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Comparative aspects of the analysis of stationary time series, 
point processes and hybrids 

Dav id R. I3rillinger 
The Universi t.y of California, I3erkeley 

Abstract: This paper brings out comparative aspects of 
the. analysis of time series, point processes and hybrids such 
as sampled time series and marked point processes . Second­
and third-order mome nt.s and spectra prove useful tools for 
addressing certain scient.ific problems involving such processes . 
Illustrative analyses are presented for dat.a on tides, neurons 
and eart.hquakes. 

Key words : Bispect. rum, eart.hquake, n euron, point 
proc ess, spectrum, stat.ionary in cretTIcnts , t.ime series . 

1. INTRODUCTION. 

A time series, Y, is a wiggly lin e, Y(t), -00 < t < 00. A point process, N, 
is a collection of times, {Tj , j = 0, ± I , ±2 , ... }. (It will be assumed that the Tj 
a re distinct.) A marked point. process , J , is a collection of times and associated 
quantities , marks , {( Tj , M j ) , j = 0, ± 1, ±2 , ... }. There are also hybrids such as 
sampled time series, {Y(Tj ), j 0,±I,±2, ... }. Time series techniques a nd 
time series data a re common . Poi nl. process techniques a.ppear less common, 
as do their analyses. Ma rked point. process studies a.ppear the rarest, but a re 
under substantial current. developm ent. , part.icularly for t.he spatial case. The 
paper seeks to bring out connections a mongs t. these disparite processes . It will be 
seen that the second- and third-order moment.s can prove to be useful too ls with 
which to grab onto scientific pro bl ems o f interest. Estimates of such moments and 
corresponding spectra are provided fo r some particular time series, point process 
and marked point process da ta set.s , specifically: ocean tides, nerve cell firings 
and earthquake occurrences. Section 4 lists some analytic methods useful for 
connecting the processes. The co mput.a tion a l details are given in the Appendix. 

2. STATIONARY INCREMENT PROCESSES. 

In this section some spe~ific processes are discussed . In the cases emphas i ~ed 
each is a process with stationary increments . 

X(.) is called a process with st.ationary in crem ents if the following hold s: 
X(t) , - 00 < t < 00 , t is a rand o m process such t.hat the joint distribution of t.he 
increments X(t + ht) - X(t + (/1) , ... , X(t + hd - X(t + ad does not depend on 
t for any al < hI, .. . , ak < bk and k = 1, 2, 3, .... The basic ideas are due 
to Kolmogorov and may be found pp. 551-559 in Doob (1953). There exists a 
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statistical calculus for such processes, see Brillinger (1972). 

A stationary time series Y corresponds to a sta t.ionary in crement process , X , 

Via i t 

,Yet) = Y(u) du 
o 

(::!.I) 

A point process , N, corresponds to a stationary increment. process in wiJ ieh 
all t.he increments N(t+b)-N(t+a.), a < b, are nOll-negative integers specifi cally, 
N(t+b)-N(t+a) = #{Tj It+a.<Tj<=t+b}.Oneeallwrit.e 

XCt) = 1t dN(u) 

A markeo point process, J , with real-valued marks , may be represent.f' eI via 
J(t) = l: !vIj and there is the correspondence 

O< Tj :S t 

X(i) = 1t dJ(u) 

The case of principal concern of t.he paper will be till' stat.ionary on ~) . Th eil 
E{dX(t)} = exdt with ex th t" mean. For simplicit.y suppose ex t.o be O. On e 
then defines the autocovariance measure, C x x, via 

E{dX(t + u)dX(t)} = dCxx(u)dt 

and the third cumulant measure, Cx X x, via 

E{dX(t + u)dX(t + v)(L,((t)} dCx x X (II., v)dt 

The process, X, has a spectral represent.ation 

X(t) = .I 
with Z a random function such t.hat. 

eit >. - J 
- ./-:-:-'A- dZ(A) 

E{dZ(A)dZ(J-l)} = O(A + J-l)fx x (A)dAdIJ 

and 

(2.2) 

(2.3 ) 

(2.4 ) 

(2.5 ) 

E{dZ(>')dZ(p)dZ(v)} = 0(>. + J-l + v)fxxx(>',J-l)d>.dJ-ldv (2.6) 

6C-) being the Dirac delta funct.ion and lxx, fxxx the power spectrum and 
bispectrum respectively. The spectra themselves may be generalized functions 
containing Dirac deltas. 

