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Rapid Convergence to equilibrium
in Ferromagnetic Stochastic Ising Models'

Richard Holley

Abstract: This is a review of what is known about ex-
ponentially fast convergence to equilibrium in finite range at-
tractive Stochastic Ising Models. The main goal of this re-
view is to explain the necessary and sufficient condition for
fast convergence, that has recently been proven by Martinelli
and Olivieri. All of the necessary background is explained so
that this review is self contained.
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§1 INTRODUCTION.

The stochastic ISING model was first introduced in the early 50’s by N. Metrop-
olis et. al. [12] as a method for sampling typical configurations from Gibbs states.
The idea was to make a Markov process whose equilibrium states are Gibbs states
and then run the process long enough to reach equilibrium, at which time the
configuration of the process should be a typical configuration for the correspond-
ing Gibbs state. Thus right from the beginning the question “How long does it
take to reach equilibrium?” was an important one. About ten years later Roy
Glauber [4] introduced the stochastic [SING model again; this time from the point,
of view of nonequilibrium statistical mechanics. The first question that Glauber
asked was how fast does the system relax to equilibrium? For the next seven
or eight years the work on the stochastic Ising model was mainly experimental
simulations. Then around 1970 Frank Spitzer [14], and R.L. Dobrushin and LI
Pyatetski-Shapiro [2] introduced the general subject of interacting particle sys-
tems and a small group of people began studying interacting particle systems in
general from a theoretical point of view. Over the years the subject attracted
a growing number of researchers. By 1985 it was becoming obvious that in the
time reversable case (stochastic 1SING model) one could say a lot about the rate
of convergence to equilibrium if one knew enough about the equilibrium state (see
R. Holley [7]). Exactly what one must know about the equilibrium state in order
to conclude that the system relaxes to equilibrium exponentially fast has recently
been discovered by F. Martinelli and E. Olivieri [11]. It is the purpose of this
paper to review the necessary background and then prove the Martinelli-Olivieri
Theorem, so that the entire proof of their condition is contained here.

This paper is organized as follows: In the first section we will give some basic
facts about (iibbs states. In the second section we introduce the stochastic Ising
model and prove that it exists. In the third section we derive some of the important
properties of the stochastic Ising model that we will need in our proofs. The
forth section contains some of the properties that derive from assuming that the
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system is ferromagnetic.  Finally in the fifth section we prove the Martinelli
Olivieri necessary and sufficient condition for exponentially fast convergence to
equilibrium,

82 Tue Ising MoODEL.

The goal of this section is to introduce some notation and basic facts concerning
the ISING model. We will think of the ISING model as a model for the spins in a
piece of iron, and for simplicity the spins are restricted to be either np or down.
Thus we take F = {—1,1 }Zr’ to be the space of spin configurations, and denote
configurations of spins by Greek letters such as o, 7,w € I, a(k) the spin at k € 7
in the configuration e,

Give {—1,1} the discrete topology and £ the resulting product topology. Let
C(17) denote real valued continuous functions on £ with || f|| = sup,cp. [[(o)].
D C (1)) will denote the cylinder functions (local observables) on [

We assume that we have an interaction that is given by a pair potential Jy,. ) €
B o,y € 29 that is translation invariant

Ney) = HNevky+k)s z.y.k € Z°,

and has finite range
J{.r.yll =01l ||J - _f;'” .20 1

here ||2]| = max{|e;|,i = 1,... . d}. Any external field present will be deonted by
h.

In order to deseribe the Gibbs states we first begin with conditional Gibbs
states. The Gibbs state with the above pair interaction and external field, condi-
tioned on the complement of the set A with configuration equal to o outside ol A
is given by

. "(Z{a-.y}c.\ Sya gyt iy I+Z_,.e.\ e Jey sy +h ey niay)

Z(A. o)

palylo) =

)€ {—l.l}'\_

Here Z(A,e) is the normalizing constant needed 1o make pa(-le) a probability
meastre.

