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Resumo: As ações humanas deixam várias marcas no meio ambiente, o que inclui aquelas na camada 

geológica superficial do Planeta, incluindo a produção de terrenos tecnogênicos. Nas últimas décadas, a 

expansão urbana tem sido acompanhada por um crescimento de áreas degradadas, incluindo modificações no 

terreno pela introdução de materiais antropogênicos e ações como corte, revolvimento e compactação, que 

afetam as funções desses substratos ecológicos. No Brasil, este fenômeno tem se intensificado desde a 

segunda metade do século XX. Assim, o objetivo deste trabalho foi investigar as transformações nas 

propriedades das camadas superficiais da cidade de Santa Maria (RS), em termos geoquímicos, e como estas 

afetam os possíveis serviços ecossistêmicos proporcionados por essas camadas. Para tanto, foi realizada uma 

descrição morfológica dos perfis do terreno urbano e realizados ensaios laboratoriais para determinar: pHH2O, 

pHKCl, Ca
2
, Mg

2
, K, Na, Al

3
, H + Al, Cu, Zn e cálculo de S, Al% e V%. Os resultados apontaram que há uma 

enorme variação de constituintes antropogênicos no material capaz de alterar tanto as propriedades das 

camadas superficiais quanto suas funções e os serviços ecossistêmicos fornecidos. 

 

Lavras-chave: Solo Urbano; Terrenos Tecnogênicos; Antropoceno. 

 

Abstract: Human agency leaves several marks on the environment, which includes deep modifications on the 

geological surficial layers of the planet, including the formation of technogenic ground. In the last decades, 

urban expansion has been accompanied by an increase in the extension of degraded lands, which includes 

modifications in the ground by the introduction of anthropogenic materials and actions such as cutting, 

revolving and compaction, which affects ecosystem functions of these substrates. In Brazil, this process has 

intensified since the second half of the 20
th 

Century. Thus, the objective of this work was to investigate the 

changes in the ground geochemical properties of the city of Santa Maria (RS) and how it may affect the 

possible ecosystem services provided by these soils. For this purpose, a morphological description of soil 

profiles to identify the existence of anthropogenic layers was carried out and laboratory tests were 

conducted to determine pHwater, pHKCl, Ca2, Mg2, K, Na, Al3, H+Al, Cu, Zn and calculation of S, Al% and 

V%. The results pointed out that there is an enormous variation of anthropogenic constituents in the 

material, which are capable of altering both the properties of the ground surficial layers as well as their 

functions and the provided ecosystem services. 
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1. Introduction 

The relationship between humankind and nature has been subject of diverse areas of knowledge, from 

Philosophy to Science and beyond. In recent decades it has also been realized that land use policies, both in 

urban and rural environments, need to encourage spatial planning practices not only from the economic point 

of view. Land use projects should also consider the ecological aspects of the environment, such as the 

provision of Ecosystem Services (ESs) by the most diverse actors in the environment (GREINERT et al., 

2017).  
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Ecosystem services can be defined as the conditions and processes through which natural and human-

modified ecosystems sustain and fulfil human life, encompassing tangible and intangible benefits (DAILY, 

1997; MILLENIUM ECOSYSTEM ASSESSMENT, 2003). The use of the Ecosystem Service (ES) concept 

has become a constant in several studies to incorporate the idea of ecological sustainability in the decision-

making for administrative policies (GRÊT-REGAMEY et al., 2015). In order for ESs to be fully achieved, it 

is imperative that supporting services provided by the physical environment are fulfilling their functions. 

Among these providers are soils and geological deposits, which are also created and modified by human 

agency, resulting in what has been named artificial or technogenic ground (WATERS, 2018; PELOGGIA, 

2018). 

Pedogenic soils and other surficial formations have several environmental functions, among which the 

Food and Agriculture Organization of the United Nations highlights: its role in carbon sequestration; in the 

water and contaminants purification; in climate regulation; in nutrient cycling; as habitat for organism; their 

role in regulating floods; soil as a source of energy and pharmaceutical resources; as the basis of human 

infrastructure; as a supplier of building materials; place of cultural heritage; and as an environment for the 

production of food, fuel and fiber. 

From these functions, soil becomes a supplier of ESs that depend on the materials properties, which are 

often degraded not being able to properly develop their functions and, consequently, the supply of ESs. 