2.1 The Time Series Case 
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Consider a zero mean stationary t.ime series Y(t), - (X , < t < (X). Following 
(2.1-2.3) the autocovariance function is given by 

E{Y(t + u)Y(t)} = dovel'duCxx{u) cyy(u) (2 .7) 

and the third-order cumulant function by 

E{Y(t + u)Y(t + v)Y(t)} 
8 8 

-;:) -;:)Cx x x (u, 11) 
U 'u uv 

CYYY(1I, v) (2.8) 

The spectral representation IS 

with Z satisfying (2.5) and (2 .6). 

The autoCQvariance function (2 .7) provides a measure of the depenoence of 
values of the series lag 1t time units apart. An estimate is provided in Figure 1 
for a tidal series from St. John, Canada. The data are for the time period 1 
January to 31 March, 1991. There are T = 2160 observations in all. The top left. 
panel is an initial segment of the series. The aut.ocovariance estimate here shows 
strong periodicity. The power spectrum of (2.5) is particularly useful in making 
inferences concerning periodicities and developing predictors. An estimate of a 
flattened version is given in the bottom display of Figure 1. Peaks are seen to 
stand out. The presence of periodic components in tidal series is basic and ascribed 
to the effects of the moon and the sun. A pertinent model is provided by 

K 

Y(t) = J.L + L Pk cos (Wkt + 4>d + f(t) (2.9) 
k=! 

with the ¢k uniform , ¢k, ¢I, k f. I, independent and with epsilon a stationary 
noise series wit.h smooth spect.rum 1«. The power spectrum of Y is then 

2 

Jyy(,X) = L p;[8('x-Wk) + 8('x+wdJ + f,,('x) (2 .10) 
k 

If for example W3 = Wj + W2, ¢3 = ¢l + ¢2, then the bispect.rum has a t.erm 

(2.11) 

Tidal analysis is discussed in Moret.tin and de ~lesquita (1978), Wood (1978) 
and Forrester (1983). Wood (1978) lists various estimates of tidal frequencies . 
The model (2.9) was fit to the St. John data by least. squares employing the 
f{ = 26 frequencies of the final column of Figure 43 Wood (1978). The right. 
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hand column of Figure 1 graphs the results. The residuals are much smaller. 
(Their standard error is .165 meters. The original standard error was 2.192 1l1.) 
The auto covariance estimate of the residuals and a flattened power spect rum are 
also given. Some things remain to be accounted for , there remain clear peaks wit.h 
structure about them. . 

In nonGaussian circumstances and situations where a basic process has heen 
transformed in a nonlinear fashion, the third order cumulant function, CYn'(ll, v), 
and bispectrum, fYYl,(lambda, 11), of (2.8) and (2.6) are of importance. For ex­
ample squaring PI cos(wli+tPd + P2 cos(w2i+tP2) of (2.9) leads to P3 cos(w31+¢la) 
with W3 = WI +W2 and tP3 = tPl + tP2 and the bispectrum term (2.11). 

Figure 2 top presents estimat.es of the third moment function (2.8) for the 
original series and for the residuals from the least squares fit. Positive contours are 
graphed with a solid line, negative witll a dashed line. The third-order cumulant 
estimate of the original data suggests periodicity and asymmetry. The structure 
in the case of the residuals is not apparent. The bottom displays of the figure 
provides estimates of 

(2.l2) 

as a function of (WI, W2) , where W3 = WI + W2 This parameter is meant t.o 
examine the hypothesis that harmonic components at frequenci es WI, W2, WI + 
W2 are all present, see Brillinger (1980). Further details are in the Appendix. 
Graphed are the values significant at the 1 There is clear structure present in the 
original series and much of the structure remains in the residuals. There are strong 
suggestions of nonlinear interactions. 

