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Dissipative Mechanical Systems
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Abstract: The dissipative mechanical systems are sec-
ond order vector fields on the tangent bundle of the configu-
ration space, a compact Riemannian manifold ; they are ob-
tained by the addition of a dissipative field of forces to a con-
servative one. The main results deal with generic properties
and structural stability of these mechanical systems.
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Logical scheme in Section 3:

Lemma 3.6 Prop. 3.3
Lemma 3.7 } = Prop. 3.5 = Prop. 3.4
Lemma 3.8 = Theor. 1.6

Lemma 3.11 => Lemma 3.10 => Lemma 3.9 = Theor. 1.5

0. Introduction.

The dissipative mechanical systems are second order vector fields on the tan-
gent bundle TM of a given compact Riemannian manifold M (see [1], p.19) and
are obtained by the addition of a dissipative field of forces to a conservative one.
The dissipative forces are velocity dependent and slow down the system in such
a way that the mechanical energy decreases along the non trivial integral curves,
making the non-wandering set a collection of singular points. Shashahani in 1972
started a geometric study of the dissipative mechanical systems [13]; later on, in
[3], 1986, dissipative systems with constraints were considered. The dissipative
mechanical systems are parametrized by a pair (V, D) where V, the potential
of the conservative forces, is a smooth real function defined on M and D is the
dissipative force. Among the dissipative mechanical systems there are the strongly
dissipative ones for which V' is a Morse function and D is a strongly dissipative
force i.e. satisfies a strongly dissipative condition (see Def. 1.3); they have very
simple properties that we will describe below.

There are two well known results in the geometric theory of dynamical sys-
tems (see [9], [14]); the so called theorem of Kupka and Smale ([7], [11], [14])
and the theorems of Palis and Smale ([8], [10]) on the structural stability of the
Morse—Smale systems (including gradient systems). We cannot apply directly the
theorems of Kupka and Smale presented in [7], [11] and also the results in [12] for
dissipative mechanical systems; the local perturbation arguments used to prove
these theorems are not valid since the class of dissipative systems is too small. On
the other hand, in spite of the fact that T'M is not compact, we will see, in the
last section, that many of the arguments used in [8] can be adapted to prove the
structural stability of a certain class of complete strongly dissipative mechanical
systems (see Theorem 1.7).

Later, Takens ([15], 1983) obtained other generic results on gradient systems
with a fixed Riemannian metric and on mechanical (conservative) systems in the
special case of zero curvature metric.

In many physical applications the ambient space where the evolution takes
place and the geometry of the system cannot be changed. Hence it is meaningful
to analyse properties of dissipative systems (V,D) where the friction forces D,
corresponding to the action of the ambient space and the Riemannian structure,
representing the geometry and distribution of masses, are fixed. One can also
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act on the system with small controlling forces or have situations with variable
conservative forces; hence the potential V' can be changed.

In the present paper the main results deal with generic properties and struc-
tural stability of dissipative mechanical systems. Theorem 1.4 proves that in the
case of strongly dissipative mechanical systems the non-wandering set consists
of hyperbolic singular points only and determines the structure of the invariant
manifolds.

The C"™-Whitney topology is introduced in the set of all strongly dissipative
mechanical systems with a fixed strongly dissipative force D (resp. with a fixed
potential V'); the Theorems 1.5 and 1.6 state that the collection of the strongly
dissipative ones such that the invariant manifolds are in general position is an
open dense subset. The Theorem 1.7 proves that the complete systems belonging
to these open dense sets are structurally stable.

In proving transversality, it is easy to put the invariant manifolds in general
position perturbing D and leaving fixed the potential V; as a matter of fact,
this follows from arguments used in the Kupka-Smale result for first order systems
(see [7], [9], [11]) together with the same result for general second order vector
fields (see [12], p.267). On the other hand, it is much harder to prove the generic
transversality of stable and unstable manifolds of the dissipative systems (V, D)
if we keep D fixed and allow only V to vary. This is due to the fact that no
perturbation of V is local on the tangent structure TM of M since if we
change V in some arbitrarily small open set w of M, it will still affect the
evolution of the system on the whole tangent space Tw of w. For more details
see the proof of Proposition 3.5.

1 - Statements of the Results

Throughout the paper (M,<,>) will be a C* compact connected Rie-
mannian manifold, without boundary. We call M the configuration space.
The C°° metric <,> defines the kinetic energy K : TM — IR by
K(vp) = 3 < vp,vp >, vp € T,M. The associated Levi-Civita[EQ covariant
derivative will be denoted by V. The motivation to introduce the Levi-Civita
connection is to enable us to express conveniently the Newton’s law which gov-
erns the evolution of our systems. A potential V isa Ct! function, r > 1,
V : M — IR and the mechanical energy is Eyv : TM — IR defined by
Eyv(v) = K(v)+ V(7m(v)), (TM,np, M) being the tangent bundle of M. Let
Opr  denote the zero section, that is, the set of all zero vectors of this vector
bundle and TM\Opn = (T'M), be the set of all non zero vectors. A C™ second
order vector field on T'M is a vector field X on T'M such that (drp)o X is
the identity mapping of TM where dmp : TTM — TM is the tangent mapping

of mpr.

Definition 1.1. A dissipative force D isa C*™ map D :TM — TM which
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preserves each fiber and such that < D(v),v> < 0 for all v € (TM),.

We easily see that if D is a dissipative force, then for all 0 € Op one has
D(0) = 0.

Definition 1.2. A dissipative mechanical system on the configuration space M
is a pair (V,D) ofa C™*! potential V and a C" dissipative force D, r > 1.
The pair (V,D) defines a second order C" vector field on TM (sometimes
also denoted by (V,D)). If z is a trajectory of (V,D) and q its projection
on M, then z=%§ = ¢ and q satisfies the equation

Vig = —(grad V)(q) + D(q)-

The curve t — q(t) € M verifying that law is called a motion and -grad V' is
called the conservative field of forces.

The equation above is just the statement of the Newton’s law on the manifold
M. Recall that grad V is the vector field on M characterized by:

dV(v) =< (grad V)(p),v> forall pe M and all v € T, M.

Let us denote by DM S the set of all vector fields X € C"(TM,TTM) such
that X is defined by a dissipative mechanical system (V,D) as in Definition
1.2.

It is useful to remark that the mechanical energy decreases along non trivial
integral curves of any mechanical system (V, D). In fact, we have:

SEVEW) = 515 <> +V(e0) =< D@, >

which shows that Ey decreases on all integral curves not reduced to a singular
point. Note also that the integral curves of the system are the derivatives of
the motions of the system and its singular points lie on the zero section Ojy.
Moreover Op € (T,M)N Oy is a singular point if, and only if, (grad V)(p) =0,
that is, p € M _is a critical point of V.

We recall that a function V € C™t!(M, IR) is said to be a Morse function
if the Hessian of V at each critical point is a non-degenerate quadratic form.
It is well known that the set of all Morse functions is an open dense subset of
C™+1(M,IR) with the standard C™+! topology.

Definition 1.3. A dissipative mechanical system (V, D) is said to be strongly
dissipative if V is a Morse function and D is a strongly dissipative force
i.e. satisfies the following additional condition: for all p € M and all w €
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(TM); NT,M one has < d,D(Op)w,w > < 0 where d,D denotes the
vertical differential of D.

Note that we assume V to be a Morse function for technical reasons only.
From now on we denote by SDMS the set of all X € DMS such that
X = (V,D) is strongly dissipative and by D the set of all strongly dissipative
forces.

Theorem 1.4. Let (V,D) be a strongly dissipative mechanical system. Then
the following properties hold:
(i) The singular points of (V, D) are hyperbolic.
(ii) The stable and unstable manifolds W*(O) and W“(O) of a singular
point O are properly embedded.
(iii) dim W*(QO) is the Morse index of V at m(O).
(iv) dim W*(0) < dim M < dim W?*(0).

Two submanifolds S; and Sz of a manifold F are said to be in general
position or transversal if either S; NS, is empty or at each point z € S; NS,
the tangent spaces 7,5, and 7T.,S, span the tangent space T, F.

Let us denote by SDMS(D) the set of all C” strongly dissipative mechan-
ical systems X = (V,D) with a fixed D. Analogously we introduce the set
SDMS(V).

All the subsets of DMS are endowed with the topology induced by the
C™-Whitney topology of C™(TM,TTM). This topology possesses the Baire
property (see [11], p.224, for a definition of the Whitney topology and the proof
of this fact).

Theorem 1.5. The set of all systems X in SDMS such that their stable and
unstable manifolds are pairwise transversal is open in SDMS.

Theorem 1.6. Assume dim M > 1 and r > 3(1 +dim M) and let G be
the subset of SDMS(D) (resp. SDMS(V')) of all systems X such that their
invariant manifolds are pairwise transversal. Then G is open densein SDM S(D)
(resp. SDMS(V)).

As usual we say that X € SDMS is structurally stable if there exists a
neighbourhood W of X (in the Whitney CT"-topology) and a continuous map
h from W into the set of all homeomorphisms of T'M (with the compact open
topology), such that:

1) h(X) is the identity map;
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2) h(Y) takes orbits of X into orbits of Y, for all Y € W, that is,
h(Y) is a topological equivalence between X and Y.
If the topological equivalence h(Y) preserves the time, that is, if X; (resp.
Y;) is the flow map of X (resp. Y) and h(Y)o X, =Y, 0h(Y) forall t € R,
then we say that h(Y) is a conjugacy between X and Y.
As we will see in Proposition 4.3 the subset of all complete C™ vector fields
of a manifold F is open in the set of all C™ vector fields with the Whitney
CT—topology.

Theorem 1.7. Any complete strongly dissipative mechanical system such that
all the stable and unstable manifolds of singular points are in general position is
structurally stable and the topological equivalence is a conjugacy.

The Theorems 1.6 and 1.7 have also the flavour of an interesting theorem
proved by D. Henry ([5]) for a dynamical system in infinite dimensions. On the
Sobolev space H} = H3((0,), R) he considered the following parabolic PDE:

du  d%u
o = oz MW

where f : IR — IR is a smooth function such that f(0) = 0, f/(0) = 1,
sf'(s) <0 if s# 0, and A is areal positive parameter.

Theorem (D.Henry). If /X is not a positive integer, then all stable and
unstable manifolds of the flow defined on H} by the PDE above are in general
position.

If in Theorem 1.7 we do not assume the mechanical system to be complete,
the same arguments used in the proof also show that the corresponding time one
map is a Morse—Smale map in the sense of [4], then stable with respect to the
attractor A(V, D), which in this case is the union of the unstable manifolds of
all singular points of (V, D).

Let us consider an example of a strongly dissipative mechanical system which
does not satisfy the conclusions of Theorem 1.6 in the sense that it does not
belong to G; it is the system which describes the motions of a particle (unit
mass) constrained on the surface M of a symmetric vertical solid torus of IR3
obtained by the rotation, around the =z-axis, of a circle defined by the equations
y=0 and z?+ (z—3)?> = 1. The potential V is proportional to the height
function of M and the dissipative force D is given by D(v) = —cv, ¢ >0, for
all v € TM. These data define a strongly dissipative mechanical system with
M as the configuration space. The metric of M is the one induced by the usual
inner product of IR® and the potential is a well known Morse function with four
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critical points. The symmetry of the problem shows that the unstable manifold
of dimension one of a saddle is contained in the stable manifold of dimension 3 of
the other saddle and hence they are not in general position since dim TM = 4.

A dissipative force D is said to be complete if, for any Morse function V,
the vector field associated to (V, D) is complete, that is, all of its integral curves
are defined for all time.

Let us consider a linear dissipative field of forces, that is, a function D
defined by

D(v) = —e(mp(v))v, forall veTM,

where ¢: M — IR is a strictly positive C" function. It is a simple matter to
show that D is a strongly dissipative force. We will show that D is complete.
If this were not the case, there would exist a smooth function V : M — IR and
a motion ¢t — ¢(t) of (V,D) whose maximal interval of existence is ]a, +oo[
with —co < @ < 0. We know that £ Ey(4(t)) =< D(4),§ > is negative and
also that

0<|<D(4),4>|< pldl* < 2u(Ev(q) + k)

where g > 0 is the maximum of the function ¢ on M and k = |v|, v being
the minimumof V on M (recall that M is compact). Forall {, o <t <0,
we may write

~2u(By (4) + k) < 5 Bv(@) = 3 (Bv(@) +8) <0

or

—dg:(?))::) > —2udt which implies Evy(¢) + k < (Ev(¢(0)) + k)e™ 24

and then Ey(¢(t)) is bounded and strictly decreasing, so that there exists
limy—,_ Ev(¢(t)) = L < 4o00.

