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Finding Extreme Values and Extreme Points
of a Multivariate Function *

C. C. Y. Dorea

Abstract: Let [ be a k-variate function defined on
i Rd and consider the problem of estimating the extreme
values of f and the corresponding extreme pooints in §2. Con-
ditions that will assure common extreme points for the coor-
dinate functions {fJ ]j=1., & will be discussed. Also test for
the asymptotic independence under weak convergence of the
coordinate functions will be presented.
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1. Introduction.

Since their introduction by Fisher and Tippett (1928), univariate extreme
value distributions have been extensively studied, perhaps most notably by Gne-
denko (1943). Results for the multivariate case, obtained by a number of authors,
have been summarized by Galambos (1978). A representation of bivariate maxi-
mal extreme value distribution / that asymmetrically involve the marginal distri-
butions was obtained by Sibuya (1960), and Berman (1962) obtains necessary and
sufficient conditions for a bivariate distribution £ to be in the domain of attraction
of such an H. Sibuya also introduces the notion of “dependence function” which
was successfully used by Tiago de Oliveira (1963-1975) to obtain the structure
of bivariate extreme distributions. For another approach to this problem see de
Haan and Resnick (1977). they make use of the theory of max infinite divisible
distributions and the notion of regularly varying functions. An extensive treat-
ment of this approach can be found in Resnick (1987). An approach that avoids
the use of the dependence function to characterize the domains of attraction was
derived by Marshall and Olkin (1983).

We consider the problem of estimating the extreme values and the extreme
points of a multivariate function. Our approach makes use of the notion of reg-
ularly varying functions of de Hann and Resnick and conditions derived from
Marshall and Olkin.

Let f = (fi...., fi) be a k-variate function defined on some measurable
domain Q of RY and consider the problem of estimating "n\i};‘{fl(.z), o Je(e) )
re

(or nleag{fl(x). ..y Je(x)}). Clearly, ordering multivariate data is ambiguous and
xIr

determining extreme values is subjective. This problem can be partially solved
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by analysing the asymptotic independence of the coordinate functions under the
weak convergence. We will see that if the coordinate function are asymptotically
independent then the extreme values have to be estimated separately. On the
other hand if the coordinate functions are asymptotically dependent then they
necessarily have common extreme points and the extreme value can be estimated
jointly.

Let’s consider the following related problem: for &, &,, ... independent and
identically distributed (i.i.d.) random vectors with P(£2) > 0, analyse the asymp-

totic behavior of the random vector (’""'”‘IE’ "'b'f""““”_“"‘) as n — oo,
2 =k

Where a;; > 0 and b j are stabilizing constants with b, ; > 0. If it COnverges
weakly to a nondegenerate distribution then the interaction of the minimum points
of the coordinate functions can be explicitly displayed. The minimum points of
the coordinate functions are defined by:

M(f;j)={r:2€Q, Ji(x)= |J}1Ei1|1:(fj(r))}. j=1,..., k.

For completeness in section 2 we treat the univariate case by detailing the
estimation of the minimum points. For a more extensive treatment we refer the
reader to Dorea (1987).

In section 3 we present the bivariate case and indicate the treatment for the
general multivariate case. As a general reference for this section sce Dorea (1993)
and Dorea and Miazaki (1993).

2. The univariate case.

Let &;.&a,... be i.i.d. random vriables with a common distribution (7 such
that P(Q2) > 0. To estimate the global mininum of [ on Q:

y = min{ f(x):r € Q} (1)

we analyse the asymptotic behavior of Y (n) = min{ f(&)...., J(£,)}. Let /!
be the common distribution of the i.i.d. random variables f(& ). f(€2)..... From
the classical results of Fisher-Tippet and Gnedenko we have the necessary and
sufficient conditions for the existence of norming constants b, > 0 and «,, such
that for all continuity points x of H we have

lim P(Y(n) < by +a,) = H(r) (2)

=0

where H is a nondegenerate distribution. That is F is in the domain of
attraction of M. In short. we write ' € D(H) or [ € D(H). Moreover, I is
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necessarily one of the three classes: for a constante e > (),

bty — ) L—exp(—(=2)"* <0,
t1111(-’]_{1 -J'Z“-

Lo r<
Palr) = | —eaxp(—a™), x>0

and
Alr) =1 —exp(—e”).