Cartwright (1969) Jiscusses the generation of nonlinear int.eractions in tidal 
series. Marone and de Mesquita (1993) are concerned with estimating the bispec­
trum removing lower order information. 

2.2 The Point Proct'~s Case 

Suppose that t.he point process N is described via times Tj, j = 0, ±l, ±2, ... 
A step function description is provided by N (t) = # {Tj I 0 < Tj < = l} . 
There are other useful representations for a point process. A representation that 
suggests immediate extensions of corresponding time series procedures is 

yet) = dN(t) 
dt 

(2.13) 

with dN(t)/dt a symbolic derivative of the process. From the representation (2.1;3) 
one sees, for example, that a linear filtering is given by 

J aCt - u)Y(u)du = L aCt - Tj) 

j 



with a(.) the impulse response of the filter . 1t. can be convenient to consider a 
point process as a function of int.ervals, with N(l) counting t.he number of points 
in the interval I. Then one has 

N(I) = L 1 = J dN(t) 
TjEI 1 

and N is seen to be a count.ing measure on the line. 

One basic parameter of a stationary point process is the rat.e , PN, given by 

Prob{dN(t) = I} = PNdt = E{dN(t)} 

for small dt. A second is the autointensity function , hNN(U) given by 

Prob{dN(t + u) = 1 I point at t} = hNN(U.)du , 11, -# 0 (2 .14) 

The autointensity is a more primitive concept. than an autocovariallce being based 
on a probability. It is a direct measure of the chance of a further point occurring 
'l/. time units after an existing point. 

Figure 3 presents an estil1late hN N (u) for each of two data sets. The top pan­
els give illustrative segments of the data, whose collection is descrilwd ill Bryant 
et al. (1973). The left hand column corresponds to a sea hare neuron firing as 
a pacemaker . The right column refers to a bursting neuron, also of the sea hare. 
The middle panels give the est imated autointensit.ies. Complex periodic behavior 
is apparent in the pacemaker case. The autointensity estimat.e in the bursting 
case has a broad peak at a lag of about 25 seconds, presumably corresponding 
to the spacings of the bursts. The bottom panels provide est.imates of the power 
spect ra , fNN(lambda) , and bring out periodicities in an a lternate fashion. The 
pacemaker firing is seen to have a complex structure not readily apparent in t.he 
basic data. The firing in the bursting case is seen to have a structure suggesting 
harmonics in the frequency domain. 

The aut.ocovariance density of a stationary point process, N, at lag u , ql\' N( u), 
is given by 

cov{dN(t + u), dN(t)} = [8(U)PN + qNN(U)]dtdu 

while the third-order cumulallt. densit.y is given by 

E{[dN(t + ltd - PNdt] [dN(t + 'U2) - PNdt] [dN(t) - PNdt]} 

(2 . 15) 

for Ul, U2 , 0 distinct. 

Estimates of (2 .15) for the pacemaker and bursting cases are given ill Figure 
4, top row . Positive cont.ours are graphed with a solid Ii i"', nega tive ones wit.h a 
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dashed line. The periodic behaviors of Figure 3 show themselves in an alternall' 
form. The bottom row of Figure 4 gives an estimate of the quant.ity (2 .12) , 
graphing points significant at. the 1There is a cluster at (1.40,.95) in the pacemaker 
case that might not have been suspected. The sum frequency, 2.35, is apparent ill 
the peridogram. The burst statistic likewise shows some interesting stmcture. 