Despite their importance for environmental maintenance, soils and other surficial formations are under threat 

and suffering hard transformations worldwide. This situation stems from the fact that they are often 

marginalized in studies as a mere surface product of rock alteration (GREINER et al., 2017). 

Considering that human welfare depends heavily on the resources provided by surficial layers as Soils 

Functions (SFs), including pedogenic and technogenic ones, it should be better integrated into ES 

assessments. Thus, Adhikari and Hartemink (2016) schematized the existing relationships between the “soil” 

(in a general sense) and human well-being in a diagram (Figure 1). According to the mentioned diagram, the 

properties of the soils are the basis for the understanding of how the soil develops certain functions, which 

reflect in ESs. 

 

 
Figure 1: Diagram of the Soil Property and Ecosystem Services (Source: adapted from ADHIKARI and 

HARTEMINK, 2016). 

 

Considering research published between 1975 and 2014 linking soil properties and soil functions with ES, 

Adhikari and Hartemink (2016) revealed that about 41% of scientific articles relate soil to regulation 

services, 34% to provisioning, 8% to support cultural activities and infrastructure, and 13% to regulation. 

Despite the recognized multifunctional characteristic, the ground continues to be marginalised in studies 

about social welfare, especially in research conducted in urban centres. In order to minimize the process of 

urban ground degradation within cities, it is essential to consider the quality of these urban grounds in 

decision-making, considering their capacity to provide certain functions, which can guarantee their capacity 

to provide ES (DROBNIK et al., 2018). 

Over the last few decades, urban population has intensively increased, which results with it vulnerability 

related upon ground characteristics, also associated with the environmental changes resulting from the way 

humankind appropriates the territory (MOREL et al., 2015). The anthropogenic (or technogenic) actions 

significantly alter the properties of urban ground, modifying functions performed by its layers and, 

consequently, the provision of ES. Among the properties of the urban ground layers, several of them are 

related to their chemical characteristics. Thus, the objective of this study was to investigate chemical 
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indicators obtained from routine geochemical analyses, in order to understand how soil properties, in a city 

territory that in recent decades has presented a considerable expansion and population growth, and evaluate 

the ways in which this may be reflected upon SFs and ESs. 

 

2. Materials and Methods 

2.1. Materials 

 This study was developed in the municipality of Santa Maria, Rio Grande do Sul State, Southern 

Brazil (Figure 2). Its territory is under humid subtropical climate, with average annual temperature of 19°C. 

Located in the central region of the State, Santa Maria is the 5
th
 largest city in the state in terms of 

population. According to the Brazilian Institute of Geography and Statistics (IBGE, 2010), the municipality 

has an estimated population of 270.000 inhabitants, which means a demographic density of 145 inhab / km². 

 
Figure 2: (a) Brazil; (b) Rio Grande do Sul; (c) Location of the urban ground studied. 

 

2.2. Methods 

Within the urbanized area of Santa Maria, twelve places were selected for ground profiles, with a depth of 

approximately 150 cm. The profiles were chosen by the visual diversity observed in the field, by 

morphostratigraphic criteria, in order to express the urban ground variation in Santa Maria, that is, surficial 

layers geodiversity. The urban ground profiles were described morphologically in the field according Santos 

et al. (2015) to identify their layers and to collect samples for laboratory analysis. 

The following properties was evaluated: potential acidity extracted with calcium acetate and titrated with 

sodium hydroxide; pHwater and pHKCl; aluminum content in solution of potassium chloride and titration with 

sodium hydroxide, and the exchangeable calcium, magnesium, sodium, potassium, zinc and copper contents 

with flame photometer reading. By means of generated data were calculated values of total bases, base 

saturation and cation exchange capacity. All chemical tests were performed at the Laboratory of Pedology of 

the Federal University of Santa Maria according to the methods described in Teixeira et al. (2017). A 

descriptive statistical analysis was applied on the results to obtain a general view of the samples and the 



Revista do Departamento de Geografia – Volume 37 (2019)    153 

characteristics of the material, in order to relate the characteristics of the urban ground of Santa Maria with 

the diagram of Adhikari and Hartemink (2016). 

 

3. Results 

As clearly noted, Santa Maria is a predominantly artificial site, in terms of its surficial ground (Figure 3). 

The studied profiles show variability in the number of layers, as well as in the textures, structures and 

composition of the materials, characteristics has been described by Costa (2018). Among the morphological 

characteristics, variations of texture, thickness and quantity of technogenic layers were observed, besides the 

presence of several anthropogenic materials (artefacts or technofossils), mainly bricks, glass, metals, 

laminates and plastics. 

