Investigation on the relationship between extratropical cyclones and storm surge events in southern Brazil
DOI:
https://doi.org/10.11606/eISSN.2236-2878.rdg.2024.223533Palabras clave:
Coastal hazards, Santa Catarina, Severe wave eventsResumen
This study identifies storm surges and examines their association with extratropical cyclones on the Brazilian coast in 2018, with a particular focus on the Itajaí region in Santa Catarina State, Brazil. Extratropical cyclones significantly impact weather and climate, leading to extreme wave events that affect the economy and environment, especially in Brazilian coastal areas. Therefore, this research aims to analyze storm-related cyclone characteristics, genesis areas, and their relationship with storm surges. Storm surges were identified in the time series based on segments where significant wave height (SWH) exceeded 2.5 meters and was sustained for at least 24 hours. This study identified all storm surges that occurred in 2018, providing an overview of these events and the cyclones responsible for generating the waves. The year 2018 was selected to allow a comparison between climate reanalysis data and buoy observations. In that year, 157 extratropical cyclones were identified in the region between Brazil and Argentina. These cyclones did not exhibit a distinct seasonal pattern. A monthly analysis showed that storm surge activity was highest between June and October, with two to three events per month. Wave direction data indicated that the most intense storm surges had a median wave direction from the south/southeast. This suggests a compounded event in which sea level rise is promoted by a cyclone further south, while wave generation occurs due to a cyclone acting closer to the coast. Most cyclones associated with storm surges originated in the La Plata region and along Brazil’s southern and southeastern coast. The results of this study can help improve the prediction and mitigation of coastal hazards, particularly in the context of climate change.
Descargas
Referencias
BARRY, R. G.; CHORLEY, R. J. Atmosfera, tempo e clima. Porto Alegre: Bookman, 2013.
BITENCOURT, D. P.; QUADRO, M. F. L.; CALBETI, N. O. Análise de dois casos de ressaca no litoral da região Sul no verão de 2002. In: XII Congresso Brasileiro de Meteorologia, 3910-3917, 2002.
BJERKNES, J. On the Structure of Moving Cyclones. Monthly Weather Review, p. 95-99, 1919. doi: 10.1175/1520-0493(1919)47<95:OTSOMC>2.0.CO;2.
BJERKNES, J.; SOLBERG, H. Life Cycle of Cyclones and the Polar Front Theory of Atmospheric Circulation. Geofysike Publikasjoner, v. III, p. 393-400, 1922. doi: 10.1175/1520-0493(1922)50<468:JBAHSO>2.0.CO;2.
BRAZILIAN NAVY MARITIME AUTHORITY. Normas de autoridade marítima para as atividades de meteorologia marítima (NORMAN-19). Brasília, 1, 2018.
CAMPOS, R. M.; ALVES, J. H. G. M.; GUEDES SOARES, C.; GUIMARÃES, L. G.; PARENTE, C. E. Extreme wind-wave modeling and analysis in the South Atlantic Ocean. Ocean Model, v. 124, p. 75-93, 2018. doi: 10.1016/j.ocemod.2018.02.002.
CARTER, R. W. G. Coastal Environments – An Introduction to the Physical, Ecological and Cultural Systems of Coastlines. London, UK: Academic Press, 1988.
CHARNEY, J. G. The dynamics of long waves in a baroclinic westerly current. Journal of Meteorology, v. 4, n. 5, p. 135-162, 1947. doi: 10.1175/1520-0469(1947)004<0136:TDOLWI>2.0.CO;2.
CRESPO, N. M.; DA ROCHA, R. P.; SPRENGER, M.; WERNLI, H. A potential vorticity perspective on cyclogenesis over central-eastern South America. International Journal of Climatology, v. 41, p. 663-678, 2020. doi: 10.1002/joc.6644.
EADY, E. T. Long waves and cyclone waves. Tellus, v. 1, p. 33-52, 1949.
GAN, M. A.; SELUCHI, M. E. Ciclones e ciclogênese. In: CAVALCANTI, I. F. A.; FERREIRA, N. J.; SILVA, M. G. A. J.; DIAS, M. A. F. S. (Eds.). Tempo e Clima no Brasil. São Paulo: Oficina de Textos, p. 111-125, 2009.
GRAMCIANINOV, C. B.; CAMPOS, R. M.; CAMARGO, R.; HODGES, K. I.; GUEDES SOARES, C.; SILVA DIAS, P. L. Analysis of Atlantic extratropical storm tracks characteristics in 41 years of ERA5 and CFSR/CFSv2 databases. Ocean Engineering, v. 216C, p. 108111, 2020. doi: 10.1016/j.oceaneng.2020.108111.
GRAMCIANINOV, C. B.; CAMARGO, R.; CAMPOS, R. M.; GUEDES SOARES, C. Impact of extratropical cyclone intensity and speed on the extreme wave trends in the Atlantic Ocean. Climate Dynamics, v. 60, p. 1447–1466, 2023. doi: 10.1007/s00382-022-06390-2.
GRAMCIANINOV, C. B.; HODGES, K. I.; CAMARGO, R. The properties and genesis environments of South Atlantic cyclones. Clim. Dynam., v. 53, p. 4115–4140, 2019. doi:10.1007/s00382-019-04778-1.
HERSBACH, H.; BELL, B.; BERRISFORD, P.; et al. The ERA5 global reanalysis. Q J R Meteorol Soc, v. 146, n. 730, p. 1999–2049, 2020. doi: 10.1002/qj.3803.
HODGES, K. I. A general method for tracking analysis and its application to meteorological data. Monthly Weather Review, v. 122, p. 2573–2586, 1994. doi: 10.1175/1520-0493(1994)122<2573:AGMFTA>2.0.CO;2.