2.3 Hybrid Cases 

Consider a marked point process case with real-valued marks . Realizations 
of the process have the form {(Tj , Mj), j = 0, ±1, ±2, ... }. A representaholl 
for the process, as a generalized ordinary time series , is provided by 

Y(t) = d.J(t) 
dt 

L: Mj 6(t - Tj) 
j 

As a function of intervals J may be written 

J(I) = L: Mj 
Tj E I 

and is seen to correspond to a discrete measure on the line. The autocovarian("(' 
density at lag u, qNN(U), of the process is given by 

cov{dJ(t + 'U.), d.J(t)} = [6(u)cJ + cJJ(u)]dtdu 

A hybrid process is provided by a sampled ordinary time series, {Y(Tj )}. 
This can be represented via dJ(t) = Y(t)dN(t), N bei ng the process of samp lillg 
times. This J will have stationary increments when, for example, t.11" process<,s 
Y and N are stationary and independent. A discrete time series corrcspollds t.o 
Tj = j. The spectral representation of J involves 

a relationship from which expressions for various spectra may be obtained. 

Figure 5 presents the initial stretch of some California earthquake dat.a and of 
the corresponding point process of times. The data set consists of the California 
earthquakes of magnitude 5 or greater occurring beteen 1931 and 1992 . The 
second row left, presents an estimate of cJJ(u) . Below is an est imate of the power 
spectrum, IJJ . Approxima.te 95No specia.l structure is a.pparent. 

An estima.te of the third-order cII\llulant. density is graphed in the top left. of 
Figure 6. The bispectrum IJJ J is given by 

cum{dZJ(A), dZJ(J.l), dZJ(v)} = 6(A + J.l + v)IJ.JJ(A, JI)dAdJ.ldl ' 
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and the bicoherence by 

Values significantly different from 0 at the 1 

A question that arises when dealing with marked point processes is: are the 
series of marks, {Mj} and the inherent point process, N == {Tj} , independent of 
each other? This question may be addressed via a second-order moment analysis. 

First some definitions pertinent to the bivariate case. The crosscovariance 
density at lag u, CJNCU), between the jump process J and its inherent point 
process, N, is given by 

cov{dJ(t + u), dN(t)} = cJN(u)dtdu 

for u ! = O. Suppose that the marks Mj = Y (Tj) correspond to sampled values 
of a zero mean stationary series Y. In the case that Y and N are independent 
CJ N will be identically O. So too will the cross-spectrum, fJ N , given by 

Figure 5, middle right, graphs an estimate of CJ N( u) for the California earthquake 
data. The values fluctuate about O. The sampling properties of an estimate of the 
coherence, IRJN(/ambda)lsup2 = IhN(lambdalsup2/fJJ(/ambda)fNN(lambda) 
are simpler, hence this is the statistic employed to assess the independence. An 
estimate is graphed in Figure 5 bottom right. There is some evidence against 
independence, 21 points out of 128 exceed the 95 

The third-order joint cumulant density may also be used to address tll '; hy­
pothesis of independence. It is given by 

cum{dJ(t + tt)' dN(t + v), dN(t)} = CJNN(tt, v)dtdttdv 

for tt, v, 0 distinct.. It. will be 0 in the case of Y independent of N. An estimate is 
given in Figure 6 top right . The crossbispectrum h N N similarly will be 0 in the 
case of independence. An estimate based on the corresponding crossbicoherence 
is graphed in Figure 6. The points plotted are bifrequencies (lambda, p) where 
the bicoherence estimate is significantly different from 0 at the 1 There are many. 
A comparison of the two bicoherences of Figure 6 shows many more significant 
points in the J N N case . This goes along with the process (J, N, N) being more 
nonnormal . 

Vere-Jones (1970) discussed point and marked point. processes associated with 
earthquakes. The theory of point processes and marked point processes is pre­
sented in Daley and Vere-Jones (1988). 
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A question related to the present context is: assuming Y and N independr'nt . 
how does one estimate cyy and h , y? One answer is given in Brillingcr (1~J7~). 
Some results of applying the technique arc gi V(~11 ill Moore et al. (1 V87). 

