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R~normalization Transformations: 
Source of Examples and Problems 

III Probability and Statistics 1 

A. C. D. van Enter, R. Ferl11indez2 

and A. D. Sokal 

Abstract: Renormalization transformat.ions were intro
duced in statistical mechanics t.o study crit.ical points. Their 
natural set-up, however, is within probability theory: they are 
maps between probability spaces, defined by suit.able probabil
it.y kernels. We review several interesting questions motivated 
by applications in physics as well as in other areas like im
age processing and speech recognition . Some of the questions 
refer to localit.y properties of the renormalized measures. In 
particular, it has been often assumed that. the maps preserve 
quasilocality (= almost-Markovianness). We exhibit exam
ples showing that. t.his is not. necessarily the case, and discuss 
t.he reasons for the loss of quasilocalit.y. As a consequence, 
the renormalizatioll procedure generates numerous examples 
of non-Gibbsian measures. Other questions pertain to the 
smoothness of the renonnalization maps. We show that this 
is related to large-deviat.ion properties. hI particular, these 
maps provide examples of non-Gibbsian measures for which 
the relative entropy (information gain) density exists. A t.hird 
category of questions corresponds to practical computational 
schemes for computing the parameters of renormalized mea
sures. This is a largely unresolved issue of parameter estima
tion, for which we present some conjectures and partial results. 
We give a brief review of ot.her manifestations of the impor
tant phenomenon of non-Gibbsianness, and we list some open 
probability-theoretic problems that prevent the extension of 
our analysis to products of non-compact spaces (unbounded 
spins) . 

Key words: Gibbs measure; non-Gibbsian measure; qua
silocality; renormalization transformations. 
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Renormalization transformat.ions are a tool widely used by physicists . There is 
no precise general definition of what a "renormalizat.ion" is. Ra ther, this term 
refers to a circle of ideas, whose formalization is differellt. (and not always clearly 
defined) for different. fields of physics. [n these no[.es we sha.ll consider only t.h e 
applications to classical statistical mechanics , where, as remarked long ago (the 
first published work was [5, 39, 21], but. see for instance (1)5, g, 40] for furth er 
references), the operations involved are most. nat.urally formulated -- and, we 
contend, most profitably studied - in the framework of prohability theory. 

Indeed, the renormalization transformat.ions used in classical stat.istical rne
chanics are just maps between probability measures, ddined by a.ppropriate prob
ability kernels . We recall that a probability kernel from a measure space (n = 
set of points, F = set of events) to another measure space (D' , F') is a map 
T( .,.): :F' x n -;. [0,1] such that=~: 

3The way to order the arguments of a probabilit.y kernel changes wit.h t.he application. Typical 
notations are : T(w , A), T(Alw), and 1'..,(A) . The first. no tation is used when T represent.s a kind 
of "transit.ion probability" (as in the t.heory of Markov processes); the second not.ation is adapt.cn 
to the interpretation of T as a condit.ionalprobabilit.y ; and the third not.ationemphasizes that w is 
a paramet.er ("boundary condit.ion") inde xing the probability m"asure on 0'. Probabilit.y kernels 
defining r enormalization t ransformat ions corresp ond t.o t.he firs t of t.bese interpretat.ions , btl\. 
lat.er in the exposit.ion, we shall in t.roduce kernels (associat.ed to t.he not.ion of equilibrium) thai. 
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(a) For each fixed wEn, T( · Iw) is a probability measure on (n',:F'). 

(b) For each fixed A E :F', T(AI ' ) is an }="-measurable function on n. 
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Each probability kernel T defines a map T between the corresponding spaces of 
probability measures: 

(1) 

with 

(T II)(A') = J T(A'lw) J.l(dw) (2) 

for every A' E }="'. 
Renormalization transformations (in the statistical-mechanical setting) are 

particular cases of such maps, where typically n = n' = a countably infinite 
Cartesian product . One can interpret (TJ.l)(A') as some sort of average over all 
w in the support of J.l such that T(A'lw) :f O. Therefore, TJ.l may be considered 
a "coarser" measure than J.l, in which some information has been "averaged out" 
by the action of T . Alternatively, from the point of view of T J.l, the w's act as 
"hidden" degrees of freedom that together with J.l determine the ("non-hidden") 
features of T J.l. The kernel T should be chosen so that it removes the degrees of 
freedom which are uninterest ing for the application at hand; succesive iterat ions 
of T should produce simpler and simpler measures that nevertheless contain all 
the interesting information. 

The physical applications req uire that these renormalization maps enjoy some 
crucial properties - single-valuedness, continuity and smoothness, Gibbsianness 
- whose failure would force the standard paradigm into a substantial overhaul. 
These properties have been largely taken for granted, and little has been done 
in the way of rigorous proofs . As we shall see, a probability-theoretic analysis 
provides definite answers - unfortunately not always positive - for some of 
these questions. 

It may be illuminating to point out that a renormalization transformation can 
be interpreted as a "degradation" of data. In fact, the above setting is completely 
analogous to the notion of noisy dat.a lIsed in image processing [23 , 25, 11, 28 , 20. 
12), speech recognition [52] and other fi elds of applied probability theory (sec e.g. 
the contribution by Prof. Basilis Gidas in this proceedings) . In some cases, t.he 
noisy (= renormalized) measure is termed a hidden Markov process [52,21\ , .1()] . 
because it arises from a Markov random field by "hiding" some degrees of freedom. 

However, the approach, and the questions asked, vary according to wh et.he r 
the kernel T is interpreted as "noise" or as a "renormalization" . In fact.. t.he 
two points of view are complementary: In the first case, the interest lies in t.h e 
original measure J.l, and the effort is concentrated on estimating it starting fr om 

correspond to the second and third interpretations . We shall st ick to the second (conclil.ional
probability-like) notation throughout this review. 
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the "incomplete" measure T J-L . In the second case, the interest is centered in 
the renormali~ed measure T J-L itself, the original measure having unnecessary in
formation. While in image processing the noise T is an unwanted and largely 
uncontrolled feature, in renormalization theory it is added on purpose in a con
trolled manner. When reconstructing an image one is interested in all features of 
the landscape; the noise T is an obstacle that should be removed by the inference 
scheme. In renormalization theory, instead, one wants to detect only the highest 
and/or broadest mountains, and the coarse-graining map T simplifies our task by 
"blurring out" smaller fluctuations. 

For the sake of completeness, and given the nature of the present audience , 
we pause to present a brief introduction to the statistical mechanics of classical 
lattice systems, aimed at probabilists . 

2 Elements of classical statistical mechanics (lat
tice systems) 

We base the exposition in this section on the notion of specification. This con
stitutes an approach slightly more general than the usual one (based on interac
tions), and has the advantage that both Gibbsian and non-Gibbsian measures fit. 
naturally within its framework . For a detailed presentation along the same lines, 
the reader can consult the book by Georgii [27] . A less exhaustive, review-style 
introduction can also be foulld in Section 2 of [57]. 