 
Figure 3: Studied urban ground profiles with indication of technogenic and natural layers. *N: natural 

material (Source: adapted from COSTA, 2018) 
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According to the chemical date, it is possible to observe that there is also heterogeneity in the samples 

collected. Table 1 shows the available data of the ground profiles, and Table 2 the results of the descriptive 

statistical analysis that summarizes the laboratory data. Table 3 shows, for comparison, the chemical 

standards for the regional soil.  

 

Table 1. Chemistry analyses of the urban ground profiles. 

Profile Layers 
pH 

H2O 

pH 

KCl 

cmolc Kg-1 Mg/Kg-1 CEC 

pH 7 

% 

Ca2 Mg2 K Na S Al3 H+Al Cu Zn Al V 

1 

1 T - - - - -   - - - - - - - - 

2 T 7.6 6.3 0.87 0.14 0.16 0.16 1.33 0.05 2.35 0.30 1.41 3.52 62.22 37.78 

3 T 5.3 3.9 2.17 0.31 0.18 0.23 2.89 1.65 22.65 0.21 0.35 25.31 88.59 11.41 

4 T 5.5 3.8 2.33 0.32 0.18 0.26 3.10 2.1 32.85 0.33 0.39 35.68 91.22 8.78 

2 

1 T - - - - -   - - - 0.54 6.84 - - - 

2 T 6.6 5.5 1.46 0.19 0.23 0.17 2.05 0.40 1.75 0.12 0.53 3.63 43.53 56.47 

3 T 5 5.4 3.93 0.46 0.22 0.19 4.79 0.30 3.75 2.40 1.16 8.36 42.71 57.29 

4 T 5.8 5.6 1.00 0.13 0.12 0.18 1.44 0.35 1.85 0.09 0.29 3.10 53.55 46.45 

3 

1 T 5.7 5.1 3.20 0.27 0.17 0.16 3.80 0.50 2.05 0.46 1.15 5.69 33.22 66.78 

2 T 6 4.6 1.41 0.16 0.09 0.16 1.83 1.20 2.45 0.27 0.35 4.11 55.48 44.52 

3 T 5.3 3.7 1.82 0.17 0.24 0.22 2.44 4.40 43.05 0.09 0.14 45.28 94.62 5.38 

4 T 5.6 3.9 3.52 0.33 0.15 0.23 4.23 1.25 23.25 0.07 0.32 27.25 84.48 15.52 

5 N 5.3 4.2 3.48 0.34 0.11 0.22 4.15 0.65 8.7 0.06 0.16 12.63 67.15 32.85 

4 

1 T 4.9 3.9 - - - - - - - - - - - - 

2 T 4.7 3.5 0.60 0.08 0.12 0.18 0.97 0.05 1.85 - - 2.65 63.4 36.6 

3 T 4.9 3.9 0.32 0.04 0.09 0.15 0.60 1.15 22.6 0.10 0.14 23.05 97.4 2.6 

4 T 4.4 3.9 0.07 0.07 0.09 0.16 0.39 0.85 16.75 0.17 0.26 16.98 97.72 2.28 

5 T 4.6 3.9 0.06 0.05 0.10 0.15 0.36 0.90 22.40 0.19 0.23 22.61 98.41 1.59 

5 
1 T 3.1 4.1 0.04 0.04 0.07 0.15 0.29 0.55 26.90 0.03 0.10 27.05 89.28 10.72 

2 N 3.2 4.1 0.01 0.03 0.07 0.15 0.26 0.30 14.00 0.02 0.15 14.11 81.58 18.42 

6 
1 T 7.0 6.4 1.69 0.07 0.29 0.19 2.23 0.15 1.80 0.12 3.39 3.85 42.08 57.92 

2 T 8.5 7.1 3.97 0.36 0.28 0.25 4.85 0.13 1.80 0.05 0.37 6.41 24.34 75.66 

7 

1 T 5.6 4.0 0.84 0.63 0.26 0.49 2.22 0.25 22.85 0.27 0.58 24.58 - - 