Before trying to relate this to a measure on I we lirst set. Fy = a(n(k) 1 k €
A). the sigma algebra generated by the functions y — y(k), & € NThen pu, a
probability measure on Fyu, is a Gibbs state if

w(n|Fac)o) = palnle)

for all ¢ € E and all A € Z%. We will let G denote the set of all Gibbs states
(for Jy, 4y and h). There may be more than one element of G: however, there is
always at least one element. In this paper we will be primairly interested in the
case when ¢ is a singleton.
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§3 THE SToCHASTIC ISING MODEL

The Stochastic ISING model is a Markov process, 1;, with state space E such
that the measures in G are its stationary measures. The evolution should be
“local” in the sense that each spin evolves in a way that is dependent only on the
spins that are within a distance less than or equal to the range of the interaction
of the given spin. Before describing the evolution in detail we need some notation.
If n€ E and k € Z¢, we set

AR EY:
MUY=\ ey i j = k.

For each k € Z% we have a positive function, which we call the flip rates, cp(n).
Intuitively the flip rates determine the process by the following formulas:

P(nesn(k) = —=ne(k)[ne) = cx(n)h + o(h),
and
If kb # j then P(ega(k) = —n(k) and gegn(G) = —me(3)|me) = olh).
We require that ex(n) = ex(o) if 9(j) = o(j) for all ||j — k|| < L, and that

they satisfy detailed balance, which intuitively says that p(i)ex(n) = p(9*)er(4%).
Since this doesn’t really make sense becuase p(n) = 0 we actually assume that

pamle)ex(ne) = paln*lo)ec(n®o) if k € A.

Here neo is the configuration of spins that equals 77 in A and equals o in A",
For example

Pr_i[l‘-]{Z,J[kll,}n{jl+hl

cr(n) = - -
k(1) oMK, I,y nlg)+h) +E.ﬂlk1[2‘1|k,,|ﬂ(}]+-‘i]

1
| 4 e 20k, Jw pna)+h)

This is the flip rate that Glauber used. Note that we can multiply ep by any
function of n that does not depend on 5(&) and still have detailed balance. Thus
for example the Metropolis flip rates are given by ex(9)/(cx(n) V ex(f)). where
¢ 1s as above.

The following notation will be useful to us. If f € C(L), define

Acf(n) = f(n*) = f(n).

From our above intiutive description of the stochastic ISING model, we want a
Markov process, 1, on £ whose infinitesimal generator, when restricted to D, is
given by



134 Foechare Tty

LI =) exmAef(n),  JE€D.
keZd
Our immediate goal is to show that there is a unique such process. We follow
the development in [5]
In order to get some feel for the problem. suppose [ is Fy measurable. Then

LI =Y clmAcf(n).

keA
Thus
LI < 2lfeall AT
and Lf is Fauoa measurable. Here dA = {k ¢ A dist(k. A) < L}
Let A Ut‘)"\ — Al‘ .'\j Ut“}"‘q = Ag. .'\'_g U “.’\'_} — .’\;;. ete. Then
1 £ < CllealD* A AL
and by induction

”‘E"f(}“ S (2”-“:;”]"'3\,,_|||_J\“_-_;| '’ I'\“””

IfAC {—f,f]d then A, C [l —nl.l+n f.]"’ and |A,| < (2(l+nL)+ DL Thus

n=1

e SO < 2lleall” TT 200+ 52 + 107111

i=u

We would like to expand €£* in a power series, so the question becomes “Does

(A ¥

’n n
> L

n=0
converge for any t > 07" We begin by setting Ay = ||f||n:ff=”(2[f +jL)+ 1)
Then

n—1

ol TT 200+ L)+ DA

i=o

‘ ) n—1 - 9 + ]) d {('” — l}ll d
= (2llcoll) -"f( I @b+ == )

i=241
< (2ol ((n = DH4(2L + 1) =14,

Il d = 1 the series converges for all 1 < G If d > 2 we need to be

R S
awllt2L41)"
more careful.
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Let Np = {j € 2% : ||[k—j|| < L}, and let D(A) = {f : f is Fo measurable}. If
f€D(A) then Lf = crAif and et Apf € D(AUNg).

kEA
= Z(‘:A;Zc;,.lkf S>> Al
keA kEA jEAUN,
and
Eﬂf ZC; Ag" Z C’-‘-n—t-ﬁ‘knq ...Zﬂklz_\klf
kny ky
= Z z Z (67 S VST U SIS A YO i
k1EA k2EAUN, kn€AUN UL UNk,
Thus
sl <lleolP 2l 3 3 ) 5o !

kigA kJGAUN"I ""ne-\UNkiu--U.Nkn_l
<leol™2°[IAIICA] + (n — 1D)(2L + DA+ (n — 2)(2L + 1)) ... |A]

n Tieynt A +”(2L+ l}d L
= ol 2 U2 )

L s
<leol™2" "
<llcol|™ 2" nl]| flleIAFPREFND = lAIny(2|o|[e 2E+1%)m | £].

