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Limits of Semigroups Depending on Parameters 

Jack K. Hale and Genevieve Raugel 

Abstract: It is reasonable to compare dissipative semi­
groups with a global attractor by restricting the flows to the 
attractor. However, if the rate of approach to the attractor 
is not uniform with respect to parameters, then the transient 
behavior near the attractor will give more information. We 
introduce a concept which takes into account this transient 
behavior. The concept also is useful when the limit system 
is conservative. We give the general theory with applications 
to parabolic and hyperbolic PDE on thin domains as well as 
situations where the limit problem is conservative. 

Key words: Nonlinear semigroups, global attractor, 
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1. Introduction. 

The basic problem in dynamical systems is to compare the flows defined by 
different semigroups. In the study of finite dimensional semigroups restricted to 
a finite dimensional compact manifold M without boundary, this comparison is 
made most often through the notion of topological equivalence. Two semigroups 
defined on M are said to be topologically equivalent if there is a homeomorphism 
from M to M which preserves orbits and the sense of direction in time. If the 
manifold M is compact with boundary, the same notion has been used provided 
that the flow is transversal to the boundary. 

If the semigroups are defined on a finite dimensional Banach space X, then 
extreme care must be exercised in order to discuss the behavior of orbits at "00" 

and only very special cases have been considered. One way to avoid the consid­
eration of 00 is to assume that each semigroup T(t), t ~ 0 has a global attractor 
A. Recall that a global attractor for T(t), t ~ 0, is a compact set A which is 
invariant (that is, T(t)A = A for t ~ 0) such that, for any bounded set Be X, 
we have distx(T{t)B, -:4) -+ 0 as t -+ 00. In such a situation, if the space is finite 
dimensional, we often can reduce the discussion to the study of the topological 
equivalence of the flows on a manifold with boundary. This manifold will contain 
the attractor and also the boundary will be transversal to the flow. 

In the infinite dimensional case, there is considerable literature devoted to 
the adaptation of ideas of finite dimensions to infinite dimensions. (see [1], [4], 
[6], [15], [20] and the references therein). If each of the semigroups has a global 
attractor, then it is reasonable at first to consider the topological equivalence of 
the flows on the attractors. Specific applications in this direction have been made 
to"functional differential equations [6] and some classes of parabolic and hyperbolic 

AMS classification: 

Primary : 58F12,35B40 

Secondary: 35K57 , 58D25, 35B30 



2 Jack K. Hale and Genevieve Rauge\ 

partial differential equations ([9], [10], [12], [18], [19]). 
If we are considering a family of semigroups depending upon a parameter and 

if each of the semigroups has a global attractor with the rate of approach to the 
attractor being uniform with respect to the parameter, then the restriction of the 
discussion to the attractor is reasonable. However, if the rate of approach to the 
attractor is not uniform in the parameter, then the transient behavior near the 
attractor may give more information about the limit semigroup. Such situations 
arise when we consider dissipative systems for which the dissipation is approaching 
zero. We introduce a new concept which takes into account some of this transient 
behavior. When this is done, we do not expect to obtain very specific information 
about any particular orbit of the limiting equation. We will discover only how slow 
movement near the attractor is reflected in the way that the orbits wander around 
in the phase space. For example, if the limit system is conservative, then orbits of 
a nearby dissipative system should wander across several of the constant energy 
surfaces and, therefore, across several of the orbits, of the conservative system. 
Our concept is an attempt to capture some of this information . In this latter 
situation, it sometimes is possible to obtain similar information by considering 
only the limits of the attractors as we show below. 

Although the presentation in the text will be more general, we begin the 
discussion with the dissipative case. Let Yo, E be Banach spaces. For a fixed 
set S in E with 0 E 5, the closure of S, and any ( E S, let Te(t) , t ~ 0, be a 
CO-semigroup on Yo and suppose that Ae is the global attractor for Te(t), t ~ o. 
Our objective is to compare some properties of the flow defined by To(t), t ~ 0, to 
analogous properties of the flow defined by Te(t) , t ~ 0, for ( E S with lei small. 

If we suppose that To (t) also has a global attractor A o, then we could compare 
the flows by topological equivalence on the attractors. This is the strongest type of 
comparison of flows that can be expected in the sense that it uses the very detailed 
properties of the flows . However, it can be of interest to make the comparison of 
flows with some weaker concept. 

For any sets A, B in a Banach space X, we let 

bx(A, B) = sup distx (a, B) . 
aEA 

We say that the attractors Ae are upper semicontinuous (resp. lower semicontin­
uous) on S at ( = 0 if 

We say that the attractors Ae are continuous on S at ( = 0 in the Hausdorff sense 
if they are both upper and lower semicontinuous on S at ( = O. We say that the 
dissipative semigroups Te(t), t ~ 0, are Hausdorff continuous on Sat ( = 0 if the 
attractors At, { E 5 are continuous on S at { = 0 in the Hausdorff sense. 

Upper semicontinuity of the attractors at ( = 0 have been considered in 
several situations (see [1], [5], [6], [7], [9]). If, in addition, we want to have lower 
semicontinuity (and therefore Hausdorff continuity) of the attractors, we must 
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impose some restriction on the flow. For gradient flows, for example , it is enough to 
suppose that the equilibrium points of the semigroup To(t), t ~ 0, are hyperbolic 
(see [1], [8], [11)) . 

From these remarks, it is clear that Hausdorff continuity is much weaker than 
the concept of topological stability. Specific examples will be given later. We now 
introduce another notion which is weaker than Hausdorff continuity. 

Definition 1.1. Let NE(O, 8) be the 8-neighborhood of 0 in E . The w-limit set 
ws(A.) of the family of sets A" (: E S n NE(O, 8) is defined by the relation 

(U) 

We remark that the definition of ws(A.) does not use directly the semigroup 
Ta(t) . On the other hand, if we assume that To(t) also has a global attractor Ao, 
then , in Section 2, we show that Hausdorff continuity implies that 

(1.2) ws(A.) = Ao 

On the other hand , simple examples show that the relation (1.2) is weaker than 
Hausdorff continuity. If we suppose that CI U'EsnN"E(0,6)A, is compact, then the 
relation 

(1.3) wsCA.) c Ao 

is equivalent to the statement that A" O l ~ ( ~ (0, are upper semicontinuous at 
(= O. 

The set ws(A) does not use much of the information about the semigroup 
To(t) , t ~ O. Therefore, it is not necessary to have To(t), t ~ 0, dissipative. This 
means that it is possible to consider, for example , dissispative systems of ordinary 
differential equations or even dissipative partial differential equations for which the 
dissipation approaches zero. In this way, we should be able to obtain information 
about those orbits of the conservative system which can be obtained from the 
limits of invariant sets (the at tractors ) of dissipative systems. In Section 7, we 
give a complete description of ws(A .) for a second order dissipative differential 
equation. More general situations will be considered in later publications. 

The limit ws(A.) only uses information about the attractors. As a conse­
quence, the transient behavior of the semigroups {T,Ct), t ~ O} for initial data 
not on the attractor is completely ignored . To gain some information about this 
transient behavior which will apply also to situations where the limit semigroup is 
conservative, we int roduce another definition of w-limit set (in Section 3, a more 
general situation is considered) . 

Definition 1.2. Let T,Ct), t ~ 0, ( E S n NE(O, 8), be a family of semigroups on 
a Banach space Yo. For a given set B C Yo, the w-limit set of B with respect 
to the family of semigroups T,Ct), t ~ 0, ( E S n NECO, 8), is denoted by ws(B) 
and is defined in the following way: a point y E wsCB) if and only if there are 
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sequences {in} C S n NE(O, 6), {tn } C [0,00), {Yn} C B such that in -+ 

0, tn -+ 00, T f .. (tn)Yn -+ Y as n -+ 00. 

Let us now suppose that B is a bounded set in Yo which contains 

Then it is easy to show that ws(B) :::> ws(A.). The set ws(B) in the general 
situation can be larger than ws(A.). If the semigroups depend in a nice way upon 
land B is a bounded set in Yo such that the w-limit set wo(B) of B with respect 
to To(t) exists and is nonempty, then ws(8) :::> wo(B) (Theorem 3.2). We remark 
that it is not assumed that To(t) has a global attractor. 

Now suppose that B is a bounded set in Yo such that UfESnNE(O, 6) Ut~to 
Tf(t)B is bounded. If the semigroups depend in a nice way upon i, then we 
prove (Theorem 3.3) that the set ws(B) is invariant under To(t) if either To(t) is 
asymptotically smooth or if To(t) is a group. In addition, if we assume that To(t) 
also has a global attractor Ao, the semigroups depend in a nice way upon (. and 
B :::> Ao, then (Theorem 3.7) 

(1.4) ws(B) = Ao. 

In Sections 4 and 5, we show that (1.4) is true for partial differential equations 
of parabolic and hyperbolic type on thin domains. This requires a more general 
definition than the one given above and also requires several a priori estimates 
from our previous work ([9], [12], [13], [19]). 

As remarked earlier, the limit semigroup need not be dissipative. In Section 
6, we give examples of a retarded delay equation and a nonlinear partial differen­
tial equation of Fitzhugh-Nagumo type to indicate how additional information is 
obtained by the consideration of the limit ws(B) rather than the limit ws(A.). 

2. Properties of the limit ws(A.). 

Let Yo, E be Banach spaces. For a fixed set S in E with 0 E S, the closure of 
S, and any (. E S, we introduce a Banach subspace Y< of Yo and a CO-semigroup 
Tf(t), t 2:: 0, on Yf . We suppose that there is a continuous projection P< : Yo -+ Y<. 
In the applications, we often have limf_o distyo(v, Y<) = 0 for all v E Yo. We also 
suppose that Tf(t), t 2:: 0, (. E S, has a global attractor A<. Usually, we assume 
that 

(2.1) There exist 8 > 0 and a bounded set Bo C Yo such that 

U<EsnNE(0,6)A< C Bo. 

Frequently, we assume also that Tf(t)Pfy -+ To(t)y as (. E S -+ 0 uniformly for 
(t, y) in compact sets; that is, 
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For any to > ° and any compact set U C [to, 00) x Yo and any 11 > 0, there 
is a 00 = 00(11, U) > ° such that, for (E SnNE(O, 00) and (t, y) E U, we have 

(2.2) 

Sometimes we need the following stronger convergence hypothesis: 

For any to > ° and any bounded set U c [to, 00) x Yo and any 11 > 0, there 
is a 00 = 00(11, U) > ° such that, for ( E S n NE(O, 00) and (t, y) E U, we have 

(2 .2bis) 

If (2.1) and (2.2bis) hold, then it is known that the sets A. are upper semi­
continuous at ( = 0. 

The hypotheses (2.1) and (2.2bis) can be modified slightly as follows. Let Y1 

be a Banach subspace of Yo (usually Y1 is more regular than Yo) . We can assume 
that 

There exist 0> ° and a bounded set B1 C Y1 such that 

(2.lter) 

Then the hypothesis (2.2bis) is replaced by 

For any to > ° and any bounded set U1 C [to, 00) X Y1 and any 11 > 0, there 
is a 01 = 01(11, Ud > ° such that, for (E SnNE(O, od and (t, y) E U1, we have 

(2.2ter) 

If (2.lter) and (2.2ter) hold and if Ao is in a bounded set of Yl, then it is 
known that the sets A. are upper semicontinuous at ( = o. 

At first, we present a result relating the upper semicontinuity of the attractors 
At at (= 0 to the set ws(A .) defined in (1.1) . 

Proposition 2.1. For ( E S, suppose that the semigroup T.(t) has a global 
attractor A(. If the attractors A(, ( E S, are upper semicontinuous at (= 0, then 

(2.3) ws(A.) c Ao. 

If, in addition, we suppose that Clyo U(ESnN' E(O, 6) A( is compact, then (2.3) implies 
that the attractors A(, ( E S, are upper semicontinuous at ( = 0. 

Proof. Assume that the attractors A(, ( E S, are upper semi continuous at ( = o. 
Let (n - 0, Yn E A(a and Yn - Yo. Assume that Yo f/. Ao. Since Ao is compact, 
there exists a positive constant d such that 

(2.4) 
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Since the attractors A, are upper semicontinuous at ( = 0, for any T) > 0, there is 
an integer no = nO(T}) such that, for n ~ no, we have 

(2 .5) 

If we choose T} = d/2, then (2 .5) contradict!! (2.4). 
To prove the last part of the proposition, assume that ws(A.) C Ao and 

that the attractors A, are not upper semi continuous at ( = O. Then there are 
a constant d > 0 and sequences (n - 0 as n - 00 and Yn E A,,, such that 
bY(Yn, Ao) > d for all n . Since the set {Yn, n ~ 1, } belongs to a compact set, 
there is a subsequence Ynk' nk - 00 as k - 00 such that Ynk converges to a point 
Yo E ws(A.) C Ao as k - 00. This contradiction completes the proof. 

We remark that the assumption that Clyo U'E SnNs(O , 6) A, is compact is a 
rather strong one. 