2.1 The space of configurations 

Statistical mechanics deals with very large systems formed by many small con
stituents (for brevity called here spins). The basic ingredients of the mathematical 
formalism are: 

no = Space describing the possible configurations of a single constituent . Here , 
we choose to call it single-spin space (= single-const.ituent. space = single
pixel space) . It is equipped with a O'-field :Fo and a probability measure 
J-LOo (the a priori single-spin measure) . Usually Do is equipped also with a 
topological structure corllpat.iblc wit.h :Fo and ILOo (in the sense that. open 
sets are measurable and of nonzero measure). In nearly all applications, Do 
is a complete separable metric space. ''''hen Do is a compact metric space , 
we say that we are working wit.h a model of b01Lnded spins . 

C = Set labeling the different constituents (copies of no). For lattice systems, 
which model (for instance) atoms in a crystal, .c is countable and oft.en 
identifiable with Zd. 

n = (no)£ = Space describing all possible configurations of the system, therefore 
called config1Lration sprtce . It. is equipped wit.h the product t.opology and 
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product <7-field, and with the a l)riori measure /-lo(dw) = flrEC /-lOo(dw;r) . 

Examples: 

• The Ising model: Its single-spin space is 0 0 = {-I, I} with the discret,e 
topology, and /-loo is the norlllalized counting measure . 

• The N -vector model: 0 0 = SN -I = unit sphere in RN with the usual topol
ogy, /-lOo being the normalized Lebesgue measure. 

2.2 The space of states 

In classical statistical mechanics a state is a probability measure on the space of 
configurations; that is, it is a random field indexed by C. 

All concepts in statistical mechanics - as in the theory of random fields or 
processes - are defined via sequences of finite volumes ("windows") . This mim
ics how real systems are analyzed in practice. In particular, the (microscopic) 
observables - the measurable fUllct.ions representing feasible measurements -
are chosen to be (quasi)/ocal funct.ions, that is, functions that (almost) depend 
only on finitely many spins. 

To formalize this, let us denote : 

:F = <7-algebra of measurable subset.s (event.s) of O. 

:FA = Sub-<7-algebra of :F formed by the events that depend only on spins III 

AC C. 

CA(O) = C(O) n B(O, :FA) = Set. of real-valued bounded continuous funct.ions on 
o that depend only on spins in A [in the sense that few) = few') whenever 
Wi = wi for all i E A]. 

Cloc = UA finite CA(O) = The set of local functions. 

We can now introduce the (microscopic) observables. These are the quasilocal 
junctions, that is the members of the set: 

Cql(n) = U CA(O) 
A finite 

where the closure is with respect to the supremum norm . Equivalently, an observ
able is a function that "depends weakly on distant spins" in the sense that 

lim Slip IJ(w) - J(w')1 = O. 
ATC w.",,'Erl , 

w/\ = w" 

(3) 
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In consist.ency with t.he experillwntal approach, two stat.('s are considered '"dis
tant." or "close" according to how t.he averages of obscrvahlcs differ. 1\,1 at.helll<-ll
ically, this corresponds t.o adopt.ing t.lw wea.k q'llll.,i/o('{t/ /oJlu/OI}Y for pl'Obahility 
n1easures: 

J.lu ~ It if J.l,,(f) ~ J.l(f) for all J E CldQ) . 

The space of probability measures. AI+ dn, F), wit.h tht' wf'ak quasilocaltopology. 
is t.he space of 8tate.s of classical slal.istieal rnechanics. 4 

Remarks: 

• We emphasize that. t.he COnVf'l'gellce IS l'f:'quired for each ol>s('r\';,.l>le J. but 
not uniformly in J. 

• Although tlw topology is defineo in terrns of qlta8i1ocal fu Il('tions. all ,tl
argument shows t.hat for probabilit.y meaSllrps it suffices to elwck cOllvergC>IlCl' 
for f E C'Joc(n). 

• By its very definition. t.he weak quasilocal t.opology is insellf;iliVf' to what 
happens over long distances: measures wit.h very diHi-~ rcllt . IOllg-rallge corre
lations can nevertheless be very "close" in t.h( ~ sense of t,his t'()llOlogy. This 
fact, is at t.he root of some rat.her surprising properties of the spacc of stalt's 
in general, and t.he space of Gibbs st.at.es ill particular (se(-' C).g. [27, ThcOiTlIl 

14.12], [37, L('lllma IV.3.2]' and [57, Section 2 .fi.7]). 

• If no is a compact. llletric space, t.hen Cql(Q) coillcidei' wit.h ( '(0). alld III<' 
weak quasilocal topology coincidf's with iJlt' ordillary weak I,opolo)!;y. 

2.3 Finite-volume equilibrium distributions 

Following t.he "finit.e-window'· approach inlwrt'nt. 1.0 sl.atist.ical rncchallics. we lirst. 
consider the notion of equilibriUlll for finile volumes . 

The st.ate of a finit.f' volume A immersed ill au pxt.erior configurat.ioll WA " is it 

probability measure. This measure changes with WA c , Therefore . a finit ,(, VOIUllW 
in equilibrium with its exterior must. be described by a family of probahility nwa
sures on the interior. labded by the ext.erior cOllfigurat.ions. This corresponds 1.0 a 
probabilit.y kernel whose second "slot" has a ITwasurahle df'PPlld t' II(,(' on configll
rations on Ar., and whose first "slot." corresponds t.o measures on the event.s insirk 
A. 

It is technically simpler, however. to consider kernels defined OWl' whole spa('(~s. 

incorporating t.he ment.ioned dependences t.hrough suit.able rest.rictions: Equilib
rium in a volllme A is described by a probabilit.y kcmd il' ,\: F x n - [0,1] sllch 
t.hat 

4 Warning: in t.he theory of random fields the space of ('onfigurat.iolls n is "ften called "Slal" 

space". Here we call n the configuration space and reserve t.I", word " sl-al-e" for me"sures. 
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(a) For each A E F, the fUllction 7rA(AI· ) is FAc- m easurable (i .e. it depends 
only on the exterior configuration). 

(b) For each B E FAc, 7rA(Blw) = YB(W) (i.e. it may act. non-deterministically 
only on observables in the interior of A) . 

Moreover, t.hese kernels for different volumes A should satisfy a nat.ural com
patibility condition: If a volume A' is in equilibrium wit.h it.s exterior, then all its 
subvolumes should be in equilibrium with th.eir exteriors. Mathemat.ically this is 
expressed by t.he condition: 

(c) If A' J A, then 

(!J.) 

for all configurations wEn. 

A family II = {7rA},"'CL, Aflnite satisfying (a), (b) alld (c) is called a .specifi
calzon. Specifications are the crnh'al objects of classical statistical mechanics. 
Their act II al express ions are det.ermined by t.he physi cs of t.he problem. In fact , 
t.hat is where all the physical input goes; once the specification is chosen, the 
game becomes an exercise in probabilit.y theory. This exe rcise is, however, usually 
lIon-t.rivial , and physical int.uit.ion Ca.1I be very helpful! 