The above inequality allows us to define ¢£! for small . We want to extend it
to all t > 0 and at the same time to show that it is the limit of semi-groups which
correspond to processes in which all of the spins outside of a finite set are frozen
in their initial positions. To define these latter semi-groups let

Laf= ) exlsf,

keA

and note that £, is a bounded operator for finite A. Let T* = ¢'*4 he the a
positive contraction semi-group whose generator is £n. Next note that if [ €
D(Ap) then £ f = £ [ for all n < M Thus

‘\|,I’III f— Z .ﬁ”f— T f

n=f)

for all 0 < t < W and all f € D. Since D is dense in C(F) and

each T} is a contraction semi group, TMf — T,f for all f € C(F) and all 0 <
! law: tige T » TA — .
t < W Now use the semi-group property of each T} to conclude that

lim TAf=T,f for all t > 0 and all f € C(F).
A/ Zd
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§3 PROPERTIES oF T} (T}).

In this section we list several of the properties of 7; and TA that will be useful
to us. The first three properites follow immediately from the choice of the flip
rates and the construction of the semi-group.

1. Since ¢} 's satisfy detailed balance

] SN g(mpaldnlo) = f (ML f()pea (dno)

=3 > [extnaesinscatmmntdnto).
and ]
[ rogaonutan = =5 3= [ ctneronseatmmtn)
keZd
forall f,geDand peg.
2.1 [ Lf(n)u(dn) = 0 for all f € D, then p is stationary for {7, : 1 > 0}.
3. Every pu € G is stationary for {17 : 1 > 0}.
4. Let K = 2|[eo]|(2L + 1)* and set a = 2KV 1. Then for f € D(A),

.f n g
S A< o () A

{k:dist(k, A)>nL]

Here to = n/a and ||l = 5je 4 13,11
Note that if + <1, then

S AT < (6D I
{k:dist(k,A)>nl}

A proof of property 4 can be found in [9]. We sketch the prool here. The proof
is based on the following lemma the proof of which can be found in Liggett's book

[10).

Lemma. If ¢(t,n) : [0.2¢) x E — & and %",ﬂ(r.r;) = Qe(t,n)+ (1. y) for some
infinilesimal generator of a positive contraction semi-group, Q. then ||p(t, )] <

t
le(0, )| + [y llets. -)]|ds.
To apply this lemma we let o(1.9) = X, Ty f(n), then

d -
d—{p(!. n) =ALLT f(n)

=Ap Y AT ()

J
= ) GMNATS+ Y A AT f(n)
li=k|>L li—k|<L

= > A+ > A AT

| =kl > 1. ik <L
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Thus y
ATl < Al +2leoll [ 30 1A/ T Sllds
O lj-kI<L ;
Therefore,
DD |7V ¥ 1 N (1 W
{k:cist(k A)>nL} {kcist(k,A)>nL}
t
+z||en||[zL+1)'*/ > [|ALT: S| ] ds.
O\ {k:dist(k,A)>(n—1)L}
+ e + )
Now set [F,(t) = Z [|ATfl]. Then F,(t) < K fo Fy—1(s)ds for

{k:dist(k A)>nL}
n> 1 and Fo(t) < [IfIll + K [y Fols)ds.

Thus by induction on n we get

; n-—1 ’\-f'i { no
ra < A [ =2 S ) <o (£) e

j=0

5. If dist(Ay,A%) > nL and f € D(Ag) then

n+1
T s ) = TAFOI < N6 (f‘) (Klt=to),

6. If dist(A1,Az) > 20l and [ € D(A)) and g € D(As), then ||Ty(fg)(-) —
(n+1) .
TOTgOll < 2lfallicon® (&) Kmto,

The proofs of 5. and 6. are similar to that of 4.
Remark: The bounds in 4. and 6. also apply to T for any A C 2.

