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Random Perturbations of Dynamical Systems:
Large Deviations and Averaging

Mark I. Freidlin

Abstract: A rewiew of the theory of random pertur-
bations of dynamical systemns is presented in this paper.Limit
theorems for large deviations is an important tool in prob-
lems concerning the long time behavior of the perturbed sys-
tem.But for some important classes of dynamical systems for
example for Hamiltonian systems,such an approach does not
works. A new approach based on a developement of the av-
eraging principle has been suggested.It turns out that for the
white noise type perturbations the slow component of the per-
turbed motion converges,under some assum- ptions,to a dif-
fusion process on a graph corresponding to the first integral
of the nonperturbed system.Perturbations of the Hamiltonian
systems in the plane and of area-preserving systems on a torus
are considered.The slow component of the perturbed system
converges to a jumping process on the graph in the case of
impuls-like perturbations.

Key words: Large deviations, Averaging principle,
Random perturbations.

Introdution

This paper is a kind of short review of solved and some unsolved problems
concerning random perturbations of dynamical systems. It is written in a frec
style. We givé here no proofs and provide just the references if available, com-
ments, and sometimes explanations of our statements. Most attention is paid to
demonstration of various effects typical for the problems under consideration.

From the probabilistic point of view, problems considered here can be roughly
speaking related to the laws os large numbers, or to results of the central limit
theorem type, or to the limit theorems for large deviations. It is useful to keep in
mind the connections with these classical topics of probability theory.

Many problems mentioned in this paper are closely connected with asymptotic
problems for partial differential equations (without randomness). A probabilistic
approach turns out to be very productive for those problems.

Some results, such as, for example, large deviation theory for random pertur-
bations of finite dimensional systems, are well known, and we mention them only
to consider their generalizations. Other results like the perturbations of Hamilto-
nian systems are rather new, and we pay them more attention.
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184 Mark 1. Freidlin

I would like to note, finally, that the bibliography does not pretend to cover
all the papers concerning this topic.

§1. Quasideterministic approximation

By a dynamical system in IR" we understand a system of ordinary differential
equations

X =b(X:), NXo=z€IR". (1.1)

We assume that the vector field b(r) is smooth enough and the derivatives
are bounded.

There are many ways to introduce random perturbations in (1.1). But to
some extent various forms of noise lead to similar mathematical problems and
need similar mathematical tools.

The most popular, and often most natural from the physical point of view,
form of random perturbations is the additive white noise:

X{=bX)+ VW, X=reR. (1.2)

Here b(x) is the same as in (1.1), Wy is the Wiener process in IR™, ¢ is a small
positive parameter. As is well knowm, equation (1.2) defines a diffusion Markov
process in IR". The differential operator

r P
5 ; J :
L'=-A+ b (2)=—, b(z) = (b'(2),...,0"(2)),
= _ZI{)&,,,()({} (2))
1=
is closely connected with this process. In particular, the solutions ol the
boundary problems connected with the operator L and with the parabolic opera-
tor % — L* can be written as the expectations of proper functionals of the process
X{ (see, for example, [F2]).

Of course, one can consider perturbations of the form

XE=b(X)+Veo(XOW,, X =2 € IR, (1.3)

where o(z) is a matrix. The corresponding differential operator will be equal

to
r

! i d* ~ ., .0 i _
£l T £ if. ij o= R
L= 2”2_an (8) sras +§btxl—axi. (a"(z)) = a(x)o*(2).

One more form of white-noise-type perturbations: Let v, > (), be a con-
tinuous time Markov chain in the phase space {1,2,...,n} with the transition

intensities ¢;;,1 <id,j <mn, i # j. Set
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X{ = b(X{) + Veo, (X)W, X§=z € IR (1.4)

Here a(X),...,0,(X) are some matrices. The pair (Xf, 1) forms a Markov
process in IR" x {1,..., n}. The infinitesimal operator A of this process on a
function f(z, k) smooth in z is equal to

r

e k) = 3 a1 Zb( =) +Zq,(f(x i) = Fz. k).

iJ

One can consider perturbations of a different kind, which are small only in
the mean sense:

Xf=b(X$ &) Xg=z €. (1.5)

Here &; is a stationary process with regular enough trajetories and with some
ergodic properties. Suppose that Eb(z,&) = b(z). Then one can prove that the
process X{ uniformly in any finite time interval [0,7] converge in probability
as e | 0 t.o the solution of system (1.1) ([Kh.1], [F—W.l]]. It means that the
process defined by (1.5) can be considered as a random perturbation of (1.1). The
solutions of (1.2) and (1.4), of course, also converge uniformly on [0, 7] to solution
of (1.1). This convergence can be looked on as a result of the law of large numbers
type.

One can consider the deviations of X from X;. In the case of (1.2), if b(x)
is smooth enough

Xf=Xe+VeX(V +exP + . (1.6)

The process X,m is a Gaussian Markov (non-homogeneous in time) process.
Similar expansions can be written for (1.3) and (1.4) (in the last case for fixed
trajectory ;). For the equation (1.5) it is impossible to write down such an
expansion, but one can prove a cenfral-limit-theorem-type result: Under certain
assumptions concerning the mixing properties of the process £, the normalized
difference nf = ¢~ /2(X{ — X,) converges weakly in Cop to a Markov Gaussian
process ([Kh1],[FW1]).

One more old central limit-theorem-type result worth mentioning ([Kh2], [B]):
Let

Eb(z,&) = 0. (1.7)

Then, under some assumptions concerning the mixing properties of &, the
process ,'\, = .,\‘ (X[ is the solution of (1.5)) converge weakly in Cor to a dif-
fusion process. [ Wlll consider a natural generalization of this very special result
later.
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All the results mentioned above, besides the last one, relate to the behavior
of the perturbed process on finite time interval. But many problems arising in
applications concern the behavior of the perturbed system on infinite or growing
together with ¢~! time intervals.

The first approximation of the long time behavior of the perturbed system is
given by the (rough) theory of large deviations. This theory is, in a sense, similar
to the quasiclassic approximation in the quantum mechanics. It turns out that
many characteristics of the long time behavior of the system, though they are
determined by the random noise, are not random. Therefore that approximation
one can call quasideterministic.

A functional Sor(¢), ¢ € Cor, is called the action functional for the family
of process Xf{,0<t<T,ase|0,if

Eslﬁ)lltlﬂl]t'ln P{Or?taé\cl | X — ] < 6} = Sor(p) (see [FWI]).

For example, in the case of processes defined by (1.2)

T
" ]. . ]
Sor(p) = 3 / l¢s — b(ps )| ds
0
for absolutely continuous ¢s € Cyr, and Syr(p) = oc for the rest of Cyp
[FW1].

