Política & Sociedade, 14(31), 326-352. https://dx.doi.org/10.5007/2175-7984.2015v14n31p326
Chang, Z. (2018). Understanding the Corruption Networks Revealed in the Current Chinese Anti-corruption Campaign: A Social Network Approach. Journal of Contemporary China, 27(113), 735-747. https://doi.org/10.1080/10670564.2018.1458060
Cherven, K. (2015). Mastering Gephi Network Visualization: produce advanced network graphs in Gephi and gain valuable insights into your network datasets. Packt Publishing Ltd.
Colliri, T., & Zhao, L. (2019). Analyzing the Bills-Voting Dynamics and Predicting Corruption-Convictions Among Brazilian Congressmen Through Temporal Networks. Scientific Reports, 9. https://doi.org/10.1038/s41598-019-53252-9
Diviák, T., Dijkstra, J. K., Snijders, T. A. B. (2019). Structure, multiplexity, and centrality in a corruption network: the Czech Rath affair. Trends in Organized Crime, 22, 274-297. https://doi.org/10.1007/s12117-018-9334-y
Fayyad, U., Piatetsky-Shapiro, G., & Smyth, P. (1996). From Data Mining to Knowledge Discovery in Databases. AI Magazine, 17(3), 37-54. https://doi.org/10.1609/aimag.v17i3.1230
Fazekas, M., & Tóth, I. J. (2016). From Corruption to State Capture: A New Analytical Framework with Empirical Applications from Hungary. Political Research Quartely, 69(2), 320-334. https://doi.org/10.1177/1065912916639137
Ferraz, C., & Finan, F. (2011). Electoral accountability and corruption: evidence from the audits of local governments. American Economic Review, 101, 1274-1311. https://doi.org/10.1257/aer.101.4.1274
Gallego, J., Prem, M., & Vargas, J. F. (2020). Corruption in the Times of Pandemia. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3600572
Garrett, T. A., & Sobel, R. S. (2003). The Political Economy of FEMA Disaster Payments. Economic Inquiry, 41(3), 496-509. https://doi.org/10.1093/ei/cbg023
Gregori, M., & Merlone, U. (2020). Comparing operational terrorist networks. Trends in Organized Crime. https://doi.org/10.1007/s12117-020-09381-z
Hauser, C. (2018). Fighting Against Corruption: Does anti-corruption Training Make Any Difference? Journal of Business Ethics, 159, 281-299. https://doi.org/10.1007/s10551-018-3808-3
Kacanski, S., & Lusher, D. (2017). The Application of Social Network Analysis to Accounting and Auditing. International Journal of Academic Research in Accounting, Finance and Management Sciences, 7(3), 182–197. https://doi.org/10.6007/IJARAFMS/v7-i3/3286
Kaufmann, D., Kraay, A., & Mastruzzi, M. (2010). The worldwide governance indicators: methodology and analytical issues. World Bank Policy Research Working Paper No. 5430. http://documents1.worldbank.org/curated/ar/630421468336563314/pdf/WPS5430.pdf
Leeson, P. T., & Sobel, R. S. (2008). Weathering Corruption. The Journal of Law & Economics, 51(4), 667-681. https://doi.org/10.1086/590129
Luna-Pla, I., & Nicolás-Carlock, J. R. (2020). Corruption and complexity: a scientific framework for the analysis of corruption networks. Applied Network Science, 5(13), 1-18. https://doi.org/10.1007/s41109-020-00258-2
Mauro, P., Medas, P., & Fournier, J. (2019). The cost of corruption. Finance & Development, 56(3), 26-29. https://www.imf.org/external/pubs/ft/fandd/2019/09/the-true-cost-of-global-corruption-mauro.htm
Martínez-Plumed, F., Contreras-Ochando, L., Ferri, C., Hernández Orallo, J., Kull, M., Lachiche, N., & Flach, P. A. (2019). CRISP-DM Twenty Years Later: From Data Mining Processes to Data Science Trajectories. IEEE Transactions on Knowledge and Data Engineering. https://doi.org/10.1109/TKDE.2019.2962680
Miller, J. M., & Blumstein, A. (2020). Crime, Justice & the Covid-19 Pandemic: Toward a National Research Agenda. American Journal of Criminal Justice, 45, 515–524. https://doi.org/10.1007/s12103-020-09555-z
Morselli, C. (2010). Assessing Vulnerable and Strategic Positions in a Criminal Network. Journal of Contemporary Criminal Justice, 26(4), 382-392. https://doi.org/10.1177/1043986210377105
Nikolova, E., & Marinov, N. (2017). Do Public Fund Windfalls Increase Corruption? Evidence From a Natural Disaster. Comparative Political Studies, 50(11), 1455-1488. https://doi.org/10.1177/0010414016679109
Nye, J. S. (1967). Corruption and Political Development: a cost-benefit analysis. The American Political Science Review, 61(2), 417-427. https://doi.org/10.2307/1953254
Payne, B. K. (2020). Criminals Work from Home during Pandemics Too: a Public Health Approach to Respond to Fraud and Crimes against those 50 and above. American Journal of Criminal Justice. https://doi.org/10.1007/s12103-020-09532-6
Rehman, S. U., Khan, A. U., & Fong, S. (2012). Graph mining: A survey of graph mining techniques. Seventh International Conference on Digital Information Management (ICDIM 2012), 88-92. https://doi.org/10.1109/ICDIM.2012.6360146
Resende, C. A. S. (2020). Análise de redes sociais: o método e sua utilização nas Ciências Sociais brasileiras. Ciências Sociais Unisinos, 56(1), 94-103. https://doi.org/10.4013/csu.2020.56.1.09
Ribeiro, H. C. M. (2014). Corporate governance versus corporate governance: an international review: uma análise comparativa da produção acadêmica do tema governança corporativa. Revista Contemporânea de Contabilidade, 11(23), 95-116. https://doi.org/10.5007/2175-8069.2014v11n23p95
Ribeiro, F., & Colauto, R. D. (2016). A Relação entre Board Interlocking e as Práticas de Suavização de Resultados. Revista Contabilidade & Finanças, 27(70), 55-66. https://doi.org/10.1590/1808-057x201501320
Robins, G. (2015). Doing Social Network Research: network-based research design for social scientists. Sage.