4 MONOTONICITY AND COUPLING

For the rest of this paper we assume that all Jy; ;3 < 0. This has the effect
of making configurations with neighboring spins in the same direction more likely
than configurations in which lots of neighbors have opposite spins. This shows up
in the flip rates. Recall that one possible choice of flip rates is given by

|
1+ e =200, Jiopnld)+h) "

co(n) =

In order to see what the effect of assuming that all of the Jy ;} are less than
or equal to zero is we make E into a lattice by defining

(nVa)(k) =n(k)Vo(k)
(nAa)(k) =n(k)Ao(k).
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We say that f: E +— B is increasing if 5 > o implies that f(y) > [(e). Then
cx(n) is decreasing on {7 : (k) = 1} and increasing on {5 : y(k) = —1}. Flip rates
cx, k € Z4 that satisfy these monomonicity conditions will be called attractive.

A process with attractive flip rates allows us to construct a process on £ x [,
call it {ni”, rﬁ?’), with the following properties:

1) BNl = T f ().
2)  EOa[f)] = T f(n'?).

3) If 5V > 92 then POVt > 2y = 1 for all ¢ > 0.

Rather than construct a coupling with the above properties we will instead
prove a lemma that we need. The proof of the lemma that we will give is by
coupling, and after one sees that proof it will be clear how to make the coupling
mentioned above. The following lemma is a version of a theorem that was first
proved in [3]. There are numerous proofs of this version in the literature. The
proof given here is from [6].

Lemma F.K.G.. Lel A be a finite sel and let py. po be probability measures on
S = {—1,1}* such that py(0), p2(o) >0 forallo € S. If (o V y)pa(a Ay) >
pi(a)pa(n) for all o,p € S, then there 1s a measure v on S x S such thai:

> v(n.o) = pi(n)

aES

> v(n.0) = pa(o)

NeS

v(n,o) =0 unless n > o.

Proof:. The proofis accomplished by constructing two Markov processes that have
p1 and pa as stationary measures, and then compling those processes. We define
the flip rates for our constructed processes as follows: For x € A lel

Iil{ } 1 ifplz) =-1
() = . ;
R wi(n™) /i) il p(e) = 1.

Let €2; be the infinitesimal generator given by

Qif(n) =Y S0 = F).
reA
Let T,(i) = ¢ and set P,m('q, A= T;“I,q(n).
p,-(w))cg,ﬂ(n) = p,'{?r"]cfr”{n"') for all * € A and all n € S. Therefore y; is
stationary for {T,m,a‘ > 0} and Thus ‘Iinr\a] P!(n, A) = pi(n) for all 3 € S.
Now define the flip rates of the cou[:ied process by
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N (mAe (o)

ifplr)=c(x)and w=n".7=0"

=) A e (@)
ifpz)=c(x)andw=9y"7=0

Q(,oiw. ) =4 A2 ()= (D () A P (e)
if plr)=c(x)and w =n.7=0"
() if n(e)
() if g(x) £ o(z)and w=n, 7= 0"

0 otherwise.

Fo(z)andw=y"T=0

Define
Lf(n,a)= ZSI noow, ) flw,7)— f(n,0)).

Note that if f(n.e) = @(n) then Lf(n, o) = Q1o(n), and if f(5,0) = ¢(o) then
Lf(n.o) = Qo(0).

Let Ty = '€ and P((n'"). '), C) = T I (', n2)).

Then it follows from the above observations that P((n'',9%), A x §) =

PIY, A) and P((g), '), 8 x A) = PP (), A).
Therefore, ;r|{_-1] = limy—~ P((g"" . 9t*. A x S), and similarly for pa(1).

Let v(C') = linmg—- P((+1.=1).C"). Again from the above observations it
follows that v(A x S) = py(A) and v(S x A) = pa(A).

Claim: 9" > gt then P((n'" 9'*). d(n,e) :np > a}) = | for all 1. To prove
this claim it is enough to show that if > & and «w # 7 then Q[r;.m.a"r] = 0.
This follows mmmediately from the definition of Q. The only interesting case is
when n > o, ylr)=ealr)=1l.w=1n", and 7 = 7. In this case

Qn.aiw, ) = () = (4D (1) A ()

- ') (1-‘4[33:) A H-L'(ﬂ'x))
1) Hi(n) palo)

_ ') (] B (l A :-r-_:(ﬂ"l;-u(?f))) '
pi(n) prale ) (")

| e 3 I pale Jpain) palaAn” b lavy®)
e e - : a5 1S — =1
Next note that by hypothesis, it = B 1

Finally v({(n.a):n > o} = liny—~ P((+1. =), {(n.e):n>c})= 1.