2 T 4.9 3.7 0.30 0.25 0.24 0.46 1.25 1.85 49.00 0.30 0.74 49.79 90.97 9.03 

3 T 5.3 3.9 0.75 0.46 0.24 0.48 1.93 1.65 22.75 0.31 0.59 24.20 97.49 2.51 

8 

1 T 5.0 4.0 0.13 0.07 0.09 0.16 0.45 1.55 1.55 0.17 0.27 1.84 75.55 24.45 

2 T 5.0 4.0 0.04 0.06 0.07 0.15 0.33 1.20 1.65 0.16 0.23 1.82 81.87 18.13 

3 T 5.0 3.9 0.04 0.03 0.08 0.16 0.31 1.80 17.70 0.18 0.25 17.85 98.27 1.73 

4 N 4.8 3.9 0.04 0.03 0.07 0.16 0.31 1.75 17.40 0.17 0.12 14.54 97.87 2.13 

5 N 4.7 3.8 0.04 0.04 0.08 0.17 0.33 2.50 31.45 0.17 0.13 31.61 98.96 1.04 

9 

1 T 6.3 6.5 1.95 0.13 0.63 0.49 3.19 0.50 40.20 0.74 21.83 42.91 92.57 7.43 

2 T 6.3 6.2 1.37 0.12 0.48 0.46 2.43 0.20 50.60 0.15 2.04 52.57 95.38 4.62 

3 T 5.0 4.3 0.75 0.16 0.36 0.45 1.73 1.55 1.05 0.17 0.32 2.32 25.44 74.56 

4 T 4.3 4.0 0.42 0.18 0.31 0.45 1.36 2.05 1.85 0.17 0.29 2.76 50.73 49.27 

5 T 4.4 3.9 0.34 0.13 0.24 0.42 1.12 2.10 10.25 0.12 0.24 10.96 89.79 10.21 

6 T 4.4 4.0 0.24 0.12 0.22 0.45 1.03 2.10 31.75 0.08 0.19 32.33 96.82 3.18 

7 N 4.2 3.9 0.09 0.10 0.23 0.45 0.87 2.20 41.50 0.07 0.19 41.92 97.93 2.07 

10 

1 T 5.3 4.0 0.91 0.18 0.24 0.46 1.80 1.25 39.95 0.21 0.17 41.28 95.64 4.36 

2 T 5.3 3.8 0.73 0.17 0.22 0.45 1.56 1.05 49.55 0.19 0.27 50.67 96.93 3.07 

3 T 5.2 3.8 4.04 0.57 0.23 0.46 5.29 2.15 14.60 0.29 0.26 19.44 72.79 27.21 

4 T 7.8 7.3 1.16 0.18 0.23 0.45 2.02 0.15 24.05 0.67 0.83 25.62 92.12 7.88 

5 T 7.1 6.8 2.52 0.31 0.26 0.45 3.53 0.15 41.65 0.55 1.74 44.74 92.11 7.89 

6 T 4.3 3.8 0.27 0.18 0.21 0.43 1.09 1.55 53.63 0.28 0.16 54.29 98.0 2.00 

7 T 4.8 3.6 4.00 0.50 0.27 0.46 5.23 0.25 2.05 0.23 0.27 6.82 23.32 76.68 

11 
1 T 5.9 4.9 0.58 0.18 0.51 0.43 1.69 0.65 50.30 0.58 2.43 51.57 96.73 3.27 

2 T 5.6 5.4 0.66 0.17 0.54 0.46 1.83 0.55 44.75 0.51 4.46 46.12 96.04 3.96 

12 

1 T 5.5 4.3 0.26 0.24 0.24 0.42 1.16 0.60 6.45 0.17 0.62 7.19 83.87 16.13 

2 T 7.6 6.5 0.17 0.10 0.20 0.41 0.88 0.10 0.75 0.03 0.12 1.22 27.87 72.13 

3 T 6.3 5.2 0.44 0.22 0.24 0.44 1.34 0.40 51.20 0.31 0.70 52.1 97.43 2.57 

T: technogenic layer. N: natural layer. 

 

In Table 1 is noticeable the absence of data for some layers, this is due to the impossibility collecting 

sufficient sample as a consequence of the existence of a hardened layer as a consequence a hardened layer. 
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Table 2: Descriptive statistical analysis 