Proposition 2.2 •. For ( E 5, suppose that the semigroup T,(t) has a global 
attractor A,. If the attractors A" ( E 5, are lower semicontinuous at ( = 0, then 

(2.6) ws(A.) ~ Ao. 

Therefore, Hausdorff continuity of the attractors A" ( E 5, at ( = 0 implies that 

(2.7) ws(A.) = Ao. 

Proof. For any n, there is an bn E S, bn - 0 as n - 00, such that, for ( E 
S n N(O, bn ), we have 

sup inf lIyo - y,lIyo ::; .! . 
lIoEAo II, EA, n 

For each fixed Yo E Ao, there exist en E Sn.N(O, cn) and y~" E A,,,, such that 

This implies that Yo E ws(A.) and the proof is complete. 

We remark that relation (2.6) (resp. (2.7» does not imply lower semiconti­
nuity (resp. Hausdorff continuity) of the attractors at ( = O. In fact, consider the 
ODE 

x = - x«-l)n(n + (x _1)2) 

with (n = l/n; that is, the set S = { 1, 1/2, .. . , l/n, .. . }. We have ws(A.) = 
Ao = [0, 1], there is no continuity of the attractors at ( = O. Thus, we see that 
the notion of continuity of attractors and the relation (2.7) are distinct concepts. 

We say that a set A is positively invariant (resp. negatively invariant) under 
the semigroup To(t) if To(t)A C A (resp. To(t)A ~ A) for t ~ O. 
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Proposition 2.3. Suppose that, for ( E S, the semigroup T,(t) has a global 
attractor A. If (2.2) holds (resp., (2.1ter) and (2.2ter) hold), then ws(A .) is 
positively invariant under To(t). If, in addition , either 

(i) Clyo U'ESn.N'E(O, 6) A, is compact 

or 

(ii) To(t) is a CO-group and (2.1), (2.2bis) (resp., (2.1ter), (2.2ter)) are satisfied, 

then ws(A.) is negatively invariant under To(t) and, thus, invariant under To(t). 

Proof. If Yo E ws(A.), then there exist sequences (n E S, Yn E A'n such that 
Yn ---+ Yo in Yo and fn ---+ 0 in S as n ---+ 00 .. Let to > 0 be given. Since To(to)y is 
continuous in Y and (2.2) holds, for any TJ > 0, there exists an integer no(TJ) such 
that, for n ~ no(TJ) , 

II To(to)yO-T<n (to )Yn Ilyo 
(2 .8) ~ IITo(to)yO - To(to)Ynllyo + IITo(to)Yn - T<n(to)Ynllyo 

~ 2TJ, 

which implies that T<n (to )Yn ---+ To( to )yo as n ---+ 00. This proves the first part of 
the propostion . 

We now show that there exists y E Yo such that To(to)Y = Yo if (i) holds. 
Since the set Clyo U<EsnNE(o , 6) A< is compact, there are subsequences fnm ---+ 0 
as m ---+ 00 and Yn m E A<nm such that T<nm (-to)Yn m ---+ Y E Yo as m ---+ 00. Since 
To(to)Y is continuous in y, it follows that To(to)T<nm (-to)Yn m ---+ To(to)Y E Yo as 
m ---+ 00. On the other hand, relation (2.2) implies that, for any TJ > 0, there 
exists an integer nmo(TJ) such that, for n ~ nmo(TJ), 

Since T<nm (to)T<nm (-to)Yn m = Y"m also converges to Yo, we conclude that 

To(to)ii = Yo . 

Assume now that (ii) holds. From (2.2 bis), we deduce that , for any TJ > 0, 
there exists an integer nO(TJ) such that, for n ~ no(TJ) , 

(2 .9) 

which implies that To(to)T<n (-to)Yn ---+ Yo as n ---+ 00. Since To( -to)Y is continuous 
in y, we have that To( -to)To(to)T<n (-to)Yn ---+ To( -to)Yo as n ---+ 00. 

We can reproduce exactly the same proof when the hypotheses (2.lter) and 
(2.2ter) hold . 

Proposition 2.4. Suppose that S is open and there is a 00 > 0 such that, for 
o < 0 ~ 00, the set S n N(O, 0) is connected, and, for f E S, the semigroup T«t) 
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has a global attractor A. and that Clyo U.ESnNE(O, 60 } A. is compact. Moreover, 
assume that the following property holds: 

(2.10) (there is a time tl > 0 so that, for any (1 E S n Ne(O, 60 ), 

for any 1] > 0 and for any t2 > t1, there is a 00 = 00«(1,1], t2) > 0 

such that, for ( E S n NE(O, 60 ),11(1 - (liE ~ 00 , y< E A, 

IITtl (t)P. l y< - T.(t)y< II Yo ~ 1] for tl ~ t ~ t2 . 

If we assume also that UiESnNE(O, 60 }P.CI U<EsnNE(O, 60 ) A< is bounded in Yo, then 
ws(A.) is connected. 

Proof. If ws(A.) is not connected, then, since ws(A.) is compact, there exist two 
compact sets F1 , F2 such that 

(2.11) 
(i) ws(A.) = Fl U F2 , 

(i i) inf 1111 - hllyo ~ do > O. 
hEF1,hEF, 

Let Fi = {y E Yo : infJ;EF; lIy - lillyo ~ ~} . Obviously, there is a positive 
number 60 ~ 60 such that, for (E SnNE(O, 60), we have A C Fl UF2 . Since A< 
is connected, this implies that 

(2.12) eitherAcF1 orA.cF2 for (ESnNE(0, 8~). 

Let (1 E SnNE(O, 60) be such that Atl C Fl' There is a time TO = Ta«(t}, Ta ~ t1, 
such that 

(2 .13) 

On the other hand, by (2.10), there exists a ()a = ()a«(d such that, for 11(1 - (liE ~ 
()O, ( E S n NE(O, (0) , 

(2.14) 

From (2.13) and (2.14), we deduce that Tt(Ta)At C NYo(Atl , ~) and, since At is 
invariant under T.(Ta), 

(2.15) 

The properties (2.11),(2.12) and (2.15) imply that 

(2.16) At C Fl for 11(1 - (lit: ~ 00 , ( E S nNe(o, (a) . 
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We now write the set S n NE(O, fO) as S n NE(O, fO) = Sl U S2, where Si = {f E 
S: IIfllE < fO, A, C Fi }. By the above proof, the sets Sl and S2 are open. Since 
S n NE(O, fO) is connected, either Sl = 0 or S2 = 0. This contradicts (2.11) and, 
therefore, ws(A.) must be connected. This completes the proof. 

We end this section with a few remarks. 

Remark 2.1. There are situations in which, for each f E S, the semigroups 
T,(t), t 2: 0, may be dissipative and possess global attractors whereas the semi­
group To(t) may possess a first integral and therefore may not be dissipative. We 
present such examples in Section 6. 

Remark 2.2. In the numerical approximation of an evolutionary equation which 
defines a semigroup To(t), we obtain approximate semigroups T,(t) where f is a 
measure of the accuracy of the approximation. The space Yl is usually a finite 
dimensional subspace of Yo and the operator p. is a continuous projection onto 
this subspace. 

Remark 2.3. In this section (and in the following one), we consider only the 
case where the spaces Y. are Banach subspaces of Yo. The opposite situation 
where Yo is a Banach subspace of the Banach space Y., for f E S, and where each 
space Yl , f E S, is a Banach subspace of another Banach space Y1, also is very 
interesting. Unfortunately, general theorems in this situation seem to contain too 
many hypotheses which would not help to clarify the concepts. For this reason, 
we describe only a particular case of such situations in Sections 4 and 5. We will 
define the limit sets ws(A.) and ws only for problems on thin domains. 

As we have remarked in the introduction, we would like to be able to under­
stand more about the attractor for f = ° from the behavior of the semigroups for 
f > 0. To do this, we need a more general definition of limit as in Section 1. We 
also must have a more general setup in order to treat more complicated situations. 

3. Definition and properties of the limit set ws. 

We keep the same spaces E, Yo, Y. and projections p. as in Section 2. 

Definition 3.1. For a given set B C Yo, the w-limit set of B with respect to the 
family of semigroups T.(t), t 2: 0, and projections Pl' f E SnNE(O, 6), is denoted 
by ws(B) and is defined in the following way: a point Y E ws(B) if and only if 
there are sequences {fn } C S n NE(O, 6), {t n } C [0, 00), {Yn} C B such that 
fn -.0, tn -? 00, T' n (tn)P'nYn -? Y as n -? 00. 

An equivalent definition of ws(B) is as follows. 

Definition 3.1bis. For a given set B C Yo, the w-limit set of B with respect to 
the family of semigroups T,(t), t 2: 0, and projections p., f E S nNE(O, 6), is 
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where 

i= (C, ~), 

The set ws(B) in the general situation can be larger than ws(A.) and, in 
some situations, coincides with Ao. If B ::> U(ESnN'E(O , (o)A( for some Co > 0, then 
ws(B) ::> ws(A.). 

Theorem 3.1. Suppose that Co is an invariant set of the CO-semigroup To(t) 
on Yo which is compact in Yo (resp., bounded in Yo) (resp., bounded in Y1). If 
hypothesis (2.2) (resp., (2.2bis)) (resp., (2.2ter)) holds and if B is a set in Yo such 
that B ::> Co, then 

ws(B) ::> Co. 

Proof. Fix to > O. If Vo E Co, there exist two sequences VOn E Co and tn -+ 00 as 
n -+ 00, tn ~ to> 0, such that Vo = To{tn)von . By (2.2), for any VOn E Co and tn, 
we can find a positive number Cn E S, Cn -+ 0 as n -+ 00, such that 

Therefore, we have sequences tn -+ 00, Cn -+ 0 and VOn E Co C B such that 

This completes the proof. 

Theorem 3.2. Let B be any bounded set in Yo and suppose that To(t) is a CO_ 
semigroup on Yo and that the w-limit set wo(B) == Ao(B) of B with respect to 
To(t) exists and is nonempty. If (2.2bis) is satisfied, then ws(B) :::> Ao(B). 

Proof. If z E Ao(B), then there are sequences tn -+ 00, Yn E B, such that 
To(tn)Yn -+ Z as n -+ 00. Let to > 0 be fixed. For any integer m, there exists an 
integer nm such that, for n ~ n m , we have IITo(tn)Yn - zllyo ::; 112m and tn ~ to. 
From the property (2.2bis), there exist Cn ,. E S, (n,. -+ 0 as m -+ 00, such that, 
for any Y E B, 

Therefore, we have 

This shows that z E ws(B) and completes the proof. 

Theorem 3.3. (i) Let B be any set in Yo. IfTo(t) is a CO-semigroup on Yo and 
the condition (2.2) is satisfied, then To(t)Ws(B) C ws(B). 
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(ii) lfto ;::: ° is a fixed constant and we suppose in addition that 

Bl == UeE S nNE(O,6) Ut~to Te(t)Pe B 

is bounded, that (2.2bis) holds and either that 

(Ht) To(t) is asymptotically smooth and Ut>o To(t)Bl is bounded 

or that 

To(t) is a CO-group on IR, 

then ws(B) is invariant under To(t). 

11 

Proof. If Y E ws(B), then there are sequences {en} C S n .NE(O, 6), {tn } C 
[0,00), {Yn} C B such that en -+ 0, tn -+ 00, Te .. (tn)Pe .. Yil -+ Y as n -+ 00. Let 
to > ° be fixed. From (2.2) and the continuity of To(t)y in y, for any 1] > 0, there 
is an integer no(77) such that, for n ;::: no(77), we have 

As a consequence of these inequalities, we have 

which implies that To(t)y E ws(B). This completes the proof of the first part of 
the theorem. 

To prove the last part of the theorem, it is sufficient to show that, for Y as 
above and any tl > 0, there is a ii E ws(B) such that To(tdii = y. Assume that 
(HI) is satisfied and let Bo = CI Ut>o To(t)Bl. The set Bo is a closed bounded 
set in Yo and To(t)Bo C Bo. Since T~(t) is asymptotically smooth, there exists a 
compact set J C Bo such that J attracts Bo. Let tl > ° be fixed. For any integer 
k > 0, there exists an integer mk such that 

(3.1 ) 

If we choose n large enough so that tn - (mk + l)tl > to, then, from (3.1), we 
deduce that there exists ik,n E J such that 

Since Bl is bounded, hypothesis (2 .2bis) implies that there exists a positive num­
ber (mk such that, for ° < en ~ emk , 

(3.3) 
IITo(mktt}Tc .. (tn - (mk + l)tdPe .. Yn - Te .. (mktt}Te .. (tn - (mk + l)tl)Pc .. Ynllyo 
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1 
< 2k' 

From inequalities (3.2) and (3.3), for 0 < In ~ lm., we have 

(3.4) 

In particular, there exists a subsequence nl; -+ 00 such that for 0 < In. ~ lm., 

(3.5) 

where il; = il;,n.' Since J is compact, we can extract a subsequence of the 
sequence iI;, which we still denote by iI;, such that il; -+ ii as k -+ 00 . Therefore, 
for any TJ > 0, there exists ko such that, for k ~ ko, we have, from (3.5), 

(3.6) 

Therefore, T.". (tn. - tdP.". Yn. -+ ii as nl; .-+ 00 and ii E w(B). Also, 

To(tdT.n. (tn. - tdP.". Yn. -+ To(tdii as nk -+ 00. 