This shows that |¢|? = 2(Ev(¢) — V(g(t))) is also bounded because V is
bounded; now it is immediate that we have a contradiction.

2 - Proof of Theorem 1.4.

Let p be apointof M and U an open neighbourhood of p in M such
that there exists a trivialization of TM over U, ie., ¢: a';,l(U) —UxIR™, m
being the dimension of M. Let z and v be the projections onto U and IR™.
The vector field associated to (V, D) has the following expression on U x R™:

dz
—_ =17

dt

% = —(grad V)(z) + D(z,v) — I'(z,v)v
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where I' : U x JIR™ — End(IR™) is the difference between the Levi-Civita connec-
tion and the trivial connection defined by ¢. Then, it is clear that the singular
points of (V, D) are the vectors Op € OxyNT, M such that (grad V)(p) =0. In
such a singular point, the linear part of the systemis L : T, M x IR™ — T, M x IR™
given by

where I : IR™ — T, M is the canonical isomorphism defined by the trivialization,
H is the Hessian of V at p and A is the vertical differential d,D(0,) of D
at Op. The first statement of Theorem 1.4 follows from the next lemma:

Lemma 2.1. Let L:R™ x R™ — IR™ x IR™ be a linear map given by

B 0
L = . _
-H A
with H symmetric, det H # 0, and A negative definite: (Av,v) <0 for all

v € IR™, ((, ) is the usual inner product of IR™). Then the eigenvalues of T
have non zero real parts.

Proof. If i # 0 (the case § = 0 is excluded otherwise H would have a zero
eigenvalue) is eigenvalue_gf L, thereexist u€ C™, u=y+iw #0, y,w € R™,
such that (i8)?u — (i8)Au+ Hu =0, or equivalently

{ —By+pfBw+Hy=0
—B*w - BAy+ Hw = 0.

The symmetry of H implies B[(Ay,y) + (Aw,w)] = 0, which is a contra-
diction. This proves (i).

The second statement of Theorem 1.4 follows from the fact that the energy
Ev decreases strictly along non trivial integral curves (see, for instance, [6] Th.
6.1.10). For the last two statements one considers a path of matrices:

[ 0 Id ] [ 0 Id]
b +(A-p | _  _|=
-H —Id -H A

0 Id
[ -7 —prd+(1—.u)Z] '
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Since —puls+ (1 — p)A is negative definite for all x4, 0 < u < 1, the
continuity of the spectrum enables us to consider the case

0 Id
N =
-H —Id

The eigenvalues A of N are given by

—-Ald Id
det —
-H —(1+A)Id
0 Id
det =1
—H—-XM1+XAId —(1+))Id

or, equivalently, by det[—H — uId] =0 where u = A(1 + A).

But, in the very beginning, we may assume that the trivialization is chosen
in such a way that —H is a diagonal matrix. Then, for each positive eigenvalue
pu of —H (the total number is the Morse index of V) corresponds a positive
root of N. Thus (iii) is proved. The proof of (iv) is now evident. H

3 - Proofs of Theorems 1.5 and 1.6

Although we do not need the next proposition for the proofs of Theorems 1.5
and 1.6 we present it for a sake of completeness.

Proposition 3.1. SDMS is an open dense subset of DMS.
Proof. Since the set of Morse functions if open and dense in C™+'(M, IR) and

<dyD(0p)w,w>< 0 on A={weTM||w| <1}

is an open condition one sees that the openess of SDMS is trivial. We only
have to prove the density. Given any neighbourhood of a vector field of DM S,
parametrized by (V, D), we construct a strongly dissipative force D, which is
equal to D—61 onthe compact set A and equal to D outside of a neighbourhood
of A, choosing a C° bump function and a small § > 0, properly. This and
the density of the set of Morse functions give the proof. WM

In the case of a fixed dissipative force we cannot prove the density statement
in Proposition 3.4 below for an arbitrary system because perturbing the potential
is not a local process on T'M. Hence we have to restrict ourselves to systems
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for which the projections on M of two distinct trajectories have few intersection
points. In fact it would be enough to consider the systems such that the projections
of the trajectories have few self intersections. More precisely, let X = (V, D) be
an element of SDMS. By a trajectory of X we understand a maximal solution.
Given two trajectories y: Ja_,+oo[ — TM,

z:]b_,4+00[— TM of X, wedenote by C(y,z) the set of all pairs (1,12) € IR?
such that a_ < t;, b < ta, y(t1) # z(t2) and =mp(y(t1)) = mar(z(t2)). Let
p=mmoy, ¢g=mpuoz The projection of the set C(y,z), that is the set
{p(t1) | (t1,12) € C(y, 2)}, is the intersection set of the projections p and ¢ of
y and z. The next proposition clarifies the structure of C(y, z).

Definition 3.2. Let X € SDMS. Then:
(i) We say that X has the property GI if, for any two non singular
trajectories, y:Ja_,+oo[ — M, z:]b_,400[ — M of X, the set
C(y,z) is discrete in the quadrant Ja_,+oo[ x Jb_,+oo[ of IRZ.
(ii) Wesay that X has the property GIW (weak GI) if, at any accumu-
lation point (t1,t2) of C(y,z), at least one of the points y(i,), z(t2)
lies on the zero section Opy of TM.

Proposition 3.3.
(i) If the dimension m of M is greater than 2 and r > 4m +5, for any
strongly dissipative force D € C™(TM,TM), there exists a Baire subset
GI(D) of SDMS(D) all of whose elements X have the property GI.
(ii) If the dimension m of M is greater than 1 and r > 3m+3, we havea
similar statement replacing GI by GIW and GI(D) by GIW(D).

Proof. For simplicity we shall assume r = co in the proof. But the proof is still
valid if we replace everywhere oo-jet by r—jet and “is flat” by “has zero r—jet”.
Let (t1,t2) be an accumulation point of C(y,2) in Ja_,+oo[ x
Jo—,+co[. Then p(t1) = q(t2). We have to distinguish several cases. First assume
that y(t1) # 2(t2). Then one of the vectors y(t,), z2(t2) is not zero. Permuting the
rolesof y and z if necessary, we can assume that y(t¢;) # 0. Weclaim there exist
an open interval é containing ¢ and a smooth mapping ¢ : § — IR such that the
oco—jets of ¢ and poo at i are equal. To see this, choose a coordinate system
zl,z%2,...,2™:0 — IR (m=dim M) in an open neighbourhood O of p(t,) such
that (z'op)(t) =t and z¥op=0 if 2<k <m, forall ¢ in an open interval
61 containing t;. There exists a sequence {(t)(n),t2(n)) | n > 1} in C(y,z)
converging to (f1,12). For all k, 2 < k < m, z* o ¢(ta(n)) = z¥ o p(t,(n)) = 0,
for all n > 1. Hence all the functions zFogq, 2 < k < m, are flat at {,.
o will denote the restriction of z'og to 8 and p the composition poo.
Then for any n > 1, o(t2(n)) = z! o' q(t2(n)) = z! o p(t;(n)) = t1(n) and
p(t2(n)) = p(a(t2(n))) = p(t1(n)) = ¢(t2(n)). So p and g have the same oo-jet
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at is.
As one easily sees, z(t2) = y(t1)o(t2),o(t2) = %(tg). We have already
assumed that o(f;) cannot be equal to 1. Now we shall distinguish three cases:

1) %(tg);él] or —1.

2) %’(z,).—_ i

3) %(iz) =0.

¢ and p satisfy the following relations:

Vip — D(p) + grad V(p) = 0, El
V4 — D(g) + grad V(q) = 0. E2
Since p and ¢ have the same oo—jet at {5, p satisfies the relation
Vip— D(p) +grad V(p) = A E3
where A is flat at 5.
— d?g

Explicitating E3, after setting ¢ = 45, we get:
o2(V;p)(o) + 6p(c) — D(op(0)) + grad V(p(s)) = A E4

In the first and second cases above, o is a local diffeomorphism at t,, that
is ¢ maps some open interval i3, diffeomorphically on the open interval o(é;)
containing f;. Set y = %’- oo~!:0(8;) = IR. Then E4 is equivalent to

x*(V;p) + xxp — D(xp) + grad V(p) = p E5

where u=Aoo~! isflat at ¢;.
Subtracting E1 from E5 we get:

(x? = 1)V;p + xxp + D(3) — D(xp) = p- E6

E6 is equivalent to an infinite sequence of conditions on the oo—jet of p,
obtained by equating the sucessive covariant derivates at ¢; on both sides of E6.
For this we need some notations. J¥(M, IR) will denote the space of k-jets of
mappings from M into IR, and J*(IR,0; R) will denote the space of all k—jets
at 0 of mappings IR — IR. Taking the n'® covariant derivative of E6 along
the curve p, we get for n > 0:

- n! d* 2 n—k+1- d* . n—k -
; Fi(n — k)1 [(F(x = 1)) V34 (g (0) V3 ”]
+ [do D(p) — xdo D(xp)]V;p
+Qulp, Vsbr- .., VI 15, jxe,) = Van

ETn
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where @, is a fiber-bundle mapping:

TM xp ... xp TM xJ*(R,0; R) — TM

B

n times

and x:, is the translate xi, (1) = x(t+11), where TM xp ... X3 TM means
a fiber product bundle. Deriving E1 covariantly n times along p we get:

Vpp=—-V""grad V(p,...,p)

E8n
+ Ra(p, grad V(p), Vgrad V(p),..., V" *grad V(p,...,p))

where Rp is a fiber bundle map: TM xp ... Xy TM — TM depending

By
n times

alsoon D and its derivatesand V* grad V: TM xpy X ... xy TM — TM
is the nth covariant differential of grad V: M — TM. E8n and ETn, n > 1,
give us the following:

(x* =1)V"grad V(p,...,p) + Sa(p,grad V(p),

o, V™ lgrad V(p,...,p),dg xe,) = Viu, for n>0, E9n

where S, is a fiber bundle mapping S, : TM X ... xuTM x J**(IR,0; R) —
™.

Assume now that we are in the first case, that is, x(t;) = %‘:—(tl) # —1.
Evaluating E9n at t,, since x(f;)? # 1 we have for n > 0:

Vrgrad V(p(t1),...,p(t1)) +
1
4+ ———Sn(p(ty), grad V(p(t1)),...,
Vn=lgrad V(p(t1),...,p(t1)), 5 x) = 0. E10n
Denote by J7'*! the topological subspace of J"+1(IR,0; R) of all jets j§+'w

such that w(0)? # 1. Define the subset T, of J"(M,R) x (TM), x J}*! as
follows:

Sn = {G2W,u,5510) |u € (TM)o, 3w € JPH,
VEgrad W(u,...,u) +

) k-1
@(0)? = ISk(u,gra.d W(z),...,V* grad W(u,..., u),

W) =0, 0<k< n}.
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We can summarize our discussion up to now as follows: if (t;,%3) is an
accumulation point of C(y, z) at which y(t;) # 0, 2(t2) # 0 and y(t,)+2(t2) #
0, then there exists a j5*'w in JP*! such that the triple UpeenyVs y(t1), 581 w)

belongs to ).
Assume now that we are in the second case. We claim that x(t;) = %(t;)

is not zero. E6 evaluated at t; gives
—x(t1)B(t1) + D(p(t1)) — D(=p(t1)) = 0. E1l
Multiplying scalarly by p(f1) one has
=x()lpE)I*+ < D(B(t1)), 5(t1) > + < D(=p(t1)), —B(t1) >= 0.

Since the second and third terms are negative, x(t;) cannot be zero.
Evaluating ETn at t =1, wegetfor n>1

[=(2n + 1)x(t1) + do D(B(t1)) + do D(—5(t1)))(V35)(t1)+
i n! &
H ) 'ﬁ(;;_l—,;jf%(xz - 1)(V3~*+p) (1) El12n
k=2
+Qn(p(t1), ..., V3~ 'p(tr), jo ' x1,) = 0.

Using E8n we get for n > 1:

[+(2n + 1)x(t1) — dy D(p(t1)) — dv D(—p(11))] X
V*=lgrad V(p(t1),...,5(t1)) +
@, (grad V(p(t1)),-.-, vn_zg“'d V(p(t1),.. 'Iﬁ(il)ij(?-'-lx‘l) =0. El3n

Define the subset 3°,.(=1)(n > 1) of J*~Y(M, R) x (TM), x J};t', where
JPH! is the subset of J7*!(IR,0;IR) of all jg*'w such that w(0) = —1 and
w(0) # 0, as follows: 3,(—1) is the set of all triples (J2~'W,u,jg*'w) in
J*=Y(M,R) x (TM)o x J;t' such that forall k, 1 <k <n, u€ (T:M)o, one

has:

[(2k + 1)w(0) — dy D(u) — dy D(—u)]V*~'grad W(y,...,u)+
+ ®,(grad W(z),...,V*2grad W(u,...,u),jo+'w) = 0.