In the case of (1.5) assume that the following limit exists

T
lim%ln E’exp{n/b(a:.{s)ds} = H(z,0), d € IR (1.8)
0

Then one can check that H(z,«) is convex in «, and under certain assump-
tions the action functional for family X defined by (1.5) is equal to

T
Sor(ip) = ] (s i)
0

for absolutely continuous ¢ € Cyr, and Syr(p) = oo for the rest of Cyp. Here
L(z,p) is the Legender transformation of H(x,«) : L(z, #) = sup(aff — H(z, o))

( see [F2], [FW1]). If, for example, & is a Feller Markov process on a compact
phase space £ with the generator A, then limit (1.8) exists, and H(z, «) is equal
to the first eigenvalue of the problem Ap(y) 4+ ab(z, y)e(y) = Ae(y), y € £. 1 will
assume that the process & in (1.5) is such a process.

The action functional for (1.4) is calculated in [EF].
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Denote
V(z,y) = i‘éfl.w,{bw(ao)_ o =2a,0r =y, T >0},
Y

in the case (1.2) and (1.3), (1.4) if the matrix o(z)o™(z) is not degenerate,
0 < V(z,y) < oo. For the process defined by (1.5) V(z,y) can be equal to +o00.
This function in the generi¢ case contains the main information concerning the
quasideterministic approximation of the long time behavior of the perturbed sys-
tem.

A typical example of long time behavior problems is given by the exit problem.
Consider a domain G in IR" (Fig. 1), and denote 7¢ = inf{t : X{ ¢ G} the first
time when the trajectory X{ exits domain G. We assume that X§ =z € (.

de XT{:)

©)

(@) (8) (c)
Fig. 1

If trajectories of the non-perturbed problem behave as in Fig. 1(b) (i.c., leave
Goin a finite time 7' = T'(z) < o), then 7¢ — T'(z) as € | 0 in Pr— probability (
Py means distribution in the space of trajectories starting at € IR"). In this case
exit of X{ from the domain occurs due to the non-perturbed system in a finite
time, and this event is not related to the long time behavior.

In the case (a) and (c) the deterministic trajectories do not exit the domain
G. In these cases the exit of X{ from G occurs due to the perturbations and
¢ —ocase | 0.

Let us consider case (a) and introduce the quasipotential U/(y) of the field
b(x) with respect to the rest point 0 ( for given perturbation):
U(!}‘} = L’{U\ y)s y 6 Hﬂr
I will explain later why U(y) 1s called quasipotential. Let Uy = U/(yy) =
min {/(y), and assume that yy is the only point of G where U(y) = Uy,

yeIG

Then under mild additional assumptions we have in the case (a):
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1(1&'1113,,{|X,( —y0|>5}=0. V6>0,z€G. (1.9)
lill‘IolflnEITc=U0,J!EG. (1.10)

: Us—h 4 ] Us+h _
ltllrglPx{exp{ - } < ¢ < exp{ - }}_I,Vh>l]‘ (1.11)

So, in the generic case first exit from G occurs near not random point yg € G,
and the logarithmic asymptotic of the exit time is also not random. The equalities
(1.9)-(1.11) were established in [WF], [FW1].

If the set Yo = {y € 0G :U(y) =Up = r}éléi)ré(f(y]} consists of more than one
Yy

point the situation becomes more delicate: a limit distribution of X%, as ¢ | 0 on
Yp exists. One can find a number of results concerning this case on [GF], [D1],

[D2].

The exit of X{ from the domain G occurs, actually, after many returns from
the periphery of G to a small neighborhood os the attracting point,and each
excursion takes relatively little time. Therefore the following refinement of (1.11)
can be proved [GOV], [CGOV]:

€
lim 1P, { ——

—_— =t
i ET(>¢}_e 2 €G,t>0.

Let us consider now a dynamical system in IR™ with many attracting sets.
We say that two points z,y € IR" are equivalent (z ~ y) if

Viz,y)=V(y,z) = 0.

For example, all the points of a periodic trajectory of system (1.1) are equiv-
alent, since Sor(¢) = 0if 5,0 < S < T, is a piece of a non-perturbed trajectory.
But some points belonging to different trajectories can be also equivalent: for
instance, all points in the neighborhood of the point 0 in Fig. 1(c¢) are equivalent.

Suppose the dynamical system (1.1) satisfies the following condition
(Condition A):
There are a finite number of compacts K, Ko, ..., K| such that

1) any two points z, y belonging to the same compact are equivalent;

2)ifr € K;,y¢ K;, then z £ y; )

3) every w—limit set of system (1.1) (it means the set of limit points of X, as
t — o0) belongs to one of K.
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Denote

V;j = V(xly)v T € Ki: yE Kj
the value V(z,y) independent of the choice of X € K; and y € K;.

The matrix (V;;) contains important information about quasideterministic
approximation. Define j(i) by the conditions

Vi) = mi;lil’?k-

In the generic case this equality defines j(i) in a unique way. Consider the
sequence

1,7(1), 5(3(9), 55 (5 (5))), - . - .
At some point the numbers start to repeat and we observe a cycle. This cycle
can cover all states Ky,..., K;. But, in general, it covers only part of them. The

other states belong to different cycles. For example, in Fig. 2 we have j(1) =
2,j(2)=3,j(3)=1,j(4) = 5,4(5) = 6,5(6) = 7,5(7) = 5,3(8) = 9,4(9) = 8.

K.

K.
Ky 7 K:/"TP:.K
6

i’

Ky // K7
F i

K, T,
Kq

Fig. 2

Note, that the states K,,..., Kg in Fig. 2 are not necessarily points in 2",
Some of them can present compacts like periodic solutions, invariant torus, ete.
It follows from the large deviation estimates that trajectories starting in the do-
main of attraction of K; after first exit from this domain come to the domain of
attraction of Kj(;) with probability tending to 1 as € | 0. From Kj(;) the trajec-
tory will go to a neighborhood of Kj(;(i)) and so on according to the sequence
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i, j(2), 7(4(2)), . ... The time 7i ji) of the transition from K; to a neighborhood of
Kj (i) also can be described by V; j(; :

N £ .
lé'f‘[}f In Ezi i) = Vi

So we have stratification of all states in cycles of the first order. In Fig. 1 it
is : KiKohg, Ky, Ky Ii—s Ky, KgKa.

The logarithmic asymptotics of the time or rotation in one cyele is defined
by the matrix V;;. In the times bigger than characteristic rotation time for given
cycle a transition between the first rank cycles occurs. These transitions form a
cycle of the second rank. The second order cycles, as well as their characteristic
times, are also defined by (Vi;). Then the cycles third order appear ete. until all
K; will be involved. In each cycle in the case of general position one can find the
main state, such that the trajectory X[ spends most of the time until it leaves
the cycle in the domain of attraction of this main state.

The explicit construction of the hierarchy of the cycles and the asymptotic
expressions for the characteristic times through the numbers Vj; are given in [F1]
(see also [FW1]). In particular, the notion of sublimiting distribution were intro-
duced in this paper. If t = {(¢™') is a growing function of ¢=! then the limiting
distribution of ,\'f“_ll as ¢ | 0 will be in general different for different functions
t(e™1). For slowly growing functions {(¢~') this distribution is concentrated near
the attractor Ky, of the initial point a: then it tends to the point j(i(x)) if
Vitie).ittiy) > Vie)jtigen- For t(e~') growing faster the limiting distribution
concentrated near the main state of the first rank cycle containing the point i(x).
Then it is concentrated near the main state of the second order cycle contain-
ing i(z) and so on until the main state of the all system will appear. All this
construction is governed by the matrix (V};). Some refinements of the asymptotic
behavior of the transition times (for the case of two stable equilibriums) is given

in [CGOV], [GOV].

