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Renormalization Transformations:
Source of Examples and Problems
in Probability and Statistics

A. C. D. van Enter, R. Fernandez?
and A. D. Sokal

Abstract: Renormalization transformations were intro-
duced in statistical mechanics to study critical points. Their
natural set-up, however, is within probability theory: they are
maps between probability spaces, defined by suitable probabil-
ity kernels. We review several interesting questions motivated
by applications in physics as well as in other areas like im-
age processing and speech recognition. Some of the questions
refer to locality properties of the renormalized measures. In
particular, it has been often assumed that the maps preserve
quasilocality (= almost-Markovianness). We exhibit exam-
ples showing that this is not necessarily the case, and discuss
the reasons for the loss of quasilocality. As a consequence,
the renormalization procedure generates numerous examples
of non-Gibbsian measures. Other questions pertain to the
smoothness of the renormalization maps. We show that this
is related to large-deviation properties. In particular, these
maps provide examples of non-Gibbsian measures for which
the relative entropy (information gain) density exists. A third
category of questions corresponds to practical computational
schemes for computing the parameters of renormalized mea-
sures. This is a largely unresolved issue of parameter estima-
tion, for which we present some conjectures and partial results.
We give a brief review of other manifestations of the impor-
tant phenomenon of non-Gibbsianness, and we list some open
probability-theoretic problems that prevent the extension of
our analysis to products of non-compact spaces (unbounded
spins).

Key words: Gibbs measure; non-Gibbsian measure; qua-
silocality; renormalization transformations.
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1 Renormalization transformations

Renormalization transformations are a tool widely used by physicisis. There is
no precise general definition of what a “renormalization” is. Rather, this term
refers to a circle of ideas, whose formalization is different (and not always clearly
defined) for different fields of physics. In these notes we shall consider only the
applications to classical statistical mechanics, where, as remarked long ago (the
first published work was [5, 39, 21], but see for instance [55, 9, 40] for further
references), the operations involved are most naturally formulated - and, we
contend, most profitably studied — in the framework of probability theory.
Indeed, the renormalization transformations used in classical statistical me-
chanics are just maps between probability measures, defined by appropriate prob-
ability kernels. We recall that a probability kernel from a measure space (2 =
set of points, F = set of events) to another measure space (Q',F') is a map

T(-]+): F' x Q — [0, 1] such that®:

#The way to order the arguments of a probability kernel changes with the application. Typical
notations are: T(w, A), T(A|w), and T,(A). The first notation is used when T represents a kind
of “transition probability” (as in the theory of Markov processes); the second notation is adapted
to the interpretationof T as a conditional probability; and the third notation emphasizes that w is
a parameter ( “boundary condition” ) indexing the probability measure on Q'. Probability kernels
defining renormalization transformations correspond to the first of these interpretations, but
later in the exposition, we shall introduce kernels (associated to the notion of equilibrium) that
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(a) For each fixed w € Q, T( - |w) is a probability measure on (Q', F').
(b) For each fixed A € F', T(A|-) is an F-measurable function on Q.

Each probability kernel 7" defines a map 7 between the corresponding spaces of
probability measures:

T: My (U F) = My (XY, F') (1)

with
(Tu)(A') = / T(A'|w) p(dw) )

for every A’ € F'.

Renormalization transformations (in the statistical-mechanical setting) are
particular cases of such maps, where typically @ = Q' = a countably infinite
Cartesian product. One can interpret (7 u)(A’) as some sort of average over all
w in the support of pu such that T(A’|w) # 0. Therefore, Tu may be considered
a “coarser” measure than g, in which some information has been “averaged out”
by the action of T. Alternatively, from the point of view of 7y, the w's act as
“hidden” degrees of freedom that together with p determine the (“non-hidden”)
features of 7. The kernel T should be chosen so that it removes the degrees of
freedom which are uninteresting for the application at hand; succesive iterations
of T .should produce simpler and simpler measures that nevertheless contain all
the interesting information.

The physical applications require that these renormalization maps enjoy some
crucial properties — single-valuedness, continuity and smoothness, Gibbsianness
— whose failure would force the standard paradigm into a substantial overhaul.
These properties have been largely taken for granted, and little has been done
in the way of rigorous proofs. As we shall see, a probability-theoretic analysis
provides definite answers — unfortunately not always positive — for some of
these questions.

It may be illuminating to point out that a renormalization transformation can
be interpreted as a “degradation™ of data. In fact, the above setting is completely
analogous to the notion of noisy data used in image processing [23, 25, 11, 28, 20.
12], speech recognition [52] and other fields of applied probability theory (see e.g.
the contribution by Prof. Basilis Gidas in this proceedings). In some cases, the
noisy (= renormalized) measure is termed a hidden Markov process [52, 24, 1],
because it arises from a Markov random field by “hiding” some degrees of frecdom.

However, the approach, and the questions asked, vary according to whether
the kernel T is interpreted as “noise” or as a “renormalization”. In fact, the
two points of view are complementary: In the first case, the interest lies in the
original measure pu, and the effort is concentrated on estimating it starting from

correspond to the second and third interpretations. We shall stick to the second (conditional-
probability-like) notation throughout this review.
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the “incomplete” measure Tpu. In the second case, the interest is centered in
the renormalized measure 7 p itself, the original measure having unnecessary in-
formation. While in image processing the noise T' is an unwanted and largely
uncontrolled feature, in renormalization theory it is added on purpose in a con-
trolled manner. When reconstructing an image one is interested in all features of
the landscape; the noise T is an obstacle that should be removed by the inference
scheme. In renormalization theory, instead, one wants to detect only the highest
and/or broadest mountains, and the coarse-graining map T simplifies our task by
“blurring out” smaller fluctuations.

For the sake of completeness, and given the nature of the present audience,
we pause to present a brief introduction to the statistical mechanics of classical
lattice systems, aimed at probabilists.