On the other hand, 

Since, for any TJ> 0, there exists no such that, for nk ~ no, 

it follows that TO(t1)T.n• (tn. - tdP .... Yn. -+ Y as nl; -+ 00. As a consequence, we 
have To(tdii = Y and the theorem is proved under hypothesis (Hd. 

Let us now suppose that (H 2 ) is satisfied. We show that, for y as in the proof 
of part (i) and, for any t1 > 0, there exists fJ E ws(B) such that TO(t 1 )ii = y. Let 
t1 > 0 be fixed. For any t, t - t1 ~ to, T.(t - tdP.B is contained in the bounded 
set B 1. Therefore, from the condition (2.2bis), for any TJ1 > 0, there is a positive 
number lO = lO(TJ1, t1), such that, for 0 < l ~ {o, for x E B, 

Since To( -t1)Z is continuous in z at z = Y, for any TJ2 > 0, there exists a positive 
number 00 such that 

(3.8) 

Choosing TJ1 = 00 /3 in (3.7) and using the fact that 
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we can find an integer no such that, for n ~ no, we have 

(3.9) 

From (3.9) and (3.8), we deduce that, for n ~ no, 

(3.10) 

This implies that l~n (tn - tt)p(nYn - To( -tt)y as n - 00 . 

Thus, To( -t1)Y E ws(B) and the theorem is proved. 

13 

Remark 3.4. The second part of the theorem also is true if the hypothesis (HI) 
is replaced by the following one: 

(H3) there is a positive time t1 such that To(t) is compact for t ~ t1 . 

Remark 3.5. If the hypothesis (HI) of Theorem 3.3 holds, then, since ws(B) is 
closed and invariant under To(t), we conclude from the asymptotically smoothness 
of To(t) that ws(B) is compact. 

We now want to present some situations where ws(B) = wo(B). As a direct 
consequence of Theorems 3.2 and 3.3, we have the following result. 

Corollary 3.6. Let B be a bounded set in Yo. Suppose that To(t) is a CO_ 
semigroup on Yo and that the w-limit set wo(B) == Ao(B) of B with respect to 
To(t) exists, is nonempty and attracts B . If the hypotheses of Theorem 3.3 are 
satisfied and ws(B) C B, then 

ws(B) = Ao(B) . 

Proof. From Theorem 3.2, we have ws(B) J Ao(B). From Theorem 3.3, 
To(t)ws(B) = ws(B) for all t ~ O. Since ws(B) C Band Ao(B) attracts B, 
by invariance of ws(B), it follows that ws(B) C Ao(B). This completes the proof. 

Theorem 3.7. Let B be a bounded set in Yo and suppose that To(t) is a CO_ 
semigroup on Yo and that the w-limit set wo(B) == Ao(B) of B with respect to 
To(t) exists, is nonempty and attracts B . If, moreover, (2.2bis) holds and either 

o 
Ao(B) cB (the interior of B) or Ao(B) attracts also a neighborhood of B, then 

ws(B) = Ao(B). 

In particular, if To(t) has a global attractor A o, if Ao c Band (2.2bis) holds, 
then 

ws(B) = Ao . 
o 

Proof. We prove the theorem only in the case where Ao( B) CB, since the proof in 
the other cases is similar. From Theorem 3.2, we know that ws(B) J Ao(B) . Since 
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o 0 

Ao(B) eB, there exists 1/0 > 0 such that, for 0 :::; 1/ :::; 1/0, NYo(Ao(B), 1/) eB. Let 
us show that, for 0:::; 1/ :::; 1/0" ws(B) e NYo(Ao(B), 1/). Since Ao(B) attracts B, 
for any 0 < 1/ :::; 1/0, there exists a positive time TO = To(1/, B) such that 

(3.11) To(t)B e NYo(Ao(B), ~) for t ~ TO. 

By (2.2bis), there exists a positive constant {o = (0(1/, B, TO) such that, for 0 :::; 
{ :::; Co, for y E B, 

(3.12) 

From (3.11) and (3.12), we conclude that 

(3.13) 

Since T.(t)P.B e B for TO :::; t :::; 2To, we can apply again the above argument 
with T.(To)P.B. By a recursion argument, we then show that 

(3.14) 

which implies that 

(3.15) 

Since (3.15) holds for any 1/, 0 < 1/ :::; 7]0, we conclude that ws(B) e Ao(B). This 
completes the proof of the theorem. 

In the case where each of the semigroups, including the one for { = 0, has a 
global attractor and the rate at which it attracts a bounded set is exponential and 
uniform in (, we do not gain much additional information by considering the set 
w(B); that is, we may as well consider the limits of the attractors. This concept 
becomes more important when there is no global attractor for the semigroup at 
{= o. 

4. A parabolic equation on thin domains. 

In this section, we obtain the analogues of Sections 2 and 3 for a parabolic 
equation on thin domains. At first, we define carefully the thin domains Qf over 
a bounded domain 0 E rn.n , n = 1, 2, with a smooth boundary. Suppose that {o 
is a positive number and 9 : n x [0, co] - R is a function of class C3 satisfying: 

(4.1) 
ag -

g(X,O) = 0, go(X) = at (X, 0) > 0 for X E 0, 

g(X, t) > 0 for X En, t E (0, to] . 
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For 0 < ( ~ (0, let Q( be the domain 

(4.2) Q( = {(X, Y) E R2 : 0 < Y < g(X, (), X E n} 

and denote by v( the outward normal to GQ(. Choose tJ > 0 so that Q = n x (0, tJ) 
contains Q( for 0 < ( ~ (0 . 

For 0' a positive constant and G* a function belonging to W 1 ,OO(Q), we con­
sider the equation 

(4 .3) Ut - Llu + au = -f(u) - G* in Q( 

with the boundary conditions 

( 4.4) 

The function f : R --> R is a C 2-function satisfying 

(4 .5) 

(4 .6) 

. - f(x) 
hm sup --- ~ 0'0 < 0', 
Ixl-+oo x 

1f"(x)1 ~ c(l + Ixl")') for x E R 

where 0 ~ , < +00 if n = 1 and 0 ~ , ~ 1 if n = 2. 
The hypotheses on 0' , G* and 9 could be weakened, but we avoid additional 

technicalities by imposing them. 
In the remainder of this section, we suppose that n = 2. The modifications 

tha t are necessary for n = 1 will be clear. If we transform coordinates to the 
canonical domain Q = n x (0, 1) by letting X = x, Y = g(x , ()y, we obtain the 
system 

(4 .7)< Ut+L(u+O'u=-f(u)-G; inQ 

with the boundary conditions 

where 

(4.9) 

au 
-~- == B(u . V = 0 in GQ , 
UVB, 

G;(x, y) = G*(x, g(x, ()y), 

v is the unit outward normal to GQ and L( is the operator: 

( 4.10) 
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where 

(4.11) 

We also need to write the equation (4 .7)., (4 .8). as an abstract evolutionary 
equation. For notation, we let II.IIo,Q, II .IIt,Q and II .lb ,Q denote respectively the 
classical norms in L2(Q), H1(Q) and H2(Q) . For 0 < f. ~ f.o,we let H. = X2 be 
the space £2(Q) endowed with the norm II· IIH, induced by the inner product 

The hypothesis (4.1) implies that there are positive constants ClI C1 (independent 
of f.) such that cdlullo,Q ~ lIullH, ~ C111ullo,Q for any u E L2(Q). To rewrite the 
equation (4.7)., (4.8)., we need the bilinear form a.(-,·) on (Hl(Q))2 (which is 
derived from the form: 

by the change of variables in going from Q. to Q): 

where C!/2 is the gradient operator on Hl(Q) : 

It is well known that a.(·,·) defines an unbounded linear operator A. on Hl(Q) 
which is selfadjoint on H., positive, A. = L. + o:I with homogeneous Neumann 
boundary conditions, and V(A!/2) ~ Hl(Q). By the definition of A!/2, we have, 
for all u E Hl(Q), the following relation : [a.(u, u)]1/2 = IIA!/2uIIH,. Furthermore, 
the conditions (4.1) on g imply that there are constants C2 , C2 such that 

For s = 0,1,2, let X: be the space D(A:/2) endowed with the norm lIulix. 
IIA:/2ullH,. From [9, Appendix AD, we have ' 
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With this notation, the equations (4 .7)" (4.8), are equivalent to the abstract evo­
lutionary equation 

(4.13), Ut +A,u = -feu) - a;. 

We remark that the function f : u E Hl(Q) I-> feu) E £2(Q) is a Cl_ 
mapping. We compare the problem (4.7)" (4.8), with the following problem on 
0: 

(4.7)0 

where ao = a·(x, 0), with the boundary conditions 

(4.8)0 ~: = 0 in 00 . 

As above, we let Ho = xg be the space L2(0) endowed with the norm II ·IIHo 
induced by the inner product 

By hypothesis (4.1), the norm 11·IIHo is equivalent to the classical norm 1I·lIo,n 
of L2(0). We also introduce the bilinear form ao(·, .) on (Hl(0))2 : 

The form aoh .) defines an unbounded linear operator Ao on Hl(O) which is 
selfadjoint on Ho, positive. We have Hl(O) ::::::: D(A~/2), 

2 ov 
D(Ao) = {v E H (n) : all = 0 on 00}, 

and Ao = _-1-_&& (gO-&&' ) - -1-_&& (gO-&&' ) + aI with homogeneous Neumann 
90 XI XI 90 Xl Xl 

boundary conditions. As above, for s = 0,1,2, we let xg be the space D(A~/2) 
endowed with the norm IIvllx~ = IIA~/2vIIHo. 

With the above notation, the abstract evolutionary equation corresponding 
to the problem (4.7)0 , (4 .8)0 is 

( 4.13)0 Vt +Aov = -f(v) - a~, 

The problems (4.13), have been studied in detail in [9] . Let T.(t) (resp. To(t)) be 
the semigroup generated by (4.13). on xl (resp . (4.13)0 on xJ) . 
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The family of maps {T,(t), t 2: O,} is, of course, also asemigroup on Hl(Q). 
In this section, we will define w( B) in the latter topology. In order to avoid 
confusion, we repeat the definition for this case. 

Definition 4.1. For a given set B C Hl(Q) and a given set S C IR+ with ° E 5, 
the w-limit set of B with respect to the family of semigroups T,(t) , t > 0, t E S, 
is denoted by ws(B) and is defined in the following way: a point Uo E ws(B) if 
and only if there are sequences {tn } C s, {tn } C [0, 00), {un} C B such that 
tn --+ 0, tn --+ 00, T'n (tn)un --+ Uo in Hl(Q) as n --+ 00. 

We define the operator M : Hl(Q) --+ Hl(O) by the relation 

(Mr,o)(x) = 11 r,o(x, y) dy for x E 0 and for any r,o E Hl(Q) 

We will need the following property which is proved in [19]. 

Proposition 4.1. Let to be any fixed positive number. For any bounded set 
U C [to, 00) X Hl(Q) and any T} > 0, tllere exists a positive number to = to(T}, U) 
such that, for t E S n N(O, to), and (t, uo) E U, we have 

(4.14) IIT,(t)uo - To(t)Muollx: < T}. 

Moreover, for any positive constant r, there is a positive constant 1(1' ) depending 
only on r such that, ifsup<pEB IIr,oIlHl(Q) < r, then, for Uo E B, for t > 0, 

(4.15) tIlT,(t)uo - To(t)Muollx~ :::; (1(r)e K (r)t . 

Theorem 4.2. For any bounded set B in Ht (0), we have: 
1. The set ws(B) is contained in Hl(O) , is illvariant under To(t) and ws(B) :J 

Ao(M B) == wo(M B) . 
. 0 

2. If we assume moreover that either Ao(M B) is contained in B or Ao(M B) C B 
attracts also a neighborhood of M B, then 

(4.16) ws(B) = Ao(M B) . 

In particular, if we assume that B contains the global attractor Ao ofTo(t), then 

ws(B) = Ao. 

Proof. Let to be a fixed positive number. Let us first show that ws(B) is 
contained in Hl(O); in particular , the point.s in ws(B) do not depend upon y. 
By [19], for any TO > 0, there exist a posit.ive constant r = r(B, f, TO) and a 
bounded set 8B in Hl(Q) such that, for t E SnN(O, to) and all Uo E B, we have 

(4.17) 
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and 

(4.18) 

If Uo E Hl(Q) n ws(B) and Uo ft Hl(O), then Uo ::f; Muo and lIuo -
M UOIlL~( Q) ::f; O. We will obtain a contradiction to this statement by showing 
that, for any 1] > 0, we have 

(4.19) 

Since Uo E ws(B), there are sequences {fn } C S n N(O, fO), {t n } C [0,00), 
tn ~ to, {Un} C B such that fn --+ 0, tn --+ 00, Tf,,(tn)Un --+ Uo in Hl(Q) as 
n --+ 00. Thus there is an integer no such that, for n ~ no, we have IITf .. (tn)un -
uolh.Q ~ 1]/3. Therefore, 

( 4.20) 

lIuo - MuoIlL~(Q) 

~ lIuo - Tf .. (tn)un IIL2(Q) + IITf .. (tn)Un - MTf .. (tn)unIlL~(Q) 

+ IIM(Tf .. (tn)un - UO)IIL2(Q) 
2 

~ '31] + IITf .. (tn)un - MT(" (tn)Un ll£2(Q) . 