Then as before (t,t2) will be an accumulation point at which y(t;) #
0, z(t2) # 0 and y(t1) + z(t2) = 0 if and only if there exists a jj+'w € JIH!
such that the triple (j;'(::)V. ﬁ(h).jﬁ""lw) belongs to Y, (-1).
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The case 3) happens when 2(f;) = 0. By taking time translates of y and z
we can assume that ¢; = ¢, = 0. This case is more involved than the preceding

ones. For a start, we claim that ?:(0) # 0. In fact, evaluating E4 at ¢t =0,
we have a(0)p(0)+ grad V(p(0)) = 0. Since grad V(p(0)) is not zero, &(0) # 0.
From this it follows that there exists a local diffeomorphism % at 0 such that
a=5'3£ and ¢ is +1 if (0) >0 and -1 if &(0) <O.

Setting n = %"E oY~!, we see that E4 is equivalent to:

2
P () () + e((r)? + (i) () »

2 2
— D(ern(r)p(=-)) + grad V(p(=-)) = v(1)

where v =Aoy~1,

We shall proceed as in the 1st. and 2nd. cases and replace E14 by more
manageable conditions on the jets of V' and 7. To do this, we need the following
estimate which can be obtained easily by induction on n. Let £ be any smooth
vector field along the curve p. Then

2 n1 . . . 2
VRE(5) = e anir B (V) (5) E15
i=0

where the coefficients a,; are positive integers such that ap41:; = a5 + (n —
2i+2)ani-1 and n; =3 or 231 according to n being even or odd. Setting
t=72 in E1 weget from E1 and E14

(r2? 1)) e+ rmi)i S )+ D)) ~ Diernp(S-) = v. E16

Deriving E16 covariantly 2n times with respect to 7 and evaluating at
7 =0 we get the relations

—a2n,n(V315)(0) + Kn($(0), ..., (VEP)(0); j3"n) = 0 El7n
where K, is a fiber bundle mapping:

TM Xy ... X TM xJ*™(R,0; R) — TM.

I
n times

Using E8n, the relations E17n imply

0 =azn,nV"grad V(ﬁ(O), ves !P(O))
+ La($(0), grad V(p(0)), ..., V"~ 'grad V(p(0),...,5(0)), 55" n).

Let us denote by 3", (0), the subset of the jet space J™(M,IR) x (TM)o x
J@",J2" being the set of all jets j3"w € J?"(IR,0; R) such that w(0) # 0,

E18n
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defined as follow: _,(0) is the set of all triples (j2W,u,j¢"w), u € (T=M)o,
satisfying all the relations

aze¢Vigrad W(u,...,u) + Ln(u,grad W(z),...,
Vi-lgrad W(u,...,u),j2w) =0, 0<£€<n

As before, a necessary condition for (t1,%f2) to be an accumulation point of
C(y,z) when y(t1) # 0 but 2(t2) = 0, is that there exists a jet j3"w such that,
for all integers n, the triple (jj,,,V,p(t1),j3"w) belongs to 3°,(0). To finish
the proof, we need to consider the case when y(t;) = z({2). Then 2z is a time
translate of y:z=y,, 7 =1, —1,, thatis, z(t) = y(t+7) for all ¢ €la_,+o0[.
Let {(ti(n),t2(n)) | n > 1} be a sequence in C(y,z) converging to ({1,13).
Setting, for each integer n > 1, t{(n) =t2(n)+ 7, the sequence ti(n) converges
to ¢, and p(t{(n)) = p(ti(n)) for all n. Since y(t\(n)) = z(t2(n)) # y(ti(n)),
it follows that t{(n) # t1(n) for all n. If for an infinite sequence {n; | j > 1}
of integers, (ti(n;) — t1)(t1(n;) —t1) > 0, j = 1,2,..., then the oo-jet of y
at t; reduces to Op,). Since grad V(p(t1)) = D(y(t1)) — Vpp(t1) =0, p(t1)
is a singular point of the system. Then y and 2z both reduce to the point
p(t1) and C(y,z) is empty, which is a contradiction. Hence we assume that
(ti(n) — t1)(t1(n) — t;) < 0 for all n. By relabeling some of the t{(n),t;(n),
we can assume that ¢(n) < t; < t;(n) for all integer n. By taking a time
translate of y we can also assume that ¢; = 0. Then y(0) = p(0) = 0 and
V;p(0) + grad V(p(0)) = 0. If grad V(p(0)) = 0, then y is reduced to
the point y(0) and we get a contradiction as before. Otherwise Vy;p(0) # 0.
This implies that there exists a local diffeomorphism ¢ : IR — IR, o(0) = 0,
(0) > 0, at 0, and a germ of smooth curve s:(IR,0) — (M,p(0)) such that

p(t) = 3(1(?:) for all ¢ in a neighbourhood of 0. In fact, taking a coordinate
system z!,...,z™ : O — IR in a neighbourhood O of p(0), z'(p(0)) = 0,
1 <i<m, forsome i, say i =1, the coordinate function p!(t) = z!(p(t)) will
have a non zero second derivative at (0. Then there exists a local diffeomorphism
o such that p! = ‘1;2 where €' is p!(0)/[p'(0)] and &(0) > 0. Since
p'(ti(n)) = p'(t1(n)) for all n > 1, o((t{(n)) = —o(t1(n)) for all n > 1. Let
o~! denote the inverse of o. Denote by s; the composition poo~! ie.,
p=s100. Then for n big enough, setting 7, = o(t1(n)),s1(m) = s1(—7n)-
This shows that all the derivatives of s; of odd order at 0 are zero. So there
exists a germ of smooth curve s : (IR,0) — (M,p(0)) such that s; and the
curve t — 3(%) have the same co-jet at 0, j°p = j§°(so00?). Using E1, we

y = doy.
see that (o= F):

... iy o? P .., 02 o?
(60)*(Vi)(5) + (67 + 06)é(5) — D(06é(5)) +grad V(s()) = E19

where o is flat at 0.
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Setting x = 42 oo™, we have:

2 2 2
(tx(t))’.v.-(ig-) + (3 + tx(i)i(t))é(%) = D(tx(z).e(%))+
E20

2
+ grad V(s(-%)) =aoo~! forall t in a neighbourhood of 0.

Deriving E20 covariantly 2n times, n > 1, along the curve ¢ — s(!;),
evaluatingat t =0 we get for n > 1:

x2(0)en V25(0) + Gn(5(0), . .., V2~1(0), j2"x)+
+ a2, V"grad V(5(0),...,5(0) =0,

E21n

where Gp :TM Xp ... Xum TMJXJZ"(IR, 0; R) — TM is some polynomial fiber

"

n times
bundle mapping, ¢, = 2n(2n—1)a2n-2,n-1+22n,n,an,; being the positive integers
appearing in formula E'15. Deriving E20 2n+1 times, n > 0, and evaluating
at t=0, we get:

dx? o
[(2"l + I)CHW(O) = X(O)d‘v D(U)]vs 3(0)+ E29n
+ Hn(5(0),...,V37%5(0), 33"+ x) = 0,
where H,, is a polynomial fiber bundle mapping:

TM xp ... xp TM xJ?"(R,0; R) — TM.

v

n times

Since ¢; # 0 forall n > 1 and x2?(0) # 0, we can solve the equations
E21n successively for the V?§(0), in terms of

gradV(s(0)),...,V"grad V(5(0),..., $(0)).

Carrying these values into the relations E22n we shall get the following relations,
n>1:

2
[(2n+ 1)en "X (0) - x(0)d, D(0)] T grad V(3(0),...,i(0)+
+ Ea(6(0)grad V(S(0), ..., V" grad VGO, 500, 5874130 = 0

23n
where E, is arational fiber-bundle mapping:

TM Xp ... XM m{ngnﬂ —TM.

~~
n times
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To sum up, if (;,%2) is an accumulation point of C(y, z) such that y(tl) =

z(t2), then, for any integer n > 1, there exists a jet j;3"*'x € J2"+! such
that the triple ( J:(""l V,ug,j2"*'x), where ug = 2%3(;,]) belongs to the subset
3-a(0,0) of JHY(M,R) x (TM)u x Jg"*1 of all triples (j2+!W,u, j2+ w),

u € (T M)o, satisfying the conditions: l <k<n,

[(2k + 1).:,,-‘-’&1:(0) — w(0)d, D(0;)]V*grad W(u,...,u)+
+ En(u,grad W(z),..., V¥ grad W(y,...,u), i3 'w) = 0.
It is clear that )~ and )" (0) are submanifolds of the jet spaces
J"(M;R) x (TM)o x Jp*' and J™(M,R) x (TM)o x J2*,

respectively, having codimensions (n+ 1)m and nm. Since w(0)# 0, in the
sequence of endomorphisms of ToM : [w(0) — L(u)], [3w(0) — L(u)],...,[(2n +
1)w(0)— L(u)], L(u) being the endomorphism d, D(u)—d,D(—u), u € (T M )o,
at least n—m are invertible. )" (—1) is contained in a codimension (n—m)m
submanifold Zn( 1) of J*Y(M,R) x (TM)o x J*'. Finally, if w(0) # 0,
in the sequence of endomorphisms of T M : [3c 7(—1 w(0)d, D(0;)],
[5c29%2(0) —w(0)d, D(o,)] S [(2m+1)e, 22O _(0)d, D(0,)], at least n—m
are lnvertlble. In case 44~ (0) = 0, they are all equal to w(0)d, D(0O;), which is
invertible. Hence )", (0,0) is contained in a codimension (n—m)m submanifold
5.(0,0) of the jet space J™(M,R) x (TM)o x J§"+.

To end the proof of Proposition 3.3, we will apply the transversality density
Theorem 19.1 p.48 of reference [1] choosing for the A of that theorem the space
of all Morse functions on M. The choices of the manifolds X,Y, W and of the
mapping p: A — C(X,Y),V — fy are indicated in the table below for each
case:

Case X ¥
5 (TM)o x JP** J¥(M,IR) x X
£a(0) (TM)oxJ3» J*(M,R)x X

Ta(=1) (TM)o x J";f‘ J*Y(M,R) x X
£.(0,0) (TM)o x Jg"*' J*(M,R) x X

w fv

Yin fv(u, jg"‘lw) =jaV,z= m(u)
gn(o) fv(u,jg"w) = J: V!z - 1II'("'-‘)
Sa(=1) fv(u, 7+ w) = 1271V, 2 = 7(u)
£(0,00  fv(u, it w) = j2V,z = n(u)

For proposition 3.3(i) n has to be chosen greater than 4m+5; for Proposition
3.3(ii), greater than 3m+3. W
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An unstable (stable) manifold of a singular point of X € SDMS will be
called simply an unstable (stable) manifold of X.

Proposition 3.4. Given any pair (Xo, zo) in GIW(D)xTM (resp. SDMS(V')
x TM) there exist open neighbourhoods Ny of zo in TM, Uy of Xy in
SDMS(D) (resp. SDMS(V')) such that, if N is the number of singular points
Oon.'

(i) There is a continuous mapping

uaBX—'(Ol'x,...,ON_x)EMN=MXMX...Xﬁf:fl

N times

such that for each X in Uy, {O1,x,...,0On,x} Iis the set of all singular
points of X;

(ii) If zo does not lie on any unstable manifold of X, for any X € Uy
no unstable manifold of X meets Npy;

(iii) If zg lies on an unstable manifold of X,, W}fo(leo) say, then the
set of all X in Uy such that W¥(O,x)N Ny is transversal to all the
stable manifolds of X is a Baire subset (residual) of Uy.

For the proof of Proposition 3.4, we use Proposition 3.5 below, to be proved
later. Given a trajectory z:Ja_,+oo0) — TM of (V,D) with projection g, we
say that an interval I Cla_,+00) is free of multiple points if, for any ¢ € I,

g~ (q(®)) = {t}.

Proposition 3.5. Let Xo = (Vp,Dp) be a system in SDMS and zo a
non singular point of Xo lying on an unstable manifold W} (Ox,) of Xo.
Let z9: IR — TM be the trajectory of X, passing through zo at time 0.
Assume that zo satisfies the property: any open subset @ in IR contains an
open interval In free of multiple points for zy and such that zo(In) does not
intersect the zero section of T M. Then there exist neighbourhoods Uy of Xp,
in SDMS(Dy) (resp. SDMS(Vp)), No of 2o in TM, © of O in IR®
where ¢ is the codimension of W¥ (Ox,) in TM and a continuous mapping
(X,0) €Uy xO — Vx4 € C°(M;R) (resp. Dx ¢ € D) having the following
properties:

(1) There exists a continuous mapping X € Uy — (O1,x,...,0n,x) € MV such
that the set {O;,x,...,On,x) Iis the set of all singular points of X and
O1,x, = Ox,.