Ill the future we will denote by #, the infinite proeess with semi-group 7,. We
let 1) be the process with spins outside of A frozen, and denote its semi-group by
TN, We also assume from now on that the {lip rates are attractive.

If (k) = 1 for all k& A and if (k) > 5(k) for all & € A then we can couple
ne and 5 in such a way that g > g, for all ¢ > 0. Similarly, if y2 (k) = —1 for
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all k ¢ A and if nf (k) < n(k) for all k € A then we can couple 5, and nd in such
a way that n}* < 1, for all t > 0. Therefore if f is increasing then for all n € F

TAF(=1) < T f(n) < TP (+1).

Letting f go to infinity in the above inequalities we see that
/f(a']pﬁ(dﬂ -1)< ]itm inf 7y f(n) < limsupT, f(n) < /f(a),u‘\[d(ﬂ +1)
—00 t—oo ;

for all A. If |G| = 1 then
Jlim, [ s@matdol - 1) = Jim, [ rowmatdel+ 1) = [ @)

where G = {u}. Therefore if |G| = 1, Ti f(n) — [ f(o)u(do) for all y € E and all
increasing f. There are a lot of increasing functions. For example define

1 ; lifp(j)=1Torall je A
xa(m =[] L {

: 2 () otherwise.
JEA

All functions in D(A) are a linear combination of {x4 : A € A}. If we combine
these observations with the fact that D is dense in C(F), we have a proof of the
following theorem.

Theorem:. If the flip rates of the stochastic 1SING model are allractive and, if
|G| =1, then for all f € C(E) and allnp € I

lim T2fn) = [ f(outdo).

For general f € C(FE) the convergence of T} f to [ fdpu may be arbitrairly slow:
however, if we are interested in the rate of convergence of T} f to [ fdpu for f € D,
it is enough to study the rate of convergence of Tyx 4 to [ yadpu.

Note that if A C Z9, is a finite set, then

D XgiF—Xa

j€EA

is increasing. Therefore T,(Z X} —xal)(-=1) £ '!}[Z X{j] — \a)(+1)or
JEA jeA

Tixa(+1) —Tixa(=1) <

3 (Tixgy(+1) = Texgiy (=) = AL (Toxqoy (+1) = Tixgoy(—1)) -
jeA
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Thus the overall rate of convergence is goverened by the rate that (7;xqpp(+1) =
Tixqoy(—=1)) goes to zero.

We next give some examples to demonstrate the possible rates of convergence
that one might obtain. .

For the first examiple we take Jy; x} =0 and i =0 -~ i.e. no interaction, so that
we may take ¢p to be constant, say ¢p = 1/2.

In this case

Tivgop(+1) = Tixqoy(=1) = 7",

This example is typical of what happens at high temperatures, i.e. small Jyj ).
As a second example we take d = 2, h = 0, and

1
¥ J < =5 log(1 + V2) for =4l =1
J{jik} =

0 otherwise.

In this case |G| > 1 and Ty\yoy(+1) = Tixop(—=1) does not go to zero at all.
For our third example we take d = 2, h = 0, and

I
——log(1 + V2) for |j — k| =1
Tiwy =9 2

0 otherwise.

Let ¢r(n) = n(&) then

1
Tt\{n}(‘*‘l] o Tf\{i}}{—ll = z (E+I['?t(u)] = Jf'.-‘_l[?,"!'[u}})

= [1Teooll 2 [[Tiooll 2y = 1Tt ol L2l @oll 200

> / Ty00(0)00(0)u(do) = [[Ts 2ol
Let 1 = ([evt + 1],0). Then

/onta)oﬁ(ﬂ).uldﬂ) = f?}fz(tbn[-)cﬁﬁ(-))(-‘f}ﬂ(dﬂ}

< [ Ty260(0)Th 26 5()u(da) + (61)/2

< \/ f (Tijabo(e))2(do) [ (Tiy26(0)) ulde) + (61)2

= |[Tey200[lF 2,0 + (61)'7?