Properties Average Minimum Maximum 
Standard 

deviation 
Coefficient of variation 

H+Al
3
 (cmolc kg-1) 21.15 0.75 53.63 17.91 84.68 

Ca² (cmolc kg-1) 1.2 0.01 4.04 1.28 106.66 

Mg² (cmolc kg-1) 0.2 0.03 0.63 0.15 75 

Na (cmolc kg-1) 0.31 0.15 0.49 0.139 44.83 

K (cmolc kg-1) 0.22 0.07 0.63 0.13 59.09 

Cu (mg kg-1) 0.27 0.02 2.4 0.365 135.18 

Zn (mg kg-1) 1.13 0.1 21.83 3.28 290.26 

Al³ (cmolc kg-1) 1.07 0.05 4.4 0.89 83.17 

S (cmolc kg-1) 1.92 0.26 5.29 1.43 74.47 

CEC 22.7 1.22 54.29 17.79 78.37 

V % 22.49 1.04 76.68 24.59 109.33 

Al % 77.51 23.32 98.96 24.59 31.72 

pHwater 5.42 3.1 8.5 1.11 20.47 

pHKCl 4.6 3.5 7.3 1.08 23.47 

 

Table 3: Chemical data of the modal profile of the Santa Maria Mapping Unit ("Unidade de Mapeamento 

Santa Maria") (Source: BRASIL, 1973). 

Horizon A1 A2 AB Bt C 

Depth 0-20 20-40 40-55 55-75 75-115 

pH H2O 4.9 5.3 5.3 5.7 6.3 

pH KCl 3.8 3.9 3.8 4 4.4 

cmolc 

Kg
-1

 

Ca
2
 3.4 2.8 4.3 12.7 17.4 

Mg
2
 0.8 0.5 0.6 1.5 2.2 

K 0.1 0.06 0.06 0.07 0.08 

Na 0.06 0.06 0.11 0.25 0.35 

S 4.3 2.9 5.1 14.6 20 

Al
3
 2.2 3.2 6.2 4.9 0.4 

H+Al 7.8 8.6 10 7.3 1.2 

Mg/Kg
-

1
 

Cu - - - - - 

Zn - - - - - 

CEC  pH 7 12.1 11.96 14.96 21.57 20.88 

% 
Al 0.28 0.37 0.61 0.64 0.003 

V 35 26 34 55 94 

 

It is evident that the urban strata of Santa Maria have low values of alkaline earth bases, irregularly 

distributed in the layers, and relatively high values of alkaline bases in general, as well as relatively low 

levels of S and Al, variations that can occur in the same profile. 
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The results also showed that the coefficient of variation is high for all properties. However, zinc had a 

higher coefficient of variation (290%), indicating that there is no trend of values. The pHwater varied between 

3.1 (profile 5, layer 1) and 8.5 (profile 6, layer 2), but the coefficient of variation found was the lowest 

among the considered properties, of about 20%, which means that among the analyzes performed. The values 

of pHwater are the most well standardized, that is, the mean of 5.42 expresses the pH trend of the Santa Maria 

urban ground. 

The values of potential acidity showed a great variation with minimum of 0.75 (profile 12, layer 2) and 

maximum of 53.63% (profile 12, layer 2), which was influenced by the values of exchangeable aluminium, 

which in turn is possibly related to the presence of anthropogenic materials present in the urban ground. 

Considering Adhikari and Hartemink diagram (2016), it is seen that the chemical properties variations of the 

urban ground affect, directly or indirectly, at least six of the seven functions performed by the soils and cited 

by the authors (production of biomass; stock, and filter of nutrients and water; biological reserve; support for 

human activities; carbon stock; source of raw material). Since soil functions are affected by human actions, 

all ES groups are vulnerable to modifications. Thus, for the urban ground of Santa Maria, it is possible to 

present an adaptation of the diagram of Adhikari and Hartemink (2016) presenting the relation properties of 

soils and ES (Figure 4). 

 
Figure 3: Relationship between chemical properties and Ecosystem Services (Source: Authors) 

 

4. Discussions 

The urban ground in Santa Maria, showed surficial technogenic characteristics, referred as the urban 

geological stratum (ZALASIEWICZ, 2008), which is part of the human modified ground, or archaeosphere 

(EDGEWORTH, 2017). The analysed profiles, as a consequence of the addition of anthropogenic materials 

in the environment, show highly varied chemical characteristics, as found in several other studies (SÉRÉ et 

al., 2010; SHARMA, 2015; GORBOV, 2016), reinforcing the perception of the compositional heterogeneity 

of urban ground. Although not all the soil properties presented in the diagram of Adhikari and Hartemink 

(2016) have been used, it is seen that the chemical properties selected and belonging to the group of "routine 

soil analysis" are able to indicate alterations that are occurring on other properties. Highly discrepant 

minimum and maximum values show that urban ground does not maintain a homogeneous environment 

along the profiles. This situation causes the potential soil functions to be changed along the profile, which 

consequently affects the ES of the site. 

