Correlação entre as transformações da cobertura e uso da terra com variáveis climáticas e ambientais na região do Matopiba, Brasil

Autores

DOI:

https://doi.org/10.11606/eISSN.2236-2878.rdg.2023.202077

Palavras-chave:

Cerrado, Índice de Vegetação, MODIS, Manejo de Paisagens

Resumo

O Brasil é um líder mundial no agronegócio, principalmente na produção de soja e carne bovina, cuja contribuição para o Produto Interno Bruto (PIB) é significativa. Entretanto, é também responsável por importantes alterações na paisagem, especialmente no Cerrado, que é um hotspot para conservação mundial. Neste estudo analisamos as transformações na cobertura da terra na fronteira agrícola Matopiba e a correlação entre variáveis climáticas e ambientais de 2008 a 2018. Para isso, utilizamos dados de cobertura do solo da plataforma MapBiomas e variáveis ambientais e climáticas do Earth Engine Data Catalog. Realizamos uma análise descritiva e um teste de correlação cruzada para as variáveis selecionadas. Com base nos resultados, o Cerrado foi reduzido em torno de 5,1% (~3.692.677 ha) e aumento nas classes de Pastagem (2,1% ou 1.538.358 ha) e Agricultura (3,1% ou 2.254.264 ha). A diminuição do Índice de Vegetação (NDVI) propicia o aumento da Temperatura do Solo (LST) e, consequentemente, reduz a Umidade do Solo (US), principalmente nas zonas agrícolas e pecuárias. O NDVI alto, como em áreas de vegetação densa, favorece a proteção da umidade do solo. Evidenciamos que a agropecuária no Matopiba está em pleno crescimento em detrimento da vegetação do Cerrado e que há uma forte relação entre as variáveis ambientais e climáticas. Este estudo pode ser base para auxiliar em tomadas de decisões, estratégias e políticas públicas voltadas à conservação do Cerrado e desenvolvimento econômico e sustentável do agronegócio do Matopiba.

Downloads

Os dados de download ainda não estão disponíveis.

Referências

ABATZOGLOU, J.T.; DOBROWSKI, S.Z.; PARKS, S.A.; HEGEWISCH, K.C. TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958–2015. Scientific Data 5: 1-12. 2018.

ALVARES, C.A.; STAPE, L.J.; SENTELHAS, P.C.; GONÇALVES, J.L.D.M.; SPAROVEK, G. Koppen’s climate classification map for Brazil. Meteorologische Zeitschrift 22: 711-728. 2013.

ARAÚJO, M.L.S.; SANO, E.E.; BOLFE, É.L.; SANTOS, J.R.N.; DOS SANTOS, J.S.; SILVA, F.B. Spatiotemporal dynamics of soybean crop in the Matopiba region, Brazil (1990-2015). Land Use Policy 80: 57-67. 2019.

BENTO, V. A.; GOUVEIA, C.M.; DACAMARA, C.C.; LIBONATI, R.; TRIGO, I. F. The roles of NDVI and Land Surface Temperature when using the Vegetation Health Index over dry regions. Global and Planetary Change 190: 1-11. 2020.

BEUCHLE, R.; GRECCHI, R.C.; SHIMABUKURO, Y.E.; SELIGER, R.; EVA, H.D.; SANO, E.; ACHARD, F. Land cover changes in the Brazilian Cerrado and Caatinga biomes from 1990 to 2010 based on a systematic remote sensing sampling approach. Applied Geography 58: 116-127, 2015.

BRASIL. Decreto no 8.447, de 6 de maio de 2015. Dispõe sobre o Plano de Desenvolvimento Agropecuário do Matopiba e a criação de seu comitê gestor. Diário Oficial, Brasília, n. 85, p. 2 em 7 maio 2015. Seção 1. Disponível em: <https://goo.gl/dw49K6>. Acesso: 3 abr. 2018.

BROGNA, D.; DUFRÊNE, M.; MICHEZ, A.; LATLI, A.; JACOBS, S.; VINCKE, C.; DENDONCKER N. Forest cover correlates with good biological water quality. Insights from a regional study (Wallonia, Belgium). Journal of Environmental Management 211: 9-21. 2018.

BUAINAIN, A.M.; GARCIA, J.R.; FILHO, J.E.R.V. Dinâmica da economia e da agropecuária no MATOPIBA. Disponível em: <https://www.ipea.gov.br/portal/images/stories/PDFs/TDs/td_2283zzzzkkkk.pdf>. Acesso em: 03 nov. 2020. 2017.