2 Elements of classical statistical mechanics (lat-
tice systems)

We base the exposition in this section on the notion of specification. This con-
stitutes an approach slightly more general than the usual one (based on inferac-
tions), and has the advantage that both Gibbsian and non-Gibbsian measures fit
naturally within its framework. For a detailed presentation along the same lines,
the reader can consult the book by Georgii [27]. A less exhaustive, review-style
introduction can also be found in Section 2 of [57].

2.1 The space of configurations

Statistical mechanics deals with very large systems formed by many small con-
stituents (for brevity called here spins). The basic ingredients of the mathematical
formalism are:

o = Space describing the possible configurations of a single constituent. Here,
we choose to call it single-spin space (= single-constituent space = single-
pixel space). It is equipped with a o-field Fy and a probability measure
p1a, (the a priori single-spin measure). Usually Qg is equipped also with a
topological structure compatible with Fy and pgq, (in the sense that open
sets are measurable and of nonzero measure). In nearly all applications, Qg
is a complete separable metric space. When g is a compact metric space,
we say that we are working with a model of bounded spins.

L = Set labeling the different constituents (copies of 2y). For lattice systems,
which model (for instance) atoms in a crystal, £ is countable and often

identifiable with Z°.

0 = (Q)* = Space describing all possible configurations of the system, therefore
called configuration space. It is equipped with the product topology and
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product o-field, and with the a priori measure po(dw) = [Licc Hao(dw:).

Examples:

e The Ising model: Its single-spin space is Qo = {—1,1} with the discrete
topology, and uq, is the normalized counting measure.

e The N-vector model: 5 = S¥=! = unit sphere in R" with the usual topol-
ogy, Ha, being the normalized Lebesgue measure.

2.2 The space of states

In classical statistical mechanics a state is a probability measure on the space of
configurations; that is, it is a random field indexed by L.

All concepts in statistical mechanics — as in the theory of random fields or
processes — are defined via sequences of finite volumes (“windows”). This mim-
ics how real systems are analyzed in practice. In particular, the (microscopic)
observables — the measurable [unctions representing feasible measurements —
are chosen to be (quasi)local lunctions, that is, functions that (almost) depend
only on finitely many spins.

To formalize this, let us denote:

F = o-algebra of measurable subsets (events) of Q.

Fa = Sub-o-algebra of F formed by the events that depend only on spins in
AcCL.

CA(2) = C(2)N B(§2, Fo) = Set of real-valued bounded continuous functions on
Q that depend only on spins in A [in the sense that f(w) = f(w’) whenever
wi = w! for all i € A].

Cioc = U finite Ca(£2) = The set of local functions.

We can now introduce the (microscopic) observables. These are the quasilocal
functions, that is the members of the set:

Ca@ = |J Ca(®)

A finite

where the closure is with respect to the supremum norm. Equivalently, an observ-
able is a function that “depends weakly on distant spins” in the sense that

Li;!g wjlgléﬂ |f(w) = f(")] = 0. (3)

'
WA = Wy
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In consistency with the experimental approach, two states are considered “dis-
tant” or “close” according to how the averages of obscrvables differ. Mathemat-
ically, this corresponds to adopting the weak quasidocal lopology Tor probability
measures:

fy — o if o, (f) — p()) for all f € Cy(f2).

The space of probability measures. My (€2, F). with the weak quasilocal topology.
is the space of states of classical statistical mechanies.”

Remarks:

e We emphasize that the convergence is required for each observable f, but
nol uniformly in f.

e Although the topology is defined in terms of guasilocal functions, an «/3-
argument shows that for probability measures it suffices to check convergence

for f € Cioc(92).

e By its very definition, the weak quasilocal topology is insensitive to what
happens over long distances: measures with very different long-range corre-
lations can nevertheless be very “close” in the sense ol this topology. This
fact is at the root of some rather surprising properties of the space of states
in general, and the space of Gibbs states in particular (see c.g. [27, Theorem

14.12], [37, Lemma IV.3.2], and [57, Section 2.6.7]).

e If Qp is a compact metric space, then C(Q) coincides with ('(Q2). and the
weak quasilocal topology coincides with the ordinary weak topology.

2.3 Finite-volume equilibrium distributions

Following the “finite-window™ approach inherent to statistical mechanies, we first
consider the notion of equilibrium for finite volumes.

The state of a finite volume A immersed in an exterior confliguration wy. is a
probability measure. This measure changes with wae. Therefore, a finite volume
in equilibrium with its exterior must be described by a famuly of probability mea-
sures on the interior, labeled by the exterior configurations. T'his corresponds to a
probability kernel whose second “slot” has a measurable dependence on configu-
rations on A°, and whose first “slot” corresponds to measures on the events inside
A.

It is technically simpler, however, to consider kernels defined over whole spaces,
incorporating the mentioned dependences through suitable restrictions: Equilib-
rium in a volume A is described by a probability kernel 74: F x @ — [0, 1] such
that

1 Warning: in the theory of random fields the space of configurations 2 is often called “state
space”. Here we call (2 the configuration space and reserve the word “state” for measures.
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(a) For each A € F, the function wa(A|-) is Fac-measurable (i.e. it depends
only on the exterior configuration).

(b) For each B € Fpc, ma(B|w) = yplw) (i.e. it may act non-deterministically
only on observables in the interior of A).

Moreover, these kernels for different volumes A should satisfy a natural com-
patibility condition: If a volume A’ is in equilibrium with its exterior, then all its
subvolumes should be in equilibrium with their exteriors. Mathematically this is
expressed by the condition:

(¢) IFA" DA, then
malho) = [ a9 m(dale) (1)
for all configurations w € Q.