 Anthropogenic (technogenic) materials present in the earthy mass of urban ground layers influence 

the chemical characteristics of urban soils (Morel and De Kimpe 1998) and deposits. The chemical analysis 

of calcium, magnesium, aluminium, potential acidity, sodium, potassium, copper, and zinc showed how 
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these elements present varying concentrations according to the presence of technogenic residues. The copper 

content indicated relatively low values (<0.8 mg kg
-1

), but there was the exception of layer 3 of profile 2 

where the value was much higher than the other urban ground sampled (2.4 mg kg
 -1

). This value can be 

explained by the proximity of high traffic roads, as suggested by Gaberšek and Gosar (2018). 

The analysis of profile 9 indicated in layer 1 value 21.83 mg kg
-1

 of zinc, while in the other urban ground 

samples, the predominant values were below 0.9 mg kg
-1

. In studies on urban ground (EL KHALIL et al., 

2008; GALITSKOVA and MURZAYEVA, 2016; FOTI et al., 2017), as in the presented study, higher values 

of zinc were found in garbage disposal environments. For Mamedes (2017) the presence of zinc in the urban 

ground is mainly associated with the presence of metallic alloys, paints, and papers. According to Madrid et 

al. (2002), zinc, copper and lead are the most common inorganic pollutants in urban soil, and their 

association with organic matter and calcium carbonate alters their mobility in the soil (OLIVARES 

RIEUMONT, 2013). 

According to Waterlot et al. (2016) another analysis affected by the anthropogenic materials is the soil 

pH. The values of pHwater ranged from 3.1 to 8.5 (Table 1), with a higher frequency of 5.3 values for pHwater 

and 3.8 for pHKCl. The profile 10, has in its third layer (36-64 cm) a value of 5.2 for pHwater, while in the 

subsequent one (64-77 cm), composed of a mixture of material that includes bricks and ceramics, the pH is 

of 7.8. 

The results of pH were different from the averages between 7 and 8 pointed out by Puskás and Farsang 

(2009) as common for urban ground that has received deposition of building material rich in carbonates. This 

difference can be due to the amount of construction debris in the urban ground (LASSO et al., 2013). 

Another explanation is the time of deposition of the materials. In young depositions, anthropogenic residues 

and the earthy material of the urban layers may not interact sufficiently for significant chemical changes 

(WISEMAN et al., 2015). 

According to Brady and Weill (2015), the pH change of soils alters its flocculation capacity, which in turn 

influences in the formation and stabilization of aggregates and structures, important physical aspects of the 

water and gas dynamics from soil. The type of soil structure is fundamental for certain ESs since good 

structures facilitate the hydraulic and gas conductivity (BASSO and KIANG, 2017). Environments with high 

values of potential acidity tend to have the modified buffering power, which also affects the formation of 

aggregates. 

The values of Ca, Mg, Na, K and Al indicate the need to be considered such elements when planning to 

change land use, since these elements are fundamental for plant nutrition, for example. To use the soils as 

green environments, such as squares, parks, and gardens, it is fundamental to consider the great variety of 

these elements within the profiles, once the presence of these elements in the soil affects the production of 

biomass. Thus, in order for soils to be able to exercise ES, it is essential to consider these elements not only 

in the surface layers but also in the underlying ones, since the urban ground is an open system, where the 

liquid and gaseous phases are in constant connection. 

 

5. Conclusions 

The urban ground of Santa Maria is a clear example of the heterogeneity and complexity of the urban 

geological stratum or humanly modified ground. Therefore, it is expected that the geochemical properties of 

the natural and overlying technogenic layers may affect several functions reflected in the ES in much 

different ways, but still it is necessary to advance in studies that indicate the diversity of existent ES are 

affected by the characteristics of the modified soils.  

It is also clear from this study that for urban ground modified, the usual standards considered for natural 

soils cannot be expected or applied. In this case, the evaluation of ESs must consider chemical properties of 

the layers according to their origin and constituent material.  

Thus, since it has been shown that the provision of ecosystem services related to the urban ground is a 

function of the technogenic geodiversity (sensu PELOGGIA et al., 2014), it is understood that the mapping 

of artificial ground and of the urban geological stratum should come to be a priority when it comes to 

thinking about planning actions in the "cities of the Anthropocene." 
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