(i1) For any X = (Vx,Dg) in Uy and 0 € O:

[
Vxo=Vx+) 0V, 0=(0',...,6°)€ R

i=1
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where the functions V; have their supports contained in a compact subset
Q of M (resp.: Forall 8 € ©, Dxg — Dx has its support contained in a
fixed compact subset Q in TM).

(iii) For any X € Uy, the fields X9 = (Vx,9, Do) have the same singular set
(O1,x,...,0nx) as X and they coincide with X in a neighbourhood
of this singular set.

(iv) The set T*(Ny, X) of the projections on M of all positive semi trajectories
starting in No (resp. the set T?(Ny,X) of all positive semi-trajectories
starting in Np) does not meet Q. Hence T?*(Ny,X) is identical with the
analogous set T*(Ny, Xg) for X,.

(v) For any X in Up, there exist an open subset Px of Wj(0:,x) and a
diffeomorphism ex : Px x © — TM such that:

1) the open subset ex(Px x ©) of TM contains Np.

2) exo: Px — TM, z — ex(z,0) is just the injection of Px in TM.

3) Forany 6 in © we have the inclusions W¥, (O1,x) N No C ex(Px x
{©}) Cc W4, (01,x).

Proof of Proposition 3.4. We can easily find an open neighbourhood U; of
Xo such that (i) is satisfied. If zo does not lie on an unstable manifold of X,
then the negative semi-trajectory of X, ending at zo cuts any energy level
surface {Ey, = A}, Vo being the potential of X. Choose A so big that all
the unstable manifolds of Xo lie in {Ey, < A}. There will exist a compact
neighbourhood Ny of z¢ in T'M such that all the negative semi-trajectories of
Xo ending in Np cut the level surface {Ey, = 24}. Then it is easy to find an
open neighbourhood Uy C U; of Xy such that: 1) for any X in U, all the
unstable manifolds of X liein {Ey, < %}; 2) all the negative semi-trajectories
of X ending in Np cut the level surface {Ey, = 24}. Obviously for any X
in Up no unstable manifold of X cuts Ng. This ends the proof of Proposition
3.4 when zp does not lie on an unstable manifold of Xg.

If zo lies on W,“‘-D(len), we can find neighbourhoods Uy, of Xy, Ng
of zo satisfying all the properties of Proposition 3.5. Since the stable manifolds
are submanifolds of T'M, it is clear that the set G(Up) of all X in Uy such
that Wy (O1x) N No is transversal to all the stable manifolds of X is a Gj
(countable intersection of open subsets of Up).

If we prove that G(Up) is dense in Uy, it will follow that it is a Baire subset
of u[).

Take any X in Uy. Using the notations of Proposition 3.5, denote by
pry : Px x © — © the second canonical projection. Sard’s theorem tells us
that in any neighbourhood of O in ©, there exists a 8 which is a regular
value for the restriction of pro to the family {e3'(W§(0ix)) |1 < i < N}
of submanifolds of Px x © and such that X7 lies in Up. Since the positive
semi-trajectories of X7 starting in No, do not meet the support Q of the

deformation Xz, for any j, 1< j <N, W;(;(ij;) N No = W4 (0jx) N No
and the choice of @ ensures that the manifold ex(Px x {6}) is transversal to
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the family {W%(Oix)|1<i< N}. Since ex(Px x {f}) contains Wi, N No,
we get the statement (iii) of Proposition 3.4. |

Proof of Proposition 3.5. We shall discuss only the case where the dissipative
force is kept fixed. This case is much harder to handle that the one where the
potential is kept fixed because even if we use local perturbation of the potential V
(i.e. with small compact support) the corresponding perturbations of the system
will not be local anymore, since they will affect all the points in the tangent bundle
located above the support of the perturbation of V. Hence more sophisticated
tools are needed to treat this case than the case where the dissipative force is
perturbed, which can be treated by standard methods.

To prove the Proposition, it is sufficient to construct an open neighborhood
V of Xo in SDMS(Dy), times 7, < t; <13, compact neighbourhoods Ny, N;
of zo(7u), 20(0) respectively,in TM, Q@ of go([t1,%2]), g0 = *pm 029, in M,
and ¢ smooth functions V; : M — IR, 1 < i < ¢, with supports contained in
@ such that:

0) There exists a continuous mapping X € V — (Oy,x,...,0n,x) € MV
such that {O; x,...,On x} isthe singular set of X and O;x, = Ox,.
Also QN{O0y,x,...,0Onx} =0 for X in V.

1) Let T°(N,,X) denote the set of the projections on M of all positive
semi-trajectories starting in N,. Let T%(N,,X) denote the set of all
negative semi-trajectories tending to a singular point as ¢ tends to —co
and ending in N, for t =0. T*(N,,X)NQ and T*(N,,X)NQ are
both empty for any X in V.

2) The mapping fx, : [NuNW¥ (Ox,)]x IR® — TM, defined as: fx,(z,0)
is the position at time 0 of the trajectory of the system Xgp =
(Vo+32i-, 0'Vi, Do) passing through z at time 7, is infinitesimally
inversible at zg.

In fact, if we have properties 1-2 above, fx, is a local diffeomorphism at
zg. Since fx,(zo(7u),0) = zo, we can restrict both N, and N, and choose a
neighbourhood © of O in IR® such that fx, maps [x]%.u NW¥%,.(0Ox,)] x ©,

o

N, = interior of N,, diffeomorphically onto a subset of T'"M containing N,.
Then we can find an open subneighbourhood Uy of Xp in V such that this last
assertion is true for the mapping fx constructed in the same way as fx,, but
starting with X instead of Xo : fx maps II\J"“ NW%(01x)x© diffeomorphically
onto a set in TM containing N,.

Then we define Px and ex as follows:

Px = fx(ft’u NW%(01,x),0)
ex(fx(z,0),0) = fx(z,0).

As Ny we take N,. Then all the conditions (i), (ii), (iii), (iv), (v)-1, (v)-2
of Proposition 3.5 are obviously satisfied. To check (v)-3 note that by property
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1 of Ny, the intersection W¥%,(O1,x) N Ny coincides with the intersection

W4 (01,x) N Ny. Hence ex(Px x {0}) = fx( Na NW%,(01,x),0) is contained
in W%,(01,x). If y isapointin W¥ N Ny then it is the image fx(z,0) of

L4
apoint z in N, NW¥(0,,x) which is the same as !‘Fu NW%,(01,x). Hence
y = ex(fx(z,0),0). This proves the second inequality of (v)-3. It remains to
construct V, Ny, N,, Q, and the Vs so as to satisfy 0)-1)-2).

To check that fx, is infinitesimally inversible at zo it is necessary and
sufficient to show that the vectors 9—5!3’5,11(:0(7.,), 0), 1<u<e, in T,,TM, are
linearly independent modulo the subspace T:, W} (Ox,) of T, 7M. Now these
vectors are the values at ¢ = 0 of vector fields along zp which represent the
infinitesimal deformations of the trajectories when Xy undergoes the deformation
Xg. These vector fields are solutions of the linearized flow equation along 2.

To study this linearized equation we need a good representation of it and more
generally of the double tangent bundle TT'M. In our opinion the best is to use
the Levi Civita connection of the Riemannian manifold M. At a great expense
in calculations and symbols one could avoid the connection and use coordinate
charts. But the computation would be very messy and the results would not be
intrinsic.

A) To proceed we have to recall some more or less well known results about
the double tangent space TT'M. It can be considered as a vector space bundle
in two ways: first it is the tangent bundle of the tangent bundle TM of M. As
such it has a projection wpp : TTM — TM.

Second, the canonical projection wp : TM — M of the tangent bundle
TM of M induces a tangent mapping Tmpys : TTM — T M. This is a vector
bundle projection and we have the relation:

Ty oy = Ty 0 Ty,

The kernel of T'wps is a subbundle Verps of the bundle
(TTM, wpas, TM) called the vertical bundle. Verps is isomorphic to the fiber
product TM xpr TM endowed with the first canonical projection pry : TM x
TM — TM, (u,v) — u. A canonical isomorphism j:TM Xy TM — Verpy
is defined as follows: if (u,v) € TM xp TM, j(u,v) is the tangent vector at
A=0 ofthe curve A€ R— u+ v e€TM.

The Levi-Civita connection defines another subbundle Hjs of the bundle
(TTM, wppm,TM) called the horizontal bundle as follows. Define a smooth map-
ping C:TM xp TM — TTM: for any pair (u,v) € TM xp TM, choose
any smooth curve o :]—¢,e[ — M, t — o(t) such that its tangent vector
at 0, To(0), is u. Let 75(t) : TyM — To()M (¢ = 0(0) = mpu = myv) be
the parallel transport along o defined by the Levi-Civita connection. Then the
tangent vector at 0 to the smooth curve t € | — ¢,é[ — 7,(t)v is independent
of the choice of & but depends only on the pair (u,v). We denote it by C(u,v).
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C defines a vector bundle injection of the bundle
(TM xpmTM, pry, TM) [prz is the second canonical projection TM xpy TM —
TM, (u,v) — v] into the bundle (TTM,n7p,TM). Its image Hp is the
horizontal bundle.

The following formulas are useful:

Tapm Cu,v)=u Trpm(j(u,v)) =o
7mrmC(u,v)=v mrm j(u,v) =u

The vector bundle (TTM,wrp,TM) is the direct sum Hp @ Verps of
its horizontal and vertical subbundles. This direct sum, in turn, is isomorphic
to the fiber product (T'M xp TM) Xpr, pr, (TM X3 TM) which, in turn, is
isomorphic to the triple fiber product TM Xp TM xp TM. The isomorphism
A:TM xp TM xpp TM — TTM defined in this way is:

A(u,v,w) = C(u,v) + j(v, w).
The triple (u,v,w) corresponds to the element [(u,v), (v, w)] of the fiber product
(TM xp TM) Xpr,pr, (TM xp TM).
The inverse A~! of A can be expressed as follows:
A~ TTM — TM xp TM xp TM,

A1) = (Tam(7), 7rm(7), K(7))

where the mapping K : TTM — TM is the unique smooth mapping satisfying
the relation:
Jmrm(7), K(7)) = 7 — C(Trp(7), 7ras(7))-

The last element belongs obviously to the vertical bundle.

The following considerations will be useful for the future. Let =z : ]a,b] —
TM be any smooth curve and let ¢ :]a,b] — M be its projection on M,
then the image A~'(4%) of the tangent vector field 4 € TTM along z is:

dt
_q1,dz dq
1027 =(—
(1) A (dt (dt' z, Vi2).

where %} is the tangent vector field to ¢ and V,;z is the covariant derivative

of the vector field along gq.
We also have the formula:

@) & =G +iG ).

B) The preceeding remarks in A, allow us to avoid the consideration of the
double tangent bundle TTM and work with objects in M and TM. In
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particular we can give the following nice representation of the flow of a system
X = (V,D). The projections on M of the trajectories of X are the curves
q:)a_,+oo[ — M satisfying the second order equation:

Vi — D(q) + grad V(g) =0

where ¢ denotes the tangent vector field %% and V; the covariant derivative
in the ¢ direction. The trajectory of X whose projection is ¢, is simply the
tangent vector field %%.

Let us now study the linearized flow along a trajectory. Let # € © (open set
in IR®) — Xy = (Vs, Dg) denote a smooth deformation of the field X, and let
0 €O — z:]a_(0),+00o[ — TM be a smooth family of curves such that 24
is a trajectory of Xjy. The vector field %!at lo=o0 is the infinitesimal deformation
of the family along 2. Let x be the vector field TWM(%%‘ |a=o) along qo,

projection of zg on M.

Lemma 3.6. A vector field x along qo is the projection on M of an infinitesimal
deformation of zy corresponding to the deformation Xy of X if and only if:

aD, oV
Pox = == lo=0 (o) — grad |s..o (g0)
00
where Py is the second order operator along go:
Pe = Vi€ — R(4o) Vi€ + S(do)é-

The tensor fields R, S are defined in the proof of the Lemma. The relation
between x and %% [s=0 is as follows:

a
a—; lo=o= A (X, 20, Vix)

C) For any interval I C Ja_(0),+oco[ denote by T'(I,TM) the space of all
smooth vector fields along the curve restriction to ¢o of I.