From Lemma 3.1 of [9] and from (4.17), we deduce that, for 0 < (n ~ (0, 

Thus, choosing an integer nl ~ no such that C(nr < 1]/3 for n ~ nl, we obtain 

(4.21) 

From (4.20) and (4.21), we infer (4.19) with the conclusion that Uo E Hl(O). 
Let us now show that ws(B) is invariant under To(t). If Vo E ws(B), there 

are sequences {in} C S n N(O, iO), {tn } C [0,00), {Un} C B such that .in --+ 

0, tn --+ 00, T,,,(tn)un --+ Vo in Hl(Q) as n --+ 00. Fix t > O. For any 1] > 0, 
there exists a positive number 6 > 0 such that, if IIVl - VOIlHl(O) $ 6, then 
IITo(t)Vl - To(t)voIlHl(O) < 1]/2. There exists also an integer no = no(6) such 
that , for n ~ no, we have IITfJtn)un - VOIlHl(Q) < 6 and, since Vo = Mvo, 
IIMT,Jtn)un - voIIHl(O) < 6. As a consequence of this inequality, we obtain 

( 4.22) 

On the other hand, from (4.15), we have 
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Fix t > O. As a consequence of (4.22) and (4.23), we can choose nl > no(o) such 
that, for n > nl, 

IITo(t)vo - Tf .. (t)Tf .. (tn)UnIlHl(Q) < 1/. 

This shows that To(t)ws(B) C ws(B). 
We now need to show that, if Vo E ws(B), then To(-t)vo E ws(B). The 

sequence To(t)MTf .. (tn - 2t)un has a subsequence (which we label the same) 
which converges to a point Vo E Hl(O). From (4.15), we know that 

Therefore, Tf .. (tn - t)un - Vo in Hl(Q) as n - 00 . Hence, Vo E weB). Using 
the estimate (4.15), we see that To(t)MTf .. (tn - t)un - Vo in Hl(Q) as n - 00. 

On the other hand, since Tf .. (tn - t)un - Vo in Hl(Q) as n - 00, we have that 
To(t)MTf .. (tn - t)un - To(t)Mvo = To(t)vo. Therefore, Vo = To(t)vo E ws(8) 
and ws(B) is invariant. 

One proves as in Theorem 3.7, with very minor changes, that ws(B) C 
Ao(MB). 

It remains to show that ws(B) :J Ao(M B). If Vo E Ao(M B), there are 
sequences tn - 00, Vn E M B such that To(tn)vn - Vo as n - 00 . Let to > 0 be 
fixed. For any integer m, there exists an integer nm such that, for n ~ nm , we 
have 

(4.24) 

Since Vn EM B, there exists Un = Vn + Wn in B such that MUn = Vn. By (4.15), 
there is an {n ... E S, (n m - 0 as m - 00, such that 

(4.25) 

Therefore, we have 

(4.26) 

which implies that Vo E ws(B) and completes the proof. 

Remark 4.3. As in Definition 1.1, we can introduce the limit 

In [9], we have proved that the attractors Af are upper semicontinuous at ( = o. 
Therefore, as in Proposition 2.1, one shows that 

(4.27) ws(A.) C Ao. 
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In [9], we have shown also that UeEsAe is contained in a closed, bounded ball in 
H2(Q). Therefore, the hypothesis (i) of Proposition 2.3 holds and one can show, 
as in Proposition 2.3, that ws(A .) is invariant under To(t). 

If all of the equilibrium points are hyperbolic, then, by [19], the at tractors 
Ae are lower semicontinuous at ( = 0, which implies, by Proposition 2.2, that 
ws(A.) = Ao. 

If we assume that S = (0, co), then it is easy to verify that all of the hypothe­
ses of Proposition 2.4 are satisfied. Thus, ws(A.) is connected. 

5. A damped wave equation on thin domains. 

In this section, we obtain the analogues of Sections 2 and 3 for a hyperbolic 
equation on thin domains. We keep the notation of Section 4. In particular, we 
consider the same thin domain Q,. But now, for a and j3 positive constants, we 
consider the damped wave equation: 

(5.1) Utt + j3Ut - ~u + au = -f(u) - G* in Q, 

with the boundary condit.ions 

(5 .2) ~u = 0 in 8Qe, 
VI/e 

where f and G* are the functions introduced in Section 4.1. In particular, f 
satisfies the conditions (4.5), (4.6) wit.h I < 1 if n = 2. If we make the change of 
variables X = x, Y = g(x, f)Y which transforms Q, into the canonical domain Q, 
we obtain the system 

(5 .3), Utt + j3Ut + LeU + au = -f(u) - G; in Q, 

with the boundary conditions 

(5.4), ~8u == B, u . 1/ = 0 in 8Q, 
VI/B, 

where Le, Be, G; are given in (4.10), (4.11) and (4 .9). As in Section 4, we intro­
duce the operator Ae and the spaces X:, s = 0,1,2. For s = 1,2, we also define 
the space Y/ = D(A:/2) x D(A~'-I)/2) endowed with the norm 1I(<p,1I»lIy. = 
<l1<p1li-: + 111I>1I~:_1)1/2. Clearly, Y/ is isomorphic to lJl(Q) x L2(Q) and Y/ is 

isomorphic to {<p E lJ2(Q) : ...!!:L&& = 0 in 8Q} x Ifl(Q). 
VB, 

With this notation, the equations (5.3)., (5.4)" with initial data 
(<p, 11» E Y/, are equivalent to the abstract evolutionary equation 

(5.5). Utt+j3Ut +A,u= -f(u) -G;. 



22 Jack K. Hale and Genevieve Raugel 

We compare the problem (5.3)(, (5.4)( with the following problem on 0: 

(5.3)0 

with the boundary conditions 

(5.4)0 
av 
all = 0 on 00 . 

As in Section 4, we introduce the operator Ao and, for s = 0,1,2, the spaces 
xg. For s = 1,2, we also define the spaces Yo' = D(A~/2) X D(A~·-1)/2) endowed 
with the norm II( <p, 1/1 )lIy. = (1I<p1I~. + 1I1/111x2 .-1 )1/2. Clearly, Y01 is isomorphic to 

o 0 0 

H1(0) x L2(0) and Y02 is isomorphic to {<p E H2(0); ~ = 0 on aO} x H1(0) . 
With this notation, the abstract evolutionary equation corresponding to the prob­
lem (5.3)0, (5.4)0 is 

(5.5)0 Vtt + f3Vt + Aov = -f(v) - Go· 
The problems (5.5)(, for 0 ~ { ~ to, have been studied in detail in [12]. Let 

T(t) (resp. To(t)) be the semigroup generated by (5.5)< on Y/ = xl x x~ (resp. 
by (5.5)0 on Y01 = Xa x xg). 

At first, we recall the following results from [12]. 

Proposition 5.1. Fix f30 > 0, (o > 0 and suppose that f3 2: f30 and 'Y < 1. For 
any ro > 0, there is a constant Co(ro) such that, for 0 < C ~ Co , the solution 
U(t) = (u(t), uW)) of (5.5)< with 11U«O)lly,' ~ ro, satisfies, for t 2: 0, 

(5.6) IIU«t)lIy.1 ~ Co(ro) . 

If, in addition, 0 satisfies hypothesis (H) of [12], then: 

(1) There exist a constant K > 0 and, for any rl > 0, r2 > 0, two positive 
constants I<i (rt) , IQ(r1' r2) such that, for 0 ~ ( ~ Co, any solution U«t) of (5.5)< 
with IIU(O)lIy.; ~ r., i = 1, 2. satisfies, for t 2: 0, 

(5.7) lIu:t(t)II~~ + 11U«t)IIY.~ ~ Ki(rt} + K;(rl, r2)e- Kt . 

(2) There is a constant f{3 such that, for 0 ~ C ~ Co, we have 

(5.8) 

where A< is the global attractor of (5.5)< in Y/. 

(3) There is a positive constant c and, for any r > 0, there is a posi­
tive constant k(r) such that, for 0 ~ C ~ Co, any solution U«t) of (5.5)< with 
11U(O)IIY.~ ~ r satisfies, for t 2: 0, 

IIU(t) - To(t)MU(O)II~, ~ (c + 11(1 - M)U(O)II~, )k(r)ek(r)t . . 
~ cck(r)ek(r)t 

(5.9) 
11U(t) - To(t)MU(0)lIk1(Q)xL~(Q) ~ (c + 11(1 - M)U(O)II~.,)k(r)ek(r)t 

~ c{k(r)ek(r)t. 
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Let S,(t) be the semigroup on Y,l generated by the linear equation 

(5.10), 

with initial data (u(O), u,(O» = Uo E Y,l. Let ~~ be the first eigenvalue of Ao and 
let b be any positive number satisfying 

(5.11) O b < . (f!. 3~~ J3~~) 
< - mID 8' 4{3' 8 . 

In [12, Lemma 2.2], it is proved that, for 0 $ { $ to, for t ~ 0, 

(5.12) 

In [12, Proof of Theorem 3.4], we also have shown that, for 0 $ { $ to, for t ~ 0, 

(5.13) 

where C2 , C2 are positive constants. 
Let (J be a real number, 0 $ (J $ 1, and let [Y,2, Y/]e = [X;, Xl]e x [Xl, xnl 

be an interpolation space between Y? and Y,l. Thanks to (5.12) and (5.13), there 
exist two positive constants C.,c. such that, for 0 $ {$ to, 0 $ (J $ 1, t ~ 0, 

(5.14) 

We also will need the following auxiliary result. 

Lemma 5.2. There is a positive constant Co and, for any r > 0, there is a positive 
constant ko(r) such that, for 0 $ { $ to, any solution U'(t) == (u'(t), u:(t» of 
(5.5), with 11U'(O)lIy.' $ r satisfies, for t ~ 0, 

(5.15) IIA;1/2(uHt) - V,(t»IIH. + lIu'(t) - V(t)IIH. 

$ co({ + IIA;1/2(u:(0) - V,(O»IIH. + lIu'(O) - V(O)IIH.)eko(r)' , 

where (v(t), v,(t» == To(t)MU'(O). 

Sketch of the proof. The proof is very similar to the proof of the estimate (5.9) 
(see [12, Proposition 5.1]). For this reason, we are not going to give the entire 
proof. We only point out two arguments which are not contained in [12] . In the 
proof of (5.15), one needs the following two estimates. At first, by (4.12), we can 
write 

(5.16) 

On the other hand, we have the following estimate: 
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IQ (1 + Ivl")'+! + luEIHI )luE - vllwldzdy 
~C SUp 

tIIEX: IIA!/2wIIH. 

~ CiluE 
- VilH. (1 + IIvlllt(~+I)(Q) + IIuElllt~+I)(Q»' 

which implies that 

(5.17) 

where kl(r) is a positive increasing function of r, independent of (, for 0 ~ ( ~ (0. 

Let us now consider the limit set w. We can consider TE(t) as a semigroup 
on HI(Q) x L2(Q) and, in the definition of w(B), we will use the topology of 
HI(Q) x L2(Q). We may always define w(B) for any bounded subset of Bl(O) x 
L2(0), but are not able to consider an arbitrary bounded set in Hl(Q) x L2(Q). 
The precise definition is as follows. 

Definition 5.1. Let S C lR+ be a given set such that 0 E S. For fixed positive 
constants Cl and (0, let W = {Wf, ( E S, ( ~ (o} be a collection of sets Wf in 
(I - M)Y/ such that 

(5.18) 

For a given bounded set B in Hl(O) x L2(0), the w-limit set of B with respect to 
the family of semigroups Tf(t), t > 0, ( E S, and the family of sets W is denoted 
by ws(B) = ws(B, W) and is defined in the following way: a point Uo E ws(8) if 
and only if there are sequences { (n } C S, {tn } C [0, 00), { Un = Vn + Wn } with 
Vn E B, Wn E Wf",such that (n -- 0, tn -- 00, Te,,(tn)Un --> Uo in Bl(Q)xL2(Q) 
as n -- 00. 

Theorem 5.3. Assume that 0 satisfies the hypothesis (1I) of [12J and let W be 
a family of sets as in Definition 5.1. For any bounded set B in Bl(O) x L2(0), 
we have 

1. For any sequences {(n} C S, {tn } C [0,00), {Un = Vn + Wn } with 
Vn E B, Wn E We", such that In -- 0, tn --> 00, the set Un>oT, .. (tn)Un is 
precompact in Hl(Q) x L2(Q) and all limit points belong to Hl(O) x L2(0). 

2. The set ws(B) is contained in YOl, is invariant under To(t) and ws(B) :::) 
Ao(B) = wo(B). 

3. Finally, if B contains the global attractor Ao ofTo(t), then 

(5.19) w(B) = Ao. 