We remark that conditions (a) -( c) are almost ident.ical t.o the propert.ies of reg
lIlar conditional proba bilities . The differe nce is that for specifications, properties 
(b) and (c) are requirf'd for all configurat.ions w, rat.her than for "almost all" as 
is the case for condit.ional prohabilities. The reason is that ill the present setting 
t.here is no underlying "uJlco ndit.ioned measure"; the notion of "almost all" is not 
defined [56]. 

2.4 Infinite-volume equilibrium 

Infini te-volume equilibrium is defill ed extending tilt' equilibrium condition (c) 
above: A probabilit.y m eas llre Jt on n is said to be consistent with the specifi
cation n = {7rA} if 

/-t(·) = ./ 7r1\( · Iw) p.(dw) (5) 

for a ll finitE' sets A c.c. Equivalently, each 7ri\ coincides wit.h a conditional 
probability of p condit.ioned on t.he event.s out.side A: 

For ea.ch finit e A c.c and A E F , E1,( \'AIFA c)(') = il'A(AI·) jl-a.e. 

We dpnote by 9(II) thE' set. of' all measu res in M+l(n ,F) consist.ent with n. 
Such measures are illterpret.ed as describing possible sta.tes of a syst.em whose 
equilibriull1 is desc ribed by the specificat.ion II.5 

" 'vVc: arc: carefully a.1Ioidin.1/ calling such stat."s "equilibriUlIl states"; t.his term is usually r e
served for 5t.atps t.hat are in addit.ion /.mn .. la.tion- in'Uu.1'ia.nt. 
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The determination of t.he measures consistent wi t h a given spcci ti cat.i on j" 

the main task of classical st,atistical mechani cs. III this I'( 'gard, WI' call say t h;t! 
the basic problem of st.at.istical lllt'chanics is exactl y tlwiwl'Cl'st o f the ci ass ic; iI 
probability problem of det.ermining wndit.ional probabilit.ies. In t.lw lat.ter tll<'\,( ' 

is a measure given a priori, and one investigates the ex i st.(·n C!~ and properti('s lJr 
conditional probabilit.ies. In statist.ical mechani cs t.he conditional pro hahiliti( ·s 
are given (by the physics of thf' problem, ill t.h e form of a spec ifi ca.t io n), and 
the question is about. the exist.ence and propcrt.ips of IlJeaSIlt'es having (.he giv"11 
conditional probabilities. 

In the light. of the interpret.ation of Q(lI) as (.he set of sla t.('s of a physic a l 
syst.em, it is natural t.o ask t.he following questio lls: 

• Is Q(II) non-empty'? This may secm almost. pedallt.ic, bill. t.h(' /'I ' do .' xisl 
hones t. specifications for which one can proW' I.hat. then' are 11 0 co llsi:-. t" !ll 
probability measures (e.g. Examplf' (-l .W) of [L7] for compact. spins; for IH I II 

compact spaces t.h e examples are more wic\fospread: mass l!'ss Gausiall mod.,\,.; 
in dimension d :s 2, solid-on-solid models ill d = I) . Obvious ly, if {I( II) is 
empty we cannot proCf~ed further. 

• How large is ~/(II) ? There exist s a multitud!' of result.s giving condit.ie,",; 
under which ~/(n) consist.s of a singlt~ st.a\.f' (see e.g . [27, C ha pters 8 and 
9]) . More int.erest ing is the complementa ry case, namely when II has /1101'( 

than one consistent measUl'c. This correspollds t.o a physica.l syst.('1lI wit.h 
several available t.hermodynamic st.ates. This models what happens fo r ex 
ample with wat.er , whi ch along certain curves in t. he t.empera t.lll·p-press l/rc 
plane can equally well take t.he liquid form , the so lid for III , or a. mixture o r 
these; or what happens with m ag nets , which below a Cf~rtaill t. (·> lIlp(~ rat llre 

can be magnetized ill one or anot. her direction. If t he spec ifi cat io n ill , ll/d('s 
some a.djustable parameters, a change jn the cardin ality of G(ll) I/nd er a ll 
infinitesima l variation of thpse parameters is call ed a first-ord er pha.se t1'lln

sitton. We point out t.he o bvious (in this prese ll tat ioll) [act that sl/ ch pl1<l.s.· 
transitions can on ly t.a ke place in infinik-volu[)[(' sys t.ellls . If the latt ice .c is 
finite, there is only olle measure consistent wit.h TI , na l1H' ly lTd , 1",,) [whi ch 
is independent of w] . 

While t.he answers to the preceding questions depend 0 11 t.1lt' part.inJiarities 1)1' 
t. he specification , the following fact.s are valid fo r g('lwra l "pl'c ifi cat.i ons: 

• Q(II) is a simplex. 

• The extremal points of Q(II) have short.-range correlat. ions and trivial tail 
field . 

We l'ecall that the tail fi eld is the iT-field of ev('n1.s t.hat. a n' unaffected hy any 
alterat.ion involving finitely lIlany spins, that is , t.he (' vents belonging t.o 

AC e. 
1\ finit..~ 
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This set can bf' interpreted as the set of global f vents , and the functions measurable 
with respec t to it are called observables at infinity and call be considered t.he global 
obser vables of the system. Triviality on the tail fi eld means th a t the meas ures of 
these events are either 0 or lor , equivalently, tha t observables at infinity are 
almost-everyw here constant. 

Therefore , the measures that are extremal points of9(11) are deterministic (i .e . 
do not exhibit fluctuations) when 'restricted tD global observahles, and have local 
fluctuations that. become independent over long distances . These t.wo properties 
characterize the macroscopic systems we observe in everyday life: their global 
characteristics (density, magnetization, etc.) do not. appear to vary stochastically, 
and the local variations they may present are independent for distant points of the 
sample. Therefore, the extremal points of 9(11) are interpreted as the macroscopic 
states of the system described by the specification 11. The determination and 
characterization of th e extremal points of 9(11) is th e central problem of statistical 
m echanics . 

2.5 Gibbsian specifications. Gibbs measures 

At this point. we should say something about the form taken by the specifications of 
the usual physical syste~ns . It. follows from the work of Boltzmann and Gibbs that 
systems in equilibrium at nonzero temperature should be described by Gibbsian 
specifications . Such specifications are in turn constructed from interactions . We 
now proceed to explain these two concepts. 

An interaction is a family ~ = (~A)AC.c, A finit e of function" ~A : n -+ R, 
where each fun ction ~ A is interpreted as a contribution to the interaction energy 
of t he spins in A. Therefore ~ A is required to be FA -measurable (i.e . to depend 
only on t.he spins in the finite subset A). 

As an example, t.he interaction for the Ising model can be written in the form: 

ifA={x} 
if A = {x , y} 
otherwise . 