Py defines a linear operator I'(I,TM) — I'(I,TM) with respect to the
L, scalar product defined by the Riemannian metric on M. P, has an adjoint

P} :T(I,TM) — T'(I,TM)
P3p = Vi ¢+ Vi (R(do)* ¥) + S(do)" ¢

where R*, S* are the adjoints of the tensors R, S with respect to the Rieman-
nian scalar product.
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We have a Green’s formula: let I be closed, I = [a,b], then:

b
] [ < Potr, 92 > — < ¥, Pva > dt = B(do) [(Vetr, $1), Viea, )] I}

for all ¥,%, € I'(I,TM), where for each u € T,M, B(u) is the multilinear
form T,M x T,M x T,M x T,M — IR:

B(u)[(u1,v1), (u2,v2)] =< u1,v2 > — < uz,v; > — < R(u)vi,vz > .

It is clear that B(u) is non-degenerate for each wu.

D) Assume now that 2, is a trajectory of Xo = (Vo, Do) contained in
an unstable manifold W (a(z0)). The tangent bundle TW% (a(20)) | 20 of
W4 (a(20)) along 2z is a subbundle of the tangent bundle TTM |z along 2.
Its image EY by the mapping Tmp X mrps is a subbundle of anMq)é g TM.

Since TWj (a(z0)) | 20 is invariant by the linearized flow along 2z, E* is
invariant by Py, that is, if (u,v) belongsto EY and ¢ is asolution of Poy =0
such that (Vie(lo), ¢(t0)) = (u,v) for some ty then (Vip(t),¢(t)) € E¥ for
all 2.

Let E* be the subbundle of ¢3T'M x ¢q;T'M, which is the right orthogonal
complement of E* with respect to B. Its fiber E} at t € IR is:

Ef = {("2102) € Tqa(t)M X Tyo(tyM | B(qﬂ(t))[(uh‘-’1):(“2:"'2)] =0,

V(UQ, ‘!)2) S E;‘ }

The bundle E* isinvariant by Pg. In fact, take any solution ¥ of Py =0
such that (V,¥(to),¥(t0)) € Ef, for some t;. Then for any solution ¢ of
Pyp =0 contained in EY, using Green’s formula:

B(q0(t))[(Vie, 9), (Vit, ¥)] [1h= tl[< Pop, ¥ > — < @, Pt >]dt = 0

to

for any t; in Ja_,+oo[.
This relation shows that for any such 1,:

B(g0(t1))[(Vep(t1), (1)), (Verp(t1), ¥(t1))] = 0.
Since (Vip(t1),¢(11)) takes all possible valuesin E¥ as ¢ varies, we get
(Vidp(ta), ¥(t1)) € E7.

Since the bilinear form is non-degenerate, the dimension of the fibers of E*
is the codimension ¢ of W% (a(20)).
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In order to construct V; we need the following Lemmas:

Lemma 3.7. Let Xo be any system in GIW (D).

(i) For any non singular trajectory zo: la_,+oo[ — TM of X, and any
open subset 0 of Ja_,+oo[, there exists an open interval In contained in
free of any multiple points of qg = mp © zp and not contaning any time t such
that 42(t) = zo(t) = Om.

(ii) Let In be any open interval in Ja_,+oo[ having the properties stated
ini Let T, <1 <tz <7, be four times such that [r,,7,] C Ja-,+oo[ and
[Tu,t2] C In. Then there exists an open neighbourhood Uy of Xy in SDMS,
a compact neighbourhood Q of go([t2,12]), compact neighbourhoods N, N,
of 20(tu) and zo(7,) respectively in TM, such that the sets |Jx ¢y, T*(N,, X)
and Uxey, T"(Nu, X) do not meet Q. T*(N,,X) is the set of projections on
M of all the positive semi-trajectories of X starting in N, and T%(Ny,X)
the set of projections on M of all the negative semi trajectories of X ending in
Ny and tending to a singular point of X when t goes to —oo.

Lemma 3.8. Let X be asystemin SDMS andlet zg :la_,+oo[— TM bea
trajectory of X and qq its projection on M. Then there exists a real number
7+ such that Pgyqo# 0 for all t > 7. If a(zp) exists then the same is true
for all t < 7_, 7- an appropriate number.

As a consequence ¢ is linearly independent from the space of solutions of
P33 =0 on any interval contained in [r4,+oco[ (resp. ] — oo, 7_]).

To start the construction of the Vj we choose an interval In as in Lemma
3.7 and contained in | — oo, 7-] where 7_ is the number defined in Lemma 3.8.
Take now three times 7, t;, t2 such that 7, <t} <13 <0 and [ry,t2] is
contained in In. Then choose neighbourhoods V of Xy in SDMS(Dyg), N,
of zo(7u), N, of 20(0) ==z0 (7, =0), Q of go([t1,t2]) as in Lemma 3.7-(ii).

Restricting V, N, further we can assume that there exists a continuous
mapping X €V — (Oy1,x,...,0n,x) € MY such that
{O1,x,.-.,0n,x} is the singular set of X and O; x, = Ox,.- Moreover, we
can assume that the correspondence X € V — N, N W} (0;,x) is continuous
in the following sense: there is a continuous mapping X € d — ex € £, &
being the space of all embeddings of Ny NWj (Ox,) into TM with the usual
topology, such that for any X in V:

ex(Nu NW%,(0x,)) = Nu N W5 (01x).
In order to construct the functions V; with support in Q, we will construct

vector fields F;, 1 < i < ¢, along g¢o such that for all ¢t € IR, the value
grad V;(go(t)) of the gradient of V; at go(t) will be Fi(t). To do this, let



94 Ivan Kupka and Waldyr Muniz Oliva

E* denote the vector space of all vector fields 3 along ¢, | [t1,12], which are
contained in the fiber bundle E* along the curve g¢o | [t1,fz] and which are
solutions of the equation Pgvy¥ = 0. This space E* is a finite dimensional space
of dimension c¢. Choose ¢ vector fields F;, 1 <i<e¢, along qo| [t1,12] having
compact supports contained in J¢1,#3[ such that the linear forms ¢ on E*,
L(y) = ‘:’ < Fi(t),%(t) > dt form a basis of the dual of E* and such that:

i3
/ <F(), %0 5 g-0, 1<i<e
t dt

This is possible since given the choice of In, %ﬂ is linearly independent
from E* on [t1,12].

Now we can define the V;. Let B, be the subset of ¢37T'M | [t1,12] of all
vectors v € Ty, )M, t; <t < 3, such that ||v]| < e and v is orthogonal

%5';'2(!). Then there exists an € > 0 such that the exponential mapping
exp: B — TM, v — expv associated to the Riemannian metricof M isa
diffeomorphism and such that
exp B, C Q.

Finally, let p: IR — [0,1] be a C* function such that p is 1 on the
interval [—%,£] and 0 outside the interval [—3¢,3¢].
V; is defined as follows: on the image exp(Be), if v € Ty,(yM, t; <t <ty

Vilexp v) = p(llol) [< Fi(t),o > + f < Fi(s), %0 (5) > 4 ]

and outside exp(B,), V; =0.

V; is smooth. To check this we have to show that Vj(exp v) =0 when v
lies in a neighbourhood of the boundary of B,. This happen when either ||v||
is near ¢, but then Vj(exp v) = 0 since p(||v]]) =0 if ||v|| > %—‘ or when
v € Ty)M and t is near ¢, or ;. But then t will lie outside the support of
F; and also

0 if t is near ¢,

s)>ds = ta
-/s <F(s) ( )= / <F;(s),%(s)>ds if 1 is near t,
1 s

But by construction this last integral is zero.
To define Vp and more generally Vxg, X €V, we set:

e
Vxo=Vx+ > 0V, Vo=Vxge.

i=1

The deformation Xy of X = (Vx,D) is defined as the system (Vxg,D).
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Finally, we can define a mapping
fx : [Nu NW%(01x)] x R — TM

as in the beginning of the proof of Proposition 3.5: fx(z,0) is the position at
time 0 of the trajectory of X, passing through z a time 7.

It is clear that the conditions 0-1 stated at the beginning of this proof are
satisfied by our choice of V, Ny, N,, Q, V; 1 <i<ec. All we have to do is to
check the last condition 2). As we have seen, this is equivalent to proving that the
vectors %f—jf;ﬂ(zo(ru),O) in T;,TM are linearly independent modulo the space
T:.,TM.

By lemma 3.6, the projection dmps [%’—5—‘;1(20(7,,),0)] is equal to Y;(0), where
Y;, 1 <i < c isthe vector field along g¢o, solution of the Cauchy problem:

PoY; = —F;
{Y.-('ru) =VYi(r) =0

If the vectors Eg-j‘-,ﬂ-(zg('ru),l)), 1 < i < ¢, were not linearly independent
modulo T, W%, (a(20)), then the vectors dmy X 77 [—a-g-;—';l(g('ru), 0)], 1<i<e¢,

would be linearly dependent modulo E§. Now dmp X wTM(f—é%ﬂ(zg(ru),O)) =
(V.Yi(0),Y;(0)). We claim that for any t >, the c¢ vectors

(ViYa(t), Ya(2)),. .., (V. Ye(t), Ye(2))

in TyotyM X TgoyM are independent modulo Ef. Were they not, there

would exist a linear combination Y = Y_i_, A'Y;, Al,..., A° € IR, such that
(VY (1),Y(t)) belongs to Eg. But { 1}:?1’ )==_g,Y(-r )y=0 where F =
S, N

For any ¢ € E}

—f‘ < F(s),¢¥(s) >ds= f‘[< PoY (s),¥(s) > — < Y(s), Pg9(s) >]ds
= B(go(t))[(V:Y (), Y (1)), (Vedb(2), ¥(2))]
=0

By the choice of the F;, this implies that F = 0.
Hence { PoY =0
Y(ru) =ViY (1) =0.
By the uniqueness property in Cauchy’s existence theorem, this implies that Y =
0 and proves our claim.

Proof of Lemma 3.6: We start with the relation:

Vieds — D(ge) + grad Vp(ge) = 0.
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Let us introduce the mapping ¢ : Upeo Ja-(0),+oo[ — M, (t,6) — qs(1)
and denote by V; (resp. V) the covariant derivative in the direction —1 (resp.

-g—%). Hence:

a
Vig — Da(5h) + gradVi(a) =
Deriving covariantly in the direction of -g-g:

VoV _ o(Du(3)] + VolgradVi(g)] = 0

Now:

dq dq 8q 0q,0q
Van 3 = nga 8t +Curv (@,E)a

dq dq 0q,0
2
=Vigg + Cuv (g aa)

where Curv is the curvature tensor, since the Levi Civita connection has no

torsion.
We have:

Ve(grad Vo)la) = grad 5 (0) + (Vgggrad Vi) (o)

The last term we have to compute is Vj [Dg(%f)]. This case is more involved.

For each fixed ¢, the mapping § € ®@ — Dy %‘f(t‘ 9)) is a vector field along
the curve 8 € © — ¢(t,0). For simplicity denote by ¢é this field. Then the
vector field 2% in TTM along the curve 6 € © — 2(1,0) (t fixed) is given
by the formula:

2 = C(2,8)+5(5,900).

On the other hand we have the re]ation in TTM:

a6 3q 0Dy ,dq
30 TD"( )aaa: (30 30 ()

where % is the second derivative of g, 3%% :IRxO — TTM and TDg(u)
is the tangent mapping TuTM — T,TM of D,.

We also have the equation (see formula (2), section A, after the proof of
Proposition 3.5):

8%q dq Oq dq

200t =~ G ) T (8t Vo)
Vef;? =V, gg since the Levi Civita connection has no torsion. Hence:
a6 dq dq @ 8q 8Dy 0q
9 = 1y(G0(3, 50 + TN GHIGE vigh) + +iL, T (B
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Since Dy is a fiber mapping TM — TM, for any (u,v) € TM xp TM
T Dg(u)j(u,v) is a vertical vectorin T,TM.

Hence there exists a unique smooth mapping d, Dy : TM xpy TM — TM
called the vertical differential of Dy such that:

TDg¢(u)j(u,v) = j(u,dyDg(u)v).

dy Dy is intrinsic (i.e. independent of the connection):

d
dy D (u)v = ﬁ[DJ(" + Av)] [a=o0 .
It is easy to check that for any (u,v) € TM xp TM the vector
T'Dy(u)C(u,v) — C(Dp(u),v)

is a vertical vector. Hence there is a unique mapping

VuDe:TM xXpy TM — TM such that:
TDg(u)C(u,v) — C(Dg(u),v) = j(Vu De(u)v, Do(u)).