Proof. We give the proof in the case n = 2. The case n = 1 is similar and even 
simpler. If we set 

(5.20) 
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then the variation of constants formula implies that the solution T(t)Uo of (5.5)( 
can be written as 

(5.21 ) T(t)Uo = S(t)Uo + l' S,(s)[F(T,(t - S)Uo) + g.]ds. 

To prove Part 1, it is sufficient to show that, for every 6 > 0, there is an 
integer n6 such that Un>n6T,,, (tn)Un is covered by a finite number of balls in 
y1 == H1(Q) X L2(Q) of radius 6. 

Let 6 > 0 be given. Thanks to the estimate (5.12), there is a time Tl > 0 such 
that, for any £ E S,£::; £0, and any Uo = Vo+ Wo, Vo E B, Wo E We , the Y/ norm 
and the y1 norm of S(t)Uo are less than 6/8 for t ~ Tl. Therefore, if we choose an 
integer n6 such that tn ~ Tl for n ~ n6, we obtain the same bounds for S(" (tn)Un 
for n ~ n6 . As a consequence, it remains to cover Un~n6 f~" S,,, (s)[F(T(" (tn -
s)Un) + g(,.lds by a finite number of balls in y1 of radius 6/4. 

Since, by (4.6) and (5.6), U,~o , n~o(F(T(" (t - s)Un) + g(,,) is bounded in y1 
by a positive constant which is independent of £, we deduce from (5 .12) that there 
exists a positive time Tl such that, for t ~ Tl, 

If we further restrict n6 so that tn ~ Tl for n ~ n6, then we conclude that the 
proof of Part 1 will be complete if we show that 

T~ 

Un~n616 S,,, (s)[F(T(" (tn - s)Un) + g,Jds 

can be covered by a finite number of balls in y1 of radius 6/8. 
We introduce a method of interpolation to define the spaces 

and [UI (Q), U~(Q)]8 = Lr(Q) where.! = ..!. + 1-8, 1 < q2 < q1 < +00. 
r 91 9l -

It is shown in [12] that there is a positive constant C such that, for 0 ::; £ ::; £0, 

IIUlly; ::; CIiUlly; for i = 1,2, where y2 = H2(Q) X H1(Q). Therefore, by 
interpolation, we have 

(5.22) 



26 Jack K . Hale and Genevieve Raugel 

where y8 = Hl+8(Q) X H9(Q). 
We now introduce the linear mapping 

T : (u, u~, (l/f)uy) E (V(Q))3 1-+ U E V(Q). 

We know that T is a bounded linear mapping from (L2(Q»3 to xl and from 
(L6/5(Q»3 to X~ with a norm less than some constant C independent of f. 

Therefore, by interpolation, T is a bounded linear mapping from (Lr(Q»3 into 
[Xl, X~]I" where ~ = ~ + 5(1;9) = 5~28 and 

(5.23) 

If we let U~,,(t) = Te,,(t)Un = (u~,,(t),U~t(t», then, by the hypotheses made 
on the sequence Un and by the estimate (5.6), we know that there is a positive 
constant Co such that, for t ~ 0, n ~ 1, 

(5.24) 

We set q = 6/(,,( + 4). Since "( < 1, we have q > 6/5. We want to show that 

belongs to (£9(Q»3 and that there is a positive constant C1 such that, for t ~ 0, 
n ~ 1, 

(5.25) 

To show this, we observe that 

by the Sobolev embedding of Hl(Q) into L6(Q). In a similar way, we estimate 
the other terms in (5.25) . 

Since q > 6/5, there exists a real number 00 ,0 < 00 < 1, such that! = ~ + 
5(1;90 ). By (5.23), this remark and the estimate (5.25) imply that :F(Te" (t)Un) is 
uniformly bounded in [Ye:, Y/,.l80' Likewise, the hypothesis made on C* implies 
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that Qf" is uniformly bounded in [Yf:, Y/;.]8 0 and there exists a positive constant 
C2 such that, for t ~ 0, n ~ 1, 

(5.26) 

From the properties (5.14) and (5.26), we deduce that 

T~ 

111 6 Sf" (s)[.1'(Tf" (tn - s)Un) + Qf .. ]dsll(y.~ .. 'y.' .. lso :'5 c.c2Tl , 

which implies by (5.22) that there is a positive constant C3 such that, for n ~ 1, 

T~ 

111 6 Sf" (s)[.1'(Tf" (t n - s)Un) + Qf..]dsllyso+l :'5 C3 . 

T~ 
Therefore, Un~n6 fo 6 Sf" (s ) [.1'(Tf" (tn - S )Un) + Qf..lds belongs to a bounded set 
of y 8o+l and hence to a compact set of yl . As a consequence, this set can be 
covered by a finite number of balls in yl of radius 6/8. 

We can extract subsequences {fnk } C S, {t nk } C [0,00), {Unk = Vnk + Wnk } 
such that Tf"k (tnk)Unk == (unk(t), Unkt(t» converges to an element Uo = (UOl, U02) 

in yl. Let us now show that Uo belongs to Hl(O) x L2(0). 
For any 6 > 0 there exists an integer n6 such that, for n ~ n6, 

(5.27) 

However, by Lemma 3.1 of [9], we have 

(5.28) IIUOl - MUodIL~(Q) 

:'5 211u Ol - Un. (tn. )lIp(Q) + lIun• (tn.) - M Un. (tn. )IIL~(Q) 

:'5 211 u Ol - Un. (tn. )IIL~(Q) + Cfn• IIun• IIXI . .... 
Thus, from the estimates (5.24),(5.27) and (5 .28), we deduce that, for any 6 > 0, 
IIUOl - MuodIL~(Q) :'5 6, which implies that UOl belongs to £2(0) n Hl(Q) and 
thus to Hl(O). We also have, for n ~ n6, 

IIU02 - MU0211L~(Q) 

:'5 211u02 - Un.t(tnk)IIL~(Q) + lIun.t(tn.) - MUnkt(tnk)IIL~(Q) :'5 

6 
'2 + IIun.t(tn.) - MUnkt(tn.)lIp(Q) . 

By Lemma 3.1 of [9], for 0 :'5 f :'5 fO, for U E X;, i = 0,1, we have lIu -
M UIlL~(Q) :'5 Cfillullx;. Therefore, by interpolation, we obtain, for U E [Xl, X~]80' 
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lIu - MuIlL2(Q) $ Cc/lollull[x!.x!'l.o' Using the variation of constants formula 
(5.21), as well as the estimates (5.12), (5.14),(5.24), (5 .26), we obtain 

We now choose m6 such that m6 ;:: "6 and, for";:: m6, 2Cov'3e-~tn +f~OCC2 $ 
{) /2. As a consequence, we have proved that, for any {) > 0, IIU02- M u02I1L2(Q) $ b, 
which implies that U02 belongs to L2(0). This completes the proof of Part 1 of 
the theorem. 

We have just shown that ws(B) is included in Yolo Let us now show that 
ws(B) is invariant under To(t) . If Uo E ws(B), then there exist sequences { fn } C 
S, {tn } C [0,00), {Un = Vn + Wn } with Vn E B, Wn E W t .. , such that fn -+ 

0, tn -+ 00, Tt" (tn)Un -+ Uo in Hl(Q)xL2(Q) as" -+ 00 . Let to > ° be given . The 
sequence {T,,, (tn -to)Un }n~ 1 is precompact and so there is a subsequence "1; -+ 00 
such that Cn. -+ 0, Tt n • (tn. - to)Un• -+ Uto in Hl(Q) x L2(Q). Let us show that 
To(to)Uto = Uo. To this end, we are going to show that To(to)Uto - Uo is as small 
as we want in the norm of L2(0) x D(Aol). If U = (Ul,U2) E YOl, we introduce 
the mappings Pl E .c(YOl, Hl(Q», P2 E .c(YOl, L2(Q» as PlU = Ul, P2U = U2 . If 
Uto = (Utol' Uto2), we can write 

(5.29) IlPl(To(to)Uto - UO)IIL'(Q) $ 

IlPl(To(to)Uto - To(to)MTt". (tn. - to)Un.)IIL2(Q) 

+llPl (To (to)MTt". (tn. - to)Un. - Tt n • (to)Tt n • (tn. - to)Un.)IIL'(Q) 

+IIPl(Tf ... (tn. )Un• - UO)IIL'(Q)' 

Since To(to)U is continuous in YOl at Uto and MTf ". (tn. - to)Un• converges to 
MUto in Yol, there exists an integer "6 such that, for "1; ;:: "6, the first term in 
the right hand side of (5.29) is less than b/3. We also can choose n6 such that, 
for "" ;:: "6, the third term in the right hand side of (5.29) is less than b/3. By 
the estimate (5.15) of Lemma 5.2, we can write 

(5.30) 

+llPl(T, ... (to)T, ... (tn. - to)Un• - To(to)MT, ... (tn. - to)Un.)IIL2(Q) 

$ C(cn• + IIA;-.~/2 P2(I - M)T, ... (tn. - to)Un.IIH .... 

We remark that 

(5.31) 
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(U-MU,W)H. (u-Mu,w-Mw)H 
SUp = SUp • 

wEX! IIA!/2wIIH. wEX! IIA!/2wIIH. 

From the estimates (5.30), (5.31), (5.24) as well as from Lemma 3.1 of [9], we infer 
that 

IIA;-.. ~2 P2(T( ... (to)T( ... (tn. - to)Un. - To(to)MT( ... (tn. - to)Un. )IIL'(Q) 

+llPl(T(". (to)T(". (tn. - to)Un• - To(to)MT(". (tn. - to)Un.)IIP(Q) 

(5.32) 

Thus, from (5.32), it is clear that we can choose the integer n6 such that, for 
n ~ n6, the second term in the right hand side of (5.29) is less than fJ13. 

It remains to show that 

(5.33) 

We can write 
(5.34) 

IIAol P2(To(to)Uto - UO)IIL'(O) ~ II(Aol - A;-n~ )P2(To(io)Uto - UO)IIL'(Q) 

+ IIA;-n~ P2(To(to)Uto - Uo)IIL'(Q) . 

Thanks to [9, Lemma 4.5] and to the estimate (5.24), we obtain 

(5.35) 

To estimate the last term in (5.34), we note first that 

(5.36) 

~ IIA;-,,~ P2(To(to)Uto - To(to)MT(n. (tn. - to)Un.)IIL'(Q) 

+IIA;-"l. P2(To(to)MT(". (tn. - to)Un. - T(n. (to)T(n. (tn. - iO)Un.)IIL'(Q) 

+IIA;-n~ P2(T(n. (tn. )Un. - UO)IIL'(Q) . 

One shows easily that there exists a positive constant C such that, for 0 ~ f ~ fO, 

for hE H(, 

(5.37) 

Since MT(n. (tn. - to)Un• converges to MUto in YOI and To(to)U is continuous 
in Yd at Uto , we conclude from (5.37) that there exists an integer n6 such that, 
for nk ~ n6, the first term in the right hand side of (5.36) is less than fJ I 4. 
Likewise, we can choose n6 such that, for nk ~ n6, the third term in the right 
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hand side of (5.36) is less than 6/4. Finally, from the estimates (5.32), (5.34) to 
(5.37), we deduce that we can choose n6 such that, for nk ~ n6, the estimate 
(5.33) holds. This shows that ws(B) C To(to)ws(B). In the same way, we have 
To(to)ws(B) C ws(B) and so ws(B) is invariant under To(t). Since ws(B) is 
a bounded subset of YOI and is invariant under To(t), it follows that ws(B) is 
contained in the global attractor Ao and, in particular, is a bounded subset of Yo2 . 

It remains to prove that ws(B) contains the set Ao(B) == wo(B). If Vo = 
(vot. V02) E Ao(B), then there exist sequences tn - 00, Vn == (vnt. Vn2) E B such 
that To(tn)Vn - Vo in Yl. In particular, for any integer m, there exists an integer 
nm such that, for n ~ nm, 

(5.38) 

By Lemma 5.2, the estimate (5.31) and the Lemma 3.1 of [9], we can write, for 
0< f ~ fO, for any W in (I - M)y(l with IIWlIy.' ~ CI , that 

IIA;I/2 P2(To(tn)Vn - T.(tn)(Vn + W»IIH. + 

IIPI(To(tn)Vn - T.(tn)(Vn + W»IIH. 

~C(f + IIA;I/2 P2WIIH. + II PI WIIH.)e Kot • ~ CfeKot ,. , 

where Ko and C are positive constants, independent of f. Therefore, we can 
construct a sequence f n .. E S converging to 0 and choose Wn .. E W ...... such that 

(5.39) 
IIA; .. ~2 P2(To(tn .. )Vn .. - T( .... (tn .. )(Vn .. + Wn .. »IIH ..... 

+ II PI (To(tn .. )Vn .. - T ..... (tn .. )(Vn .. + Wn .. »IIH ..... ~ 3~ . 