To define a Gibbsian specification one needs int.eractions that are absolutely 
summable in the sense that 

II~IIBI ~f sup L II~AII= < (x) . 

xE.c 
finit e A C .c 

(6) 

A :'I x 

(Roughly, the energy cost of changing one spin, leaving the rest fixed, must be 
finite .) This condition ensures that for each finite volume A one can construct the 
Hamiltonian 

finit e A C .c 
AnA;t0 
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Note that this Hamiltonian includcs not only t.he contributions coming from sub
volumes of A (i.e. terms with A C A), but also contributions describing thc inter
action of A with its exterior. 

The Gibbsian SlJecijication fl'l> = {il't} for an absolu tely sum mabie intcracl,ioll 
cI> is defined by the kernels (I3olt.z III ann-G i b bs weights) 

il'~(Alw) = (Norrn.)-I J XA(W) cxp[-H~(w)) IT poo(dw::). 
::EA 

A Gibbs measure for an interaction <l> is a measure consistent with n<l>. A measure 
is Gibbsian if it is a Gibbs measure for some (absolutely summable) interaction . 

Gibbs measures have been around us for over one hundred years . There is su b
stantial experience with them; they are well-known, familiar objects. However, 
recent investigations in non-equilibrium stat.ist.ical mechanics, as well as examples 
obtained from renormalization transformations (Sect.ion 5.2 below), have made 
clear the necessity to venture into thc unknown territory of non-Gibbsian mea
sures. 

3 Gibbsianness and non-Gibbsianness 

As a useful preliminary step, in this section we summarize some properties char
acteristic of Gibbsian measures . This leads nat.urally to a c1assificat.ion, by con
traposition, of some possiblc t.ypes of non-Gibbsianness. For more det.ails on t.he 
material of this sect.ion, the readcr can consult. reference [57) . 

3.1 Attributes of Gibbsian measures 

Gibbs measures have propert.ies t.hat. a.re highly desirable from t.he point. of viPII' 
of nonzero-temperature physics: 

(Gl) A measure can be a Gibhs measure for at most one Gibbsian specifi ca tioll . 
Among the consequences of t.his fact we mention : 

• Specifications complet.e1y define a syst.em; interactions defining t.he same 
specification must be considered physically equivalent . 

• Since different multiples of an (no,nzero l ) int.cract.ion (=different. tcmpera
tures) produce different. specifications, a measure cannot. be the Gibbs mea
sure for the same syst.em a.t t.wo differcnt t.emperatures . 

(G2) A Gibbs measure /1 is uniformly non-null (with respect to the a priori me.a
sure po). This means t.hal., for each finit.e /I. C L: 

• For each A E FA , 
/1,0(.'1) > 0 => /I,(A) > 0 . 

(Basically, all open sets of configu rat, ions have nonzero measure. ) 
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• Moreover, this property holds uniformly in the sense that there exist finite 
nonzero constants etA, !3A such that 

etMto(A) :::; J.l(A) < !3AJ.lo(A) 

for all A E FA . 

(G3) A Gibbs measure is quasilocal (almost-Markovian) : It is consistent with a 
specification n = {7rA} which satisfies the equivalent conditions: 

• The functions w 1-+ 7rAUlw) are quasi loca l for each A. finite and each f E Cq l . 

• The direct influence of fa r- away spins becomes negligible: 

lim 
A'le 

for all f E Cql . 

sup 
Wl,W O E n 

(w.),\, = (w,)", 

(7) 

[Here we have used the notation 7rAUlw) = f f(w') 7r(dw'lw) .] The equivalence of 
the two conditions is a consequence of (3) . From formula (7) we conclude that 
in Gibbsian measures , information from distant spins cannot be transmitted if 
the spins in the intermediate region are fix ed . Alternatively, the only mechanism 
to transmit information frorn infinity is through the fluctuations of intermediate 
spins . (We remark that this transmission from infinity, via fluctuations , indeed 
takes place at a first-order phase t.ransi tion ; it docs not contradict quasilocali t.y.) 

(G4) If there is a notion of trans/alion - an act ion of Zd on [. by bijections - then 
the translation-invariant Gibbs measures have good large-deviation properties. 
More precisely : 

• These measures satisfy a variational principle that constitutes a "thermody
namic description" of {lillv (n<I'). 

• Their large-deviations probabilities are controlled by a well-defined rate 
function , called relative entropy density or density of information gain ac
cording to the sign adopt.ed. 

In the next subsection we discllss in more det.ail this last point , as it is very 
important for the "first fund a mental theorem" on renormalization t.ransform at. ions 
to be presented in Sec tion 5. 1. 

3.2 Density of information gain 

Given two probability measures J.l and v on a measure space (n, ~), the infor
mation gain (or J(ullback-Leibler information, or minus the relative entropy) of J.l 
relative to v is defined as 

{ J ( log~) dJ.l = J (~log~) dv I(J.llv) = dv dv dv 

+00 

if J.l « v 
(8) 

otherwise 
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This object determines the probabi lity of a large deviation . Roughly, if X I, ... , X Il 

are independent samples drawn from a probability distribution 1/, then 

I:> b (V \.. . '. I r . ) ~ -nl(/II,,) 1'0 " ,\ 1 , . ..• " n IS typlca 101 /1. e . (9) 

Two important. properties of the information gain are: 

(Il) I(IlII/) = 0 if and only if /l = 1/. This, together with the preceding formula , 
suggests the interpret.ation of 1(1l11/) as a measure of "how different" II. and 
1/ are . [Note, however , t.hat 1(/11//) f:. 1(1/lfl) in general.) 

(12) If:F' c Y, 1(fl.r/lvr') :s 1(1111//.1'). That. is, "coarser" measurements a re 
less revealing. 

The notion of informat.io n gain is , however, useless in the context. of infinit.c
volume statistical-mechanical syst.cms. becallse nearly all the measures of int.erest. 
turn out to be mutually singular. Therefore, by t.he second line in (8), the relat.ive 
information gain is always +00 . However, t.he reason for this infinity is well known: 
When two translation-invariant st.ates are restricted to a finite "window" A, t.he 
relative information gain is typically proportional (a'>ymptoticaJly) to the volume 
of A. The right object in the stat.istical-mechanical setting is, therefore, the density 
of information gain, in which t.his volume divergence is divided out by defining 

( 10) 

where /j/\ = IlI.rA' and t.he sequence of set.s A is suitably chosen (e.g . growing 
concentric cubes) . 

The limit (10) is known t.o exist. if 1/ is a Gibbs measure and bot.h /j and 1/ are 
translation-invariant . For such measures we have, instead of (9): 

Prob,,(w/\ is typical for Il) ~ e-IAI i(lllv) , 

where w/\ represents a configurat.ion of spins inside the finit.e volume A. 
An important difference bet.ween informat.ion gain and it.s densit.y is that. for 

the laUer the analogue of (11) is false. In fact, if 1/ E Ginv(n<l», 

(II) 

where we have denoted by ~;"l\' (II -I,) t.iIe set. of lmnslalion-invllrianl G i blls stat.f ~S 
consistent with n"' . Indeed, for difrercnt. Gibbs st.at.es consist.ent. wit.h t.lw sallie 
specification, the large deviations decay subexponentially in the volume, \,yp ically 
as an exponential of the perimet.er (or the surface area) of A. 