CHI, Y.; SUN, J.; SUN, Y.; LIU, S.; FU, Z. Multi-temporal characterization of land surface temperature and its relationships with normalized difference vegetation index and soil moisture content in the Yellow River Delta, China. Global Ecology and Conservation, e01092, 2020.

CRUZ, L.N.; HERREROS, M.M.A.G.; VILARINHO, C.C.; DEMETRIO NETO, E.M.; MARTINS, G.C. Desenvolvimento socioeconômico na região de Matopiba, Brasil. Brazilian Journal of Development 5: 12538-12556. 2019.

REIS, L.C.; SILVA, C.M.S.; BEZERRA, B.G.; MUTTI, P.R.; SPYRIDES, M.H.C.; SILVA, P.E. Analysis of Climate Extreme Indices in the MATOPIBA Region, Brazil. Pure and Applied Geophysics 177: 4457-4478. 2020.

EMBRAPA TERRITORIAL. GeoMatopiba: Inteligência Territorial Estratégica para o Matopiba. 2020. Disponível em: <https://www.embrapa.br/geomatopiba/sistemas>. Acesso em: 4 fev. 2020.

FATHIZAD, H.; TAZEH, M.; KALANTARI, S.; SHOJAEI, S. The investigation of spatiotemporal variations of land surface temperature based on land use changes using NDVI in southwest of Iran. Journal of African Earth Sciences 134: 249-256. 2017.

FENG, X.; LI, J.; CHENG, W.; FU, B.; WANG, Y.; LÜ, Y. Evaluation of AMSR-E retrieval by detecting soil moisture decrease following massive dryland re-vegetation in the Loess Plateau, China. Remote Sensing of Environment 196: 253-264. 2017.

GARCIA, J.R.; FILHO, J.E.R.V. O papel da dimensão ambiental na ocupação do MATOPIBA. Franco-Brasileira de Geografia 35: 1-25. 2018.

HECK, E.; DE BEURS, K.M.; OWSLEY, B.C.; HENEBRY, G.M. Evaluation of the MODIS collections 5 and 6 for change analysis of vegetation and land surface temperature dynamics in North and South America. ISPRS Journal of Photogrammetry and Remote Sensing 156: 121-134. 2019.

HU, T.; RENZULLO, L.J.; VAN DIJK, A.I.J.M.; HE, J.; TIAN, S.; XU, Z.; ZHOU, J.; LIU, T.; LIU, Q. Monitoring agricultural drought in Australia using MTSAT-2 land surface temperature retrievals. Remote Sensing of Environment 236: 1-13. 2020.

IBGE - INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA. 2020. Levantamento Sistemático Produção Agrícola 2013 e 2018. Disponível em: <https://sidra.ibge.gov.br/home/lspa/brasil>. Acesso em: 04 fev. 2020.

IBGE - INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA. 2019. Biomas e Sistema Costeiro-Marinho do Brasil. Disponível em: <https://biblioteca.ibge.gov.br/index.php/biblioteca-catalogo?view=detalhes&id=2101676>. Acesso em: 21 out. 2020.

ISLAM, M.; DEB, G.P.; RAHMAN, M. Forest fragmentation reduced carbon storage in a moist tropical forest in Bangladesh: Implications for policy development. Land Use Policy 65: 15-25. 2017.

KASTENS, J.H.; BROWN, J.C.; COUTINHO, A.C.; BISHOP, C.R.; ESQUERDO, J.C.D.M. Soy moratorium impacts on soybean and deforestation dynamics in Mato Grosso, Brazil. PLoS ONE 12: 1-21. 2017.

KOBAYASHI, T.; SOTA, T. Contrasting effects of habitat discontinuity on three closely related fungivorous beetle species with diverging host-use patterns and dispersal ability. Ecology and Evolution 9: 2475-2486. 2019.

LAM, N.S.N.; CHENG, W.; ZOU, L.; CAI, H. Effects of landscape fragmentation on land loss. Remote Sensing of Environment, 209: 253-262. 2018.

LAPOLA, D.M.; MARTINELLI, L.A.; PERES, C.A.; OMETTO, J.P.H.B.; FERREIRA, M.E.; NOBRE, C.A.; AGUIAR, A.P.D.; BUSTAMANTE, M.M.C.; CARDOSO, M.F.; COSTA, M.H.; JOLY, C.A.; LEITE, C.C.; MOUTINHO, P.; SAMPAIO, G. Pervasive transition of the Brazilian land-use system. Nature Publishing Group 4: 27-35. 2014.