The main state of the system (under given perturbations) will be the compact
K;, where the invariant measure of the process X| will be concentrated as ¢ | (.

Dynamical system (1.1) has, in general, many invariant measures: for in-
stance, on each compact A; at least one (normalized) invariant measure is concen-
trated. The process X under mild additional conditions has ouly one normalized
invariant measure pu‘. It is an old question: what is the limit p* as ¢ | 0 [B], [K].
The theory of large deviations allows to calculate this limit for a wide class of
dynamical systems. To formulate the result | will remind the notion of i-graph
[FW]. Let us have a finite set £ = (1,2,...,1). A system of arrows leading from
n€ L to m € L is called i-graph if

1. exactly one arrow starts at any point n € £\{i};
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2. from any n € £\{i} along the arrows one can come to the point i;

3. there are no loops in the system of arrows.
Let us denote (; the set of all i-graphs in £.

Let ig € {1,...,1} be such that

min min E Vinia
i geG,
(m—n)eg

is achicved only for i = ép. Then it is proved in [WF],[FW1], that for any neigh-
borhood £(K;,) or the compact K,

]ijr})l p (IRT\E(RK;,)) = 0.

It means that if the non-perturbed system has exactly one normalized, invari-
ant. measure y;, concentrated on K;, then the invariant measure p¢ of the process
X{ converges to ;.

One can consider also the exit problem in the case when the dynamical system
in (& has many attractors ( see [FW1], Ch.6).

As we have seen, the function V(r,y) is the most important characteristic
of the quasideterministic approximation. This function is defined as the solution
of a variational problem for the action functional. As it often happens some
geometry in the phase space is closely connected with the variational problem.
The perturbation define a scalar product (or a metric) in the phase space (or, in
more general situation, in the space of functions on the phase space).

For example, in the case of pure white noise perturbations (1.2) for b(z) = 0
Pz, y)

21

where p(.,.) is the Euclidian metric in IR". In the case (1.3) the metric p(.,.)
r

inf(Sor(e) i € Corvpo =2, 0 =y) = (1.12)

in (1.12) is the Riemannian metric corresponding to the form Y a;j(z)daz’da?,
i,j=1

where (a;j(2)) = [o(x)e*(x)]~!. In the case (1.4) (as before b(x) = 0) p(.,.) isa

Finsler metric in /R". This metric is defined by the family of unit balls at each

point # € IR". The unit ball at point x € IR" defined as the convex envelope of

the Riemannian unit balls corresponding to the metrics

Z(u-_.,-j(;c]dy"dyj, k=1,...,n, (see Fig. 3).

iJ
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Fig. 3

Here ax(z) = (ax,;) = (ox(z)o¥(z))~!. The well know S.R.S. Varadhan result
[V] follows from the large deviation principle, equality, and some density bounds:
If p¢(t, z,y) is the transition density for the process in IR" corresponding to the

operator

HE s i a'i (z) a?
2 dziozi

ij=1

Then
~lim2tInp'(t, 2,v) = Pi(z,v),

where p(.,.) is the Riemannian metric corresponding to the form

2

Z aij(z)dz'dz?, (aij(z)) = (o(z)o*(z)) .

ij=1

(1.13)

In the case (1.4) one can consider transition density p®(t;z,{;y, k) for the

Markov process (Xf,v;) corresponding to the system

i,j=1

dur r Lo 2 n
{—s‘% =5 3 o (2)glghs + 3 eni(uf — uf)
1=

selR,t>0,k=1,...,n;

pe(t; z,l; y, k)dy is the probability that the process (X{, ;) starting at (z,!) will
be in the set (dy, k) at time t. A relation similar to (1.13) holds for p*(t, z,l;y, k) :
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- |i|l})1'2t Inp(t; z, Ly, k) = p*(z, ),
[
where p(z,y) is the Finsler metric in IR" mentioned above.

Consider now problems concerning the long time behavior of the perturbed
system. We restrict ourselves to the case (1.2) of pure white noise perturbations.
Suppose the field b(x) has the representation

b(z) = —VU(x) + (), (1.14)

and VU (x) is orthogonal to the field I(z). We assume that U(z) is a smooth
function (say, of the class ¢®) and I(z) is a smooth vector field. We call —VU ()
the potential part of b(x), and I(z) is called the rotating part. Of course, one can
replace U/(x) in (1.14) by U(z) + const. But the representation (1.14) has more
deep non-uniqueness: for example, the field {(z) can itself have a potential part
that is orthogonal to VU (z). We will impose some additional assumptions that
make the representation (1.14) unique at least locally.

Set 0 be an asymptotically stable equilibrium point of the field b(z) (see Fig.
la), and let b(z) be directed inside G for all £ € G : b(z)n(z) > 0, where n(z) is
the interior normal to 8G. Assume that U(0) = 0 and U(z) > 0 for z € GU IG.
Let VU(z) # 0 for ¢ # 0,z € G U JG. Then one can check (see [FW1], Ch. 6)
that

V(0,y) = V(y) =4U(y) (1.15)
at least for y € GN{y : U(y) < rg}jr(l}U(z)}. If the field {(z) in (1.14) identi-

cally equal to zero the field b(z) is potential: b(z) = —VU. In this case (1.15)
shows that the quasipotential V (y) up to the factor 4 coincides with the poten-
tial. It is why V(y) is called quasipotential. The uniqueness of the represen-
tation (1.14) with listed above assumption on U(z) ( at least locally) follows
from (1.15). The existence of the representation (1.14), at least in some gener-
alized sense, also follows from (1.15): one can check that if V(y) is smooth then
U(z) = ;V(z), l(z) = b(z) + ;VV(z) give the representation (1.14) in a neigh-
borhood of the point 0. In general the function V(z) is only Lipschitz continuous.
When (1.14) is true the numbers V;; also can be expressed through the values of
U(x) at its critical points.

Some importants characteristics of the perturbed system in the case of po-
tential vector field b(z) = —VU(x) can be written explicity. For example, the
invariant measure pu° of the process X{ defined by (1.2) in this case has a density

M*(x):

M‘(z):Cexp{w}. (1.16)
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The constant (' is the norm-factor:

-l /exp{ﬂ}dr.
e

The finiteness of the integral in the right side of the last equality is the condition

of existence of the finite invariant measure. Using the explicit representation for

the density one can easily check that as ¢ | 0 the Ii“m‘ concentrated at the
e|0

point(s) of absolute minimum of the potential.