3.3 Attributes of non-Gibbsian measures 

Examples of non-Gibbsian measures have previously been found and studied in: 
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• Zero-temperature stat.istical mechanics (see t.he revIew by Dobrushin and 
Shlosman [16) and Appendix J3 of [57)). 

• Non-equilibrium phenomen a , especially stali ll lliHY states of stochastic dy
namical processes [45, 54 , 49). 

This is not surprising, because there is no reason to expect Gibbsian measures out
side the setting for which they were tailored, namely nonzero-tem.perature equi
librium statistical mechanics. 'Vhat is tantalilling is the fact that even in this 
setting non-Gibbsian measures may also show up. The first such example was 
found by Lebowitz and Maes [43), in t.heir st.udy of the entropic repulsion of a 
surface by a wall. Lat.er, it. \\'as discovered t.hat. the application of renormalization 
techniques also leads to non-Gibbsianness in some situations where a non-compact 
symmetry group is broken [17), or in the presence of a first-order phase transition 
[38,58,59,60,61,57). 'Ve review t.he last. t.ype of examples in Sect.ion 5.2 below. 

Let us present a tentative classification of the known examples of non-Gibbsian 
measures - based, for lack of better understanding, on which of the Gibbsian 
properties (Gl)- (G4) are violated . 

{GtJ A COil vex combination of measures that are Gibbsian for different specifi
cations (e,g. for different. t.emperat.ures) cannot be Gibbsian. If it. were, it. would 
be consistent with all the different. specifications at the same time, against (G 1). 

~ Measures that. fail t.o be uniformly non-nllll are non-Gibbsian. They come 
in two flavors : 

• Measures that are not. even non-null: they give zero measure to some open 
set, This is a mild case of non-Gibbsianness . Often Gibbsianness can be 
restored by introducing hard-core (excluded-volume) interactions to account 
for the forbidden configurat.ions [50, 2, 53). 

• Measures that are non-null bllt. non-uniformly so. This behavior is IISU

ally associated to some unbounded interaction; it is the typical situation for 
long-range models with unbounded spins. Sometimes Gibbsianness can be 
restored by excluding "by hand" a well-chosen set of "catastrophic" config
urations [44, 10) . 

{.Ga1 Measures that do not. have any system of quasi local conditional proba
bilities cannot be Gibbsian. This is associated to t.he presence of some "hidden" 
variables that transmit inforllla.tion from arbitrarily far away even when the "non
hidden" spins are fixed . This is t.he t.ype of non-Gibbsianness t.hat. appears t.hrough 
renormalillation transforlllat.ions. as will be discussed below . 

.(.G-tJ MeaslI res that do not. sat.isfy the large-deviation estimates proven for Gibbs 
measures cannot be Gibbsian . There are two types of examples: 

• Measures whose large-deviat.ion probability is too large. Among these we 
find the st.at.ionary measures of some dynamic processes (vot.er model [45], 
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Martinelli-Scoppola cluster dynamics [49]), and the sign field of an (an )har
monic crystal [17,57] . In these cases it is proven that i(o+\J.L) = 0, hence, 
as 0+ is not Gibbsian, by (11) neither is J.L . 

• Measures whose large-deviation probability is too small. One example is til e 
restriction of a 2-dimensional Ising state (below the critical temperature) 
to a coordinate axis, first studied by Schonmann [54]. Schonmann proves 
that two such states, arising from the + and - phases of the Ising model at 
the same temperature, cannot be compatible with different specifications ; 
but the density of information gain between them is strictly positive. By 
(11), if there is a common specification, it cannot be Gibbsian. The same 
conclusions are valid for restrictions of d-dimensionallow-tempera tu re Ising 
s ta tes to Cd - 1 )-dimensional coordinate hyperpl anes [18] . 

Besides the examples and results co llec ted here, very little is knowlI about. 
non-G ibbsian measures . We shall comment more about this state of ignorall ce in 
Sect.ion 6 below . 

4 Position-space renormalization 
transformations. The questions 

After this short encounter with the key notions of statistical mechanics, we reL urn 
to the main subject of this work : the renormalization transformations . For the 
rest of this paper we shall consider only translation-invariant measures . 

4.1 Definition and examples 

As discussed in Section 1, a renormalization transformation, in the framework of 
classical lattice statistical mechanics, is defined by a probability kemel T frolIl 
a measure space (n = n&, F), called the original or object system , to another 
measure space (n' = (n~).c' , F') called the image or renormalized system. This 
kernel defines a transformation T: M+ J (n, F) --+ M+l (n', F') in the form 

(TJ.L)( . ) = J T( . \w)J.L(dw). 

Such a transformation is called str·jetty local if there exists a /{ < 'x> (com
pression factor) such that 

For each A E FA" the function T(AI · ) is FA-measurable for a suita ble 

(van Hove) sequence of volumes A, A' with lim sup ~ S f<.: . 

Informally, the renormalized configurations in AI are determined by a volume of 
original spins not exceeding K\A'\ . 
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o o o o 

• o • o 

o o o o 

• o • o 

Figure I : Decimatio n wi t h block or size ~x 2. Black circles n~ presP llt . re nonnaliz!'d 
spins ; the spins corr,'spolldillg t.o white cirel!'s ar(' averaw'd O V(' r. 

Oft<'n T h a:> t.h e struct.tIf'f' of a product.: 

T(dw'lw) = II 'i'(tI ..... "·I .... ·u .) ; 
."EL' 

t.hal. is. ~~a('h rf'lI o l'lllaliz!'d spin w~. is deLPrrJlillnl 0111\ 1,.\ "riginal spills in a fillite 
Sf't n .... III t.his cas(' w~ is int.!' rpret.ed as tl)(' block-II/II d,;s()c iat.cd t.o t.he " block" 
LJ,,,. 

In addit.ioll. we de lna nd t.hat. T carry translat.ioll-invariant.lrlP<I>;ures in t.o tralls
lat ion-i n vari a li t. II wasil res . 

EXaIllplus: 

The ro llowing a n ' amollg the most. popular r('n o rm a lizat.io n trall,;rOJ'lliatio ll;< 
wwd 1'01' lat.t ice SySt t' lllS (s('(' f' .g. [7)): 

• D ec llllatiol/. ,,.a.nsjo'f'lll.aliolls : L = L' = 1!. no = n~, . 13.r: = b x b blocks , a nd 

'['(wB.lelw;,,) = 5(w;'. -wb;r)dw~, . 

T~lPse t.ransformat.ions are deterministic : A part.icular spi n of the hl ock is 
chosen as t. he renorma l ized Spill , ig lloring ( "i nt. t-~g ratj ng ov(' r" ) .. he COil figll
rat io ll;< of til(' other sp ins (Figure I) . 