A family 1 = {7 }ace, A finite satisfying (a), (b) and (c) is called a specifi-
calton. Specifications are the central objects ol classical statistical mechanics.
Their actual expressions are determined by the physics of the problem. In fact,
that is where all the physical input goes; once the specification is chosen, the
game becomes an exercise in probability theory. This exercise is, however, usually
non-trivial, and physical intuition can be very helpful!

We remark that conditions (a) (¢) are almost identical to the properties of reg-
ular conditional probabilities. The difference is that for specifications, properties
(b) and (¢) are required for all configurations w, rather than for “almost all” as
is the case for conditional probabilities. The reason is that in the present setting
there is no underlying “unconditioned measure”; the notion of “almost all” is not
defined [56].

2.4 Infinite-volume equilibrium

Infinite-volume equilibrium is defined extending the equilibrium condition (c)
above: A probability measure p on €2 is said to be consistent with the specifi-
cation Il = {mwp} if

p-) = [r,\(-wm(rm (5)

for all finite sets A C L£. BEquivalently, each 7 coincides with a conditional
probability of y conditioned on the events outside A:

For each finite A C £ and A € F, E, (\alFac)-) = ma(A]:) p-ae.

We denote by G(I1) the set of all measures in My (€. F) consistent with II.
Such measures are interpreted as describing possible states ol a system whose
equilibrinm is described by the specification 1.7

“We are carefully avoiding calling such states “equilibrium states™; this term is usually re-
served lor states thatl are in addition (ranslation-tnvariant.
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The determination of the measures consistent with a given specification i~
the main task of classical statistical mechanics. In this regard, we can say that
the basic problem of statistical mechanics is exactly the meerse of the classical
probability problem of determining conditional probabilities. In the latter there
is a measure given a priori. and one investigates the existence and properties of
conditional probabilities. In statistical mechanics the conditional probabilities
are given (by the physics of the problem, in the form of a specification), and
the question is about the existence and properties of measures having the given
conditional probabilities.

In the light of the interpretation of G(1I) as the set of states of a physical
system, it is natural to ask the following questions:

e Is G(IT) non-empty? This may seem almost pedantic, but there do exist
honest. specifications for which one can prove that there are no consist o
probability measures (e.g. Example (4.16) of [27] for compact spins; for non-
compact spaces the examples are more widespread: massless Gausian models
in dimension d < 2, solid-on-solid models in d = 1). Obviously, il G(11) is
empty we cannot proceed further.

e How large is G(I1)? There exists a multitude of results giving conditions
under which G(11) consists of a single state (sec e.g. [27, Chapters 8 and
9]). More interesting is the complementary case. namely when Il has nor
than one consistent measure. This corresponds to a physical system with
several available thermodynamic states. T'his models what happens for ex-
ample with water, which along certain curves in the temperature-pressure
plane can equally well take the liquid form, the solid form, or a mixture of
these; or what happens with magnets, which below a certain temperature
can be magnetized in one or another direction. If the specification includes
some adjustable parameters, a change in the cardinality of G(11) under an
infinitesimal variation of these parameters is called a first-order phase tran-
sttion. We point out the obvious (in this presentation) fact that such phase
transitions can only take place in infinite-volume systems. Il the lattice £ is
finite, there is only one measure consistent with I, namely mz( - |w) [which
is independent of w].

While the answers to the preceding questions depend on the particularities of
the specification, the following facts are valid lor general specifications:
e G(II) is a simplex.
e The extremal points of G(II) have short-range correlations and trivial tail
field.

We recall that the tail field is the o-field of events that are unaflected by any
alteration involving finilely many spins, that is, the events belonging to

) Fac.

ACL
A finite
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This set can be interpreted as the set of global events, and the functions measurable
with respect to it are called observables at infinity and can be considered the global
observables of the system. Triviality on the tail field means that the measures of
these events are either 0 or 1 or, equivalently, that observables at infinity are
almost-everywhere constant.

Therefore, the measures that are extremal points of G(I1) are deterministic (i.e.
do not exhibit fluctuations) when restricted to global observables, and have local
fluctuations that become independent over long distances. These two properties
characterize the macroscopic systems we observe in everyday life: their global
characteristics (density, magnetization, etc.) do not appear to vary stochastically,
and the local variations they may present are independent for distant points of the
sample. Therefore, the extremal points of G(I1) are interpreted as the macroscopic
states of the system described by the specification II. The determination and
characterization of the extremal points of G(11) is the central problem of statistical
mechanics.

2.5 Gibbsian specifications. Gibbs measures

At this point we should say something about the form taken by the specifications of
the usual physical systems. It follows from the work of Boltzmann and Gibbs that
systems in equilibrium at nonzero temperature should be described by Gibbsian
specifications. Such specifications are in turn constructed from interactions. We
now proceed to explain these two concepts.

An interaction is a family ® = (®4)acc. 4 finite of functions ®4: Q@ — R,
where each function @4 is interpreted as a contribution to the interaction energy
of the spins in A. Therefore ® 4 is required to be F 4-measurable (i.e. to depend
only on the spins in the finite subset A).

As an example, the interaction for the Ising model can be written in the form:

—hyws il A= {x}
Ca(w) = § —Jpywewy if A={z,y)
0 otherwise

To define a Gibbsian specification one needs interactions that are absolutely
summable in the sense that

def .
I9lls: S sup 3T [@alles < oo (6)
xr

finite A C L
A3r

(Roughly, the energy cost of changing one spin, leaving the rest fixed, must be
finite.) This condition ensures that for each finite volume A one can construct the
Hamiltonian

H®w) = Y daw).

finite A C L
ANAZ®
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Note that this Hamiltonian includes not only the contributions coming from sub-
volumes of A (i.e. terms with A C A), but also contributions describing the inter-
action of A with its exterior.