Santos, M. O. C. (2019). Corrupção política: a possibilidade de enquadramento da mercancia da influência política nos crimes de corrupção passiva e ativa. Revista Brasileira de Ciências Policiais, 10(1), 171-212. http://dx.doi.org/10.31412%2Frbcp.v10i1.630
Shafique, U., & Qaiser, H. (2014). A comparative study of data mining process models (KDD, CRISP-DM and SEMMA). International Journal of Innovation and Scientific Research, 12(1), 217-222.
Sheptycki, J. (2020). The politics of policing a pandemic panic. Australian & New Zealand Journal of Criminology, 53(2), 157-173. https://doi.org/10.1177/0004865820925861
Sodré, A., & Alves, M. (2010). Relação entre emendas parlamentares e corrupção municipal no Brasil: estudo dos relatórios do Programa de Fiscalização da Controladoria-Geral da União. Revista de Administração Contemporânea, 14(3), 414-433. https://doi.org/10.1590/S1415-65552010000300003
Stickle, B., & Felson, M. (2020). Crime Rates in a Pandemic: The Largest Criminological Experiment in History. American Journal of Criminal Justice, 45, 525–536. https://doi.org/10.1007/s12103-020-09546-0
Svensson, J. (2000). Foreign aid and rent-seeking. Journal of International Economics, 51(2), 437-461. https://doi.org/10.1016/S0022-1996(99)00014-8
Tabassum, S., Pereira, F., Fernandes, S., & Gama, J. (2018). Social network analysis: An overview. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 8, 1-21. https://doi.org/10.1002/widm.1256
Troncoso, F., & Weber, R. (2020). A novel approach to detect associations in criminal networks. Decision Support Systems, 128, 1-10. https://doi.org/10.1016/j.dss.2019.113159
Yamamura, E. (2014). Impact of natural disaster on public sector corruption. Public Choice, 161, 385-405. https://doi.org/10.1007/s11127-014-0154-6
Wasserman, S., & Faust, K. (1994). Social network analysis: methods and applications. Cambridge University Press.
Downloads
Publicado
Edição
Seção
Licença
Copyright (c) 2022 Rafael Sousa Lima, André Luiz Marques Serrano

Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
A RCO adota a política de Acesso Livre (Libre Open Access), sob o acordo padrão Creative Commons (CC BY-NC-ND 4.0). O acordo prevê que:
- A submissão de texto autoriza sua publicação e implica compromisso de que o mesmo material não esteja sendo submetido a outro periódico. O original é considerado definitivo;
- Autores mantêm os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attributionque permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista;
- Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com necessário reconhecimento de autoria e publicação inicial nesta revista;
- Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado (Veja O Efeito do Acesso Livre);
- A revista não paga direitos autorais aos autores dos textos publicados;
- O detentor dos direitos autorais da revista, exceto os já acordados no acordo de Libre Open Access (CC BY-NC-ND 4.0), é o Departamento de Contabilidade da Faculdade de Economia, Administração e Contabilidade de Ribeirão Preto da Universidade de São Paulo.
Não são cobradas taxas de submissão ou de publicação.
São aceitos até 4 autores por artigo. Casos excepcionais devidamente justificados poderão ser analisados pelo Comitê Executivo da RCO. São considerados casos excepcionais: projetos multi-institucionais; manuscritos resultantes da colaboração de grupos de pesquisa; ou que envolvam grandes equipes para coleta de evidências, construção de dados primários e experimentos comparados.
É recomendada a ordem de autoria por contribuição, de cada um dos indivíduos listados como autores, especialmente no desenho e planejamento do projeto de pesquisa, na obtenção ou análise e interpretação de dados e redação. Os autores devem declarar as efetivas contribuições de cada autor, preenchendo a carta ao editor, logo no início da submissão, responsabilizando-se pelas informações dadas.
É permitida a troca de autores durante todo o processo de avaliação e, antes da publicação do manuscrito. Os autores devem indicar a composição e ordem final de autoria no documento assinado por todos os envolvidos no aceite para publicação. Caso a composição e ordem de autoria seja diferente da informada anteriormente no sistema, todos autores anteriormente listados deverão se manifestar favoráveis.
No caso de identificação de autoria sem mérito ou contribuição (ghost, guest or gift authorship), a RCO segue o procedimento recomendado pela COPE.