• Iv! ajorify- ,./I/r trllllsj'OT'lIl aliolls (I s ing mod el) : L = C = zd, no = n;l = 
{- 1.1} . H ... = b-t.rallslaif' o r a fixed block 130 (usually of s ize small enough 
so th a i no t wo b locks overlap) , and 

[\ (L Wy 
. !f EB .•. 

> 0) h(.....,~. - 1)+ \. ( L Wy < 0) h(:.;~. + I) 
yEB c 



248 A. C. D. van Ent.er, R . Fernandez and A. D. Sokal 

, , , , • • b _____ d b _____ d -p-------o p---- -- -o 
, , , , • • b _______ d 

Figure 2: General renormalizat.ion transformations with block-size 2x2. 

In words, the renormalized spin takes the value of t.he majority of the spins 
of the block; in case ofties a coin is flipped . Thi::; Ia.st. part of the prescription 
makes the transformation (slightly) stochastic (Figure 2) . 

• Kadanoff transformations (Ising model): Same setting as in previous exam
ple, and 

T(WB x Idw~) 

exp (pw~ i:yEBx wy ) 

2 cosh (p LYEBx w Y ) 

for some fixed P > O. These are fully stochastic transformations, which 
converge t.o the majority-rule transformation in the limit p ~ (X). These 
t.ransformations have been used also in image processing (p related to the 
probability of "data corruption" at each spin site) [23, 25, 11, 28, 20] and 
speech recognition [52]. In these contexts, t il!' .. enormalized measures are 
called hidden Markov models [52, 24, 46] . 

• Block averaging: C = C' = Zd , Rx = b-translate of a fixed block Eo and 

where c is a rescaling factor. If c = IHo l- l , the renofillalized spin is indeed 
the block-average of the original ones. \\ '" ohserve that 0~ i 0 ,,; for i Ilstal1<'e 
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if no = {-I, I} and c = 1, then n~ = {-IBol, -IBol + 2, ... , IBol- 2, IBolL 
This is an example of a linear transformation, and as such it is of in
dependent interest because of its connections with central-limit theorems 
[36,4,22, 13,8]. 

Non-examples: 

The following important transformations are not strictly local: 

• Quasi-local transformations (e.g. momentum-space transformations [6'2, 3]): 

t = 6 (w~ -L F(bx - Y)W Y ) dw~ 
yEC. 

for some length rescaling factor b > 1 and some non-local kernel F decreasing 
at infinity. These transformations are widely used in the study of systems 
with unbounded spins . 

• Restriction of a d-dimensional model to a (d - 1 )-dimensional coordinate 
hyperplane. The compression factor f{ is infinite. These transformations 
are relevant to the study of stationary states of cellular automata [29, 54J. 

4.2 Renormalization transformations at the level of inter
actions 

To study the properties of a statistical-mechanical system, the transformations T 
are applied iteratively to a starting Gibbs measure It. In this way, we "integrate 
out" the "fine" details of /1, and concentrate attention on the important "lollg
distance" features . 

In fact , this type of transformation was designed initially (by Kadanoff, Wilsoll 
and others) to study the so-called critical points, which correspond to situations 
where the fluctuations exhibit long-range correlations. At these points , the be
havior has been observed to be universal in the sense that it is the same for 
different models, depending only on some very gross features like the dimension, 
type of symmetry, and whether the interaction is finite-range. Moreover , this uni
versal behavior can be fully characterized by a reduced number of parameters ---
the so-called critical exponents - which relate the divergence of the correlation 
length and other observables to the deviation from criticality of the temperature 
and ot.her parameters of the interaction (fields or couplings). Therefore, from the 
point of view of physics, it is of more direct interest to see how the interactIOn 
changes upon renormalization. 
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Thus, physicists usually call a renormalization transformation the map n. in
duced at the level of interactions, according to the diagram 

fL 
T 

<{> 

T 

n 
---+ 

fLl 

! 

This approach, however, relies on the assumption that the renormalized measure 
is Gibbsian - that is, that there exists some summable interaction <{>I such that 
fLl E 9(II<I>'). This assumption turns out to be false, in certain situations, for the 
transformations of the preceding examples. 

4.3 The questions 

In addition to the hypothesis of Gibbsianness, renormalization physicists-style 
involves the assumption that n is a single-valued and smooth map. This is a 
delicate issue in the presence of a first-order phase transition, i.e. when 19( n <I') I > 
1: 

Indeed, in this case each of the measures in 9(II<I» gives rise to a differcnl 
renormalized measure, and it is not obvious that they are all consistent with the 
same renormalized interaction <{>'. Hence, assuming Gibbsianness of the renor
malized measures, we have two possible situations: 

T 
T 

---+ fLl ---+ fLl fL ---+ 
fL -+ ---+ -+ 

TTl 1 or liT 111 ? 
n 

<{> n <{>I <{> ---+ <{>I ---+ ---+ 
---+ 

If the alternative on the right occurs, then the map n is multivalued at the 
first-order phase transition ; and moreover, it is presumably discontinuous with 
respect to small changes in <{> that select one or the other of the original G i b bs 
measures fl. These "pathologies" would be absent in the alternative 011 the left 
- the so-called standa1'd scenario. 

Physicists have long assumed that the left alternative is the correct one (that is 
why it is called the standard scenario!) [51,41, 19]; however, a series of numerical 
results [6, 42, 14, 30] suggested that discontinuities and multivaluedness did occur 
in certain cases. 

In addition, some analytic work of Griffiths and Pearce [32, 33, 31] pointed 
out the almost unavoidable occurrence of "peculiarities" for the most common 
renormalization transformations. The nature of these "peculiarities" was later 
clarified by Israel [38] - at least for the 2 x 2 decimation transformation of the 
Ising model - who showed that the issue was non-Gibbsianness rather than the 
lack of single-valuedness or smoothness. 

To summarize, renormalization theory faced two big questions: 
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• (Raised by physicists . ) Is the standard scellario valid '? ---· ·Is the relloflJlalizi\
tioll transformation n always single-valued and conli1l'uous'? 

• (Rais ed by malhcrnalicill physicists . ) Is the renorl1lalized measur<' always 
Gibbsian?-ls the map R always defined? 

5 The answers 

The answers to the above questions are: a qualified "yes" for the first. OIlC , and 
"110" for the secoud one. In fact : 

• The map n is single-valued and continuous (in an appropriate topology) 
whenever it is defined . 

• Many examples show that the map n can fail to be defined at or III the 
vicinity of a first-order phase transition . 

We present in this section a brief discussion of these issues. For further details 
t.he reader should consul t [57] . (Other summaries, oriellted t.owards an aud iCll cc 
of physicists, have appea red in [58, 5U, GU, GI] .) 