Now we can define the tensors R:TM Xy TM — TM and S:TM xu
TM — TM as follows:
R(u)v = d, Do(u)v

S(u)v = Curv(v, u)u — Vg Do(u)v + (Vygrad Vp)(7v)

and we get the equation

aD Ve
VZx — R(4o)Vix + S(go)x = 0 le=0 (go) — gra.d |a =0 (g0)

dgo
G0 =3

Proof of Lemma 3.7: In the case where X, satisfies GI, the statement (i)
is obvious. Hence we shall assume that X, satisfies the weaker property GIW
only.

Let us denote by C) the projection of the set C(zp,20) on the first axis and
by C, its closure. We are going to study the structure of C;. Let 7 be an
accumulation point of Cy. Then there exists a sequence {(t1(n),12(n)) | n € IV}
in C(z0,20) such that: («) the sequence {t1(n) [ n € IN} converges to 1;
(B) the sequence {tz2(n) |n € IN} either converges to a number 72 or it tends
to +oo.

In the first case of (f), the property GIW implies that either zp(7m) =
or Zg('rg) =4
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In the second case of (8), if we denote the projection w02 of zp by go

w(zo) if tz(n) — +oo

go(m1) = limgo(t1(n)) = lim go(t2(n)) = {
" " a(zp) if ta(n) — —oo.

This shows that the set of accumulation points of C) 1is contained in the
subset B of all ¢ in IR such that

w(z)
%(t):[] or qo(t)={ or ’
a(z).

If we show that the set B; of all accumulation points of B is discrete, it
will follow that C; will be nowhere dense.

Let (7(n) |n € IN) be a sequence in B converging to a number 7. Then
there exists a subsequence {r(n;)|i € IN} such that:

d w(zg) for all
either _d‘!E(r(n,-))=o for all i, or go(r(n;))= or
: a(zp) for all 1.

In all these cases the oco—jé® of go at 7 is the co-jet of the constant
mapping: t € IR — qo(7) € M. This implies that Ogy(,) is a singular point of
the system and hence cannot be reached by the trajectory go in finite time with
zero end speed. We have a contradiction.

This finishes the proof of statement (i).

Proof of (ii). We shall present the proof for N,. The case of N, is similar.

If V and N, did not exist one could find a sequence {(Xn,2,) | n € IV}
of fields X, in SDMS and trajectories z, of X, such that: a(z,) exists;
Xn convergesto Xg; zn(7u) convergesto 2o(7y); the distance 6, between
the sets gn(] — 00, 7]) and g,([t1,12]) tendsto 0 as n goes to oo.

Take a compact neighbourhood A of the singular points of Xy in M such
that AN go([ru,22]) = 0. For n sufficiently large, n > no say, Sing (X,)C A
and hence there will exist a 7" > 0 such that ¢.(]—00,T]) C A and T < 7.
This implies that the distance 8], between ¢.([T,7.]) and g¢.([t1,%2]) tends to
0. Since the restrictions of ¢, to [T,7,] and [t;,f3] tend uniformly to the
restrictions of go to the same intervals respectively, then g¢o([T, 7u]) N go([t1,12])
is not empty. This contradicts the choice of [t;,%2] to be without multiple points.

Proof of Lemma 3.8: Let X be any vector field along an arc of the trajectory
go such that PoX = P§X =0.
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This means:
{ ViX = R(4o)ViX + S(go)X =0

VIX + ViR(4o)* X + S(§o)*X =0
Multiplying scalarly by X:
<VIiIX,X > =< R(Go)V: X, X >+ < S(¢o) X, X >=0
<VIX, X >+ < ViR(Go)*'X, X >+ < S(tjg)'x.;f >=0
Subtracting the second relation from the first:
< R(go)ViX, X >+ < X,ViR(go)*X >=0

or
d ;
i < R(go)X, X >=0.

Assume now that Pggo =0 on an arc [r,+o0o[. Since Pogo =0, we get:

d .
7 < R(4o)go,go >=0 on [r,+oo[.

Integrating between ¢ and +oo
< R(go(®))do(t), do(t) >= , lim _ < R(do(s))do(s), do(s) > -

Now as s tendsto 400, go(s) tendsto O,(;,) and since R(u)= dy,Do(u),
R(qo(s)) tends to dyDo(Ou(zo))- This means that the limit above is zero and

< R(qo(t))do(t), go(t) >=0 for all t>r.
Now for any v € TM
< dy D(Ox(v))v,v >< —a|v||?.

Hence by continuity there is a positive number § such that if (u,v) € TMxyTM
llull < & &
< R(u)v,v >< —§||vﬂ2.

The relation above shows that
go(t)=0 for t> .

This is a contradiction.
The same line of reasoning can be applied to intervals of the form ] — oo, 7]

when a(z) exists.
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We will prove now the first main openness theorem of the section:

Theorem 1.5. The set of all systems X in SDMS such that their stable and
unstable manifolds are pairwise transversal is open in SDMS.

The proof of this theorem will result from the Lemma below which we shall
state now and prove later. For any field X in SDMS, let us call chain of X an
ordered sequence (0,71,...,7n) of trajectories of X such that w(vi) = a(7i4+1),
0<i< N-—1 and a(yy) exists. The support of the chain will be the curve
Jo * 71 * ... * Jy concatenation of the closures % = v; U {a(7:),w(7:)} of
the v/s.

Lemma 3.9. (i) Let {(X,,7") | n € IN} be a sequence of fields X, in
SDMS and of trajectories ¥ of X, such that the a(y™) all exist and the
sequence X, convergesto a field Xo in SDMS. Then any limit set of the
sequence of compact curves 5" in thé Hausdorff topology is the support of a
chain of X.

(ii) The sequence (Xn,4") being as in (i), assume that 1) The sets 7™
converge to the support of a chain (vyo,...,7n) of Xoo; 2) All the invariant
manifolds of X, are pairwise transversal.

Then, given any sequence of points (z,), such that z, € ¥*, convergingto a
2 which is not a singular point of X, any limit plane L" (resp. L*) of the
sequence T, W% _(a(y")) (resp. T, Wk (w(7"))) contains T, Wx_(a(7i))
(resp. T; Wk_ (w(7i))), where v; is the trajectory of the chain on which ze
lies.

Proof of the theorem: Were the theorem not true, there would exist a sequence
{(Xn,7™) | n € IN} of fields X, in SDMS and of trajectories y" of X,
such that:

1) sequence (X,) converges to a field X, in SDMS such that its stable
and unstable manifolds are pairwise transversal.

2) a(y") exist for all n and at any point z on " T,W¥ (a(y")) and
T, W% (w(y™)) are not transversal (they are either transversal at all points on
4™ or not transversal at all points on 7").

The union [J,7" is relatively compact in T'M. Then by taking a subse-
quence of (X,,7") we can assume, using the compactness of the Hausdorff space
of a compact metric space, that the compact sets 7™ converge in the Hausdorfl
metric. The limit will be the support of a chain (vo,...,7n8) of Xe by the
statement (i) of Lemma 3.9.

Now, taking another subsequence of the sequence (X,,¥"), we can assume
that each 9™ carries a point 2z, such that the sequence (z,) convergesto a
point z, non singular for X and the sequences of spaces (T3, W§_(a(7™)))
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and (T;,Wx, (w(7™))) converge to the subspaces L* and L* of T,TM
respectively. By the statement (ii) of Lemma 3.9, L* > T, W% _(a(y)), L* D
T Wi _(w(7i)) where 7; is the trajectory of the chain containing 2. Since

% (a(7:)) and Wi _(w(7)) are transversal, so are L and L*. This means
that the canonical projection = : L¥ — T, TM/L* is onto. But the canonical
projections w, : T; W (a(y")) — T:, TM/T. W _(w(y")) converge to .
Hence for n big enough =, will be surjective. This contradicts the fact that
T, W%, a(y") and T, W (w(y™)) are not transversal.

Proof of Lemma 3.9: (i) Assume that the sequence of compact sets 7™
converges to a compact set Ko in the Hausdorff metric. K., will be a union
of closures of trajectories of Xo. As the limit of the compact connected sets
47 it will also be connected. To show that K., is the support of a chain it is
sufficient to show that it cuts every energy level surface {Ex_ = h} in at most
one point.

Let R denote the slice {h—n < Ex_ < h+n} of M, n> 0 being
chosen sufficiently small so that the interval [h —n,h + 7] does not contain any
critical value of the energy. Then there exists a neighbourhood U, of X, such
that any trajectory v of X either does not meet R or the intersection RNy
is an arc ¥ meeting all the level surfaces £; = {Ex, = h+1t}, -n <t <1,
transversally in one point. We can also choose Uy, sufficiently small so that there
exists a constant C such that for any X in U, any trajectory v of X
meeting R, any z in X,

du(z,2(7)) £ C dum(z,%)

where 2(7) is the intersection point of y with Xy. It is also clear that if 6
denotes the distance between Xy and the boundary of R, assoon as d(z,7) < 6,

d(z,7) = d(,7).

We can assume that the y® meet Xj, otherwise Ko NXy is empty.
As soon as d(¥",7™) < 4,

d(zﬂl ‘Tm) = d(zn: ?m),

where for simplicity we set zx = z(yx), k € IV.
By the inequality above,

d(zm zm) <C d(zm?m)-
Hence as soon as d(7*,7™) < 6
d(zpn,2m) < C d(znu'l’m) <C d(zns?m)-

This shows that the sequence {z, | n € IN} is a Cauchy sequence and hence
has a unique limit point z.. It is clear that K, NXy contains zo. But in
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fact KooNZo = {200}. Forif z’ isin Ko NEp, it is a limit point of a sequence
{2}, | h € N}, where 2} lies on some 7¥,,. But then 2’ is the limit of the
sequence {z,, | h € IN}, which converges to 2.

To Prove (ii), it is sufficient to consider the unstable case. We proceed by
induction on the index i of the trajectory ¥; to which 2z, belongs. If 7 is
0, zo belongs to 7. Since a(y") tends to a(y), T: W% _(a(v")) tends
to T; W%_ (a(v0)). For an arbitrary i > 1, denote by Ou the singular point
w(yi-1) = a(y:). We are going to choose an appropriate sequence of points (y»)
such that y, € 4", the sequence (y,) converges to Yoo on <¥i—1 and the
planes T, W3 (a(9")) convergeto alimit L" containing T, W} (a(yi-1))-
To prove this we are going to compare the spaces T, Wx (a(y")) with the
spaces Ty W¥ (a(7")). To do this we shall establish the following form of the
A-Lemma (see Palis [8]).

Let us denote by O the singular point w(y;—1) = a(y;) of X«. There
exist an open neighbourhood U of X, an open neighbourhood Q2 of O,
and a mapping X € Y — £x € Diffeo(2, S x U), where S, U are vector spaces
with dim U =
dim W§%_(Oc), dim S = dim Wi _(O) such that:

1) Each X €U has a unique singular point Ox in  and £x(Ox) = 0.
2) Forany X €U, Ex(QNWg(0x)) = UnQx, &x(Qn W% (Ox)) =
Qx NS, where Qx = &x(Q).

Let us denote by X, (resp. X,) the U- (resp. S-) component of the
image field X = £x.(X). By condition 2) above, there exist smooth mappings
X!, :Qx — End(U) and X! :Qx — End(S), suchthat X,(z,y) = X/(z,y)z
and X,(z,y) = X.(z,y)y forall (z,y) in Qx. Since dX.(0) is hyperbolic
there exist a scalar product <|> on U x § and positive constants a,, ay, b
such that by restricting & and  if necessary for all X in ¥, all (z,y) in
Qx, all (u,v)€U xS,

8

Xy
<W(z,y)u|u>2an<u|u>

<aa—}§;(z,y)v|v>s—a.<u|v>

(1) <

< Xiz,yw|v><L —a,<v|v>

{ ay <u|u>Z<< X)(z,p)u|u><b<u|lu>

By condition 2) above, for all X in &, all z€QxNU, all y in QxNS

Xu(0,y) =0, X,(z,0)=0.
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Hence there exists a constant C such that:

X X
(1) 155 @0l < Cllell, 15520l < Cll

forall X in ¥, all (z,y) in Qx.

Forany X denote by px . the flowof X in Qx and by Tex, the derived
flow on Tﬁ,. If E is asubspace of T{;,y,)(U X S) of the same dimension as
U and transversal to T:,S C T{(z4,4,)(U x S) then it can be represented as the
graph of a linear mapping T'¢ : Tx,U — T,,S. If its image Tpx,(E) at time
t is still transversal to T, (z0,90)S, let I'(t) denote the mapping whose graph
this image is.