LATRUBESSE, E.M.; ARIMA, E.; FERREIRA, M.E.; NOGUEIRA, S.H.; WITTMANN, F.; DIAS, M.S.; DAGOSTA, F.C.P.; BAYER, M. Fostering water resource governance and conservation in the Brazilian Cerrado biome. Conservation Science and Practice 1: 1-8. 2019.

MAPBIOMAS. 2020. Collection 4.1 of annual series of land cover and land use in Brazil, 1985-2018. Disponível em: <https://plataforma.mapbiomas.org/map#coverage>. Acesso em: 20 set. 2018.

MMA – MINISTÉRIO DO MEIO AMBIENTE. Mapeamento do uso e cobertura do Cerrado: Projeto TerraClass Cerrado 2013. 2015. Disponível em: <https://www.mma.gov.br/biomas/cerrado/projeto-terraclass.html>. Acesso em: 11 maio 2019.

MAPA – MINISTÉRIO DA AGRICULTURA PECUÁRIA E ABASTECIMENTO. Plano agrícola e pecuário, 2016/2017. 2016. Brasília, DF: Disponível em: <http://antigo.agricultura.gov.br/assuntos/politica-agricola/plano-agricola-e-pecuario/plano-agricola-e-pecuario-antigo>. Acesso em: 10 maio 2020.

MAPA – MINISTÉRIO DA AGRICULTURA PECUÁRIA E ABASTECIMENTO. 2019. Projeções do Agronegócio: Brasil 2018/19 a 2028/29, Projeções de Longo Prazo. Brasília: MAPA/ACE, 2019. 126 p. Disponível em: <https://www.gov.br/agricultura/pt-br/assuntos/politica-agricola/todas-publicacoes-de-politica-agricola/projecoes-do-agronegocio/projecoes-do-agronegocio-2018-2019-2028-2029/view>. Acesso em: 10 maio 2020.

MATRICARDI, E.A.T.; MENDES, T.J.; PEREIRA, E.M.; VASCONCELOS, P.G.D.A.; ÂNGELO, H.; COSTA, O.B. Dinâmica no uso e cobertura da terra na região do MATOPIBA entre 2000 e 2016. Nativa 7: 547-555. 2019.

MELLO, K.; VALENTE, R.A.; RANDHIR, T.O.; VETTORAZZI, C.A. Impacts of tropical forest cover on water quality in agricultural watersheds in southeastern Brazil. Ecological Indicators 93: 1293-1301. 2018.

MYERS, N.; MITTERMEIER, R.A.; MITTERMEIER, C.G.; DA FONSECA, G.A.B.; KENT, J. Biodiversity Hotspots for conservation priorities. Nature 403: 853-858. 2000.

NEGA, W.; HAILU, B.T.; FETENE, A. An assessment of the vegetation cover change impact on rainfall and land surface temperature using remote sensing in a subtropical climate, Ethiopia. Remote Sensing Applications: Society and Environment 16: 1-11. 2019.

PINTO VIEIRA, R. M. S.; TOMASELLA, J.; BARBOSA, A. A.; POLIZEL, S. P.; OMETTO, J. P. H. B.; SANTOS, F. C.; FERREIRA, Y. C.; TOLEDO, P. M. Land degradation mapping in the MATOPIBA region (Brazil) using remote sensing data and decision-tree analysis. Science of the Total Environment, 782, p.1-12, 2021.

ROLO, V.; OLIVIER, P.I.; PFEIFER, M.; VAN AARDE, RJ. Functional diversity mediates contrasting direct and indirect effects of fragmentation on below- and above-ground carbon stocks of coastal dune forests. Forest Ecology and Management 407: 174-183. 2018.

SAEKI, I.; HIRAO, A.S.; KENTA, T.; NAGAMITSU, T.; HIURA, T. Landscape genetics of a threatened maple, Acer miyabei: Implications for restoring riparian forest connectivity. Biological Conservation 220: 299-307. 2018.

SALVADOR, M.A.; BRITO, J.I.B. Trend of annual temperature and frequency of extreme events in the MATOPIBA region of Brazil. Theoretical and Applied Climatology 133: 253-261. 2017.