From Part 1, there is a subsequence nm • of the sequence nm such that 

converges to an element V* in yl and V* belongs to Yol o We shall show that 
Vo.= V* by proving that 11V0 - V*IIL2(o)xD(A;1) is as small as we wish . We can 
wrtte 

11V0 - V*IIL2(O)XD(A;1) ~ CIiVo - To(tn ... )Vn ... IIYJ 

+II(Ail l - A;l )P2To(tn ... )Vn ... IIL2(q) -.. .. 
+CIIPI(To(tn .... )Vn .... - T( .... (tn .... )(Vn .... + Wn .... »IIH .... . 

+CIIA;L. P2(To(tn ... )Vn ... - T( .... (tn ... )(Vn ... + Wn ... »IIH .... . 

+CIIT( ..... (tn .... )(Vn ... + Wn ... ) - V*IIYl , 
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which, by (5.38), (5.35), (5.39) and the convergence ofT, ..... (tn ... )(Vn ... + Wn ... ) 

to V·, implies that 11V0 - V·IIL~(n)XD(Aol) is as small as we want. This completes 
the proof of Part 2. 

If B contains the global attractor Ao of To(t), then, by Part 2, we have 
ws(B) :J Ao. Since ws(B) C Ao, (5.19) holds and the theorem is proved. 

Remark 5.1. We have not found any simple condition implying that ws(B) = Ao 
when the set B does not contain Ao. 

Remark 5.2. As in Definition 1.1, we can introduce the limit 

ws(A.) = n6>oCIH1(Q)XL~(Q) UtES, 1'1<6 A, . 

In [12], we have shown that the attractors A, are upper semi continuous at l = O. 
Therefore, as in Proposition 2.1, we prove that ws(A.) c Ao. If all of the equilib­
rium points are hyperbolic, then, by [13], the at tractors A, are lower semicontin­
uous at l = 0, which implies, by Proposition 2.2, that ws(A.) = Ao. 

Using the properties (5.8) and (5.9) of Proposition 5.1, we can show as in 
Proposition 2.3 that ws(A.) is invariant under To(t) . 

Finally, if we assume that S = (0,60 ), then it is easy to verify that, as in 
Proposition 2.4, the set ws(A.) is connected. 

6. Limits with first integrals. 

In order to illustrate the difference between the set ws(A.) and the set ws(B), 
we give some simple examples of evolutionary systems for which the limit equation, 
as a parameter approaches zero, has a first integral. 
6.1. A retarded delay equation. As a first example, consider the family of retarded 
differential difference equations 

(6.1) xCi) = -(1 + l)l(x(i)) + I(x(i - 1)) , 

where l ~ 0 is a parameter, I E Cl (R, R) , there is positive constant 6 such that 
f'(x) ~ 6 for all x, and 1(0) = o. 

A solution x(t) of (6 .1) is a continuous function on [-1,0),0 ::> 0, which 
is continuously differentiable on (0,0), has a right hand derivative at t = 0 and 
satisfies (6 .1) on [0, 0). If Yo = e([-I, 0], R), then, for t.p E Yo, a solution x(t) of 
(6.1) with initial data t.p at t = 0 satisfies the relations 

(6 .2) 
x(t) = t.p(0) + l' [-(1 + f)l(x(s)) + I(x(s - 1)) ds, t ~ 0, 

= t.p(t) , -1 ~ t ~ O. 

In [3], it is shown that (6 .2) has a unique solution defined on some interval 
[-1,0) , 0 ::> O. We show later that 0 = (x). If we define (T,(t)t.p) (0) = x(t + 
0), -1 ~ 0 ~ 0, then T,(t) , t ~ 0, is a CO-semigroup on Yo if all solutions are 
defined for t ~ O. 



32 Jack K. Hale and Genevihe Raugel 

Our first assertion is that, for any ( ~ ° and for any bounded set B C Yo, the 
positive orbit "tt(B) = Ut>oT(t)B is defined and bounded. In fact, let 8(0, r) 
be the closed ball in Yo of radius r and center 0. If W(x) = x2/2 and x(t + 0) = 
(T«t)<p)(O) for 0 E [-1, 0], then 

(6.3) W(x(t» = -(x(t)/(x(t» - x(t)/(x(t» + x(t)/(x(t - 1». 
If <p E 8(0, r) and there is a time to such that T(to)<p E 88(0, r), then Ix(to+O)1 ~ 
Ix(to)1 for 0 E [-1, 0]. Since 

(6.4) x(f(x) - fey»~ = (x 2 - xy) rl /'(y + sex - y»ds Jo . 
for all x, y E JR, it follows that x(to)/(x(to» ~ x(to)/(x(to - 1». From (6.3), this 
implies that W(x(to» ~ -(x(to)/(x(to» ~ 0. Thus, the solution cannot leave 
8(0, r)j that is, T(t)8(0, r) C 8(0, r) for all t ~ 0. This proves that "tt(B) is 
defined and bounded if B is bounded. In particular, it implies that T(t), t ~ ° is 
a CO-semigroup on Yo. 

Thanks to the above assertion and to (6.1), if <p E 8(0, r), then x(t) is 
uniformly bounded for t ~ 0. This fact, together with the Arzela-Ascoli Theorem 
imply that T,(t) is a compact map for t ~ 1. As a consequence, for any ( ~ ° and 
any bounded set B C Yo, the w-limit set w(B) of B with respect to T(t) is a 
compact invariant set of T(t). 

We can even say more. If we define the maps 

S(t)<p(O) = <pet + 0) - <p(0), t + 0 < 0, 

= 0, t + 0 ~ 0, 

U,(t)<p(O) = <p(0), t + 0 < 0, 

11+8 

= <p(0) + 0 [-(1 + c)/(x(s» + /(x(s - 1» ds, t + 0 ~ 0, 

where xes) = (T(s)<p)(O), then U(t) is a compact map for each t ~ 0 and, for 
any fJ > 0, there exists a constant K = K(fJ) such that IIS(t)1I ~ J( e-{3t for t ~ O. 
Since T(t) = Set) + U(t), it follows that T(t) is asymptotically smooth. 

We have shown that (Ht) of Theorem 3.3 is satisfied. It is not difficult to 
show from (6.2) that condition (2.2bis) is satisfied as well . If S = (0,1), then it 
follows from Theorem 3.3 that ws(B) is invariant under To(t). 

Since T(t)8(0, r) C 8(0, r) for t ~ 0, c ~ 0, it follows that 

ws(8(0, r» C 8(0, r). 

As a consequence, all of the conditions of Corollary 3.6 are satisfied. Therefore, 
we conclude that, for any r > 0, ws(8(0, r» = Ao(8(0, r» == wo(8(0, r» . 

We next discuss w(<p) for any <p E Yo and any c ~ 0. For c = 0, it is shown 
in [2, Example 3.3] that, forany <p E Yo, wo(<p) is an equilibrium point. It is clear 
that any constant function satisfies the differential equation 

(6.5) x(t) = - /(x(t» + /(x(t - 1», 
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and equation (6.5) has the first integral 

(6.6) 

On each level set V-l(c), there is a unique equilibrium solution e(c) of (6.5) 
given by the unique solution of the equation e + f(e) = c. If we linearize about 
any equilibrium point of (6.5), then it is easy to verify that all eigenvalues have 
real parts ~ 0 and that the only eigenvalue on the imaginary axis is 0 and it is 
a simple eigenvalue. Since wo( <p) belongs to the set of equilibrium points and lies 

on V-l(C,+,), c,+, = <p(0) + J~l f(<p(O))dO, it follows that wo(<p) = e(c,+,), and e(c,+,) 
is uniformly asymptotically stable relative to the set V-l(c,+,). From this fact, we 
deduce that To(t)1V-1(c) has the global attractor {e(c)}. If B is an arbitrary 
closed bounded set in Yo, then, for any <p E B, there is a unique c(<p) such that 
<p E V-l(c(<p)). It follows that wo(B) == Ao(B) = I(B), where I(B) = {e(<p) : 
<p E B}. 

Now suppose that ( > O. In this case, (6.1) has a unique equilibrium point 
o. We want to show that wf(<p) = {OJ for each <p E Yo. Let q = qf > 1 be a fixed 
constant such that (- (q - 1) > O. If Ix(t - 1)1 < qlx(t)l, then (6.3), (6.4) imply 
that W(x(t)) ~ -6«( - (q - l))x2(t). From [3, Theorem 4.2, Chapter 5], we see 
that the origin of (6.1) is uniformly asymptotically stable and wf(<p) = {OJ for all 
<p E Yo. These properties imply that the attractor Af = {OJ for every ( > o. As a 
consequence, ws(A.) = {OJ, whereas ws(B) is generally much larger. 

If we assume that f is analytic, then we can assume only that f is a non­
decreasing function and obtain the same results as above. We outline the proof. 
It is based on a simple invariance principle in [2, Theorem 2.1]. It is not diffi­
cult to show that W(x(t)) ~ 0 for Ix(t)1 ~ Ix(t + 0)1. 0 E [-1,0] implies that 
W(Xt) == max9E[-1,O) W(x(t + 8)) is a non increasing function of t. Therefore, 
W(Xt) approaches a constant as t - 00. Since wf(<p) is an invariant set, it follows 
that, for any t/J E wf(<p), we have W(XI) = W(t/J), where x(t) is the solution of 
(6.1) with initial data t/J at t = O. This implies that max9E[_1,O)lx(t + 0)1 is a 
constant for all t E IR. If f is analytic, then x(t) is an analytic function [17]. If 
X(tM) is a point where this maximum is attained, then X(tM) = 0 and, from (6.1), 
for any integer k ~ 1, we deduce that dkx(tm)/dt k = o. Thus, x(t) is a constant 
function. This shows that wf(cp) E E, the set of equilibrium points of (6.1). For 
( > 0, 0 is the only equilibrium point and it is easy to verify that it is uniformly 
asymptotically stable. This is enough to assert that Af = {O} . For ( = 0, we have 
Ao(B) = I(B) as above. 

6.2. A n ordinary differential equation. Suppose that ( > 0, l' > 0,0 < a < 1/2, are 
constants, f( u) = u(l- u)( u - a), and consider the system of ordinary differential 
equations 

(6.7) 
i. = f({) - TJ 

r, = ('Y{ - TJ)· 
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We fix the parameters a and 1 so that (6.7) has exactly three hyperbolic 
equilibrium points Pj = (ef, TJf),j = 1,2,3, with 0 = er < eg < eg, 0 = TJ? < 
TJg < TJg· We fix fO > 0 small enough so that, for 0 < f ~ fO, the points P}, P3 

are stable and P2 is a saddle point with a one dimensional unstable manifold. To 
see that this can be done, let A?j and (e~, TJ?j)' i = 1,2, be the eigenvalues and 
corresponding eigenfunctions of the linearization of (6.7) near the equlilibrium 
point Pj, j = 1,2,3. A few computations reveal that, as f - 0, 

A~2 = f'(eg) + O(f), TJ?2 = (f f'~~) + O(f2»e?2' 

AO = f 1- f'({~) + O(f2) 0 (f'('O) O( »,0 22 f'(e~) , TJ22 = "2 + f"22 , 

where f'({~) and f'(e~) - 1 are positive. For j = 1,3 (the stable equilibrium 
points), we have 

A~j = f 1 ;,[;j~f), TJ?j = (f'({f) + O(f»erj 

Agj = f'(ef) + O(f), TJgj = (f f'~f) + O(f2»{gj , 

where f'({f) is negative. 
We now show that equation (6.7) has a global attractor A. for each f > O. If 

we define V(e, TJ) = ~ (lel2 + ITJI2) , then it is not difficult to show that the derivative 
of Vee, TJ) along the solutions of (6.7) is ~ -ae - ~712 outside the ball of radius 
r. and center zero if r. is sufficiently large. This implies that the system (6.7) 
is bounded dissipative and thus has a global attractor A •. We also remark that 
the curve TJ = fee) divides the plane lR? into two regions R+ (resp. R_) where 
fee) - TJ has constant sign + (resp. -). Let 6 now be a small positive number and 
let U6 be the c5-neighborhood of the curve '1 = !(f.). If (f., '1) E 1R? \ U6, then { > c5 
(resp. ~ < 6) if (e, TJ) E R+ (resp. R_). From this observation, we deduce that 
each solution (e(t), TJ(t» of (6 .7) must enter U6 and stay in U6 after a finite time, 
depending, of course, on the initial data (e(O), TJ(O». Notice that, for some data 
({(O), '1(0» in U6, ({(t), TJ(t» will leave U6 for some to > 0, but will enter again 
in U6 and stay there after some tl > to. From all of the above considerations, we 
conclude that every solution (e(t), TJ(t» of (6 .7) stays in U6 nB. after some positive 
time, where B. is a bounded set. As a consequence, for 0 < l ~ lO, the solution 
must either lie on the stable manifold of P2 or belong to the basin of attraction 
of either P l or P3 . This shows that the system is gradient-like and thus At is the 
union of the unstable manifolds of the equilibrium points; more specifically, it is 
the closure of the unstable manifold of the saddle point P2 • 

If l > 0, it is easy to build positively invariant rectangles for (6.7). Let 
em < eM be the points such that teem) (resp. f(eM» is a local minimum (resp. 
maximum). Let ao, bo, Co, do be real numbers such that ao < er, bo > eg, Co ~ 
f(em), Co < 1ao, do ~ !(eM), do > 1bo, and f(ao) - do ~ 0, lebo) - Co ~ o. We 
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consider the rectangle Bo == B(ao, bo, Co , do,) = {(~,'7) : ao ::; ~::; bo,co::; '7::; 
do}. A simple phase plane analysis shows that, for every ( ~ 0, the vector field 
(6.7) points into Bo on the boundary 8Bo, which implies that Bo is positively 
invariant under the flow defined by (6.7) (see Figure 1). Furthermore, for any 
( > 0, the w-limit set of B is a proper subset of Bo. 