3. CONNECTIONS. 

Thcn ~ are several IIwt.IJOds for relat.ing tilile series, puint and IIlark,'d poinl 
processes allJ techniques. Advantages of employing t.lwst' include: ('o illpllt.ing prj) 
graIns available for one type may be used with the ot.hers , models allel t.11('orCllral 
resllits may be transferred, and generally further insight and underst.anding Illay 
be obtained. 

A point process 011 the line may be st.udied via ordinary t.ime series IIwt.hnt/s 
through picking a small cell width 0 and setting up the discrete tillle series 

Y(t) = N(t, t + 0] 

for l = 0, ±o, ±20, .... This 0-1 series may be fed to either moment or likdihood 
based techniques. For example the second-order moments are connect.ed VIi\. 

for small D. The power spectrum of the discrete series (3.1) is given by 

fyy(>.) f (>. + 2;j )-'2 iNN (>. + 2~;r) 
;=-00 

References include Vef(~-Jones and Davies (19G(i), Lewis (1970), c; 111.1 UI"I , 

(198G). 

The use of 0 - I senes for point. process likelihoods occurs in 13rillinger ;\lld 
Segundo (1979) and 13errnan and Turner (I VVL). When the 1II0dei is COI"l'('Ct. , til, 
likelihood approach may be ant.icipated to be the 1I10rt~ efficient. 1l00I'cv( ~ r 1.111 ' 

moment approach has the advantage of being broadly applicable and of h;l\·lllg 
th e same form for distinct types of proceses. Indeed if one 1I10ves t.o the I'reqll<.'I1'· .... 
domain, the moment procedures are essentially the same for tirne seri l:'s. poilll 
processes and marked point processes. 

A discrete time series , Y(l), t = 0, ±1, ±2, ... , may be set up as a planar poinl 
process via the correspondence Y(t) - > (t, Y(t)). A marked point process , with 
marks in Rsupp, may similarly be considered a point process lying in R8tlpp + I 
through the expedient of simply viewing (Tj , M j ) as a point in RSllPP + I . all, · 
reference is Karr (1976). 

A jump process , J, may be associated with a time series in contilluoliS I.illlt' 
through the correspondence 

Y(t) J a(t - u)dJ(u) 
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see Priestley (1963), Jowett and Vere-Jones (1972). The spectra are related by 

011 which estimates may be based. The 0-1 time series above corresponds 
to a(.) a boxcar function of width D. Hence A('\) = 2(sin .\D/2)/.\, which is 
approximately D for small D. 

Parallel development of the time series and point process cases is provided in 
Brillinger (1978). 

4.DISCUSSION AND SUMMARY 

In her functioning, Nature appears to make use of each of time series, point 
processes and marked point processes. This work has sought to bring out some 
parallel definitions and methods for these concepts. The models and techniques 
employed are mainly nonparametric and moment based. Another aspect has been 
the illustration of both time-side and frequency-side analyses. Generally speaking 
the (approximate) sampling properties are simpler in the frequency domain. 

Various displays were presented for each data type. In particular the tool of 
stacking has been highlighted as being of use in some particular circumstances . 

A new statistic (A.6) has been employed in the study of discrete components 
in a bispectrum. The statistic has advantages over the biperiodogram for the 
biperiodogram will be large in amplitude when any of the frequency cornponents 
involved is large . The statistic (A.G) standardizes for this. 