It is easy to verify that the Cauchy distribution is in D(v,, ) while the uniform
and normal distribution are in D(¢,) and D(A) respectively. We will consider the
specific case of ¢,. in which we have y finite. And we may take

a, =y and b, =sup{x: F(r)< L1} —y. (3)

- n

Remark 1. Ireating only the case ¢, is not restrictive since by monotonic
transformations one can reduce ¢, and A cases to the ¢, case. For that let ¥
such that ¥ € D(¢,,) then —‘i» € D(¢,). Also, if Y € D(A) and the corresponding
norming constant$ f (O=hen Ye¥ € D(¢,). Equivalently, regarding the original

function f one would be estimating the minimum of —}— or ef +eY.

Our problen now reduces to finding conditions on f that will assure f(&,) €
D(o,). Without loss of generality we will assnme that Q@ C R, Q= [0, 1] and that
& is uniformly distributed on [0, 1]. Note that if £, has a continuous distribution
¢/ on Q and

G (y)=sup{t :G(1) <y}, O<y<]l. (4)
Then for {7 uniformly disdtributed on [0, 1] we have (;=(I/) with distribution G.
And it is enough to study the function ¢ = f(G'7).

Now assume that f is defined on the unit interval / and that the minimum
y = mei}l{f(.r:}} is finite. Let M denote the set of the minimum points of f:
a

M={x:zxel, f(z)=y} (5)

We say that f satisfies Condition 1 if: for some & > 0 there exists a é-varying
function v(t) such that for each ry € M and all # # 0 the following limit exists
(possibly oc): .

fleotHix)—y

o(0) (6)

R({xg, r) = lim
1o



1o L O Y Dsarea

Note that if the mininum point xg is one of the endpoints ) or | we interprel
(6) as holding for all ¥ > 0 or 2 < 0 respectively. We say that a function v(f), 1 > 0
is d-varying if for all > (0 we have lfi|“ll[ v(te)/o(l)) = 27 (see also de Haan (1971)
L
and Resmick (1987)).

Relative to the norming function v we now associate to each minimum point
z¢ a measure of its minimality contact by defining a measure g on M. For wy € M
let

p(xo) = (R(xg.—1)""* + (R(x0, 1))/, (7)

where p(rn) = oc il either R(ay, 1) or R(rg.—1) = 0 and p(ey) = 000
R(xg,1) = R(xg,—1) = oc. For K C M define p(Fl) = ~ if for some xy € [,
plro) = x: otherwise let p(F) = Z p(x). Theorem 1 below shows

rell, U< pulr)<os
that p(M) characterizes the asymptotic behavior of

‘l'-[ﬂ.] — n]i"{f(!-!j } - ,,f“-r,. ”

where U7, Us, ... are independent and uniformly distributed on I. For its proof as
well as the prool ol the theorem 2 see Dorea (1987).

Theorem 1. Under Condition 1 we have for all £ > 0

lim P
n—ou

(Y(N] =

"’(1/”)_ < .r-) =1 —crp{—p(M)r"}, (8)

" Yini— " ; .
where a = 1/6 and«(8) should be interpreted as Ti—'l%-}’-' diverging to > in

probability if g(M) = 0 and converging to the degenerate distribution if p(M) =
.

Theorem 2 below can be viewed as a characterization of Al relative to the
weak convergence.

Theorem 2. If Condition 1 is satisfied and p(M) < oc then there are at
most finitely many minimum points x4 and also p(xo) < x for each of them.

Qur next result, theorem 3, illustrates the role played by the measure of
minimality contact g. It states that given that Y (n) falls within an c-neighborhood
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of y the asymptotic conditional probability of U/; (for some | < j < n) to fall
within a neighborhood of the minimum point xq is p(xg)/p(M).