1 would like now to mention the limit theorems for not very large deviations.
Let, for example, the origin 0 be an asymptotically stable equilibrium point for
(1.1). Suppose we are interested in the exit problem from a neighborhood i of
the origin and G = €“(, where a is a positive parameter and (7 is a bounded
domain in IR",0 € G. Consider, say, system (1.5). Then if a > § the exit time
75, tends to zero as € | 0 ( some mild assumptions of non-degeneration should
be made). If a = % the exit time 7{,, is on order 1 and its characteristics can
be calculated using the central-limit-tﬁeomm approximation mentioned above. If
a = () we have large deviations of order | considered earlier. If o € {U,%} we
have case not very large deviations. The asymptotic behavior of the probabilities
of such deviations will be the same as for approximating Gaussian process (sce
[FW1], Ch.7).

Finally, I would like to mention shortly some large deviation problems con-
nected with the perturbations of infinite dimensional semiflows. Consider the
following system of reaction-diffusion equations (RDE):

Bug(t,
L*é:‘_’) = DeAug + fi(z,ury .. un), t>0, r€GC IR, (1.15)

up(0,x)=ge(z)ik=1,...,n.

If G # IR" some boundary conditions should be added to (1.15). For example, it
can be the Neumann conditions

r)u;-.(t,.xr) =, (1.16)

on r€AG
or the Dirichlet conditions. Under mild assumptions on fi(z,u), gi(2) there exists
a unique solution of the problem (3.1)-(3.2) for all ¢ > 0. This solution defines
a semiflow U;g(.) = u(t,.),u(t,.) = (u(f,.),...,un(l,.)), t = 0 in the space of
continuous functions. There are a number of interesting phenomen: in the phase
behavior of the semiflows corresponding to RDEs, for example, propagation of
wave fronts and other structures, existence of stable equilibrium points with less
symmetry than exists in the boundary problem.
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An interesting problem - and one that is important for applications - is to
study small random perturbations of these semiflows and semiflows defined by
some other evolutionary partial differential equations.

One should say that in the case of PDEs there are, roughly speaking, more
natural ways to introduce perturbations: one can consider perturbations of the
equations, of the initial conditions, of boundary conditions, and perturbations of
the domain where the initial-boundary problem is considered.

Consider, first, the white noise type perturbations of the equations:

Jui(t,z) ¢ T We(t, r)
ot = Drdui+ file,u)+ Ve gam—s
oug (
t>0,zeG,— =0, up(0,z) = gel(z)ik=1,...,n.

on lag

Let Wi(t,z),t > 0,z € IR,k = 1,...,n, be the independent Brownian
sheets. This means that they are mean zero (Gaussian random fields with cor-

relation function EWj(s,z)Wi(t,y) = (s At)[[(z' Ay'). The mixed derivative
1

%{;—? is the natural counterpart of the classical white noise W, : it is the
generalized mean zero Gaussian field with the correlation (¢ — s)é(xz — y). The
"statistical simplicity” of this field allows us to expect that one can have rela-
tively explicit expressions for the characteristics of the perturbed semiflow. If
£ € G C IR it turns out this is the case: For example, if a function F(z. u) exists

such that fi(z,u) = —%‘%‘ik =1,...,n, one can introduce the potential

1 " dpp(x) (2 . -
U[go]:if[z{)k[%} +2F(z,p)|dx. (L.17)
G k=1
It means that
_5U(<p) = DA + fi(e; 01,0 en) k= 1,...,n.
bk

One can write down a counterpart of formula (1.17) for the density of the
invariant measure ;¢ of the perturbed semiflow with respect to an auxiliary Gaus-
sian measure, The measure u¢ concentrated near the points where the potential
has its absolute minimum as ¢ | 0. The hierarchy of the cycles, the logarithmic
asymptotics of exit times and other characteristics of quasideterministic approxi-
mation also can be expressed through the potential /[p]. The non-potential case
for one dimensional space variable also is considered. Those results can be found

in [FI-L], [F4], [DPZ].

e . . FEL
But if ¢ C IR",» > 1, one cannot add the «lite noise /e &T‘[‘% to

equation (1.15): the perturbed equations, in general, have no solutions. The mean
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zero Gaussian field with correlation function €d(f —s)B(x —y) can be considered as
a perturbation. If B(z) is smooth enough the perturbed equations have a solution
and this solution defines a Markov process Uy in the space of continuous functions.
One can calculate the action functional for the family U/; and to develop a theory
similar to finite dimensional case. But, of course. we will not have such nice
explicit expressions for the characteristics of the quasideterministic approximation
as in the case of pure-white-noise perturbations. This makes quasideterministic
approximation for the process [/ less interesting. An interesting problem here,
from my point fo view, is to consider perturbations of (1.15) by the mean zero
Gaussian field with the correlation function ¢;8(/—s)3{ %}‘U < (1,62 € 1. The
perturbed equations are solvable if B(z) is smooth enough. And if |B(z)| — 0 fast
enough as |z] — oo, we can expected that the quasideterministic approximation
for the solution of the perturbed equations as both parameters ¢ and ¢, tend to
zero can be described in a more simple way. In particular, for the potential field
flx,u) = =V, F(x,y) one can introduce the potential similar to (1.17)

U(ﬂ:A/[Z DIV +2F (. ple)|de,
b k=1

the constante A is defined by B(z).

One can consider other types of perturbations: fast oscillating in time noise
[Pa] impulse-like perturbations. Homogenization problem [Ko], [PV] for evolu-
tionary equations also can be considered from point of view of perturbations of
the limiting semiflows. One should mention also more specific problems connected
with wave propagation in random media. Besides rigorous mathematical results
there exists an extensive physical literature devoted to this topie.

Random perturbations of the boundary conditions considered in [FW2], [I'S].

In particular, the follonwing problem was studied in [FW]:

Ou'(t,x) D ad*u
= — ut )l e ;
a1 3 g2 THEH > Mzl <1

dut(t,x)

(3 . ) — K
ui0m)=glah—p—| 5.

= £(t/e).

Here (£4(1),£_(1)) is a stationary mean zero stochastic process satisfying
some mixing proprerties. Then u'(¢,x) defines a stochastic process in the func-
tional space that converges as ¢ | 0 to the semiflow corresponding to the problem

du(t.x) D& u
o202

+ flx,u), £ >0, ]e] < 1u(0,2)= g(x), %(t,il) =1.

Normal and large deviations of u*(f,x) from u(f,.r) are studies in [FW2]. The
normalized difference v<(t,2) = ¢~ "/?(u(t,x) — u(t, £)) under some assumptions
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concerning the mixing rate of the noise (£4(t),£_(t)) converges as € | 0 to the
solution v(t, z) of the problem

du(t,z) DI  df(z,u)
T N 2 31:2 + du v.u:u(t,z}t & U' |17| <l (1-18)

A .
(0, 2) = 0, é(i,il} = Wa(t).

where (W, (t), W_(t)) is the Brownian motion with a covariance matrix expressed
through the covariance matrix for the noise. Problem (1.18) is a partial stochas-
tic differential equation with the noise in the boundary conditions. The general
theory of such equations is not developed yet. The solution of problem (1.18) is
a Gaussian random field, smooth inside the domain and equal to a generalized
function on the boundary. Because of this one cannot consider weak convergence
in the space of continuous functions. It turns out that "the right spaces” where v*
converges weakly to v have a norm depending on the rate of mixing for the bound-
ary noise. The same functional spaces should be considered when the moderate
large deviations u(t, z) from u(t, z) are studied.