Thus Tivo(+1) = Tovo(=1) > [ do(e)da(o)u(do) — (61)2
We need the following lact about the ISING model, see [13].
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Fact:. For the above choice of Jyj xy and h.

_log([ é5(0) bk 0)(@)pulda)) 1

li =
B log(k) 1
ie. [ ontor0womtde) ~ 7+,

Combining this fact with the above inequality we conclude that
Tixo(+1) = Tixo(=1) 2 const (t7 ).

Our next theorem (see [1]) shows that the above examples are essentially the
only possibilities.

Theorem. For a process with finile range atiractive flip rates, of
Tixo(+1) = Tixo(=1) = o(t™%)

then
Tixo(+1) — Tixo(—=1) — 0 czponentrally fast.

Before proving this theorem we prepare some lemmas.

Lemma. If py and p» are measures on I and there s a meausre v on F x F
such thal py(A) = v(A x E) and pa(A) = v(E x A) and v({(1,0):n < e}) = |
(we denote this by py <, pa), then for all f € C(E)

[ = [ 5l < NS xirr iz = [ iy )
k

Proof. |f(n) — f(o)] < Z 1AL FfIx gk} (1) — X4k} (0)]. Therefore
2

I/fdm —/Iduzfz If(f(n}—f{ﬂ))vla‘n.dﬂil
< f 1£(n) = F(o)w(dn. dor)

S/Z“Akf[“l{k}(’?)_ Xqk)(o)|v(dn, do)
k
= S ALl [ (xier (@) = xip(mwidn,do)
k

=Z||Akf11{/.\{k}ffl‘2_/\{k}dﬂl}-
3

Now let & (1) = ”Akav\{j}“'
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Lemma. For all f € C(E). [|A:Tif|| < D 1A fIIE £ (0).

» J
Proof. For given 1, t let y, , be the measure such that 7 f(n) = j fle) ey (da) for
all f € C(E). Since either n < n* or ¥ < 5 we have ., <, By gk OF fly ok <5 fip-
Suppose that 7 < n*. Then py, <. p; ,» and

ATl =1 [ Fap = [ 1 du
< Z”AJJF”[/ -\{j]dﬂf.:;" _/\U]dﬂ'l,u}
F

= Z 1A £ A% Tex 5y ()]
j

Therefore ||ATf]] < Y114, F11€5 1 (2).
J
Lemma. For all j ok € Z% and all s,t > 0,

Eals +6) D &uls)alt).
]

Proof. Apply the previous lemma to f(n) = Toyyj).
Proof of the Theorem. Set &, = Z‘f[]“.[” = |||}"}H|;]|“ < oo, and note that from

;.
the previous lemma we have o4, < 868,. Therefore if & < 1 for some ¢ then
&y — 0 exponentially last.
Next note that for f €D

sup [T f(n) = T f(0)| < ZHAH Il

n.w

< ZZH—\ JUE £ (8 = ||| S1]16.

We need a condition that implies that &, < 1 for some t. This is where the
dimension comes in.

b= xS Y Eult)+(.61)

k |k]<ext
< (2ot + DU (Tixqoy(+1) = Tix oy (= 1)) + (.61)".

Therefore if (Tyy oy (+1) = Tinqoy(=1)) = o(t=") then &, < 1 for large [,
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§5 RariD CCONVERGENCE IMPLIES RAPID MIXING.

In this section we will show the equivalence of rapid convergence of the semi-
group to equilibrium and certain mixing properties of the Gibbs states. We begin
by investigating what can be said if the semi-group of the stochastic ISING model
converges to equilibrium exponentially fast in the L? sense. Most of this material
can be found in [9].

Theorem. Suppose thal p € G and that there is an ¢ > 0 such that ||T,f —
[ fdpllacuy < e NS = [ fdpllLzuy for all f € L*(n). Then if [, €D

| furgdu= [ 1an [aau—o

exponentailly fast as ||7]| — oc. Here 0, s shift by .

