Boosting job performance: the impact of autonomy, engagement and age

Authors

DOI:

https://doi.org/10.1108/rege-09-2023-0108

Keywords:

Job performance, Autonomy, Engagement, Age, Moderated mediation

Abstract

Purpose

The study aims to investigate the effect of autonomy on employee job performance and the mediation effect of engagement. It also explores whether an employee’s age moderates the model.

Design/methodology/approach

Data were collected through a face-to-face survey administered to various types of workers in their workplaces. The selection of companies was based on a database available at the university. Response rate was 35%, yielding 210 instruments with complete responses. Structural Equation Modeling was the chosen method for data analysis.

Findings

Results demonstrate a positive and significant relationship between autonomy and engagement as well as between engagement and job performance. Moreover, engagement plays a full mediating role in the relationship between autonomy and job performance. Additionally, while age does not moderate the relationship, it does have a differential impact on the mediation process.

Practical implications

The creation of management strategies focused on resources such as autonomy must be adapted according to seniority, with the purpose of enhancing employee engagement and performance in today’s organizations.

Originality/value

This paper closes a gap between autonomy and Job Demands-Resources theory by providing evidence on the effects of autonomy, engagement and age on job performance.

Downloads

Download data is not yet available.

References

Anderson, J. C., & Gerbing, D. W. (1988). Structural equation modeling in practice: A review and recommended two-step approach. Psychological Bulletin, 103(3), 411–423. doi: 10.1037/0033-2909.103.3.411.

Arbuckle, J. (2006). Amos 7.0 User's Guide. SPSS.

Avery, D. R., McKay, P. F., & Wilson, D. C. (2007). Engaging the aging workforce: The relationship between perceived age similarity, satisfaction with coworkers, and employee engagement. Journal of Applied Psychology, 92(6), 1542–1556. doi: 10.1037/0021-9010.92.6.1542.

Bakker, A. B. (2017). Strategic and proactive approaches to work engagement. Organizational Dynamics, 46(2), 67–75. doi:10.1016/j.orgdyn.2017.04.002.

Bakker, A. B., & Demerouti, E. (2017). Job demands–resources theory: Taking stock and looking forward. Journal of Occupational Health Psychology, 22(3), 273–285. doi: 10.1037/ocp0000056.

Bakker, A. B., & Demerouti, E. (2018). Multiple levels in job demands-resources theory: Implications for employee well-being and performance. In E. Diener, S. Oishi, & L. Tay (Eds), Handbook of well-being (pp. 1–13). DEF.

Bakker, A. B., Demerouti, E., & Sanz-Vergel, A. (2023). Job demands–resources theory: Ten years later. Annual Review of Organizational Psychology and Organizational Behavior, 10(1), 25–53. doi: 10.1146/annurev-orgpsych-120920-053933.

Bentler, P. M. (1990). Comparative fit indexes in structural models. Psychological Bulletin, 107(2), 238–246. doi: 10.1037/0033-2909.107.2.238.

Borst, R. T., Kruyen, P. M., & Lako, C. J. (2019). Exploring the job demands–resources model of work engagement in government: Bringing in a psychological perspective. Review of Public Personnel Administration, 39(3), 372–397. doi: 10.1177/0734371X17729870.

Browne, M. W., & Cudeck, R. (1993). Alternative ways of assessing model fit. In K. A. Bollen, & J. S. Long (Eds), Testing structural equation models (pp. 136–162). Newbury Park, CA: Sage.

Byrne, B. (2021). Structural equation modeling with AMOS: Basic concepts, applications, and programming. New York: Lawrence Erlbaum Associates.

Burghardt, J., & Bodansky, A. N. (2021). Why psychology needs to stop striving for novelty and how to move towards theory-driven research. Frontiers in Psychology, 12, 609802. doi: 10.3389/fpsyg.2021.609802.

Campbell, J. P., & Wiernik, B. M. (2015). The modeling and assessment of work performance. Annual Review of Organizational Psychology and Organizational Behavior, 2(1), 47–74. doi: 10.1146/annurev-orgpsych-032414-111427.