There are a number of interesting problems concerning perturbations of the
domains. For example, the domain, where the boundary problem is considered,
can have many randomly distributed small "holes” with some conditions on their
boundaries. If the size of the holes tends to zero and the number of holes increases,
the problem in the perforated domain can be replaced, under some conditions, by
a problem in the domain without holes for non-random "effective” equation [PVZ],
[Du]. These results can be looked on as a law-of-large-number-type results. The
central-limit-theorem type results and large deviations theorems for this setting
is also of interest.

Another class of problem related to the perturbations of the domains concerns
perturbations of the boundaries.

§2 Dynamical systems with conservation laws

The large deviation theory gives satisfactory answers to many long time be-
havior problems. If, roughly speaking, the dynamical system has strong enough
attractors, or, in other words, when the potential component of the vector field
is strong enough. The rigorous sense of these assumptions was given in condition
A: Not too many points of the phase space should be equivalent.

But there are important classes of dynamical systems where all points of the
phase space are equivalent (say, with respect to white noise perturbations).

One says that the dynamical system



19 Mark 1. Frewllin

X =b(Xy), Xo=r€ IR, (2.1)
has a first integral H(z) if H(X,) = H(x) = const. for all 1.

The first integral H(x) is not necessarily a sinooth function. If H () is smooth
then it is a first integral for system (2.1) if and only if

ViH(2)b(r)=0,2€ IR".

. . . il .
Now, let us restrict ourselves to dynamical systems in the plane IR*. We will
make some remarks concerning the gencral case later.

Assume that system (2.1) on IR” has a smooth first integral H(z) and let
VH(z) = 0 only if  is an equilibrium point of the field b(2). Consider together
with VH (z) the vector field

OH(r) _('}H[.l'}
dr? dat

TH(x) ={ }.;-: (2!, 2?) € IR*.

The vectors VH () and ¥ H(x) form an orthogonal coordinate system at
if b(z) # 0, and

b(x) = a(e)VH(z)+ 3(x)VH(z),

where a(z), (x) are some scalars. Since H(z) is a smooth first integral for (2.1).
b(x)VH(xz) = 0, and therefore

b(x) = B(x)V H(x). (2.2)
Consider, first, the case of Hamiltonian systems jJ3(z) = 1;
X =VH(X,), Xo=ux€ IR (2.3)

We assume that H(r) — o0 as |z| — =, that H(x) has a finite number of
non-degenerate critical points and minj H(x) = 0. then all level sets
relR

Cly)={x€IR?: H(x)=y}y>0,

are compact. Each ('(y) consists of a finite number n(y) of connected components
Ci(y) : Cly) = U?_l"';’C-',-{y). If y is not a critical value of H (x) then each component,
Ci(y) us a periodic trajectory of system (2.2).

For brevity let H(x) be a generic fTunction: all its critical points are non-
degenerate and ('(y) contains at most 1 critical point. If C'(y) contains a critical
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point zg, then C(y) besides the trajectory X, = z¢ can contain two more trajec-
tories having z¢ as their limit as ¢ — $oo. It is easy to check that all points of
the phase space for such a system are equivalent (with respect to the white noise
perturbations).

The simplest example is given by the harmonic-oscillator-type Hamiltonian,
when H(z) has only one critical point: a minimum point, let us say, at the origin
(I'ig. 4).

‘9
SNt A
%y*’

Fig. 4
The correspondent phase picture is given in Fig. 4(b): each level set consists
of one periodic trajectory. Note that since |VH(z)| = |VH(2)|, the normalized
invariant density M, () on each periodic trajectory C(y) has the form:

1

f rﬁ'ﬁ%ﬂ IVH(z)|'
Clv)

My(:r:] =

z € C(y),

dl is the length element on C(y).

Let us consider now the case when H(z) has more than one critical point

(Fig. 5)
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Fig. 5

Then the set of trajectories consists of several families of periodic orbits di-
vided by the separatrises. For example in Fig. 5(b) there are five families: ro-
tations around O;, around O3z and around Os, rotations around O,, O», Oz, and
periodic orbits around all five critical points. These families are separeted by two
oco—shaped curves: 7; with the crossing point at Oz and 2 with the crossing point
at 04.

An important feature of the system with Hamiltonian having many critical
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points is the appearance of a new first integral independent of H(z). This integral
I (x) is the number of the family of the periodic orbits: if X¥. denotes the orbit
containing the point x € IR?, then

1, if X*. belongs to the left loop of 7;;
2, if X*. belongs to the right loop of ¥;:
H(z) =< 3, if X*. belongs to the right loop of ya;
4, if X*. belongs to the left loop of ¥4, and v, is inside X*.;
5, if 42 is located inside X*..

(lonsider now the white noise perturbations of the system (2.3):

X, = VH(X) + Ve Wi

It is more convenient to rescale time: Let X{ = Xj, . Then we have for X{
the following equation

X¢ = lv‘H(X:) + W (2.4)
€

Let us consider, first, the case of H(z) with one critical point (Fig. 4). The
motion X{ consits of two components: the fast rotation according to the non-
perturbed dynamics and the motion with a speed of order 1 (as ¢ | 0 ) in the
tranversal direction. The fast rotation for ¢ < 1 can be characterized by the
invariant density My(z) on the orbit C'(y). To describe the slow component for
€ < | one can use the averaging principle:

Applying the Ito formula, we have

i
H(X{)- H(z) =l/ VH(XY) VH(X:)ds—F
€ Jo
(2.5)
t 1 t
+ / VH(X)dW, + 1 f AH(X!)ds
0 2 0

The first term in the eight hand side of (2.4), actually, is equal to zero since
VH(z) VH(x) = 0. Now, before the slow component moves on a small but fixed
distance 6 the fast component makes as 0 < € < 1 many ( of order ¢~ !) rotations
along the deterministic orbit. Because of this the "diffusion” and "drift” coeffi-
cients in (2.5) should be averaged with respect to the density M,(z). Therefore
one can prove that the process H(X[) =Y, 0 <t < T, converges weakly in Cyy,
as ¢ | 0 to a one-dimensional diffusion process Y;. The diffusion coefficient o*(y)
and the drift B(y) of the limiting process are given by averaging:

a*(y) = [V H (x)idl,

ot
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(2.6)

1 AH(x)

1.
2 [ iy ) VH@)
C£;] VHIJ}I‘.,[!”

B(y) =

The limiting process Y} is defined by the equation

dYy = a(Y)dW, + B(Y,)dt, Yy = H(x),

on set {y > 0}. The point y = 0 is inaccessible for the process Yi.