We next discuss the behavior of the unstable manifold Wl"(P2) of P2. Fix 
110 > 0 and II > 0 small and consider the line segment near P2 defined by I~ v = 

0 , 

{(~ , '7) : ~ = ~~ - 110, '7 E ['7~ - II, '7~ + II]} . Let tr be such that tr < ~r and 
f(tr) = '7~; fix 6 > 0 smaller than ~~ - 110 - tr and choose II so small that the 
line segment IJ v = {(~, '7) : ~ = tr + 6, '7 E ['7~ - 211, '7~ + 211]} does not intersect 
the curve '7 = i(~) . A simple analysis of the vector field of (6.7) shows that there 
are (0 and a time TO > 0 such that, for 0 < ( ::; (0 , each solution with initial data 
in I~ v must intersect n v in time less than TO . As a consequence, W;'(P2 ) must 

0 , 0 , 

intersect IJ,v for 0 < ( ::; (0 if (0 is sufficiently small. Since 6 and II are arbitrary 
(as well as 60 ), we conclude that the limit of W l"(P2 ) as ( - 0 must contain the 
line segment {(~ , '7) = (~, '7g) : tr ::; ~ ::; ~~} . Continuing with similar analysis, 
we conclude that, as ( - 0, the set W l"(P2 ) approaches the curve consisting of 
the union of the three curves 

C1 == {(~, '7) = (~, f(~)) : tr ::; ~ ::; ~n, 
C2 == {(~, '7) = (~, '7g) : tf ::; ~ ::; t~} , 

C3 == {(~, '7) = (~,J(~» : ~g ::; ~ ::; t~ }, 
where tr < ~r (resp . t~ > ~g) is such that '7~ = f(tr) (resp. '7g = f(t~)) · 
Thus, if So = (0, (0], then wSo (A.) is the union of these curves. 

Let us now consider what happens when (; = O. In this case, the system (6.7) 
has a first integral given by W(~, '7) = '7. For any fixed constant c, the flow on 
the surface W- 1 (c ) is given by the scalar equation 

(6 .8) i. = f(~) - c. 

For each fixed c, there is a global attractor AS of (6.8) which consists of one point 
if iel is large and is a line segment otherwise (see Figure 2). For any bounded set 
Bern?, the attractor Ao(B) for (6.7) for (; = 0 is given by 

(6.9) .Ao(B) = {.Ag: Bn W-1(c):I 0}. 

It is obvious that condition (2.2 bis) is satisfied . Theorem 3.2 implies that 
W So (B) :J Ao( B) for every bounded set B in m? Without some further restrictions 
on B, this is the most that we can say. As noted above, for every ( ~ 0, the 
rectangle Bo = B(ao, bo, co, do) is positively invariant under the flow defined by 
(6 .7) . Therefore, wSo(Bo) C Bo. Since the conditions of Corollary 3.6 are satisfied , 
it follows that Ao(Bo) = wSo(Bo). (See Figure 3 for the comparison of the sets 
wSo(Bo) and wso(A.)) . We see that wSo(Bo) captures enough of the transient 
dynamics for ( > 0 in order to reproduce the corresponding attractor for (; = O. 
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Let eM < eP (resp. em > eg) be the point such that !(eM) = !(eM) (resp. 
!(em) = !(em)) and let Bo be the closed set delimited by the four curves 

CJ = He, 71) = (e, !(e»,eM :5 e :5 em} 
C5 = He, 71) = (e,J(em»,em:5 e:5 em} 
cg = He, 71) = (e,!(e»,em:5 e:5 eM} 

cci = He, 71) = (e,J(eM)), eM :5 e :5 eM} 

By a simple phase plane analysis, we can show more generally that, if B is a closed 
bounded set containing Bo and satisfying the property that B n W-l(C) ::> Ag, for 
any C for which Bn W-l(c) :I 0, then wSo(B) = Ao(B) C B. Since the conditions 
of Corollary 3.6 are satisfied, it follows that wSo(B) = Ao(B) (see Figure 3). 

A nonlinear PDE. With the same restrictions as imposed on (6.7) in the 
previous example and for a given constant C > 0, we consider the system of 
equations, called the FitzHugh-Nagumo equations 

(6.10) 
Ut=CUzz+!(U)-v 

Vt = c( "}'U - v) , ° < x < 1 , 

with the boundary condition 

(6.11) U z = ° for x = 0, x = 1 . 

The initial data is taken in the space X = Hl(O, 1) X £2(0, 1) (or £2(0,1) x 
£2(0,1)). 

Let T f ,6(t) be the semigroup generated by (6.10), (6.11). It is possible to 
show that T f ,6(t) is asymptotically smooth (it is actually an a-contraction) and 
has a global attractor A f ,6 (see, for example, [16]). We remark that a solution 
(u(t), v(t» E A f ,6 is defined and bounded for all t E IR. Therefore, the function 
v(t) must satisfy the equation 

As a consequence, the function v E Hl(O, 1) and A f ,6 C Hl(O, 1) X Hl(O, 1). 
Using the regularity theory of parabolic equations and the above integral expres­
sion for v(t), we deduce that A f ,6 C H2(0, 1) X H2(0, 1). This implies that A f ,6 

belongs to a bounded subset of Cl(O, 1) x Cl(O, 1). Let us now consider (6.10), 
(6.11) in the space Cl(O, 1) x C1(0, 1). The rectangle Bo = B(ao, bo, Co, do) in­
troduced in the previous example is an invariant rectangle under the flow defined 
by (6.10), (6.11); that is, if the initial data belongs to Bo, then the solution re­
mains in Bo for all t ~ 0. Furthermore, no invariant set can lie on the boundary of 
Bo. This implies that, for any Co > 0, there exists a positive number ro such that 
Uf>o 6>6oA f 6 C Bro ' the ball in Cl (0, 1) X Cl (0, 1) of center ° and radius roo From , - , 
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this fact, we deduce that, for any £ > 0, 6 ~ 60 , I ~( Uo, VO)IIH1(0, l)xHl(O, 1) ~ TO if 
(uo, vo) E A f ,6 . 

Let us now consider what happens when £ = 0. In this case, the system 
(6.10) , (6.11), has a first integral given by V(u, v) = v; that is, for any given 
initial data (<p, 1/;) E X,the solution (u(t, x), v(t, x)) of (6.10), (6.11), for £ = 0, 
satisfies v(t, x) = 1/; for all t ~ 0. On the set V-l(1/;), the dynamics of the flow is 
determined by the scalar parabolic equation 

(6.12) Ut = 6uzz + J(u) - 1/; 

with the boundary condition (6.11). Equation (6.12) has a global attractor for 
each 6> 0, 1/; E L2(0, 1). 

Let 
- 1 1 Bo = {(uo, vo) E H (0, 1) X H (0, 1) : (uo(x), vo(x» E 

B(ao, bo, Co, do), x E [0, 1]'II(uo, VO)IIH1(0 , I)XH1(0, 1) ~ TO}. 

We now can apply Corollary 3.6 to see, for example, that Ao,6{Bo) = wso,6(Bo). 
For any bounded set B E Hl(O, 1) X L2(0, 1), we always have Ao,6{B) C wso ,6{B). 

Let us describe the attractor in more detail for the diffusion coefficient 6 very 
large. This is the same as taking a thin domain Q(around a point which has the 
special shape obtained by rescaling x in Qf . For 6 very large, we claim that the 
attractor A(,6 = A(, the attractor for (6.7) . To prove this claim, we introduce the 
notation 

u = e + u, e = i 1 
u dx 

v = 1] + V, 1] = 11 V dx . 

The system (6.10) can be written as 

(6.13) 

e = J(e) - 1] + i 1 F(e, u) dx, 

iJ = £('Ye - 1]), 

Ut = 6u.,., + F(e, u) - 11 F(e, u) dx - v, . 

Vt = -£V + £'Yu , 

where F(e, u) = J(e +u)- J(e). Let TO be the constant given above which bounds 
uniformly in £,6 the attractors A(,6 in Hl(O, 1) x Hl(O, 1). Using arguments 
similar to the ones in [14], we can show that there is a constant 61 > 0, such that, 
for 6 ~ 61 , there are constants f3( 6) > 0, ko > 0, f3( 6) -+ 00 as 6 -+ 00 such that, 
for ° ~ £ ~ £0 and initial data (uo, vol satisfying lI(uo, VO)IIH1(0 , I)XH1(0,1) ~ TO, 

we have the following estimates for the solutions of (6 .10), (6.11): 

(6.14) 
1 

lIu(t)IIH1(0, 1) ~ ko(e-~tlluoIlHl(O, 1) + f3(d) e-~tllvoIlHl(O, 1» 
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(6.15) 

for all t > O. 
Rel;tions (6.14), (6.15) imply that, for any l > 0 and for initial data (uo, vo) 

satisfying lI(uo, VO)IIHl(O,1)XHl(O,1) $; ro, the w-limit set of the solution must lie 
on the attractors A. of the ODE (6.7) provided that 6 ~ sup(60 , 6d, which proves 
our claim. 

For l = 0 and 6 ~ 60 , sufficiently large, the attractor for (6.10), (6.11) is the 

same as the attractor At of the equation 

(6.16) 

For any bounded set Be X, the attractor Ao,6(B) for (6.10), (6 .11) for l = 0 is 
given by 

Ao,6(B) = {At: 1j; = 11 1/I(Z) dz, 1/1 E B} 

for 6 ~ 60 (B) sufficiently large. 
As remarked above, for the set Bo, Corollary 3.6 implies that, for 6 ~ 60 , 

Ao,6(Bo) = wsoABo). 

6 .2. An ordinary differential equation. Suppose that l > 0, r > 0,0 < a < 1/2, are 
constants, I( u) = u(l- u)(u - a), and consider the system of ordinary differential 
equations 

(6 .7) 
i = I(e) - '1 

iJ = l( re - '1) . 

We show first that equation (6.7) has a global attractor A. for each f > O. We 
could do this by showing that the derivative of the function V(e, '1) = ~(leI2+ 17712) 
is negative on a ball ofradius r. and center zero if r. is sufficiently large . However, 
we prefer to use a different argument since it will be needed later. 

Let em < eM be the points such that f( em) (resp. f( eM» is a local minimum 
(resp. maximum). Let B == B(a, b, c, d, ) be the rectangle [a, b] x [c, d] with 
c $; min {/(em), raJ, d ~ max {/(eM), rb}, a $; e~, b ~ eg o A simple phase 
plane analysis shows that, for every l ~ 0, the set B is positively invariant under 
the flow defined by (6.7). Furthermore, for any f > 0, the w-limit set of B is a 
proper subset of B. Therefore, (6.7) has a global attractor A. for each f > O. The 
same type of phase plane analysis shows that, for every l ~ 0, the system (6.7) is 
gradient. . 

We now fix the parameters a and r so that (6.7) has exactly three hyperbolic 
equilibrium points Pj = (ef, 77f),j = 1,2,3, with 0 = e~ < e~ < eg, 0 = 77~ < 77~ < 
'1g. The points PIt P3 are stable and P2 is a saddle point with a one dimensional 
unstable manifold. The global attractor A. of (6.7), for each l > 0, is the union of 
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the unstable manifolds of the equilibrium points; more specifically, it is the closure 
of the unstable manifold of the saddle point P2 • 

We need to know more about the behavior of the unstable manifold for P2. 
To do this, we must first analyze the flow near the equilibrium points. Let A?j and 
({Pj , 7]pj ), i = 1,2, be the eigenvalues and corresponding eigenfunctions of the lin­
earization of(6.7) near the equlilibrium point Pj, i = 1,2,3. A few computations 
reveal that 

AY2 = !,({g) + O(i), 7]Y2 = 0(i){r2, 

Ag2 = O(i), 7]g2 = !,({g){g2 + O(i). 

as i -+ O. For i = 1, 3 (the stable equilibrium points), we have 

AYi = O(i), 7]rj = f'({J){rj + O(i) 

Agj = !,({g) + O(i), 7]gj = O(i){gj i = 1,3, 

as i --+ O. 
If we let W;'(P2 ) be the unstable manifold of P2 , then a simple phase plane 

analysis and the above local properties near the equilibrium points imply that, as 
i -+ 0, the set W;'(P2 ) approaches the curve consisting of the union of the three 
curves 

C1 == {({,7]) = ({r,7]): 7] = f({), (2':5 {:5 {r}, 

C2 == {({,7]) = ({,7]g): (2':5 {:5 (~}, 

C3 == { ({, 7]) = ({g, 7]) : 7] = f({), {g :5 { :5 (~ }, 

where (r < {~ (resp. (f > {g) is such that 7]~ = f«(2') (resp. 7]~ = f«(f))· 
Thus, if So = (0, iO], then wso(A.) is the union of these curves. 