Cascio, W. F., & Boudreau, J. W. (2016). The future of work: We're not in Kansas anymore. In P. Sparrow, H. Scullion, & A. Tarique (Eds), Strategic talent management: Contemporary issues in international context (pp. 11–22). Cambridge University Press.

Catena, A., Trujillo, H., & Ramos, M. (2003). Análisis multivariado un manual para investigadores. Madrid: Biblioteca Nueva.

Chambers, C. (2017). The seven deadly sins of psychology: A manifesto for reforming the culture of scientific practice. New Jersey: Princeton University Press.

Chaudhary, R., & Rangnekar, S. (2017). Socio-demographic factors, contextual factors, and work engagement: Evidence from India. Emerging Economy Studies, 3(1), 1–18. doi: 10.1177/2394901517696646.

Cheung, G. W., & Rensvold, R. B. (2002). Evaluating goodness-of-fit indexes for testing measurement invariance. Structural Equation Modeling, 9(2), 233–255. doi: 10.1207/S15328007SEM0902_5.

Christian, M. S., Garza, A. S., & Slaughter, J. E. (2011). Work engagement: A quantitative review and test of its relations with task and contextual performance. Personnel Psychology, 64(1), 89–136. doi: 10.1111/j.1744-6570.2010.01203.x.

Cote, J. A., & Buckley, M. R. (1987). Estimating trait, method, and error variance: Generalizing across 70 construct validation studies. Journal of Marketing Research, 24(3), 315. doi: 10.2307/3151642.

Dimitrov, D. M. (2010). Testing for factorial invariance in the context of construct validation. Measurement and Evaluation in Counseling and Development, 43(2), 121–149. doi: 10.1177/0748175610373459.

Dunn, T. J., Baguley, T., & Brunsden, V. (2014). From alpha to omega: A practical solution to the pervasive problem of internal consistency estimation. British Journal of Psychology, 105(3), 399–412. doi: 10.1111/bjop.12046.

Fanelli, D. (2010). Do pressures to publish increase scientists' bias? An empirical support from US states data. PLoS One, 5(4), e10271. doi: 10.1371/journal.pone.0010271.

Fishman, A. A. (2016a). How generational differences will impact America's aging workforce: Strategies for dealing with aging millennials, generation X, and baby boomers. Strategic HR Review, 15(6), 250–257. doi: 10.1108/SHR-08-2016-0068.

Fishman, J. A. (2016b). Age and work-related outcomes: The moderating role of career stage. Journal of Managerial Psychology, 31(1), 52–66. doi: 10.1108/JMP-08-2014-0257.

Fornell, C., & Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of Marketing Research, 18(1), 39. doi: 10.2307/3151312.

Haeffel, G. J. (2022). Psychology needs to get tired of winning. Royal Society Open Science, 9(6), 220099. doi: 10.1098/rsos.220099.

Hair, J. (2014). A primer on partial least squares structural equation modeling (PLS-SEM). Georgia: Sage Publications.

Halbesleben, J. R. B. (2010). A meta-analysis of work engagement: Relationships with burnout, demands, resources, and consequences. In A. B. Bakker, & M. P. Leiter (Eds), Work engagement: A handbook of essential theory and research (pp. 102–117). Psychology Press.

Henseler, J., Ringle, C. M., & Sarstedt, M. (2015). A new criterion for assessing discriminant validity in variance-based structural equation modeling. Journal of the Academy of Marketing Science, 43(1), 115–135. doi: 10.1016/j.jretconser.2015.11.006.

Hojman, D. E. Y, & Pérez, G. (2005). Cultura nacional y cultura organizacional en tiempos de cambio: la experiencia chilena. Academia. Revista Latinoamericana de Administración, 35, 87–105.

Hu, L., & Bentler, P. M. (1998). Fit indices in covariance structure modeling: Sensitivity to underparameterized model misspecification. Psychological Methods, 3(4), 424–453. doi: 10.1037/1082-989X.3.4.424.