Let us now turn to the case when the Hamiltonian /() has more than one
critical point. In this case ("(y) consist, at least for some y, of several components
Ci(y), Caly), - - .. Cryy(y). One should average the coeflicients of (2.5) not over
the whole level set but only over the connected component containing the initial
point. The behavior of the process H(.\X|) before a time #, can help us to identily
the connected component at time i,. Therefore one cannot expect the H(X])
converges in this case to a Markov process. To have in the limit a Markov process,
we have to extend the phase space: to remember not only the level set ( or H(X]))
but the connected component of this level set (H(.X[)) where the non-perturbed
system has mixing

The set ol connected components of the Hamiltonian /() provided with
the natural topology is homeomorphic to a graph I'. For example, in Iig. 5 cach
minimum point of [1(x) corresponds to an exterior vertex O,y or O of the
graph. The saddle points together with the xc—shaped curve correspond to the
interior vertices s, 4. The points of open edges [y,....[I5 correspond to the
periodic orbits. Say I; counts all orbits around O, up to the energy level H(04).
and Iy corresponds to the rotations around O3 up to the energy /1(0%). The points
of I3 correspond to the orbits in the region where H(x) = 4.

If some critical point of H(x) degenerates, more than 3 edges can meet at
the vertex of the graph corresponding to that point. For systems in Ii* the
corresponding graph always has the structure for a tree. For Hamiltonians on
other manifolds, say on a torus, the graph can have loops.

Denote by Y the mapping of the set of connected components of the level
sets of H(x) to the graph I' : Y (Cji(y)) is the point of I; corresponding to C;(y).
One can consider the value of H(x) as a coordinate in [;, so that Y (C(y)) is the
pair (y,1), which characterizes a point of the graph.

One can consider the mapping Y from IR to I': Y (). € IR”. is defined as
the point of I' corresponding to the connected component of the level set C'(H (x))
containing the point z.
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Consider the family of stochastic process on the graph I’

Y =Y(X]), t=0.
It turns out the process Y, 0 <t < T, converge weakly in the space of

continuous functions with the value in the graph T as € | 0 to a continuous
Markov process on T'.

It is worth mentioning that there exists a number of ”classical” asymptotic
problems where the limiting process has values in a graph. One can find some
of such problems in [FW]. In the end of this section we will mention some other
problems.

It is important for all these problems to have a description of continuous
Markov process on graphs.

Consider a graph I' = {l,,...,[m;01,...,01}. Let Ly,..., Ly be elliptic
second order differential operators.

2 2
oci(z) d d
Li=—"— — + Bi(y)—.v€ L.
2 a7 () 'Y
We assume that the coefficients are, say, Lipschitz continuous and bounded,
oi(y) > o > 0. Then a diffusion process ,\':" in /; corresponds to Lyt =1,...,m.

The process X,('] is defined up to the first exit from interval I;. How can one

describe continuous Markov processes on [ coinciding with the processes .\’f”
inside the edges? We should define behavior of the process after reaching the
vertices.

Here the situation is similar to the well know problem considered by Feller,
[Fel], [Fe2]: Describe all possible continuations of a continuous Markov process on
an open interval to a process on the closed interval preserving the continuity and
the Markov property. The most convenient way to describe all such continuations
is to describe the domain of definition of the infinitesimal operator of the extended
Markov process. If the process inside the interval 1 was governed by operator
L= %a(z)di:-; -+ b(z)%,a(.?:} > 0, then each possible continuation is defined by
boundary conditions in the ends of the interval. For example, if the process in the
closed interval has instantancous reflection in boundary then the corresponding

boundary conditions are 5{};—’ 5 0. This means that the infinitesimal operator
TE
A of the extended process is defined for smooth f(z),z € I, such that 5’:—‘%1 =
redl

0, and inside the interval Af(z) = Lf(z). Feller described all boundary conditions
corresponding to Markovian continuations of the process inside the interval I.

In our case the boundary conditions should be replaced by some gluing con-
ditions at the vertices. Any smooth in I'\{O,...,O;} function satisfying these
conditions should belong to the domain of the generator of the extended process.
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We will write [ ~ O; to say that the edge I; has O; as one its ends. For any

set of constants «;, 35 > 0. j € {k: I ~O;}.i=1,....L ai+ > i #0
jidy~0,

there exists a unique continuous Markov process Y; on I such that its generator
A defined for continuous functions f(y),y € I'. satisfving the conditions:

1. f(y) is twice continuously differentiable inside the edges [y, ..., I,,:

2. If I; ~ O then lina L; f(y) exists and is independent of i; we denote that
y—Uyg

limit. L f(O):
3. apLf(OR)+ Y Iikj%{();.)zﬂ.i:l,..,.l:
Jily~O 2

Here y; is the coordinate on I; such that y; = 0 for the point Oy and y; > 0
inside [;.
If f(y) <atisfies these conditions, then Af(y) = L; f(y) for y € I;.

Moreover, for any conditions Markov process on the graph coinciding with
process ,\':”,i = [,....,m, inside the edges one can find constants o, /3;; >
0, > pij+ai#0,such that its generator A is defined for functions f(y),y € I.

jily~0,
satisfying conditions 1-3 and Af(y) = L;f(y) for y € 1;.

If our graph consists of one segment, this statement coincides with Feller’s
result. This was proved for processes on graphs in [FW3],[FW4].

The coefficients «y, Fx; characterize the behavior of the process at Oy. For
example if 3r; = 0,7 € {j : I; ~ O}, then the process stops at Op.. The
coefficients 3i;, roughly speaking, characterize the probabilities of going to [
from Og. If a # 0 then the trajectory spends a positive time at the point Oy.

We assumed that the operators L; that govern the process inside the edges are
non-degenerate. This condition is fulfilled in a number of asymptotic problems
where the limiting process is a Markov process on a graph [FW]. However, we
have to consider degenerate processes if we study the white noise perturbations
of Hamiltonian system in IR”.

To describe the process Y; on the graph I' limiting for the family ¥, = Y (.X})
as ¢ | 0, we should calculate the operators L; for each edge I; C I' and the gliing
conditions at the vertices. The calculations of the operators L;, actually. are
similar to the case of Hamiltonians with one critical point (see formulas (2.6)).
The only difference is that in the general case the level set (“(y) is a sum of

several connected components: C'(y) = U:-';";’( (y). Now the averaging should

be carried out only over corresponding component (' (y). Therefore the operator
p ¥ [

y 2 . o o s 5 i
L; = Ly dT + B,-(y)% governing the limiting process inside I; has coeflicients
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o}y) = ——a— [ IVH@)I,
Cl{y} : C'-(/;)
(2.7)
N L [ AH(y)
B.(y)—2 T /IVH(y)ld"

cily) N ciw)

One can see from formulas (2.7) that the diffusion coefficients o?(y) degen-
erate at the vertices O,k = 1,...,l. Simple calculations show that the order of
degeneration of the diffusion coefficients at the vertices corresponding to the ex-
tremums of the Hamiltonian exterior-vertices and the signs of the drift coefficients
at these points are such that the exterior vertices are inaccessible for the limiting
process on graph. It means that no additional conditions should be imposed at
the points.

The situation is different at the interior vertices corresponding to the saddle
points of the Hamiltonian. Although the diffusion is degenerate at these points, the
degeneration is slow enough. All such points are accessible and gluing conditions
should be imposed at these vertices.