The Gibbsian specification 1™ = {73} for an absolutely summable interaction
& is defined by the kernels (Boltzimann-Gibbs weights)

74 (Alw) = (Norm.)™! ‘/,\-,‘[w} exp[—HJ (w))] Hpgo[du,).
TEA

A Gibbs measure for an interaction & is a measure consistent with II*. A measure
is Gibbsian if it is a Gibbs measure for some (absolutely summable) interaction.

Gibbs measures have been around us for over one hundred years. There is sub-
stantial experience with them; they are well-known, familiar objects. However,
recent investigations in non-equilibrium statistical mechanics, as well as examples
obtained from renormalization transformations (Section 5.2 below), have made
clear the necessity to venture into the unknown territory of non-Gibbsian mea-
sures.

3 Gibbsianness and non-Gibbsianness

As a useful preliminary step, in this section we summarize some properties char-
acteristic of Gibbsian measures. This leads naturally to a classification, by con-
traposition, of some possible types of non-Gibbsianness. For more details on the
material of this section, the reader can consult reference [57).

3.1 Attributes of Gibbsian measures

Gibbs measures have properties that are highly desirable from the point of view
of nonzero-temperature physics:

(G1) A measure can be a Gibbs measure for at most. one Gibbsian specification.
Among the consequences of this lact we mention:

e Specifications completely define a system; interactions defining the same
specification must be considered physically equivalent.

e Since different multiples of an (nonzero!) interaction (=diflerent tempera-
tures) produce different specifications, a measure cannot be the Gibbs mea-
sure for the same system at two diflferent temperatures.

(G2) A Gibbs measure y is uniformly non-null (with respect to the a prior: mea-
sure pp). This means that, for cach finite A C £:

e For each A € Fj,
jo(A) > 0= pu(A)>0.

(Basically, all open sets of configurations have nonzero measure.)
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e Moreover, this property holds uniformly in the sense that there exist finite
nonzero constants ap, O5 such that

aapo(A) < p(A) < Bapo(A)
for all A € Fy.

(G3) A Gibbs measure is quasilocal (almost-Markovian): It is consistent with a
specification IT1 = {mx} which satisfies the equivalent conditions:

e The functions w +— 7z (f|w) are quasilocal for each A finite and each f € Cy;.

e The direct influence of far-away spins becomes negligible:

lim sup [Ta(flwr) = ma(flwz)| = 0 (7)
(wi)ar = (wa)ar

for all f € Cq.

[Here we have used the notation ma(flw) = [ f(w') 7(dw’|w).] The equivalence of
the two conditions is a consequence of (3). From formula (7) we conclude that
in Gibbsian measures, information from distant spins cannot be transmitted if
the spins in the intermediate region are fized. Alternatively, the only mechanism
to transmit information from infinity is through the fluctuations of intermediate
spins. (We remark that this transmission from infinity, via fluctuations, indeed
takes place at a first-order phase transition; it does not contradict quasilocality.)

(G4) If there is a notion of translalion — an action of Z%n by bijections — then
the translation-invariant Gibbs measures have good large-deviation properties.
More precisely:

e These measures satisfy a variational principle that constitutes a “thermody-
namic description” of Gi,, (I1").

e Their large-deviations probabilities are controlled by a well-defined rate
function, called relative entropy densily or densily of information gain ac-
cording to the sign adopted.

In the next subsection we discuss in more detail this last point, as it is very
important for the “first fundamental theorem” on renormalization transformations
to be presented in Section 5.1.

3.2 Density of information gain

Given two probability measures p and v on a measure space (2, X), the infor-
mation gain (or Kullback-Leibler information, or minus the relative entiropy) of p
relative to v is defined as

I(plv) = /(!og%) 4 = /(55'035’5) dv ifp<v (8)

+00 otherwise
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This object determines the probability of a large deviation. Roughly,if X,,... X,
are independent samples drawn from a probability distribution v, then

Prob,(X1..... Xn is typical for i) ~ e~ (1) (9)

Two important properties of the information gain are:

(I1) I(u|v) = 0if and only if 1 = v. This, together with the preceding formula,
suggests the interpretation of I(u|vr) as a measure of “how different” ;1 and
v are. [Note, however, that I(u|v) # I(v|u) in general.]

(I12) If 7' C F, I(pz|ve) < H{pr|vr). That is, “coarser” measurements are
less revealing.

The notion of information gain is, however, useless in the context of infinite-
volume statistical-mechanical systems, because nearly all the measures of interest
turn out to be mutually singular. Therefore, by the second line in (8), the relative
information gain is always +oc. However, the reason for this infinity is well known:
When two translation-invariant states are restricted to a finite “window” A, the
relative information gain is typically proportional (asymptotically) to the volume
of A. The right object in the statistical-mechanical setting is, therefore, the density
of information gain, in which this volume divergence is divided out by defining

1
i(plv) = lim —I(palva), 10
(plv) o BTy (1alva) (10)
where pa = p|x,, and the sequence of sets A is suitably chosen (e.g. growing
concentric cubes).

The limit (10) is known to exist if # is a Gibbs measure and both g and v are
translation-invariant. For such measures we have, instead of (9):

Prob, (wa is typical for p) ~ e~ lAlitulv)

where wp represents a configuration of spins inside the finite volume A.
An important difference between information gain and its density is that for
the latter the analogue of (I1) is false. In fact, if v € G (1T7),

() =0 < p € Gu(N®), (11)

where we have denoted by G (11") the set of translation-imvariant Gibbs states
consistent with II". Indced, for different Gibbs states consistent with the same
specification, the large deviations decay subexponentially in the volume, typically
as an exponential of the perimeter (or the surface area) of A.

3.3 Attributes of non-Gibbsian measures

Examples of non-Gibbsian measures have previously been found and studied in:
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e Zero-temperature statistical mechanics (see the review by Dobrushin and
Shlosman [16] and Appendix B of [57)).

e Non-equilibrium phenomena, especially stationary states of stochastic dy-
namical processes [45, 54, 19).