Let us now consider what happens when i = O. In this case, the system (6.7) 
has a first integral given by W({, 7]) = 7]. For any fixed constant c, the flow on 
the surface W-l(c) is given by the scalar equation 

(6.8) i = f({) - c. 

For each fixed c, there is a global attractor A3 of (6.8) which consists of one point 
if lei is large and is a line segment otherwise (see Figure 1). For any bounded set 
Bern?, the attractor Ao(B) for (6.7) for i = 0 is given by 

(6 .9) Ao(B) = {Ag: Bn W- 1(c) # 0}. 

It is obvious that condition (2.2) is satisfied. Theorem 3.2 implies that 
wSo(B) :) Ao(B) for every bounded set B in rn? Without some further re­
strictions on B, this is the most that we can say. As noted above, for every i ~ 0, 
the rectangle B = B(a, b, c, d) is positively invariant under the flow defined by 
(6 .7). Therefore, wSo(B) C B. Since the conditions of Theorem 3.3 are satisfied, it 
follows that Ao(B) = wSo(B). See Figure 2 for the comparison of the sets wSo(B) 
and wso(A.). We see that wSo(B) captures enough of the transient dynamics for 
i > 0 in order to reproduce the corresponding attractor for i = O. 



40 Jack K. Hale and Genevieve Raugel 

A nonlinear PDE. With the same restrictions as imposed on (6.7) in the 
previous example and for a given constant d > 0, we consider the system of 
equations 

(6.10) 
Ut = duzz + f(u) - v 

Vt = (.('Yu - v), 0 < z < 1, 

with the boundary condition 

(6.11) U z = 0 for z = 0, z = 1 . 

The initial data is taken in the space X = HI(O, 1) X L2(0, 1). 
Let T"d(t) be the semigroup generated by (6.10), (6.11). It is possible to 

show that T"d(t) is asymptotically smooth (it is actually an a-contraction) and 
has a global attractor A,,6 (see, for example, [16]). We remark that a solution 
(u(t), v(t)) E A,,6 is defined and bounded for all t E lR. Therefore, the function 
v(t) must satisfy the equation 

As a consequence, the function v E HI(O, 1) and A,,6 C HI(O, 1) X HI(O, 1). Us­
ing the regularity theory of parabolic equations and the above integral expression 
for v(t), we deduce that A i ,6 C H2(0, 1) X H2(0, 1). This implies that A i ,6 belongs 
to a bounded subset of CI(O, 1) x CI(O, 1). Let us now consider (6.10), (6.11) in 
the space CI(O, 1) x CI(O, 1). The rectangle B = B(a , b, c, d) introduced in the 
previous example is an invariant rectangle under the flow defined by (6.10), (6.11); 
that is, if the initial data belongs to B, then the solution remains in B for all t ~ O. 
Furthermore, no invariant set can lie on the boundary of B. This implies that, for 
any do > 0, there exists a positive number ro such that Ui>O,d~do>oA,,6 C Bro , 

the ball in CI(Q, 1) x CI(O, 1) of center 0 and radius roo From this fact, we deduce 
that, for any (. > 0, d ~ do, lI(uo, VO)IIH1(0, l)xHl(O, I) ~ ro if (uo, vo) E A i ,6' 

Let us now consider what happens when (. = O. In this case, the system 
(6.10), (6.11), has a first integral given by V(u, v) = v; that is, for any given 
initial data (<p, 1/J) E X,the solution (u(t, z), v(t, z)) of (6.10), (6.11), for (. = 0, 
satisfies v(t, z) = 1/J for all t ~ O. On the set V- 1(1/J), the dynamics of the flow is 
determined by the scalar parabolic equation 

(6.12) Ut = duzz + f(u)-1/J 

with the boundary condition (6.11). Equation (6.12) has a global attractor for 
each d > 0, 1/J E L2(0, 1) . 

Let 
- 1 1 B = {(uo, vo) E H (0, 1) x H (0, 1) : (uo(z), vo(x)) E 

B(a, b, c, d), x E [0, 1], lI(uo, VO)IIH1(0, l)xHl(O, I) ~ ro}. 
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We now can apply Corollary 3.6 to see, for example, that Ao(B) = wso(8). For 
any bounded set BE Hl(O, 1) X L2(0, 1), we always have Ao(B) C wso (8). 

Let us describe the attractor in more detail for the diffusion coefficient d very 
large. This is the same as taking a thin domain around a point which has the 
special shape obtained by rescaling :r: in Ql ' For d very large, we claim that the 
attractor A l ,6 = A l , the attractor for (6.7). To prove this claim, we introduce the 
notation 

u = ~ + u, ~ = 11 u d:r: 

v = 1/ + v, 1/ = 11 v d:r: . 

The system (6.10) can be written as 

(6.13) 

e = J(~) -1/+ 11 F(~, u)d:r: 

r, = {(,~ -1/). 

Ut = dU.,., + F(~, u) -11 F(~, u) d:r: - v 

Vt = -{V + {,U , 

where F(~, u) = f(~ + ii) - f(~) . Let ro be a constant which bounds uniformly 
in {, d the attractors A l ,6 in Hl(O, 1) x Hl(O, 1). Using arguments similar to 
the ones in [14], we can show that there is a constant d1 > 0, such that, for 
d ~ d1 , there are constants f3( d) > 0, ko > 0, f3( d) --> 00 as d --> 00 such that, for ° ::; { ::; {o and initial data (uo, vo) satisfying lI(uo, VOIlHl(O,I)XH1(O,I) ::; ro, we 
have the following estimates for the solutions of (6.10), (6 .11): 

(6 .14) 

(6.15) 

for all t ~ O. 
Relations (6.14), (6.15) imply that, for any { > 0 and for initial data (uo, vo) 

satisfying lI(uo, VO)IIHl(O , I)XH1(O, I) ::; ro, the w-limit set of the solution must lie 
on the attractors Al of the ODE (6.7) provided that d ~ d1. Since we know that 
all of the attractors must have initial data with this bound, we have proved our 
claim. 

For { = 0 and d ~ do, sufficiently large, the attractor for (6.15) is the same 
as the attractor At of the equation 

(6.16) u=f(u)-1jJ, 1jJ= 11 1f;(:r:)d:r: . 
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For any bounded set B C X, the attractor Ao(B) for (6.10), (6.11) for l = 0 is 
given by 

Ao(B) = {Ai: ti; = 11 t/J(x) dx, t/J E B}. 

As remarked above, for the set 8, Corollary 3.6 implies that Ao(8) = wso(8). 

7. Linearly damped second order ODE. 

In this section, we consider the second order ordinary differential equation 

(7.1) 
u=v 
v=-/(u)-{3v, 

where {3 ~ 0 is constant, 1 E C2(JR, JR) has a finite number of simple zeros and 
- I( u) is dissipative; that is, 

limsup_/(u) ~ -20' < O. 
lul--<)O U 

(7.2) 

For {3 = 0, we have the conservative system 

(7.3) 
u=v 

v=-/(u) , 

with the first integral 

(7.4) V(u, v) = ~v2 + F(u), F(u) = 1u 
I(s) ds. 

For {3 > 0, (7 .1) is a gradient system and has a global attractor A,B. The 
equilibrium set E of(7.1) consists of the points (uo, 0) E rn? such that I( uo) = O. 
Since -lis dissipative, the set E is bounded. Since the zeros of 1 are simple, the 
set E is finite, each point in E is hyperbolic, each unstable point corresponds to 
a local maximum of the function F and has a one dimensional unstable manifold 
W3(uo, 0). Therefore, the attractor is one dimensional and is given by 

(7.5) 

We denote the set of saddle points by {Sj E E,j = 1,2, ... , M} . We 
say that the potential function F is generic if V(Sj) =F V(Sk) for j =F k, j, k = 
1,2, ... , M. 

To state our result, we need some notation. Let 'Cj be the connected compo­
nent of {(u, v) E JR2 : V(u, v) ~ V(Sj)} which contains Sj and let 

(7.6) - 2 -. Vj = Vj n {(u, v) E JR : V(u, v) ~ V(Sk), Sk E ltj, k =F J}. 

We remark that, if F is generic and if there is no Sk E 'Cj except Sj, then Vj is 
a region in the (u, v)-plane consisting of all points inside and on the figure eight 
defined by WJ'(Sj). 
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Proposition 7.1. If / is a C2-function with simple zeros, satisfies (7.2), F = 
Iou /(s) ds is generic, then, for S = (0, Po], 

(7.7) ws(A.) = {(u, v) E IR? : V(u, v) :$ CM }, 

where CM = max {V(Sj), j = 1, 2, ... , M}. More specifically, 

(7.8) 

Proof For P = 0, the set WO'(Sj) is called a sep~ratrixfor the flow defined by (7.3). 
If F is generic, then the curve defined by WO'(Sj) is a figure eight. Furthermore, 
each orbit of To(t) in the set "Cj \ U,. EVj WO'(SA;) is periodic. 

The first relation in (7.8) follows from the fact that V(If') :$ V(Sj) for If' E 
W;(Sj), P ~ 0. 

To prove the second relation in (7.8), we first suppose that there are no saddle 
points in "Cj \ WO'( Sj); that is, "Cj = Vj. Without loss of generality, we may assume 
that Sj = (0, 0) and that the two other equilibrium points in Vj are (6,0), (6,0) 
with 6 < ° < 6· The equilibrium points (6,0), (6,0) of (7.1) are stable foci if 
P is small. If we let Yjo = Vj \ WO'(O), then the set Yjo = U1 U U2, where U1 , U2 
are disjoint connected open sets containing respectively the points (~1' 0), (6,0), 
and the boundary of Yjo is a figure eight consisting of the set WO'(O), the unstable 
manifold of the saddle point (0,0) of (7.3). 

For P ~ 0, let Tp(t)(uo, vo) be the solution of (7.1) passing through (uo, vo) 
at t = 0. Suppose that (uo, vo) E U1 and suppose that the periodic orbit of (7.3) 
through (uo, vo) is fo of least period TO. For every P > 0, the closure of W;(O) 
contains the point (6,0). Since the function V(u,v) is continuous, there is a 
(uJ,vt) E W;(O) such that V(ul,vd = V(uo,vo) and there is a 0:$ tl :$ TO such 
that (uo,vo) = TO(tt}(Ul,Vl). For any TJ > 0, there is a Po> 0, depending only 
on TO, such that, for ° < P:$ Po, we have . 

This shows that ws(WU(O» contains the point (uo, vo). Using the same argu­
ment for the set U2 , we see that ws(W.U(O» contains each point of U2 . Thus, 
ws(WU(Sj» :J Vj. 

Now, we consider the case where there is exactly one other saddle point SA; in 
"Cj. If we let ijo ="Cj \WO'(Sj), then ijo = UIU(h where Ul, U2 are non empty open 

connected sets. For definiteness, suppose that SA; E U1 • Then WO' (SA;) is a figure 
eight in U1 which contains no other saddle points. From the first part of the proof, 
we know that wS(WU(SA;» :J VA;. Now suppose that (uo, vo) E (Vj nut> \ WO'(SA;) 
and fo is the periodic orbit ofTo(t) through (uo, vo). For every P > 0, the closure 
of W;(Sj) contains one of the equilibrium points in VA;. Now we may proceed 
exactly as in the first part of the proof to conclude that ws(WU(Sj» contains 
(uo, vo) . If (uo, vo) E (Vj n ( 2 ), then we proceed as in the first part of the proof 
to obtain the same conclusion. 



44 Jack K. Hale and Genevieve Raugel 

It is clear that this type of argument can be continued to complete the proof 
of (7.8). 

We remark that in general we may not have ws(WU(Sj)) = \tj. If V; \ WJ'(Sj) 
contains no saddle point of (7.3), then (7.8) implies that ws(WU(Sj)) = Vi . If 
V; \ WJ'(Sj) contains a saddle point S1: of (7.3) and M denotes the interior of 
the loop of WJ'(Sj) that does not contain S1: and min{V(<p) : <p E M} < V(SI;), 
then the above proof shows that ws(WU(Sj» :::> M and thus ws(WU(Sj» # Vi. 
Also, if L is the other loop of WJ'(Sj), then L contains WJ'(SI;). Since the interior 
of WJ'(SI;) must contain at least two equilibrium points of (7.3) for which each 
orbit in a neighborhood is periodic, it follows that L contains at least two stable 
foci for f3 > O. If the w-limit set of W;(Sj) n L is one of the stable foci, then 
ws(WU(Sj)) # Vi. 

The conclusion in Proposition 7.1 is the most that can be obtained by using 
the limit set ws(A.). If we use Corollary 3.6, we obtain information about the 
conservative system in a bounded set B by considering the set ws(B). In fact, if 
B(c) = {(u, v) Em? : V(u, v) ~ c}, then ws(B(c)) = B(c) since the set B(c) is 
invariant under the group To(t) defined by the solutions of (7.3) . 
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