To formulate the gluing conditions at an interior vertex Oj, consider the
co—shaped curve v, corresponding to the saddle point Og. This curve consists
of two loops 74 and 7Z. Let the edge I} correspond to the orbits located inside
i, I} correspond to the orbits located inside 42 and I3 correspond to the orbits
containing v inside themselves (Fig. 6).

) Y@
S

|

Fig. 6
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Denote

Bri= [ IVH@Idli=12, fuo = B + oo
Tk
Then the gluing conditions at the point Oy have the form: a; = 0 (it means
that the trajectory has no delay at the vertices), and

ﬂuitouwu f"(ok)w,,a—f(ok)_ (2.8)

The operators Li,i = |,...,m defined by (2.7) and gluing conditions (2.8)
at the interior vertices define the limiting process in a unique way. These results
were proved in [FW4].

How can one prove the convergence of the process Y and calculate the gluing
conditions (2.8) for the limiting process?

First, one should check the tightness of the process Y,,0 < ¢t < T, in the
weak topology, then calculate the operators L;, i = 1,...,m, using the mentioned
above averaging procedure. The next step is to prove that the limiting process
is Markovian. Now, since we have a description of all continuous Markov process
on the graph I', we should find the gluing conditions. To do this one can use
the fact that uniform distribution is the invariant measure for X{ in IR for any
e > 0. Using this fact it is simple to calculate the invariant measure for the process
Y = Y(X]) on I'. This measure is "the projection” of the uniform distribution in
IR? on the graph T'. Tt is independent of €. Now one should choose the constants
Bi; at any vertex O; so that the process on I' with given operators L; and given
gluing conditions has the prescribed invariant density. A plan close to this one (
but slightly different) was realized in [FFW4].

The result is similar if we consider a more general class of perturbations:

€ 2o - i & = :
X, = VH(X{) + Veo (X)W, + eb(X{), Xo = z € IR?,
where o(xz)o*(z) is a nondegenerate matrix.

So, the evolution of the energy under white-noise-type perturbations can be
described in a proper time scale as a diffusion process on the graph corresponding
to the Hamiltonian H. The limiting process has no delay at the vertices. In
general, it is not necessary that the evolution of the first integrals has no delay
at the vertices of the graph; some vertices can correspond to a set where the
non-perturbed trajectory spends a positive time.

Consider, for example, a Hamiltonian system on the two-dimensional torus.
It has the following behavior in the case of general position ([A],[IKhS]): There
exists a finite number of loops like those shown in Fig. Ta: inside such loops the
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system may have other equilibrium points and behave like a system in a region of
IR®. The trajectories outside the loops have an ergodic behavior (Fig. 7b): each
of them is dense outside the loops. Therefore, if we

(a) (&)

Fig. 7
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Consider white noise perturbations of such a system, all trajectories outside
the loops should be glued in one point ( point Op in Fig. 7c¢). The segments
Iy, I, I3, I4 correspond to different families of periodic orbits I; corresponds to
the orbits inside 72; I3 counts the orbits inside but outside the co—shaped curve
inside 7;; I; and I, correspond to the periodic trajectories inside the two parts of
the co— shaped curve.

The vertices Oy, Oz, 04 correspond to the stable equilibrium points inside the
loops 71 and 2. The vertex O2 corresponds to the co—shaped curve.

Using the averaging principle one can calculate the operators L;,i=1,...,4,
governing the limiting process inside I;.

The gluing conditions at the vertex O, are calculated in the same way as
above; the exterior vertices Oy, O3, Q4 are inaccessible and no condition should be
imposed there. But at the vertex Qg the situation is different from what we had
before: this point corresponds to the shadowed area in Fig. 7(a). This area has
a positive measure and therefore the limiting process will spend at Oy a positive
time.

Thus the gluing conditions at Oy will have a positive coefficient «y. The
coefficients aq, fo; of the gluing conditions at Oy can be again calculated using
the fact that the Euclidian area is the invariant measure for the process X{ for all
€.

Up to now we considered system (2.2) with 3(z) = 1. If 8(z) # 1 but preserves
the sign the results will be more or less similar. But if #(z) changes the sign we
will have a number of new effects.

Consider the case when the first integral H(z) has only one minimum (Fig.
4). Supose that f(z) is negative inside the loop y =ABCDEFA in
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Fig. 8

Fig. 8a and positive outside this loop. Then, at least on some of the level sets
of H(z), the dynamical system has four equilibrium points: two stable and two
unstable, if considered on the level set (Fig. 8c). This results in appearance of a
new independent of H(z) first integral, and it is necessary to consider the limiting
process on a graph if we want to preserve the Markov property. Namely, consider
the perturbed process
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X, = (X VH(X{) + VoW, X§ =z, (2.8)

and the rescaled process X| = .‘E’i\ Denote by J (y) the point of intersection
of C(y) = {z : H(z) = y} and of the arc FED of th curve v = {2 : g(z) = 0}.
The point of intersection of C'(y) and of the arc ABC denote x'um(y), Define
v(z),z € IR?, as follows:

v(z) = i, if r belongs to the domain of attraction of zi(H(z));

v(z)=1,if H(z) > H(D) or if r belongs to the arc CPD of v:

v(z)=2,if H(z) < H(C) or il x belongs to the arc AGF of 7.

The function »(x) is the first integral for system (2.2) independent of H(z).

Denote
1 |VH(x)|dl
(Il(y) = fC‘I“M{X]VH{ X”“ldi fC'[y) I.@[:‘H ,. ¥ < H{D)‘
IVH(z(y)))?. H(F)<y< H(D);
1 AH(x)dl
Bi(y)={ 2 [F' B VH(X)| = dl ff?l.yl mvaoo Y > HD),
1 = il t)

HAHX ()], H(F) <y < H(D);

1 |V Hix)|dl 4
L. 5 Wl < H(C),
az(y) = anlm‘\']vm{” “ J L
[VH(X®P)(y)*, H(C) <y < H(A);

1 AH(x)dl =
Ba(y) = { fﬂ ,y BN VHX)| = al wal poOvHI Y < H(C),

HAH(X®(y))|, H(C) <y < H(A);

ﬂv(y} d"
2 1

d
=+ Ba(y)—.

2
Ly = —— Bi(y )— L=
dy? dy

Consider the mapping Y (2) = {H(x),v(x)} of IR* to the graph drawn in Fig.
8c. Note that 3:9 :'(y) is a stable equilibrium point for system (2.2) when H(F) <
y < H(D), and :t.'o *)(y) is a stable equilibrium point for H((') < y < H(A). At
point F the branch FED loses stability and .X{ "jumps” from the point F to B
along the deterministic trajectory as ¢ < 1. Similarly, X'{ "jumps” from the point
A to E. Therefore "from the point of view of the process X| for ¢ < 1" the points
(H(A),2) and (H(E), 1) as well as (H(F),1) and (H(5),2) should be identified.
Denote by I' the graph in Fig. 8b with identified points (H(A),2) ~ (H(F), 1)
and (H(F),1) as well as (H(£"),1) and (H(F), 1) ~ (H().2).
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Consider the diffusion process Y; on I' by L, on the edge Iy = {y € y,v =1}
and by La on Iy = {y € I',v = 2} with the gluing conditions: f(y),y € T, is
continuous, f(y) continuously differentiable at (1/(B),2) alon I and at (H(E), 1)
along I;. Obviously, these gluing conditions have the form described above.