Theorem 3. Let Condition 1 be verified and assume that 0 < p(M) < x.
Then there exists a norming function u(-) such that for each xy € M there will be
constants k= and &t with

_ p(xo)
© (M)’

lim lim P (H,,(f) | Y(n) < I’(%}t +y)

[ N—rg

9)

where i,(0) = | {—rf'“ < (&= kh'f"} .

v ich u(l/n)

Remark 2. (a) Note that each minimum point can be estimated by theorem
3 provided one can estimate & and p(M). And this can be done by considering
the order statistics Zj).Z(2).... of the i.i.d. random variables {Z}r>; with

Zr = f(ly). Let k(n) — ~ with % — () we have

4 i B
Ly = log —‘-;—{':—J{T']—“/ log k(n)L8. (10)
Furthermore, we have
| zw[njl“zlll lf;‘ni 1 (ll
kin) ::[l?rH My )

(b) Assume now the case where £,&,. ... are i.i.d. with a common absolutely
continuous distribution (¢ and P(Q2) = | with 2 C R. Let = be defined by (3).
We say that f and (¢ satisfy Condition 2 if: (/(«) > 0 a.e. on © and for some & >
there exists a d-varying function e(t) such that for each xg € M and all & # 0 the
following limit exists

NG (Gleg) +te)) —y

Reg(eo, ) = I,il'},’ o) : (12)

Similarly to (7) one delines measure yi; on M. For rg € M

pa(ro) = (Re(ao, — 1)) 4 (R (20, 1)), (13)
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Under Condition 2 we have (8) with a = 1/8.

(¢) For the multidimensional case Q@ C R If Q = I* the unit cube (6)
becomes
flro+te)—y

o(t)

holding for all @ € RY, & # 0. As for the measure of minimality contact one
can show that in the one dimensional case we have p(xg) = m{x : R(axg,x) < 1}
being m the Lebesgue measure. For the d-dimensional case take p(ry) = mgf{r :
R(xp, 2) < 1} being my the Lebesgue measure on R, And theorem 1 follows with
v{{%]'f") in place of r(%}.- For general Q@ C R and assuming the random veetors
&),&, ... have independent components, that is, &, &, ... are i.i.d. with common
distribution (+ = (/(v» ... (/4 the treatment is analogous to remark 2(h). In this
case for = = (z;...., zq4) take

R(xp,2) = lim
to

G (z)=(ml{l () <z}, i=1,....d).

3. The multivariate case

To avoid heavy notation w= will present the bivariate case. The general case
can be similarly handled. Let (fi. f2) = (f.g) : @ — R*. Let

y {fz)} and z=min{g(x)}. (14)

= min
refl

Just as in the univariate case one can assume that € = [ the unit interval
and that both y and z are finite. We say that a distribution F is of type o, if for
some constant a > 0 it is of the [hrn:

- _ I“ W< )
Fizm)= L -cap(—az®) ,x>0.

Assume that [/ is a bivariate (distribution with marginals I and (7 of type
¢o and ¢4 respectively. We say tha' ([f.¢) is in the domain of attraction of [f.
(f,9) € D(H), if for [/, 74, ... i.i.l. uniformly distributed on I, there exists
constants ay,, b, > 0. ¢, and d,, > 0 ~izch that for Y'(n) = min{ f(I/})..... [({7,)}
and Z(n) = min{g({"1).....q(l7,)} we have

lim P(Y(n)<byr+a,. Zn)<d,y+e,)=H(xy) (15)
Nn—og
for all continuity points (x,y) of I{. Clearly if (15) holds we have [ € D(I7)
and ¢ € D(G). Since we are taking I and (/' of type ¢, and ¢35 one can take
an =Yy, Cp =4,

by, =sup{r: Iir) < %} -y
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and
, 1
d, =sup{z:S(z) < ;} — .

Where R and S are the marginal distributions of (f(Iy),g(l/1)). Let L be the
joint distribution of (f({71),g(l/y)) and L(z,y) = P(f(I"y) > x, g(I'y) > y) then
a sufficient. condition for (15) to hold is that there exists a é-varying function v(-)
with & = 1/a such that the following limit exists,

- 1 — Ly +tz,z+ s(t)y)
t10 v(t)

(16)

for all (.1 y) such that H(x,y) > 0. Where s(t) = S~ (R(y +1)) — z with S~ (u) =
sup{t : S(t) < u}, 0 < u < 1. Clearly if (16) is satisfied then f and g satisfy
condmon I with & = 1/a and 5 = 1/ respectively.

Now let M (f) and M(g) be the set of minimum points of f and g respectively,
that is,

M(fy={c:x€el, flx)=y} and M(g)={z:2 €1, g(z)=z}. (17)

Theorem 4. Under condition (16) we have H = FG if and only if M(f) N
M(g) = ¢.