SANO, E.E.; RODRIGUES, A.A.; MARTINS, E.S.; BETTIOL, G.M.; BUSTAMANTE, M.M.C.; BEZERRA, A.S.; COUTO, A.F.; VASCONCELOS, V.; SCHÜLER, J.; BOLFE, E.L. Cerrado ecoregions: A spatial framework to assess and prioritize Brazilian savanna environmental diversity for conservation. Journal of Environmental Management 232: 818-828. 2019.

SANTOS, H.G.; JACOMINE, P.K.T.; ANJOS, L.H.C.; OLIVEIRA, V.A.; LUMBRERAS, J.F.; COELHO, M.R.; ALMEIDA, J.A.; ARAUJO FILHO, J.C.; OLIVEIRA, J.B.; CUNHA, T.J.F.; Sistema Brasileiro de Classificação de Solos, 5nd ed., Brasília: Embrapa, 590 p. Ebook. 2018.

SAHAAR, S.A.; NIEMANN, J.D. Impact of regional characteristics on the estimation of root-zone soil moisture from the evaporative index or evaporative fraction. Agricultural Water Management 238: 1-17. 2020.

SILVA JUNIOR, C.A.; COSTA, G.M.; ROSSI, F.S.; VALE, J.C.E.; LIMA, R.B.; LIMA, M.; OLIVEIRA-JUNIOR, J.F.; TEODORO, P.E.; SANTOS, R.C. Remote sensing for updating the boundaries between the brazilian Cerrado-Amazonia biomes. Environmental Science and Policy 101: 383-392. 2019.

SPERA, S.A.; GALFORD, G.L.; COE, M.T.; MACEDO, M.N.; MUSTARD, J.F. Land-use change affects water recycling in Brazil’s last agricultural frontier. Global Change Biology 22: 3405-3413. 2016.

STRASSBURG, B.B.N.; BROOKS, T.; FELTRAN-BARBIERI, R.; IRIBARREM, A.; CROUZEILLES, R.; LOYOLA, R.; LATAWIEC, A.E.; OLIVEIRA FILHO, F.J.B.; DE SCARAMUZZA, C.A.M.; SCARANO, F.R.; SOARES-FILHO, B.; BALMFORD, A. Moment of truth for the Cerrado hotspot. Nature Ecology and Evolution 1: 1-3. 2017.

TAKOUTSING, B.; WEBER, J.; AYNEKULU, E.; ANTONIO, J.; MARTÍN, R.; SHEPHERD, K.; SILA, A.; TCHOUNDJEU, Z.; DIBY, L. Assessment of soil health indicators for sustainable production of maize in smallholder farming systems in the highlands of Cameroon. Geoderma 276: 64-73. 2016.

YE, L.; FANG, L.; SHI, Z.; DENG, L.; TAN, W. Spatio-temporal dynamics of soil moisture driven by ‘Grain for Green’ program on the Loess Plateau, China. Agriculture, Ecosystems and Environment 269: 204-214. 2019.

ZALLES, V.; HANSEN, M.C.; POTAPOV, P.V.; STEHMAN, S.V.; TYUKAVINA, A.; PICKENS, A.; SONG, X.P.; ADUSEI, B.; OKPA, C.; AGUILAR, R.; JOHN, N.; CHAVEZ, S. Near doubling of Brazil’s intensive row crop area since 2000. Proceedings of the National Academy of Sciences of the United States of America 116: 428-435. 2019.

ZERI, M.; CUNHA-ZERI, G.; GOIS, G.; LYRA, G.B.; OLIVEIRA-JÚNIOR, J. F. Exposure assessment of rainfall to interannual variability using the wavelet transform. International Journal of Climatology 39: 568-578. 2018.

ZHOU, X.; WANG, Y. C. Dynamics of Land Surface Temperature in Response to Land-Use/Cover Change. Geographical Research 49: 23-36. 2011.

Downloads

Publicado

2023-11-16

Edição

Seção

Artigos

Como Citar

Lima, T. P. ., França, L. C. de J., Ferraz, F. T. ., da Silva, J. B. L. ., Ferreira, M. E., da Silva, A. R. ., & Silva, D. de P. (2023). Correlação entre as transformações da cobertura e uso da terra com variáveis climáticas e ambientais na região do Matopiba, Brasil. Revista Do Departamento De Geografia, 43, e202077 . https://doi.org/10.11606/eISSN.2236-2878.rdg.2023.202077