We have the following estimates of the norm ||I'(Z)|| of I'(t) as ¢ varies:

Lemma 3.10: For any field X in U, any trajectory

{ex.1(zo,30) = (2(2),¥(1)) | T- <t < Ty} of £x.(X),

we have the following estimates of the norm of T'(t), t> 0:
(i) If |lz(®)|| < as/2C(IIToll + £ lvoll], then,

IO < 20Toll + < llvoll (k)
(ii) IP)II < 6{IIToll + < lvoll) (k) *"*
s n 14+b/a, 1
provided that: lzoll < (saqrtza) (e

We shall prove this Lemma below after we finish the proof of Lemma 3.9-(ii).
We can always assume by deleting a finite subset of the X, and by sliding the z,
along their trajectories 4™ that all the X, belong to & and all the z, to Q
(zeo included). We can find a sequence (gn) of points on the trajectories v", g,
preceeding z, for every n, such that: ¢, € Q for all n, ¢, convergestoa
point goo on Q2N<v;_;. Also by taking a subsequence of the X, we can assume
that T, W¥ (ax,(9")) converges to a limit A¥ in T, TM. By induction
assumption, A¥ contains the space T, W% _(a(yi-1)) and hence is transversal
to Tqu_i'w(w('T:'—l))-

Using the mappings £x,, the space E, = Téx, (T, W% _(ax.(7"))) in
Tiznya)(U x S), where (zn,yn) = €x,.(gn), will converge to the space Eo =
Ex(AY) in T y)(U xS) where (0,Y0) = €x,(00). Since E is
transversal to T_S, for n big enough E, will be transversal to T, ,S. The
orthogonal complement F,, of E,NT; S in E, will be the graph of a mapping
Iy : T, U — T;,S and will converge to the orthogonal complement F, of
E,NT,_S in Ey, graph of a mapping ' : 7> U — T:_S.
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Let (z4,v.) = T€x.(zn) and let t, > 0 be the time such that 2z, =
e'»Xn(gn) or (z},,4,) = ¢Xa,ta(Zn,Yn). Since the space

Gn =Téx(T2aWx _(ax.(1")))
is the image Ty, , (En) of E, under the flow of X, it contains the space

Tox...n(Fn). This space is the graph of a mapping T'n(tn) : Tor U — Ty S.
By Lemma 3.10, the norm ||Tn(ts)|| of T(f,) is bounded by

60T+ D (220

: a,\ 1+b/a,
provided that.[lzall < (52)"™"*" / e, 0Tl + sn /-

Since as n goes to o, |[Tall, |lgnll, llznll converges to ||Teol, ||yeoll,
Izl (€xo(200) = (25,0)) and ||zn|| tends to 0, it follows that |[Tn(tn)|
tends to 0. Hence the sequence of spaces Tgox ta(Fn) tends to T U =
Téxo(T:(W¥_(Ox). Hence LY contains T, W} _(Oc).

Proof of Lemma 3.10: The differential system associated with X = (£x).(X)

% = Xu(.'l'.' y) X:‘(.T., y)z % = X,(I, y) = X:(:vy)y-
The linearized system along a trajectory wx (zo,¥0) = (z(1), y(t)) is:
0= axu o (2(1), ¥())E() »y(0))n(t)
dn

(1) = 2% (2(1), we))é(t) + 33—’;';(:(:). s,

Then TI'(t) satisfy the Ricatti equation

0 = 52 @0, u0) + 52 0. 40X )

For any it 0<1tp <t, its solutions satisfy:
—i 2 X, -
L(t) = R,(t,10)T(to) Ry (1, 20) + R:(t,f)a—(r(f),y(f))ﬂu (t,r)dr

[

NWI(r)RZ(t, 7)dT
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where R,, R, are the resolvent mappings
R,:S— S Ry,:U—U

By, 1) aa—):;(z(t),y(i))ﬂ.(t,tu)

aR.. 0;? (2(t), y(1)) Ru(t, to)

5 (o)
R, (to, t0) = Id, Ru(to, to) = Idy .

The inequalities (I) show that

|R(t, to)|| S e~ t=t0) 1>,
IRa(t,to)l| < e~a+t=t0) ¢ >4,

The relation (III) and the inequalities (II) imply if a = a, + ay:
i
V) IRl < ==+ [ Cllulle=¢=Dar
to
i
+ [ Cllallin|Pe=¢-ndr
to
The inequalities (1) imply that:
e (=0)|z(to)|| < |lz(®)]] < z(to)l|e*~*)
V)

ly@)Il < lly(to)lle=+(t=te) .

Hence:

t
[ Itollems6="dr < lytta)ee+ =1
to a

By multiplying (IV) by e®:(*=%0) and setting 7(t) = |[T(t)|le®(*~*), for
simplicity we obtain:

c ; —a,(t=T
(VD I < I+ Sl + [ Clla(rlle=C=Da(r)?dr
u to
The simple Lemma 3.11 below implies that:

(v IOl < 20l + = a(eo)]

it INCOl+ ol sup Nzl < 5.
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But the inequality (V) implies that z(f) is an increasing function. Hence:
(v (VD) s valid when  [lz(0)Toll + S0l < o
Applying (VIII) with 2o = 0, we get that:

@l < 200rol + Eelljp et
Since by (V), e~b < #L—’&%I we get:
T < 20iroll+ ol )

[=@ll

This is the first inequality of Lemma 3.10.
Now if ||z()|| > a, / 2C[||To|| + ;c:-”yn"], let t; be the instant such that:

llz(ty)]| = as / 2CA

where for simplicity we set A = ||To|| + & c < lyoll-
Applying the first part of Lemma 3. fO just proved, to {p =0 and t =1,
we get:

(IX) Il < 2Allzol/( 225

)a b
Using the inequalities (V) we have:

el < llle=>+ < loll Lad) " 5o

(X) lly()Il < Ilyoll( )"'“ﬂz Jlo=/% .

Now we can apply (VIII) with 25 =1; and we get:

IT@I < 2[||r ()| + a—Cully(i:)II]e“"(“‘l)

. C
provided that [[z(®)|[[IC(t)]| + —[ly(t)l]) < 55
ay 2C
This last condition can be expressed as follows, using (IX) and (X):
2CA

a,

a,/b a.}b
" ol < ooy

24+ — IIyulI](
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This proves the second inequality in Lemma 3.10.

Lemma 3.11. Let z: [lo,t;] — IRy be a continuous function satisfying for all
t € [to,t1] the inequality:

z(t) < a+ ./‘ b(r)z(r)%dr
to

where a« is a constant and b : [tg,t] — IRy a positive continuous function.

Then: 2(t) < 2a for all t € [to,11] such that f‘ b(r)dr < 5=
Finally, we are able to prove the main densnty theorem ol' l.he section:

Theorem 1.6. Assume dim M > 1 and r > 3(1 4+ dim M) and let G be
the subset of SDM S(D) (resp SDMS(V)) of all systems X such that their
invariant manifolds are pairwise transversal. Then G is open densein SDMS(D)
(resp. SDMS(V)).

Proof. Since we know by theorem 1.5 that G is open, it is sufficient to prove that
G is everywhere dense in SDMS(D) (resp. SDMS(V)). As before we shall
give the proof in the first case only. The second case is similar but easier. Since
the set GIW(D) is dense in SDMS(D), it is sufficient to prove the following:
every Xo in GIW(D) has an open neighbourhood V, such that VoNG isa
Baire subset of V.

To start, if Oy x,,--.,0n,x, denote the singular points of Xy, we can find
neighbourhoods €4,...,Q5 of O1,x,,...,0n,x, respectively and constants
ay,...,ay such that for each i, the manifold X; = Q; N {Ex, = a;} satisfies

the following conditions:
1) E; is transversal to Xpo;
2) ;NW%, (Oix,) 1s acompact connected manifold,;
3) Each trajectory of Xo in W} (Oix,) cuts X; in one and only one
point.

Then we can find an open neighbourhood V; of Xy in SDMS(D) satisfying
the statement (i) of Proposition 3.4 and such that for any X" in V; the conditions
1-2-3 are satisfied if we replace W§% (O;x,) and X, by W¥(Oix) and X
respectively, in them.

Applying Proposition 3.4 and using the compactness of the sets

I nWx,(Oix,)

we can find, for each i, n; pairs (Ug”*, N§*) of an open neighbourhood 45" of
Xo, an open set Nc'f'" satisfying the assertions of Proposition 3.4 with respect to
the pair (Uo, No) and such that the {Ng* |1 < k < n;} cover &;N W%, (Oix,)-
We can always restrict V; so that forany X € V, andany i, 1 <i< N,



108 Ivan Kupka and Waldyr Muniz Oliva

£;NWH(0;x) is contained in | JiL, NE#. Then we can restrict the Ug" so that
Ut cv for all k,i.

Proposition 3.4 states that the subset G*% of UF* of all systems X such
that W (0:ix)N NE* is transversal to all the stable manifolds of X is a Baire
subset of Uf". Theset V =), i, Us" is an open neighbourhood of Xo
in SDMS(D) and the intersection (), (i, G** is a Baire subset of V. But
the condition 3) on the X; (valid for all X in V;) implies that this intersection
is GNV.

4 - Proof of Theorem 1.7.

As we said in the Introduction, the main arguments in the proof of Theo-
rem 1.7 follow the lines of [8]; we include them in the paper for completeness of
exposition. Throughout the proof we implicitely assume D to be complete.

The following facts are more or less standard, some of them are remarks
already made and a complete proof can be found in [3]. Denote by A = A(V, D),
(V,D) € DMS, the attractor of (V, D), thatis, A= {v € TM | the trajectory
of (V,D) through v is bounded}. Then

i) A is connected and is the largest compact invariant set;

ii) A is uniformly asymptotically stable set for the flow on TM;
iii) A(V, D) is an upper semicontinuous function of (V,D) in DMS;
iv) If f=eX is the time one map associated to (V,D) and

B,={veTM | E(v) <a}

then, for a sufficient large a > 0,

A=) f"(Ba);
n>0
v) The map wp/A: A— M is surjective;
vi) If (V,D) € SDMS, thatis, (V,D) isstrongly dissipative, then A is
the union of the unstable manifolds of all (finite number) singular points.

Lemma 4.1. Let (V,D) € G, P € Sing (V,D) and dim WY(P) = n. Fix
a n-disc B} centered at P contained in WQ_(P). Given ¢ > 0, there
exist neighbourhoods U of P and W of (V,D) in SDMS such that
if (V,D)e W, Q € Sing (V,D) and Q* € Sing (V,D) is the corresponding
singular point near @ and moreover, if W*(Q*)NU # 0, then W*(Q*)NU is
fibered by n-discs e-C' close to B.

A partial order in the set Sing (V, D) of a strongly dissipative mechanical
system (V, D) is the following (see [8], [14]):

P<Q iff We(QINWY(P)#0 V P,Q € Sing (V,D)
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P

The phase diagram of (V,D) is (Sing (V,D),<). If P < Q there exists
a chain (P, =Q, Ps,..., Py = P) such that

WUP)NW*(Pip) #0, 1<j<e-1;

define depth (Q | P) as maximum of the lenghts £ of all chains connecting @Q to
P; depth (Q | P) =0 means that W*(Q)N W?*(P) =0. Remark that if depth
(Q|P)=1 and G*(P) is a fundamental domain (G*(P) is the boundary of a
cell B,(P) centered at P and contained in Wy _(P)) then W*(Q)N G*(P)
is compact. For any @ € Sing (V, D) there exists at least one maximal chain of
lenght n > 1,(P1 =Q,...,P,), thatis, P, isasink and depth (P; | Pj41) =1,
i=12,...,n-1

The next lemma is lemma 7.3 of [9], pg. 87:

Lemma 4.2. Let P be a singular point of (V,D) € SDMS(D) There exists
a neighbourhood U of P and a continuous map % :U — B, where

B, = B,(P) = UNW.(P)

such that
1) #Y(P) = B, = UNW2.(P) is a disc containing P;
2) for each z € B,, ®~'(z) is a C"-submanifold of TM transversal to
Wi (P) at the point z;
3) ® isof class C™ except possibly at the points of By;
4) the fibration defined by T is invariant for the flow , of the vector
field defined by (V, D), thatis, if t >0 then

ei(F71(2)) D T} (p1(2)), Vz € B,
In proving lemmas 4.1 and 4.2 we reall)-z have an Unstable Foliation of U
at P € Sing (V,D), (V,D) € G, that is, a continuous foliation
F(P,U):z €U — F.(P,U) = 7 (7(z)).