One can prove that the process (H (N, v(.X{))) converge weakly as ¢ | 0 to
the process Yy on the graph I'. As it is in the case of Hamiltonian systems, such
an approximation allows one to calculate main forms as ¢ | 0 of a number of
interesting characteristics of the process X explicity.

Consider now fast oscillating perturbations (1.5). Assume that the process &,
has good enough mixing properties (see [BF]). Let Eb(x,&) = b(x) and assume
that the system

.‘-{ = b(.\';), .\'“ = iy

has a smooth first integral J1(N) : VH(XN)B(X) = 0. Then H(X}) tends to H(x)
as ¢ | 0 for any finite f. But after rescaling of time t — {\¢ we can expect that
”[,\';\t} converges weakly as ¢ | 0 to a diffusion process, if H(X) has only one
critical point as in Fig. 4. The convergence is the result of double averaging
on the fast oscillating noise and fast rotation along the deterministic trajectories.
This is a generalization of the central-limit-theorem-type result mentioned above
when condition (1.7) is Tulfilled: If Kb(e. &) = 0 then the function H(2) =
' He(x) = 2" are first integrals. The problem of convergence of H(X{\,) to
a diffusion process and its generalizations were studied in [BF]. Note, that if H(z)
has many critical points then it is necessary to consider the limiting process on
the graph corresponding to H(x) if we want to have the Markov property. This
problem is still open.

The Lmit theorems described in this section can be used for studying the
asvmptotic behavior of boundary problems for PDEs connected with diffusion pro-
cesses ([FW3], [I"'W4]) for problems of optimal stabilization of dynamical systems
perturbed by a noise [DF]. Since the limiting process is one-dimensional one can
expect explicit expressions for many interesting characteristics of the perturbed
process.

If we consider perturbations of s Hamiltonian system with more than one
degree of freedom, but the system has good enough ergodic properties on non-
eritical level sets, one can expect a result very close to the case of one degree of
freedom.

If the system has several first integrals H(2),.... Hi(2) and the dynamical
system is ergodic on the non-singular level sets {e € IR" : H(2) = ¥, ..., Hi(z) =
wt = Cly) = Cy',....¥") (C(y) is non-singular if the Jacobian [ﬂ%i—fﬂ} has
maximal rank for all & € ('(y) one can expect that (H,(\}),..., Hi(X])) con-
verges weakly to a process Y, on a set consisting ol glued [-dimensional pieces.
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Inside these pieces Y; is a [-dimensional diffusion process. The coefficients of
this process can be calculated using the averaging. Some gluing conditions sim-
ilar to those considered above should be imposed at the places where several
I-dimensional pieces are glued. This problem in the case [ > 1 is still open.

Now I will mention one more problem that leads to a jump in Markov process
on the graph. Let v, be the Poisson process with the parameter 1 and §(z) be a
random vector in IR?; IP(z1,7) = IP{€(z) € 4},T C IR?. Consider the following
perturbations of system (2.3):

X, = VH(X{) + vaf(X{), X; =2 € R%. (2.9)

It is clear that X¢ = X, as ¢ | 0, but after the time rescaling the process X{ = i’f\{
has a non-trivial limit of the slow component. To describe this limit consider
the mapping Y : IR®> — T, which was introduced when we studied equation
(2.4); I is the graph corresponding to H(x),Ci(y) are the same as before. Let
M, i(dz),(y,i) € T, be the normalized invariant measure for system (2.4) on
Ci(y);G=Y(y),yC IR?,G C T. Denote

P66l = [ PanMydo).
Cily)

One can prove that Y (X;) converges as ¢ | 0 to the continuous time Markov
chain on I' such that

Py{r >t} =", IPy{Y; C G} = p(y,G),

where 7 is the time of the first jump; 7 = inf{s : Y; # Y, }.

One can introduce the notion of the first integral for a Markov process X, in
IR" : H(z),x € IR, is a first integral for X, if P.{H(X,)= H(x)} =1,z € IR".

If X, is the diffusion process corresponding to an operator

L= Y @+ Y b
—3 dxi ozl = o

ij=1

then a smooth function H(z),z € IR", is a first integral for the process X, if and
only if

r - 9 ;
Lf(z) =0, Z a"(r]ag;f) ‘ ng:) =0,x € IR".

i,j=1

Of course, a non-trivial first integral can exist only if this diffusion process degen-
erates.
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Assume that the process Xy corresponding to L has a smooth first integral
H(x), H(z) > 0 and the level sets ('(y) = {2 : H(z) = y} are compact for any
y = 0. Furthermore, let H(X) be generic and process X, non-degenerate on any
non-singular component C5(y) of level set C'(y)(Ci(y) is singular if VI(x) =0
for some » € ('i(y)). Then the process X, has on C'i(y) a normalized invariant
measure vy ;(dr). Such a measure is unique. If y is a critical value and 2 is the
corresponding critical point, then v, ; is concentrated at & € Ci(y). Let I' be the
graph corresponding to H(x) and Y be the corresponding mapping: ¥ : JR" — I'.

Consider perturbations of the process Xy. Let, for example, the perturbed

process X be the Markov process X,. Let, for example, the perturbed process
X} be the Markov process in IR" governed by the operator L :

af(x)

P ]p.r[(.-‘.'.'i).

LEf(r) = Lf(x) + / [fx+3) = fle) =5
Br\{0)

Here gp,.(.) is a measure in R". ¢ > 0 is a small parameter. Assume, for
brevity, that p, is finite for all # € IR", and sup p,(IR") = J1 < >. Denote motion
in the level sets of the function /{(x), and the slow component H(.X]).

One can prove that the slow component X; = H(X[),0 <t < T, converges
weakly as ¢ | 0 to a continuous time jumping Markov process ¥; on the graph I'.

The density of the jumps for the limiting process Y; at a point (y,i) € I' is equal
Lo

[ netrNOD) vyt = i)
C(y)
The probability of the jump from (y,i) € I' to set ¥ C I' is equal Lo

pe(7)

Py, 8).7) = / 1 (TN {0))

Cily)

vy i(dr).

One can consider white-noise perturbations of the process X, corresponding
to operator L. The perturbed process {; in this case is governed by the operator
L‘ = L+ 5A. Then the slow component of | = 'i'l[\t under some additional
assumptions also converges to a diffusion process on the graph corresponding to
H(xz). Proper gluing conditions at the vertices should be imposed. Note that if
the operator L is non-degenerated in some domain D C IR", the function H(x)
should be equal to a constant for » € D. It can result in a delay of the limiting
process at the point of our graph corresponding to D.
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