This is not surprising, because there is no reason to expect Gibbsian measures out-
side the setting for which they were tailored, namely nonzero-temperature equi-
librium statistical mechanics. What is tantalizing is the fact that even in this
setting non-Gibbsian measures may also show up. The first such example was
found by Lebowitz and Maes [43], in their study of the entropic repulsion of a
surface by a wall. Later, it was discovered that the application of renormalization
techniques also leads to non-Gibbsianness in some situations where a non-compact
symmetry group is broken [17], or in the presence of a first-order phase transition
[38, 58, 59, 60, 61, 57]. We review the last type of examples in Section 5.2 below.

Let us present a tentative classification ol the known examples of non-Gibbsian
measures — based, for lack of better understanding, on which of the Gibbsian
properties (G1)-(G4) are violated.

1) A convex combination of measures that are Gibbsian for different specifi-
cations (e.g. for different temperatures) cannot be Gibbsian. If it were, it would
be consistent with all the different specifications at the same time, against (G1).

(&) Measures that fail to be uniformly non-null are non-Gibbsian. They come
in two flavors:

e Measures that are not even non-null: they give zero measure to some open
set. This is a mild case of non-Gibbsianness. Often Gibbsianness can be
restored by introducing hard-core (excluded-volume) interactions to account
for the forbidden configurations [50, 2, 53].

o Measures that are non-null but non-uniformly so. This behavior is usu-
ally associated to some unbounded interaction; it is the typical situation for
long-range models with unbounded spins. Sometimes Gibbsianness can be
restored by excluding “by hand” a well-chosen set of “catastrophic” config-

urations [44, 10].

(G3) Measures that do not have any system of quasilocal conditional proba-
bilities cannot be Gibbsian. This is associated to the presence of some “hidden”
variables that transmit information from arbitrarily far away even when the “non-
hidden” spins are fixed. This is the type of non-Gibbsianness that appears through
renormalization transformations, as will be discussed below.

(G Measures that do not satisfly the large-deviation estimates proven for Gibbs
measures cannot be Gibbsian. There are two types of examples:

e Measures whose large-deviation probability is too large. Among these we
find the stationary measures of some dynamic processes (voter model [45],
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Martinelli-Scoppola cluster dynamics [49]), and the sign field of an (an)har-
monic crystal [17, 57). In these cases it is proven that i(é4|p) = 0, hence,
as &4 is not Gibbsian, by (11) neither is p.

e Measures whose large-deviation probability is too small. One example is the
restriction of a 2-dimensional Ising state (below the critical temperature)
to a coordinate axis, first studied by Schonmann [54]. Schonmann proves
that two such states, arising from the + and — phases of the Ising model at
the same temperature, cannot be compatible with different specifications;
but the density of information gain between them is strictly positive. By
(11), if there is a common specification, it cannot be Gibbsian. The same
conclusions are valid for restrictions of d-dimensional low-temperature Ising
states to (d — 1)-dimensional coordinate hyperplanes [18].

Besides the examples and results collected here, very little is known about
non-Gibbsian measures. We shall comment more about this state of ignorance in
Section 6 below.

4 Position-space renormalization
transformations. The questions
After this short encounter with the key notions of statistical mechanics, we return

to the main subject of this work: the renormalization transformations. For the
rest of this paper we shall consider only translation-invariant measures.

4.1 Definition and examples

As discussed in Section 1, a renormalization transformation, in the framework of
classical lattice statistical mechanics, is defined by a probability kernel 7' from
a measure space (Q = QF, F), called the original or object system, to another
measure space (' = (Q4)¢', F') called the image or renormalized system. This
kernel defines a transformation 7: M4+ (2, F) — M4 (', F') in the form

(Tu)(.) = ] T( . |w) p(dw) .

Such a transformation is called strictly local if there exists a N < > (com-
pression factor) such that

For each A € F},, the function T'(A|-) is Fa-measurable for a suitable

(van Hove) sequence of volumes A, A" with lim sup |£| < K.

Informally, the renormalized configurations in A’ are determined by a volume of
original spins not exceeding K|A'|.
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Figure I: Decimation with block of size 2x2. Black circles represent renormalized
spins; the spins corresponding to white circles are averaged over.

Often T has the structure of a product:
T(dw'|w) = H T b, ) ;
recl’

that is, each renormalized spin W) is determined only by original spins in a finite
set By, In this case W) is interpreted as the block spin associated to the “block”

..
In addition, we demand that T carry translation-invariant measures into trans-
lation-invariant measures,

Examples:
The following are among the most popular renormalization transformations
used for lattice systems (see e.g. [T]):
i i
o Dccomation transformations: L= L' = 2", Qy = Q). B, = b x b blocks, and
T(wp, |duwt) = 6(wh — wpe) dul, .

These translormations are deterministic: A particular spin ol the block is
chosen as the renormalized spin, ignoring (“integrating over™ ) the configu-
rations of the other spins (Figure 1).

e Majority-rule transformations (lsing model): £ = £’ = Zd, Qo = Q) =
{=1.1}. B, = b-translate of a fixed block By (usually of size small enough
so that no two blocks overlap), and

‘i‘(a-’ i, [d-.u‘_:_ )=

\(Z wy >[})(5[...d:.— |}+\(Z w-_,,<n)h(.4,-j_+ 1)

yeR, yeH,
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00 070
0.0 0.0
o"g 070

0..d 0.0

Figure 2: General renormalization transformations with block-size 2x2.

+ X(z “’v=0)%(5(ui ~ 1)+ + 1) | o)

yeB,

In words, the renormalized spin takes the value of the majority of the spins
of the block; in case of ties a coin is flipped. This last part of the prescription
makes the transformation (slightly) stochastic (Figure 2).