B
Proof. Let t = 2o Then

[soegan= [ sau [gau= [ 1o 00au= [ 1dn [y
= [ (@no.0) du+ ook~ [ ran [ gy
:/((th'/fd,u)['ﬂ{ﬂrg)—/gd;z}) dp+ O(.61%%)
<y~ [ saule=<llg~ [ aaull+ocortEh)

= exp (—EEH) Ilf—/fdu-HIIs*"/ydMHO(-liIH)-

Remark: If the gap in the spectrum of £ as an operator on L*(p), call it
gap(2) = ¢, and ¢ is sufficiently small then

[ romteyutam ([ nomtan) < zexp (5 111)

and thus

SR f (n(m— / ?i(Ulﬂ(dn)) (am - ] n(kl;:(dn)) uld)

keZd

T d
= constant(d) (;) .
€
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This gives us an upper bound on gap(2) in terms of the susceptibility, Z.

_ffﬂfd;;

To get a better bound note that gap(2) = ;eif.n’-'f.:m e Thus if we let
Ialy) = Z k), then
keA

; ff.\cf;‘\di‘ ~ 22;‘-5,\ f"-'!.-(’”ﬂ(d’”
992 S = o) var(f)
|A] S co(m)pldn)

=2 - - ;
Srer Ljen S (k) = [o(k)u(da) (n(j) = [ o(j)n(deo)) p(dn)

Letting A / Z* we get
J co(m)p(dn)
=)

We mention the next two theorems to help put things in perspective. They
are not needed for the proof of the result for which we are aiming. Recall that
the rate of convergence of Ty to its equilibrium value determines the rate
of convergence of the semi-group to equilibrium in the uniform sense. The next
theorem shows that the analogous statement is true for convergence in the L*
sense.

gap(2) < 2

Theorem.

: 1 ,
gap(2) = J_'}}_l_—I l/ (\{u}(’!”:'\{n}(’.’))i‘[d’f')'— (/\{n}{ﬂ]}‘(d’i)) ]

For the proof see [§]

The following theorem is the strongest statement that I know how to prove
concerning mixing of the Gibbs state as a consequense of a gap in the spectrum
in the sense of L*. See [9] for the proof.

Theorem. [f gap(2) > 0 then there 1s an o > 0 such thal for all 6 € D,

|
Ii:uiﬂfi]lf{—; I0g(|/m" dp — /qﬁdpfrfrd,un ez < 1

and ¥ is Fae measurable } > o.

Here A, = {k € Z¢ : ||k|| < n}.

The mixing condition in the last theorem almost says that the influence of the
boundary on sites deep in the interior of a cube diminishes exponentially last in
the distance of the site from the boundary; however, it is not quite that strong. In
order to obtain a mixing condition that strong, we need to replace the assumption
of exponentially fast convergence in L* with the assumption of exponentially fast
convergence in the uniform sense. The following theorem ([7]) gives us the stronger
mixing condition under the hypothesis of uniform convergence.
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Theorem. Assume that he proces has atiractive flip raies and supposc that there
s an ¢ > 0 such that for all [ € D. there s an Ay < > such that for all t > 0.
T f = [ fdp|| < Ape='. Then if f € D(Ag) is increasing and A D Ay,

0< / Fm)ua(dn] + 1) - f J(myu(dn] — 1)
dist{ Ao, A) chist { Ay )
<AANICOD T 4 g,

diﬁt-(.‘\n. A)

Proof. Let t =
al

. Then

0< / Fmpaldul + 1) = ] Foppatd]=1)

- f Fnualdn] + 1) = TAF(+1) + TA (1) = T f(+1)
+ Tif () = Tf(=D) + T f(=1) = TA f(~1)

+T;‘f{—l)—jf{fnu-.-\(f“:l— 1)
dist( !\ JAS dist{ Ay, AY) distiAu AY)
<0+ fI1(.61) + 245 L +|IAIIIC bl) el 4.

That the mixing condition in the last theorem is sufficient for exponentially fast
convergence to equilibrium in the uniform sense is a recent result of I, Martinelli
and E. Olivieri ([11]). 1t completes the program (in the attractive case) of find-
ing conditions on the Gibbs states that are necessary and sufficient. to gnarantee
exponentially fast convergence of the stochastic ISING model to its equilibrium,

Theorem (F. Martinelli and E. Olivieri). Assume thal the process has al-
tractive flip rates. Lelt A, = {k € 79 : k]l < n}. If there is an € > 0 and a
(' < oo such that for all n

/\{n}(ﬂ}ﬂ:\..(dal-l-1)—/\1::}(0)#-\..(dff|— 1) < Ce™ ",

then Tyx q0y(1) = Tixqoy(—=1) — 0 exponentially fast as t — x.