HODGES, K. I. Feature tracking on the unit sphere. Monthly Weather Review, v. 123, p. 3458–3465, 1995. doi: 10.1175/1520-0493(1995)123<3458:FTOTUS>2.0.CO;2.
HODGES, K. I. Adaptive constraints for feature tracking. Monthly Weather Review, v. 127, p. 1362–1373, 1999. doi: 10.1175/1520-0493(1999)127<1362:ACFFT>2.0.CO;2.
HOSKINS, B. J.; HODGES, K. I. A new perspective on southern hemisphere storm tracks. Journal of Climate, v. 18, p. 4108–4129, 2005. doi: 10.1175/JCLI3570.1.
IVIS, F. Calculating geographic distance: Concepts and methods. Canadian Institute for Health Information. Disponível em: https://www.lexjansen.com/nesug/nesug06/dm/da15.pdf. Acesso em: 29 maio 2023.
MACHADO, J. P.; MIRANDA, G. S. B.; GOZZO, L. F.; CUSTÓDIO, M. S. Condições atmosféricas associadas a eventos de ressaca no litoral Sul e Sudeste do Brasil durante o El Niño 2015/2016. Revista Brasileira de Meteorologia, v. 34, n. 4, p. 529-544, 2019. doi: 10.1590/0102-7786344067.
MELO FILHO, E. Maré meteorológica na costa brasileira. [tese]. Rio Grande: Federal University of Rio Grande, 2017.
MENDES, D.; MOURA, R. G.; MENDES, M. C. D. Estudo de caso de ciclone extratropical sobre a América do Sul: Sensibilidade das análises. Revista Brasileira de Meteorologia, v. 24, n. 4, p. 309-406, 2009. doi: 10.1590/S0102-77862009000400003.
PARISE, C. K.; CALLIARI, L. J.; KRUSCHE, N. Extreme storm surges in the South of Brazil: atmospheric conditions and shore erosion. Braz. j. oceanogr., v. 57, n. 3, p. 175-188, 2009.
PETTERSSEN, S.; SMEBYE, S. J. On the development of extratropical cyclones. Quarterly Journal of the Royal Meteorological Society, v. 97, n. 414, p. 457-482, 1971. doi: 10.1002/qj.49709741407.
PBMC. Impacto, vulnerabilidade e adaptação das cidades costeiras brasileiras às mudanças climáticas: Relatório Especial do Painel Brasileiro de Mudanças Climáticas. In: MARENGO, J.A.; SCARANO, F.R. (Eds.). PBMC, COPPE, Federal University of Rio de Janeiro, Rio de Janeiro, Brasil, 2016.
PEREIRA, H. P. P.; VIOLANTE-CARVALHO, N.; NOGUEIRA, I. C. M.; et al. Wave observations from an array of directional buoys over the southern Brazilian coast. Ocean Dynamics, v. 67, p. 1577–1591, 2017. doi: 10.1007/s10236-017-1113-9.
PIANCA, C.; MAZZINI, P. L. F.; SIEGLE, E. Brazilian offshore wave climate based on NWW3 reanalysis. Braz. j. oceanogr., v. 58, p. 53–70, 2010.
PUGH, D. T. Tides, surges and mean sea level. Chichester, U.K.: John Wiley, 1987.
REBOITA, M. S.; GAN, M. A.; ROCHA, R. P. da; CUSTÓDIO, I. S. Ciclones em Superfície nas Latitudes Austrais: Parte I - Revisão Bibliográfica. Revista Brasileira de Meteorologia, v. 32, n. 2, p. 171-186, 2017. https://doi.org/10.1590/0102-77863220010
SHAPIRO, M. A.; KEYSER, D. Fronts, jet streams and the tropopause. In: NEWTON, C. W.; HOLOPAINEN, E. O. (orgs). Extratropical Cyclones, The Erik Palmén Memorial. Amer. Meteor. Soc., p. 167-191, 1990.
SILVA, M. S. Condições atmosféricas em superfície favoráveis à ocorrência de ressacas em Santos, SP, e tendências para o clima futuro. 2021. Dissertação (Mestrado em Meteorologia) – Instituto Nacional de Pesquisas Espaciais, São José dos Campos, 2021.
TALJAARD, J. J. Development, distribution and movement of cyclones and anticyclones in the Southern Hemisphere during IGY. Journal of Applied Meteorology, v. 6, p. 973-987, 1967. https://doi.org/10.1175/1520-0450(1967)006<0973:DDAMOC>2.0.CO;2
TURNER, R. K.; SUBAK, S.; ADGER, W. N. Pressures, trends, and impacts in coastal zones: Interactions between socioeconomic and natural systems. Environmental Management, v. 20, n. 2, p. 159-173, 1996. https://doi.org/10.1007/BF01204001
VERA, C. S.; VIGLIAROLO, P. K.; BERBERY, E. H. Cold Season Synoptic-Scale Waves over Subtropical South America. Monthly Weather Review, v. 130, p. 684-699, 2002. https://doi.org/10.1175/1520-0493(2002)130<0684:CSSSWO>2.0.CO;2
Descargas
Publicado
Número
Sección
Licencia
Derechos de autor 2024 Maiquel Jantsch, Carolina B. Gramcianinov, Francisco Eliseu Aquino

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Autores que publicam nesta revista concordam com os seguintes termos:
- Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution BY-NC-SA que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
- Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista. A licença adotada enquadra-se no padrão CC-BY-NC-SA.
- Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado (Veja O Efeito do Acesso Livre).