5.1 Validity of the standard scenario 

The proof that the standard scenario is valid, whenever the renormalizecl meas ure 
is G ibbsian, is contained in two "fundamenta.l theorems". The first of them dea.1s 
with the issue of multivaluedness. 

First fundame ntal theorem (single-valuedness) . IJ J.l and 1/ aTt 
Gibbs measures JOT' the same inteT'action, then either Tit and T 1/ are 
both non-Gibbsian, or else there exists a unique (modulo physical equIV

alence) interaction 4>' for which both T p, and T 1/ are Gibbs meaSU1·CS . 

SKETCH OF THE PROOF. The proof is based on the following two fac ts: 

• One can determine whether two measures (at least one of which is Gibb
sian) are Gibbsian for the same interaction by inspecting the density of 
information gain between them: according to (11), this quantity is zero if 
the two measures are both Gibbsian for the same interaction, and is nonzero 
otherwise. 

• The information gain does not increase when the measures are restricted to 
a "coarser" u-algebra. 

With these observatiolls, the proof basically reduces to the following lille : 

( I L) 
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(II; the la.s t implication the finiteness of the compression factor is Iw(~deJ .) 
Frorn the rightrnost identity in (1~) we conclude that there a n·: only t.\\'o pos

sibilities: 

• One of Tp" Tv is Gibbsian . In this case, by (11), the other o ll e is a lso 
Gibbsian, and for the same interaction . (The uniqueness modulo physical 
equivalence of this interaction is a well-known result due to Griffiths ilnd 
Ruelle [34).) 

• Neither TIL nor Tv is Gibbsian . • 

We remark that whenever T p, and Tv are non-Gibbsian, the last implication of 
(12) provides, as a by-product, examples of non-Gibbsian measures for whicll the 
density of information gain exists and is zero. On the other hand , Schonma nn 's 
restriction [54] provides examples of non-Gibbsian measures for which the density 
of information gain exists and is strictly positive. 

Regarding continuity of the renormalization map at the level of int.eract ions, 
we have: 

Second fundamental theorem (continuity). TIl.(' 1//ap R IS (01/

tmuous in lh e SO-norm (in fact , Lipschitz continuous) 011 the dUlltllllt 

wher'e it is defined . 

SKETCH OF THE PROOF . The SO-norm is defin ed a ... 'i 

11<1>118 0 ~f 
finite ACe 

A;) 0 

It defines a larger interaction space than the Sl-norm defined in (6) (it a llows 
interactions that are more strongly multi-body), and it is the natural norm for 
measuring bulk energy contributions . In particular one has the very importa llt 
identity 

"

log 7rt " = IAlll<I>l - <l>21Iao/pe + o(IAI) , 7r A oo /const . 
(13 ) 

where "p.e." (short for "physical equivalence") indicates that one must identify 
functions differing by constants or by functions having zero mean with respect to 
all translation-invariant measures . This identity proves the uniqueness result of 
Griffiths a nd Ruelle. On the ot.her hand , since probability kernels act like av(> r ag(~s, 

" 

7r'
I
'; " "7r.1> 1 " log~ < l og ~ . 

«1)1 - cf):J 
7rA 2 co / Const . 7r A 00 / COIl5t . 

( 14) 
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Combining (13) and (14), and using the finiteness of the compression factor ]( , 
we get 

which is the precise statement of the second fundamental theorem. • 

5.2 Non-Gibbsianness of the renormalized measures 

We turn now to the issue of non-Gibbsian renormalized measures, that is to sit.
uations in which the map n - renormalization at the level of interactions - is 
not defined. As mentioned in Section 4 .. 3, Israel [38] exhibited the first example 
of this phenomenon. Generalizing his idea, we have been able to show that all the 
real-space renormalization transformations listed above - decimation, Kadanoff, 
(some) majority-rule, and (even-block) block-averaging - yield instances of 110n
Gibbsianness. That is, when these transformations are applied to the Ising model 
we have that : 

For Jxy = J large enough (low temperature) and hx = h small enough, 
one renormalization step leads to a non-Gibbsian renormalized mea
sure. 

More precisely, this statement holds for all the above transformations except ma
jority rule , for d:::: 3. For d = ~ t.he result holds for all the examples, bill (WI' have 
proven it so far) only for It = O. For block averaging we have a lI1uch stronger 
result : non-Gibbsianness occurs for arbitrary II (and low temperature), for all 
d> 2. 

This non-Gibbsianness is caused by the mechanism labeled .(.GB1 in Section 
3.3. The ingredients of the argument are: 

• Once the renormalized spins are fixed, the original spins form a constrained 
system. Nevertheless, at least for some special renormalized-spin configura
tions , the constraints allow for a considerable amount of fluctuations. 

• These remanent fluctuations of the original spins act as "hidden" variables 
that transmit information from infinity. 

• For this transmission to take place, the constrained original system must 
undergo a first-order phase transition . Usually (but not always) this means 
that the (unconstrained) original system must be at low temperature and 
small field . However, the original system need not be sitting on a first-order 
phase-transition surface; it need only be "near enough" to one so that the 
constrained original system can be placed onto a first-order phase-transition 
surface by a suitable choice of renorll1alized-spin configuration. 
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'rYe relllark tha.t in image-processing language this shows that., in t.he lililit. 
of infinite window, the noisy image may fail to be Gibbsian . This may lead to 
surprises wh en us illg inferell ce schemes d esigll( ~ d with Gibbs ll1ea.sUf( ~S ill IIlilld. 
At t.his stage , however , it is lIot clear what. are t.he surprises, if any , ill s\.or('. 
Analogo usly, Ilsillg sp eech-recognitioll nomellclature, the exa.lliple of the I\ati anofl' 
transform ation shows th at hidd ell Markov 11Iodels call be very far from Markovian : 
in fact they may evell fail to be Gibbsian. 

6 More questions and open problems 

Uy now, we hope to have convinced the reader of the ubiquity of non-G ibbsia ll 
measures. This fact, along with the present lack of systematic study, makes t he 
subject of non-G ibbsianness a particularly appealing field of inves tigatio ll . In 
order to suggest directions for further research, we close this exposition with a. list. 
of questions and open problems that we consider especially important. 

6.1 Practical consequences of non-Gibbsianness? 

We have seen that non-Gibbsianness can be unexpectedly present in very con
crete applied problems , such as the processing of noisy images or speech , o r as 
a result of widely used computational procedures, like renormalization transfor
mations. Therefore, there is a rather pressing need to invest igate the pract ical 
consequ ences of this phenomenon. In this r(,gard, it is natura l to fOl'llllll at.c t.il (' 
following q uest ioll : 

How doe s oue d( ~ tect, ullIuerieally, that oue IS workiug with 
a lloll-Gibbsiall lll(~aSllre'! 

In ot her words , which a re the poss ihle "surprises" Ili clltio ll eJ aboVf~ th at. co uld Ilit. 
a G ibbsianness-ori ented statistician (or stat isti cal physi cist) when his/ her target 
turns out not to be a Gibbs measure? This is proba bly a vast and diffi cult. questioll. 
but we would like to contribute with some Illeditations . 