Kadanoff transformations (Ising model): Same setting as in previous exam-
ple, and

T(wp, |dw.) =
exp (P Wy Zye B. “"y)
2 cosh (pZyEB: wy)

for some fixed p > 0. These are fully stochastic transformations, which
converge to the majority-rule transformation in the limit p — oc. These
transformations have been used also in image processing (p related to the
probability of “data corruption” at each spin site) [23, 25, 11, 28, 20] and
speech recognition [52]. In these contexts, the renormalized measures are
called hidden Markov models [52, 24, 46].

E(a(u; — 1)+ 8w, + 1})] i

Block averaging: L= L' = Zd, B, = b-translate of a fixed block By and
T(wp ldwl) = 6 |wl. —c z wy | dwl ,
yEB:

where c is a rescaling factor. If ¢ = [/33|~!, the renormalized spin is indeed
the block-average of the original ones. e observe that Qf # Q,; for instance
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if Qo = {—1,1} and ¢ =1, then Qf = {—|Bo|,—|Bo|+2,...,|Bo| — 2,|Bol},
This is an example of a linear transformation, and as such it is of in-

dependent interest because of its connections with central-limit theorems
(36, 4, 22, 13, 8].

Non-examples:

The following important transformations are not strictly local:

e Quasi-local transformations (e.g. momentum-space transformations [62, 3]):

T=6(w,—Y Flbz—y)wy | dwl
yeL

for some length rescaling factor b > 1 and some non-local kernel F' decreasing
at infinity. These transformations are widely used in the study of systems
with unbounded spins.

e Restriction of a d-dimensional model to a (d — 1)-dimensional coordinate
hyperplane. The compression factor K is infinite. These transformations
are relevant to the study of stationary states of cellular automata [29, 54].

4.2 Renormalization transformations at the level of inter-
actions

To study the properties of a statistical-mechanical system, the transformations 7
are applied iteratively to a starting Gibbs measure p. In this way, we “integrate
out” the “fine” details of g, and concentrate attention on the important “long-
distance” features.

In fact, this type of transformation was designed initially (by Kadanofl, Wilson
and others) to study the so-called eritical points, which correspond to situations
where the fluctuations exhibit long-range correlations. At these points, the be-
havior has been observed to be universal in the sense that it is the same for
different models, depending only on some very gross features like the dimension,
type of symmetry, and whether the interaction is finite-range. Moreover, this uni-
versal behavior can be fully characterized by a reduced number of parameters —
the so-called critical exponents — which relate the divergence of the correlation
length and other observables to the deviation from criticality of the temperature
and other parameters of the interaction (fields or couplings). Therefore, from the
point of view of physics, it is of more direct interest to see how the interaction
changes upon renormalization.
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Thus, physicists usually call a renormalization transformation the map R in-
duced at the level of interactions, according to the diagram

=
po— u
1 |
o 2 @

This approach, however, relies on the assumption that the renormalized measure
is Gibbsian — that is, that there erists some summable interaction ®’ such that
u' € G(II*"). This assumption turns out to be false, in certain situations, for the
transformations of the preceding examples.

4.3 The questions

In addition to the hypothesis of Gibbsianness, renormalization physicists-style
involves the assumption that R is a single-valued and smooth map. This is a
delicate issue in the presence of a first-order phase transition, i.e. when |Q'(l["’)] 5
l:

Indeed, in this case each of the measures in G(II*) gives rise to a different
renormalized measure, and it is not obvious that they are all consistent with the
same renormalized interaction ®'. Hence, assuming Gibbsianness of the renor-
malized measures, we have two possible situations:

i = wo=
- | oo M1 W7
» 2 @ ¢ = @

If the alternative on the right occurs, then the map R is multivalued at the
first-order phase transition; and moreover, it is presumably discontinuous with
respect to small changes in ® that select one or the other of the original Gibbs
measures pg. These “pathologies” would be absent in the alternative on the left
— the so-called standard scenario.

Physicists have long assumed that the left alternative is the correct one (that is
why it is called the standard scenario!) [51, 41, 19]; however, a series of numerical
results [6, 42, 14, 30] suggested that discontinuities and multivaluedness did occur
in certain cases.

In addition, some analytic work of Griffiths and Pearce [32, 33, 31] pointed
out the almost unavoidable occurrence of “peculiarities” for the most common
renormalization transformations. The nature of these “peculiarities” was later
clarified by Israel [38] — at least for the 2 x 2 decimation transformation of the
Ising model — who showed that the issue was non-Gibbsianness rather than the
lack of single-valuedness or smoothness.

To summarize, renormalization theory faced two big questions:
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e (Raised by physicists.) Is the standard scenario valid?—-1s the renormaliza-
tion transformation R always single-valued and continuous?

o (Raised by malhematical physicists.) ls the renormalized measure always
Gibbsian?—I1s the map R always defined?

5 The answers

The answers to the above questions are: a qualified “yes” for the first one, and
*1n0” for the second one. In fact:

e The map R is single-valued and continuous (in an appropriate topology)
whenever it is defined.

e Many examples show that the map R can fail {o be defined at or in the
vicinity of a first-order phase transition.

We present in this section a brief discussion of these issues. For further details
the reader should consult [57]. (Other summaries, oriented towards an audience
of physicists, have appeared in [58, 59, 60, 61].)

5.1 Validity of the standard scenario

The proof that the standard scenario is valid, whenever the renormalized measure
is Gibbsian, is contained in two “fundamental theorems”. The first of them deals
with the issue of multivaluedness.

First fundamental theorem (single-valuedness). If g and v arc
Gibbs measures for the same interaction, then either Tp and Tv are
both non-Gibbsian, or else there exists a unique (modulo physical equav-
alence) interaction ®' for which both Ty and Tv are Gibbs measures.