Idaszak, J. R., & Drasgow, F. (1987). A revision of the job diagnostic survey: Elimination of a measurement artifact. Journal of Applied Psychology, 72(1), 69–74. doi: 10.1037/0021-9010.72.1.69.

Inam, A., Ho, J. A., Zafar, H., Khan, U., Sheikh, A. A., & Najam, U. (2021). Fostering creativity and work engagement through perceived organizational support: The interactive role of stressors. Sage Open, 11(3). doi: 10.1177/21582440211046937.

Instituto Nacional de Estadísticas (INE). (2022). Censo 2022. Gobierno de Chile.

Jaupi, F., & Llaci, S. (2015). The impact of communication satisfaction and demographic variables on employee engagement. Journal of Service Science and Management, 8(02), 191–200. doi: 10.4236/jssm.2015.82021.

Johannsen, R., & Zak, P. J. (2020). Autonomy raises productivity: An experiment measuring neurophysiology. Frontiers in Psychology, 11, 963. doi: 10.3389/fpsyg.2020.00963.

Jöreskog, K. G., & Sörbom, D. (1982). Recent developments in structural equation modeling. Journal of Marketing Research, 19(4), 404–416. doi: 10.1177/002224378201900402.

Juyumaya, J. (2022). How psychological empowerment impacts task performance: The mediation role of work engagement and moderating role of age. Frontiers in Psychology, 13, 889936. doi: 10.3389/fpsyg.2022.889936.

Juyumaya, J. (2023). Digitally reflective employees as facilitators of digital work. Management Research, 21(4), 343–355. doi: 10.1108/MRJIAM-01-2023-1371.

Juyumaya, J., & Torres, J. P. (2022). Effects of transformational leadership and work engagement on managers' creative performance. Baltic Journal of Management, 18(1), 34–53. doi: 10.1108/BJM-11-2021-0449.

Juyumaya, J., & Torres, J. P. (2023). A managers’ work engagement framework for the digital tasks. Frontiers in Psychology, 14, 1009459. doi: 10.3389/fpsyg.2023.1009459.

Kanfer, R., & Ackerman, P. L. (2004). Aging, adult development, and work motivation. Academy of Management Review, 29(3), 440–458. doi: 10.5465/amr.2004.13670968.

Katou, A., Koupkas, M., & Triantafillidou, E. (2022). Job demands-resources model, transformational leadership and organizational performance: A multilevel study. International Journal of Productivity and Performance Management, 71(7), 2704–2722. doi: 10.1108/IJPPM-06-2020-0342.

Kline, R. B. (2023). Principles and practice of structural equation modeling (5th ed.). New York: The Guilford Press.

Kooij, D. T. A. M., de Lange, A. H., Jansen, P. G. W., Kanfer, R., & Dikkers, J. S. E. (2018). Age and work-related motives: Results of a meta-analysis. Journal of Organizational Behavior, 39(3), 317–341. doi: 10.1002/job.2241.

Kooij, D. T. A. M., Jansen, P. G. W., Dikkers, J. S. E., & De Lange, A. H. (2010). The influence of age on the associations between HR practices and both affective commitment and job satisfaction: A meta-analysis. Journal of Organizational Behavior, 31(8), 1111–1136. doi: 10.1002/job.666.

Lyons, S. T., & Kuron, L. K. (2014). Generational differences in the workplace: A review of the evidence and directions for future research. Journal of Organizational Behavior, 35(S1), S139–S157. doi: 10.1002/job.1913.

Malhotra, N. K., & McCort, J. D. (2001). A cross‐cultural comparison of behavioral intention models ‐ Theoretical consideration and an empirical investigation. International Marketing Review, 18(3), 235–269. doi: 10.1108/02651330110396505.

McDonald, R. P., & Marsh, H. W. (1990). Choosing a multivariate model: Noncentrality and goodness of fit. Psychological Bulletin, 107(2), 247–255. doi: 10.1037/0033-2909.107.2.247.