Moreover, this unstable foliation can be easily globalized through saturation
by ¢:. This way we obtain a global unstable foliation F(P,U) where

U = U {Pi(f})s

teR

and a projection 7 : U — W?*(P) given by mwowi(p) =pi0o7(p), pE U, and
such that:
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a) the leaves are C! manifolds with tangent spaces varying continuously
in the Grassmanian and

Fp(U,P)= W*(P);
b) the leaf F,(P,U) containing z € U is equal to
7~ !(x(z));
¢) F(P,U) is invariant for the flow ¢, of (V,D); that is,

e(Fe(P,U)) = Fou)(PU), teER, z€U, or

mowy =¢wow in U.

The same holds for (V, D) near (V,D) in G.
For any maximal chain (P, Ps,...,P,;) on the phase diagram of (V, D) we
obtain, by induction, a compatible system of global unstable foliations,

(T(PI:UI):-?(PmUz);---;}-(PmUn))
and the associated projections

Ui = W' (F), mio(p/Ui)=¢iom, i=12,...,n.

The compatibility means that if a leaf F' of F(Pg,Ux) intersects a leaf F
of F(P,Uy), k<£€<n, then FD F; moreover, the restriction of F(Pe,Up)
to a leaf of F(Pi,Us) isa C! foliation.

Consider again (V,D) € ¢ and fix a > 0, sufficiently large, such that the
bounded set B, contains Ops and the set A(V, D). We know that for any small
€ > 0 there exists a neighbourhood W of (V,D) in G such that A(V,D)
is contained in the e-neighbourhood of A(V,D) in B,, for all (V,D) € W.
We may also assume that the vector field corresponding to (V,D) € W points
inward at every point of dB,. B, is a disc bundle in T'M with sphere bundle
dB, and

B.= |J WP)NB..
P;eSing(V,D)

From now on, in this section, we call W?*(P) N B, the stable manifold
of P which we denote simply by W?*(P). Let us denote by W°(P) the
closure of W?*(P) in B,. The topological boundary of W*(P) in B, is
OW*(P) = W'(P)— W*(P). Then z € dW*(P) if and only if there exists
a sequence of points ¥ in a fundamental domain G*(P) and T; — —oco as
i — oo such that

z = lim o1, (v)
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where ¢; denotes the flow corresponding to (V, D). Remark also that dW?*(P)
is positively invariant. If P,Q are two distinct points of Sing (V' D) such that
W (P)NW?*(Q) # 0, then Q € W’'(P) and there exists z € W*(P)NW*(Q),
z # Q; furthermore, by transversality condition dim W*(P) > dim W*(Q).

The following sequence L; is similar to the one considered by Shashahani
[13): Lo =0; Ly is the union of all stable manifolds whose topological boundary
is empty; for 7 > 1 one defines L;y; to be the union of L; with the union of
all stable manifolds whose topological boundary is contained in L;. It is clear
that for all ¢ >0, L; isclosed, L;41 — L; is a disjoint union of stable manifolds
and ¢=LOCL1CL2C...CL,,=B¢. _

Denote by P* the singular point of (V,D) corresponding to P €
Sing(V, D), for (V,D) near (V,D)€qg.

We start now the construction of a homeomorphism h mapping the flow of
the system (V, D) onto that of (V, D).

Take any W?*(Py) € L; and the corresponding W?*(P?). Since W?*(P;)
and W?*(P;) are ¢ — C"—close on compact sets (see [9], pg.75), for (V,D) near
(V, D) there is a diffeomorphism

hy : G*(Py) — G*(P})

and let us extend it to the full W?*(P,) using the flows ¢; and ¢} of (V,D) and
(V,D). Thatis, if z € W*(P), z # Py, t € IR is the unique time ¢ such that
pi(z) € G*(P,), then we define hy(P)) = Py and hy(z) = ¢, ohy o pi(z) €
We(Py). The map

hy : W*(P,) — W?*(Py)

is a homeomorphism (a diffeomorphism on W?*(P;) — {P,}).
Do the same for all stable manifolds of L;.
The second step is to define a homeomorphism hs from

W?*(Py) € Ly — Ly

onto the corresponding W?*(P3) in such a way that h; will be compatible
with the defined above h;, for the case in which W’(Pg) NW?(P1) # ¢. The
manifolds W*(P,) and WH*(P{) are ¢ — CT—close on compact sets and we
have depth (P; | P2) = 1. Then the set Vi, = G*(P;) N WY¥(P;) is a compact
manifold and also W#(P,) and W*(Ps) are e—CT—close on compact sets. By the
transversality conditions of the invariant manifolds of (V, D) and of (V, D) near
(V, D) there exists a diffecomorphism hs from Vi3 onto V{5, = G*(P3)NW*(FPy).

Let my: Uy — W*(Py) and =7 : U} — W?*(P;) be the projections associated
to the global unstable foliations F(P,,U;) and F(Py,U;). The transversality
conditions imply that we may consider m2 = 7 /TVi2 and =}, = #}/TV)% for
suitable tubular neighbourhoods

(TViz,02,Vi2) of Viz in G*(Pp)
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and

(TV,03,Vi3) of Vi3 in G*(F;)

chosen in such a way that the open maps h;om2 and }, have the same image
in W*(P7). The maps

(112 x 0'2) :Tvlz —_ W‘(Pl) X V;g
(w12 X 03) : TV — W*(P]) x V)

and the homeomorphism
(h1 x hy) : W*(Py) x Viz = W*(P) x V}

enables us to define A% : TVi2 — T'V}%, uniquely, such that the diagram below
is commutative:

TVia 25 TV,

(m12 X 03) l l (772 x 03)
s (h1xh3) sf D .
W2(P) x Via — We(Pr) x V5

Note that hY/(T'Vi2 — Viz) is a diffeomorphism.

We have to repeat the same construction of A4 for all Q; such that
W*(Q:1) € L, and W' (P2)NW*(Q,) # ¢. Using the Isotopy Extension Theorem
(IET) for diffeomorphisms (see [4], pg.133 for a statement and references) we
extend all the hY : TVis — TV, to G*(P;) and obtain a homeomorphism
[ G*(P;) — G*(Ps) which is a diffecomorphism except at the points of the
compact manifolds Vi2 considered above. Finally hy : W*(P;) — W*(P5) is
constructed by ha(z) = ¢=,0hp0p(z) for z # P», where t € IR is the unique
time such that ¢,(z) € G*(P2), and hy(P;) = P;. The second step is finished if
we do the same for all W*(Q2) of L, — L;. Consider the union hyUhs defined
on the union of all stable manifolds of L.

Thus it remains to prove the continuity of h; U hs. The only point where
to check continuity are those z € dW#*(P2) such that, say, z € W*(P;). We
may (and will) assume that z is sufficiently close to P;. Recall that h, takes
leaves of F(Py,U;) near WY(Py) to leaves of F(Py,Uf). Take a sequence
zn, € W*(P2), z, — z. The leaf through hy(z,) converges to the leaf through
(h1 U h2)(z) = hi(z). It remains to prove that ha(z,) convergesto W?*(FPy).
But this happens since the sequence of times t, such that ¢, (ha(z,)) € G*(P5)
tends to infinity.

The next (third) step is the consideration of P3 such that W?*(P;) € Lz— L2
and we will construct a homeomorphism hs from W?#(P3) onto the corresponding
W*(P3) insuch a way that hs will be compatible with h; and h;. The fact that
W?(P;3) € Lg — L» implies that there exists at least one point P € Sing (V, D)
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such that depth (P | Ps) < 2. For each singular point @; such that depth
(Qi1| Ps) =1, W*(Q1) € Ly and h, is defined on W?*(Q,); we proceed as
in the second step and construct germs of diffeomorphisms kY, defined (locally)
on G*(Ps), exactly as we did before when we constructed h4. For points P,
such that depth (P, | P3) = 2 one considers a sequence (P;, Pz, P3) such that
depth (P, | P;) = depth (P2 | P3) = 1. That implies that the manifolds W*(P;)
(resp. W?*(P3)) and W*Y(P3) (resp. W*(P3)) are € —C"—close on compact sets.
By the transversality conditions Va3 = G*(Ps) N W¥(P;) is a compact manifold
and there is a diffecomorphism h%5 from Vs onto V35 = G*(Pg) N WH(Ps).
Let mp : U — W*(P2) and =3 : U35 — W*(P;) be the projections associated
to F(Py,Us) and F(P;,U;). The transversality conditions imply that we may
consider
w3 = m2/T'Vas and w35 = 73 /TVoy

for suitable tubular neighbourhoods
(T'Vaz,03,Vas) of Vas in G*(Ps)

and
(TVis, 03, Vi) of Vis in G'(P3),

such that the open maps hsowss and w3; have the same image in W*(P5). As
we did before we construct h4 such that the following diagram is commutative:

"
h.!

TVas e TV

(723 X o3) l l (733 x 03)

WeP) x Vas "B WPy x gy

The construction shows us that hY takes leaves of F(P;,Uz)NTVa3 to
leaves of F(Ps,Us)NTVy;. But moreover, since h; takes leaves of F(Py,U,)
near W“(P,) to leaves of F(Py,U;) and by the compatibility of the system
of foliations we see that h4 takes leaves of F(Py,U;) N TVaz, to leaves of
F(P;,Up)NTV.

We have to repeat the same construction of the last h4 for all sequences
(P, P}, P3) such that

depth (P, | P}) = depth (P} | Ps) =1

with P; fixed. We assume also that we did the same for all P; such that
depth (P, | P3) = 2. Using properly the (IET) for diffeomorphisms we extend to
G*(P3) all the h% constructed in the second step and obtain a homeomorphism
hs : G*(Ps) — G*(P3). Finally we extend hz to W?(Ps) using the flows ¢,
and ¢; and obtain hz: W?*(P3) — W?*(P3) by ha(u) = ¢, ohzo @r(u) for
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u # P3, where 7 € IR is the unique time such that ¢,(u) € G*(Ps), and
hs(Ps) = P£

The third step is finished if we do the same for all W?*(Q3) of Ls— L».
Consider the union h; U hy U hs defined on the union of all stable manifolds in
Ls. The continuity of hy; Uhy U hg is proved in the same way as we did in the
second step. The induction procedure is now evident. ll

We finish the section with the proof of a standard result that we needed,
implicitely, for the conclusions of the theorem above:

Proposition 4.3. The subset of all complete C™ vector fields of a manifold F
is open in the set of all CT vector fields with the Whitney CT-topology.

Proof. Let d be the distance function on the manifold F associated with
a complete Riemannian metric. Take any complete vector field F on F. Call
®:Rx F — F the flow mapping associated to F : ®(t,p) = ¢ (p).

To any compact subset K of F we associate the subset E(K) of F:

E(K) = ®([-1,+1] x K) UB(K, 1)

where B(K,1) = {z | d(z,K) < 1}. Then E(K) is compact as union of two
compact sets and E(K) D K.

We define a sequence of compact subsets K, of F as follows: take any
point pp in F; Ko = B(po,1) and Kp41 = E(K,). Then Kp41 D K, for
all n>0.

We claim that F = U, K,: if z € F and ¢—1<d(z, Ky) <gq, ¢ integer,
then, = € K,. In fact, let T € Ko be such that d(z,Z) = d(z, Ko) and let
v :[0,d(z,Z)] — F be the minimizing geodesic jorning Z to z. Let z; = y(i),
i < g. Since d(z;, zi4+1) =1, we see by induction that z; € K;, i < g¢. Since
d(zg—1,z)<1 and 2,7 € K,_1, z isin K.

Also it is clear that K,4; is a compact neighbourhood of K, for all n > 0.

For each n there exists a constant €, > 0 such that if G is a vector field

on F and d,(F,G, Kn41~ ﬁ'.,)ge,,, Jﬁ;'n interior of K,, where

di(F,G, Kny1— Kn) = sup{[|F(z) - G(=)||+
IVF(z) - VG(@)ll, =€ Kns1— Kn },

L
V being the Levi-Civita covariant differential, then ¢ is defined on K,41— K,
forall t, —1<t<+1 and ¢f(Kn41— Kn) C Kpys forall ¢, —1<t< 41,

The set U of all G such that for any n, d,(F,G, Kn41— ;{n) <Ep, iIsa
neighbourhood of F for the Whitney topology. We claim that every G in U
is complete. We shall write the proof for positive times only.
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Takea G in &/ anda z in F. Then z € K,,, for some ng. By induction

on ¢, it is easy to see that ¢f(z) € Kno42q if 0 <t < q: if t € [q,q+ 1],
of (z) = of 08 (z) € 0F (Knot+2q) C Knot2g4+2. Hence ¢f(z) is defined for
all t>0. 1
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