SKETCH OF THE PROOF. The proof is based on the following two facts:

e One can determine whether two measures (at least one of which is Gibb-
sian) are Gibbsian for the same interaction by inspecting the density of
information gain between them: according to (11), this quantity is zero il
the two measures are both Gibbsian for the same interaction, and is nonzero
otherwise.

e The information gain does not increase when the measures are restricted to
a “coarser” o-algebra.

With these observations, the proofl basically reduces to the following line:

v € G (MM*) = i(ulv) =0 = i(Tu|Tv)=0. (12)
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(In the last implication the finiteness of the compression factor is needed.)
From the rightmost identity in (12) we conclude that there are only two pos-
sibilities:

e One of Ty, Tv is Gibbsian. In this case, by (11), the other one is also
Gibbsian, and for the same interaction. (The uniqueness modulo physical
equivalence of this interaction is a well-known result due to Grifliths and
Ruelle [34].)

e Neither 7u nor Tv is Gibbsian. |

We remark that whenever 7 u and 7 v are non-Gibbsian, the last implication of
(12) provides, as a by-product, examples of non-Gibbsian measures for which the
density of information gain exists and is zero. On the other hand, Schonmann’s
restriction [54] provides examples of non-Gibbsian measures for which the density
of information gain exists and is strictly positive.

Regarding continuity of the renormalization map at the level of interactions,
we have:

Second fundamental theorem (continuity). The map R s con-
tinuous in the B®-norm (in fact, Lipschitz conlinuous) on the domain
where il 1s defined.

SKETCH OF THE PROOF. The B%norm is defined as

e D 4|
lofles % 3 L0alle

. 4]
niteA C L
A30

It defines a larger interaction space than the B'-norm defined in (6) (it allows

interactions that are more strongly multi-body), and it is the natural norm for

measuring bulk energy contributions. In particular one has the very important

wdentily

R

log wg’
A

= [A]]|®1 — ®2||sosp.e. +o(|A]), (13)

oo fconst.

where “p.e.” (short for “physical equivalence”) indicates that one must identify
functions differing by constants or by functions having zero mean with respect to
all translation-invariant measures. This identity proves the uniqueness result of
Griffiths and Ruelle. On the other hand, since probability kernels act like averages,

€ by
log - < |log =4 (14)
75 ° lloo/Const. Ta~ lloofConst.
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Combining (13) and (14), and using the finiteness of the compression factor K,
we get

|®] — ®5|ospe. < K||®1— Poflsospe.

which is the precise statement of the second fundamental theorem. | |

5.2 Non-Gibbsianness of the renormalized measures

We turn now to the issue of non-Gibbsian renormalized measures, that is to sit-
uations in which the map R — renormalization at the level of interactions — is
not defined. As mentioned in Section 4.3, Israel [38] exhibited the first example
of this phenomenon. Generalizing his idea, we have been able to show that all the
real-space renormalization transformations listed above — decimation, KadanofT,
(some) majority-rule, and (even-block) block-averaging — yield instances of non-
Gibbsianness. That is, when these transformations are applied to the Ising model
we have that:

For Jzy = J large enough (low temperature) and hy = h small enough,
one renormalization step leads to a non-Gibbsian renormalized mea-
sure.

More precisely, this statement holds for all the above transformations except ma-
jority rule, for d > 3. For d = 2 the result holds for all the examples, but (we have
proven it so far) only for & = 0. For block averaging we have a inuch stronger
result: non-Gibbsianness occurs for arbitrary h (and low temperature), for all
d> 2.

This non-Gibbsianness is caused by the mechanism labeled (G3) in Section
3.3. The ingredients of the argument are:

e Once the renormalized spins are fixed, the original spins form a constrained
system. Nevertheless, at least for some special renormalized-spin configura-
tions, the constraints allow for a considerable amount of fluctuations.

e These remanent fluctuations of the original spins act as “hidden” variables
that transmit information from infinity.

e For this transmission to take place, the constrained original system must
undergo a first-order phase transition. Usually (but not always) this means
that the (unconstrained) original system must be at low temperature and
small field. However, the original system need not be sitting on a first-order
phase-transition surface; it need only be “near enough” to one so that the
constrained original system can be placed onto a first-order phase-transition
surface by a suitable choice of renormalized-spin configuration.
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We remark that in image-processing language this shows that, in the limit
of infinite window, the noisy image may fail to be Gibbsian. This may lead to
surprises when using inference schemes designed with Gibbs measures in mind.
At this stage, however, it is not clear what are the surprises, if any, in store.
Analogously, using speech-recognition nomenclature, the example of the Kadanoff
transformation shows that hidden Markov models can be very [ar from Markovian:
in fact they may even fail to be Gibbsian.

6 More questions and open problems

By now, we hope to have convinced the reader of the ubiquity of non-Gibbsian
measures. This fact, along with the present lack of systematic study, makes the
subject of non-Gibbsianness a particularly appealing field of investigation. In
order to suggest directions for further research, we close this exposition with a list
of questions and open problems that we consider especially important.

6.1 Practical consequences of non-Gibbsianness?

We have seen that non-Gibbsianness can be unexpectedly present in very con-
crete applied problems, such as the processing of noisy images or speech, or as
a result of widely used computational procedures, like renormalization transfor-
mations. Therefore, there is a rather pressing need to investigate the practical
consequences of this phenomenon. In this regard, it is natural to formulate the
following question:

How does one detect, numerically, that one is working with
a non-Gibbsian measure?

In other words, which are the possible “surprises” mentioned above that could hit
a Gibbsianness-oriented statistician (or statistical physicist) when his/her target
turns out not to be a Gibbs measure? This is probably a vast and difficult question,
but we would like to contribute with some meditations.

The question fits into a more general parameter-estimation problem: Suppose
one has a measure g and one makes a numerical experiment under the wrong
assumption that it belongs to a certain family G. If the experiment is well done,
it will pick up the measure u% € G “closest” to p. The key issue here is how this
“closest” measure is defined, or put in another way, what “closeness” means in
this context.