Again we prepair some lemmas before proving the theorem.
For notaional convenience, define p(t) = Tyxqoy(1) = Tixjoy(=1).

Lemma. Under the hypotheses of the previous Theorem, for all 1 > 0 and all
nezt,
p(2t) < 2(2n 4 1)?p(t)* +2C ™",

Proaf.
p(21) =T-_mu,tl}—f’zmo}m)ptdql

+/’I}}.|u}(n)u(dr})—Hmui(—”-
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We show that 'I'-_a,\{n}(l]—_[' Tixqoy(mpeldn) < (2N+l}°‘p(f}"’+(.'r_d. A similar
proof shows that [ Tix oy (n)p(dn) — Taxqoy(—1) < (2N + 1)p(t)2 + Ce—¢!

Tarxqoy(1) = / Tixyoy(muldy) = E [Tixgoy(me)] = E*[Texqoy(ne)]

= EYM[Tyy oy = Toqop ()]

= EM[Tongoy (') = Toxgoy i), m () = 02 (5) for all j € A,

+ EC T oy () = Toxgoy (™) ni ' (3) > 1 (4) for some j € A,).
Note that [Tivqoy(n) — Tixqoy(e)| < p(t) for all 5, o. Therefore

ECRTgoy () = Toxgoy (0™), i (5) > 07 (5) for some j € Ay

< p(t)(2n + 1)%p(1).

. . . 1 .
Now consider the first term. In what follows we use T;*"*' to denote the semi-

group in which all of the spins outside of A,, are frozen at +1, and similarly for
—1.
We will use the following lacts below in the order listed.

L. vy is an increasing function, and by a coupling argument we see that
'I:,A"‘H \iop(m) = Tixqoy(n). A similar inequality, with the sense reversed, holds
if we raplace +1 with —1.

2. TM*+lyi0y(-) is in D(A,).

3. By the F.K.G. inequality, g <, pa, (| + 1) and pa, (-] = 1) <, p.

4. pa, (4] + 1) is stationary for 'I'LA""H, and pep, (-] — 1) is stationary for T';\"'_ 3
Applying these obersvations we now compute as follows:

BT qoy(ne) = Toxqoy (g™ )om ) = 0i7'() for all j € A,]

< BT oy ) = T oy )omg () = mg () for all j € A,
= BT (08 = T x 0y ) i (5) = 97 (5) for all j € An)
< ECTRA o () = T T oy o)

= BT o)) — T " o ()]

= B 0] = I o 04

< EFant O[Tt oy ()] — E#UIUTA "y 0y ()]

= f o) (m)aea, (dnl + lJ—f.\4:1}(rri;x;\n(d?1|— 1)< G %,

By wsing the F.K.G. inequality it is easy to see that the hypotheses of the
Martinelli-Olivieri Theorem imply that there is only one Gibbs state, and hence
that p(t) — 0 and t — oc. Thus the previous lemma tells us that under the
hypotheses of the Martinelli-Olivieri Theorem, the hypotheses of the next two
letmas are satisfied.
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Lemma. If p(2t) < 2(2n+ 1)4p(t)* + 2Ce ™" for allt > 0 and alln € Z*. and
if p(t) 0 as t — oo then for all large t

3
p(2t) < p(1)2.

Proof. Assume that { is large enough that p(f) < 1 and set n(t) = [-% log(p(t)].
Then

: d 5
p(2t) <2 (zé 1og{L}+ ;) p(t)? + 2Ce< < log(p(t)) + 1)

p(t)
2 1 & o 3
=2 (2;log(m)+l) Vp(t) +Ce\/p(t) | p(t)2
3
<p(t)2

if p(t) is small enough (i.e. t is large enough).

3
Lemma:. If p(t) \, 0 and p(2t) < p(1)2 for all large t thew there s a (" < x

such that - !
—cv 2ylogalt) _glesath
p(t}s.«' ('!2} =g ct =O(ﬁ)‘

This last lemma is just a messy calculus exercise that we leave to the reader.

In view of the theorem concerning the possible rates of convergence of p(t) to
0, we see that the Martinelli-Olivieri Theorem follows immediately from our last
lemma.
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