Note that if M(f) N M(y) = ¢ then Y (n) and Z(n) are asymptotically inde-
pendent and y and z have to be estimated separately. In case M(f) N M(g) # ¢
one can construct confidence region for (y,z) based on the limiting distribution
H and on the set of common minimum points. Therefore an explicit representa-
tions of H would be helpful. Theorem 5 below shows that such representation is
possible. The following examples motivate our results.

Examples. Let g and w be respectively the measure of minimality contact
of f and ¢ as defined in section 2. (a) If f(a,] =|1—=2z|and g(z) = (z — »1-]“
then M(f) = M(g) = {%} u(1/2) =1 and v( ) = 2. We have f € D(1 — e™7),
g € D1 — e 2V7) and (f,g9) € D((1 —e“')/\{[ — e~ V) “]mre z > 0 and
y > 0. (b) If f(x) = |1 — 22| and g(x) = 2* then M(f) = { }, M(g) = {0},

M(fyn M(g) = o, p{.,]_ I and »(0) = 2. We llawfe‘D(]—f"), q €
D(l—e— “v")and fJ)EDE[]—F_‘”](l-—P V7)), ((‘] ifia) =2 DLog T
fle) = |L =2, <J<l’ll]d_{(.l}‘—.£" U<.r§_ y(xr]:[}—:]a' %(
2 < 1. Then U(f] {03}, M(g)={0.} (f]m M(g) = {0}, pu(0) = 1,

»”'[]EJ =2, 7(0)=1and .v(. )= 2 We have f 6 D( l —e ) and g € D(1—e~3VY).
Note that the common minimum point 0 indicates the dependence of f and ¢ and
its contribution towards the limiting distributions F' and (' can be expressed
as Fp(z) = 1 — ¢ and Gp(e) = 1 — e V¥(u(0) = v(0) = 1). As for the
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independent minimum point {1} of f with u(3) = 2 we have I} = | —¢=**_ And
for the independent minimum point {3} of G with v(3) = 2 we have 1 — =27,
And we have (f,g) € D(H) where H can be expressed as: if Fpp < (/p then
H=FG+F—-F;ifGp < Fpthen H=GF+G-Gy.

Theorem 5. Assume that f and ¢ satisfy Condition | for some & > 0 and
7 > 0 and that (f,g) € DP(H). If F' and ( are the marginal distributions of H
then H has the following representation:

H=FG+(F—-F;) if Fp<Gp i8

=GiF+(G-Gy) if Gp< Fp (18]

where for > 0 and y > 0, Fi(x) = 1 — exp(—p(l;)a™), Fp(x) = 1 —

exp(—p(D)x®), Gi(y) = 1 — exp(—v(1,)y’). Gp(y) = | — exp(—v(D)y’), o =

%. 8= # D= M(fynM(g), Iy = M(f\D, I, = M(g)\D, pand v are
respectively the measure of minimality contact of f and ¢ as defined in (7).

Remark 3. (1) If D = ¢, that is f and ¢ have no common minimum points
then F;y = F and G = G so that H = F(.

(2) If M(f) = M(g) then Fp = F and Gp = G so that H = FAG.

(3) For the general case f = (f1,..., f¥) : @ — R*, (18) becomes for more
complex envolving all possible situations. But the treatment is similar.

Corollary. Under conditions of theorem 5 if for some (2, y0) such that
0 < F(zp) < 1 and 0 < G(zo) < 1 we have H(zo,y) = F(z0)G(z0) then
H(z,y) = F(z)G(y) for all (z,y) € R*.

This suggests the following test for asymptotic independence (see Dorea and
Miazaki (1993)): under the asumptions of theorem 5, if for some (2, yo) with
xg9 > 0 and yo > 0 we have:

ntn(f.9) S 1 [lg)

Tn Tulg)

then Y (n) and Z(n) are asymptotically independent. Where 7,(f) = Z 1
i=1
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with n; = Lif f(I/;) < b,z +a, and n; = 0 otherwise; 7,(g) = Zpr with py = |
=1

n

if g(l/¢) < dpyo + en and pe = 0 otherwise; and 7,(f, ¢) = ZUJ- with #; = n;p;.

e

=
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