One reasonable answer could be: The “closest” measure should in practice
be determined via some optimal estimation method, for instance maximum like-
lihood. Now, in the ideal limit of an infinite random sample, the maximum-
likelihood estimate converges to the minimizer of the information gain I(] - ) (note
the order of arguments!) [35]. Therefore, this information gain could provide a
possible measure of “closeness”. For the theory of random fields or processes,
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however, such an approach does not work because in the infinite-volume limit the
information gain diverges. In view of the discussion of Section 3.2, it is natural
then to resort to the densily of information gain. We are therefore led to the
following reasonable postulate:

The measure(s) u€ closest lo p is (are) defined to be the one(s) which
minimize i(p|-).

Now, in a realistic experiment, such a minimizer is determined via succes-
sive approximations. In our case, where G is the set of Gibbsian measures, each
approximation involves a successively finer determination of the putative renor-
malized interaction. Hence in our situation the last question can be transcribed
in the form:

Consider an increasing sequence of subspaces V), C Vo C ---
whose union is dense in B', and let @, be the interaction of
the measure in (Jgc . G(I1®*) closest to p in the above sense.
What are the propcrties of the sequence {®,}7

[n this regard, we offer two conjectures:

o If € G(II®), then ®,, — @ in B'. A partial result is proven in [57): There
is indeed a converging scequence {®,} — & of almos! minimizers, but it is
not known whether the ezact minimizers ®,, always converge.

e If ; is not Gibbsian, then ||®,||z: — oco. A preliminary analysis done in
[57] shows that there is another possibility to contend with, namely that the
sequence {®,} does not converge at all (due either to oscillations or to a
mean-field-type dependence of the couplings).

At this point it may be useful to remember the numerical discontinuities and
multivaluedness apparently detected in the case of renormalization transforma-
tions [6, 42, 14, 30]. If the renormalized measures are indeed Gibbsian, such
phenomena are ruled out by the “fundamental theorems” presented in Section
5.1; the apparent discontinuity must be an artifact of the truncation to a small
subspace V},, and it ought to disappear as n — oc. On the other hand, these
discontinuities could be a manifestation of non-Gibbsianness. In [1] a toy example
is presented where a relation between discontinuities/multivaluedness and non-
Gibbsianness is explicitly exhibited, although for non-Gibbsianness due to lack of
non-nullness (mechanism (&2) of Section 3.3) rather than due to lack of quasilo-
cality. This example, however, does not really belong to a probabilistic setting
because it involves complex interactions.

6.2 “Degrees” of non-Gibbsianness?

A question, not unrelated to the ones of the previous subsection, is whether one can
establish some sort of hierarchy of non-Gibbsianness. A suggestive analogy (due
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to Joel Lebowitz) is provided by the irrational numbers, which can be classified
according to the rate at which they are approximated by rationals (Diophantine
approximation). If a similar classification were possible for non-Gibbsianness, it
would certainly be more useful than the one proposed in Section 3.3.

Such program has the intrinsic difficulty that there is no unique way to estimate
“rate of approximation” in measure spaces. Perhaps a more practical approach
would be to characterize non-Gibbsianness according to the severity of the con-
crete, o.g. numerical, manifestations. In this regard, the following questions could
serve as guidelines:

e When can Gibbsianness be restored by removing “by hand” some small set
of “pathological” configurations? Some aspects to consider:

~ The set of “pathological” configuration is quite likely a tail event, and
therefore it has measure either one or zero for the measures of interest
(eztremal Gibbs measures and their images under renormalization).
These two possibilities could be interpreted respectively as signaling a
“large” or a “small” set.

— In general, it is foresecable that one can find some set of configurations
whose removal yields a Gibbsian measure. The question is whether this
can be accomplished by removing only a small set of configurations.
Current investigations on Schonmann’s example could be illustrative
in this regard [48, 47, 18].

e When is non-Gibbsianness so weak that no realistic numerical experiment
will detect 1t? One such case would of course happen if the set of “patholog-
ical” configurations has measure zero and its removal restores Gibbsianness.

e Under what conditions there is still some sort of “thermodynamic deserip-
tion” (density of information gain, variational principle) also for non-Gibbsian
measures? When such a description exists, one could perhaps extend to non-
Gibbsian measures many of the concepts — and perhaps also the intuitions
— developed for Gibbsian measures. See [45] for some pioneer work in this
direction.

6.3 Pervasiveness of non-Gibbsianness?

Given the growing fauna of non-Gibbsian measures, one may certainly wonder
whether there is some convincing way to estimate how “large” the set of such
measures is. The question is perhaps a little vague and typically academic; the
two partial answers we have are of the same nature:

e The set of Gibbsian measures is dense in M4,(€2, F) in the weak topology
[67]. This is a weak result, because, as commented above, the weak topology
is insensitive to long-range-order properties.
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o The set of Gibbsian measures is a set of first Baire category (countable
union of nowhere dense sets) in the space M4;(Q, F). In this sense, Gibb-
sian measures are “exceptional”. This has recently been proven by lIsrael

(unpublished).

6.4 Extension to unbounded spins

Finally, we mention as an open problem the extension of all the considerations
of the present work to the case of unbounded spins (£ non-compact). This is
indeed an extremely interesting topic, but it faces numerous difficulties; among
them:

e Unless the interaction is strictly finite-range,

— One faces the problem of defining-out “catastrophic” configurations
that lead to meaningless Boltzmann weights (i.e. divergence of the sum
defining H}f). This is at present a painful model-dependent process.

— The Gibbs measures are not quasilocal.
e It is not clear what is the “largest reasonable” space of interactions.

e The theory of large deviations is still in the making [15, 26].
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