The question fits into a more general parameter-estimation problem: SliP (JOS!: 

one has a measure /-1 and one makes a numeri cal experiment uncle I' t. 11!' wrollg 
assumption that it belongs to a certain family 9. If the experiment is well dOlle , 

it will pi ck up the measure J-L9 E 9 "closest" to J-L. The key issue here is how this 
"closest" measure is defined, or put in another way, what "closeness" lIl eallS ill 
this context. 

One reasonable answer could be: The "closest" measure should in pract ice 
be determined via some optimal estimation method, for instance m aximum like
lihood . Now, in the ideal limit of an infinite random sample, the mctxirnulIl
likelihood estimate converges to the minimizer of the information gain 1(/1.1 . ) (liote 
the order of arguments!) [35] . Therefore , this information gain cou ld prov ide a 
possible measure of "closeness". For t.he theory of random fi elds or pro C!~sses , 



however, such an approach does 1I0t. work because ill the infinite-volume limit the 
information gain diverges . III view of the discussion of Section 3.2, it is natural 
then to resort to the denstty of illformation gain. We are therefore led to the 
following reasonable postulate: 

The measurers) p9 closest to p is (are) defined to be the one(s) which 
minimize i(pl· ). 

Now, ill a realistic experiment, such a mll1l1nizer is determined via succes
sive approximations. In our case, where 9 is the set of Gibbsian measures, each 
approximation involves a successively finer determination of the putatiVf~ renor
malized interaction. Hence in our situation the last question can be transcribed 
in t.he form: 

Consider an increasing sequence of subspaces Vj C V2 C ... 
whose union is dense in 8 1 , and let <1>" be the interaction of 
the measure in U'f>E v" 9(I1<1>n) closest io J1 in the above sense. 
What are the prop(,rties of the sequence {<I>n}? 

In this regard, we offer two conjectures: 

• If Jl E 9(11<1», then <1>1/ --" <I> in [11. A partial result. is proven in [57] : There 

is indeed a converging sequence {<I>,,} --" <I> of almost minimizers , but it is 
not known whether t.h" exact minimizers <l>n always converge . 

• If p is not Gib bsian, then lI<I>nll61 --" (Xl. A preliminary analysis done in 
[57] shows that there is another possibility to contend with , namely that the 
sequence {<I>n} does not converge at all (due either t.o oscillations or to a 
mean-field-type dependence of the couplings). 

At this point it may be useful to remember the numerical discontinuities and 
mult.ivaluedness apparently detected in the case of renormalization transforma
tions [6, 42, 14, 30]. If the renormalized m easures are indeed Gibbsian, such 
phenomena are ruled out by the "fundamental theorems" presented in Section 
5.1; the apparent discontinuity must be an artifact of 1 he truncat.ion to a sHlnl) 
subspace Vn , and it ought. t.o disappear as n -- 00. On the other hand, these 
discontinuities could be a manifestat.ion of non-Gibbsianness . In [1] a toy example 
is present.ed where a relation between discontinuities/multivaluedness and non
Gibbsianness is explicitly exhibited, although for non-Gibbsianness due to lack of 
non-nu])ness (mechanism .(.G%) of Section 3 .3) rather than due to lack of quasilo
cality. This example, however, does not really belong to a probabilist.ic sett.ing 
because it involves complex interactions. 

6.2 "Degrees" of non-Gibbsianness? 

A question , not unrelated to the ones of the previous subsection, is whether one can 
establish some sort of hierarchy of non-Gibbsianness . A suggestive analogy (due 
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to Joel Lebowitz) is provided by the irrational numbers, which can be classified 
a.ccording to the rate at which they are approximated by rationals (Diophalltine 
approximation). If a similar classification were possible for non-Gibbsiauness, it 
would certainly be more useful than the one proposed in Section 3.3. 

Such program has the intrinsic difficulty that there is no unique way to estirnate 
"rat.e of approximation" in measure spaces. Perhaps a nlore practical approach 
1V0uid be to characterize non-Gibbsi a nness according to the severity of t.he COII 

ereLl' , c.g . lIurner ical, nranifestatiolls. In this regard, the follow ing quest iolls co uld 
serve as gu id el i nes: 

• vVlrell can Gibbsianness be restored by removing "by halld" sOllle slllall set 
o[ "pathological" configurations? Some aspects to co nsider: 

- The set of "pathological" configuration is quite likely a tail event , and 
therefore it has measure either one or zero [or the measures of in kn's t. 
(extremal Gibbs measures and their images under renormalization) . 
These two possibilities could be interpreted respect ively as signaling a 
"large" or a "small" set. 

In general, it is foreseeable that one can find some set of configurati o lls 
whose removal yields a Gibbsian measure. The question is wh et lrer Lllis 
can be accomplished by removing only a small set of configurations. 
Current investigations on Schonmann's example could be illustrativ(' 
in this regard [48,47 , 18]. 

• When is non-Gibbsianness so weak that no realistic numerical experiment. 
will detect it? One such case would of course happen if the set of "patholog
ical" configurations has measure zero arid its removal restores Gibbsianness. 

• Under what conditions t.here is still SOllie sort of "t.h crIllodynalllic desc rip
tion" (densi ty of information gain, va riatiollal prillci pie) abo for 1I 0 1l-G i bb,;iall 
measures? When such a description exists, one co uld perhaps extend t.o 11 0 11 -

Gibbsian rneasures many of the concepts - and perhaps also the illtuitions 
- developed for Gibbsian measures. See [45] for some pioneer work in this 
direction. 

6.3 Pervasiveness of non-Gibbsianness? 

Given the growing fauna of non-Gibbsian measures , one may certainly wOllder 
whether there is some convincing way to estimate how "large" the set of such 
measures is . The question is perhaps a little vague and typically academic; t.he 
two partial answers we have are of the same nature: 

• The set of Gibbsian measures is dense in M+1(O , F) in the weak topology 
[57]. This is a weak result, because, as commented above, the weak topology 
is insensitive to long-range-order properties. 
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• The set of Gibbsian measures is a set of first Baire category (countable 
union of nowhere dense sets) in the space M+l (n, F). In this sense, Gibb
sian measures are "exceptional" . This has recently been proven by Israel 
(unpublished). 

6.4 Extension to unbounded spins 

Finally, we mention as an open problem the extension of all the considerations 
of the present work to the case of unbounded spins (no non-compact). This is 
indeed an extremely interesting topic, but it faces numerous difficulties; among 
them: 

• Unless the interaction is strictly finite-range , 

- One faces the problem of defining-out "catastrophic" configurations 
that lead to meaningless Boltzmann weights (i.e. divergence of the sum 
defining HX) . This is at present a painful model-dependent process. 

- The Gibbs measures are not quasi local. 

• It is not clear what is the "largest reasonable" space of interactions . 

• The theory of large deviations is still in the making [15, 26] . 
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