Muecke, S., & Iseke, A. (2019). How does job autonomy influence job performance? A meta-analytic test of theoretical mechanisms. Academy of Management Proceedings, 2019 (1). 14632. doi: 10.5465/ambpp.2019.145.

Neuber, L., Englitz, C., Schulte, N., Forthmann, B., & Holling, H. (2021). How work engagement relates to performance and absenteeism: A meta-analysis. European Journal of Work and Organizational Psychology, 31(2), 292–315. doi: 10.1080/1359432X.2021.1953989.

Ng, A. H., Steele, J. R., & Sasaki, J. Y. (2016). Will you remember me? Cultural differences in own-group face recognition biases. Journal of Experimental Social Psychology, 64, 21–26. doi:10.1016/j.jesp.2016.01.003.

Ng, T. W. H., & Feldman, D. C. (2016). The moderating effects of age in the relationships of job embeddedness with its outcomes: A meta-analysis. Journal of Vocational Behavior, 92, 81–91. doi: 10.1016/j.jvb.2015.11.001.

Pérez, G., & Rodríguez, J. (2003). Organizational culture and innovation in Chile. Santiago: Universidad de Santiago.

Pinto, A. M., Ramos, S., & Nunes, S. (2014). Managing an aging workforce: What is the value of human resource management practices for different age groups of workers?. Tékhne, 12, 58–68. doi: 10.1016/j.tekhne.2015.01.007.

Podsakoff, P. M., MacKenzie, S. B., Lee, J. Y., & Podsakoff, N. P. (2003). Common method biases in behavioral research: A critical review of the literature and recommended remedies. Journal of Applied Psychology, 88(5), 879–903. doi: 10.1037/0021-9010.88.5.879.

Ruvio, A., Shoham, A., & Makovec Brenčič, M. (2008). Consumers' need for uniqueness: Short‐form scale development and cross‐cultural validation. International Marketing Review, 25(1), 33–53. doi: 10.1108/02651330810851872.

Schaufeli, W. B., Bakker, A. B., & Salanova, M. (2006). The measurement of engagement with a short questionnaire, a cross-national study. Educational and Psychological Measurement, 66(4), 701–716. doi: 10.1177/001316440528247.

Scheel, A. M., Schijen, M. R. M. J., & Lakens, D. (2021). An excess of positive results: Comparing the standard psychology literature with registered reports. Advances in Methods and Practices in Psychological Science, 4(2). doi: 10.1177/25152459211007467.

Sekhar, C., Patwardhan, M., & Vyas, V. (2018). Linking work engagement to job performance through flexible human resource management. Advances in Developing Human Resources, 20(1), 72–87. doi: 10.1177/1523422317743250.

Servicio de Impuestos Internos (SII). (2023). Estadísticas de Empresas por Región. Santiago de Chile: Gobierno de Chile.

Simmering, M. J., Fuller, C. M., Richardson, H. A., Ocal, Y., & Atinc, G. M. (2015). Marker variable choice, reporting, and interpretation in the detection of common method variance: A review and demonstration. Organizational Research Methods, 18(3), 473–511. doi: 10.1177/1094428114560023.

Sonnentag, S., & Frese, M. (2013). Stress in organizations. In N. W. Schmitt, S. Highhouse, & I. B. Weiner (Eds), Handbook of psychology: Industrial and organizational psychology (pp. 560–592). John Wiley & Sons.

Tisu, L., Vîrgă, D., & Mermeze, I. (2023). Autonomy and performance: Proactive vitality management and work engagement as sequential mediators of the relationship. Psychological Reports, 126(1), 411–433. doi: 10.1177/00332941211048470.

van Roekel, H., Wigger, E. F. J., Veldkamp, B. P., & Bakker, A. B. (2023). What is work engagement? A text mining approach using employees' self‐narratives. Applied Psychology: International Review, 73(3), 1071–1102. doi: 10.1111/apps.12501.

Downloads

Published

2024-12-19

Issue

Section

Article

How to Cite

Boosting job performance: the impact of autonomy, engagement and age. (2024). REGE Revista De Gestão, 31(4). https://doi.org/10.1108/rege-09-2023-0108