Analyses were provided of data taken from three fields : oceanography, neu­
rophysiology and seismology,. In all studies it is good practice to ask: "What 
is the question?" Questions going along with the examples of this paper include: 
. LP 1. Tides. How to predict? The analyses presented were in part directed at 
understanding if an existing model was satisfactory .. LP 2. Nerve Firings. Ilow 
to describe'? Description is needed because there are so many types of behavior. 
.LP 3. Earthquake Times and Sizes. How to predict? One focus was on whether 
magnitudes were related to occurrence times, a second was on the presence of 
periodicities. 
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Figure legends 

Figure 1. St. John tides and residuals. The first colulIln presents statistics 
for the tidal series, the second statistics for the residuals of a least squares fit. 
t.o the series. The top displays are initial sections of the series themselves. The 
middle row provides estimated autocovariallc.e functions. The final rolV provides 
an estimate of the spectrum with the continuous conlponcnt lIaLt.eneu. The dashed 
line is ;tII apPI'OXilllate upper 95 

Figure:2. Top left is an estilllate of til(' third-orupr CUllll.t1ant I'ullnion for 
the St. John tidal data. Negativ(~ values are plott.ed as dashed lincs. Top right. 
provides the sallIe 1'01' the residual series. TIlt' points significant. a.t. the I 

Figure 3. The left, hand panels give st.at.ist.irs for a lI('uron firing rcgll/;trly . 
the right. hand panels for a S(XOIIU lIeuroll firing in bllrst.s. The lIliddle displays 
are estimates of the autointensity (of (2.14)). The bott.olJl row provides the pcri­
odograms (A.5). 

Figlll'c 4. The lcfthand panels are the estimated cUlI\ulant densities, as esti­
mated from (A.2) . Negative contolll's are plotted as dashed. The bottoJlI panels 
are the statistics (A .6) significant at the 1 

Figure 5. Analyses of the California earthquake data. The top displays are 
tlte rnaguitudes and times and just the times respectively. The bOUOlI1 Idt is 
the power spectrum estimate with an approximate!:J5The bottom right is t.h e 
estimated coherence with an upper 95 

Figure 6. Estimates of third-order cumulant densities for the marked point 
process and point process. The bottom two are points of the estimated bicolwrellce 
significant at the 1 
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APPENDIX 

This section provides some details of the estimates and computations. C iven 
data, X(t), 0 <= t < T, general estimates of the Ixx and /II).' .. x are 
indicated in Brillinger (1972) for processes with stationary illcrements. 

If Y denotes tlte mean of the dat.a Y(t), t = 0, ... , T - I of a discrete tillle 
series, then an estilllate of the aut.ocovariancC' funct.ion is 

'1'-1"1 
T 1 "" --en,(a) = "f L [Y(l + /I) - Y)[Y(t) - n 

t=O 

and of the third cumulant function is 

l' 1 "" cl/ l'l,(ll,V) = T L [Y(t + u) - Y][Y(t + v) - Y][Y(t) - Vl 
O<=t,t+U,t+v<=T-1 

These appear ill Figures 1 and 2. 

All estimate or tlte rate of a point process, N, is 'jJN ~ttP'j ' 

an estimate of the autointensity is 

h'f.N = #{Iri- Tk- u l<b}/2bN(T) 

N('f')/:J' , while 

(A. I ) 

The estimate (A.l) was introduced in Griffith and Horn (1963) and considered in 
Cox (1965). It appears in Figure 3. 

Following the discussion of Section 4 an estimate of the third-order cUnlulant 
density at tt, v, 0 distincl is given by 

(A.:!) 

where Y is the correspolldillg lJ - I t.illlc ;;erips based on cells of sllIall width h. 

This appears ill Fip;ure 4. 

In the marked point process case one can consider the statistic 

(A.:3 ) 

(with j # k and t # s) 111 analogy with (A.2). One bases an estirnate of 
cov{dJ(t + u), dN(t)} on 

Mj = J J dJ(t)dN(s) 
It-.-ul<b 

(A.'1) 

These appear in Figure 5, having adjusted the marks to mean O. 
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In estimating frequency domain parameters it can be convenient to work with 
the empirical Fourier transform 

T J e-iAtdX(t) 

o 

In the cases of a discrete time series, a point process, a marked point process this 
becomes 2: I\Ilj e- iTJA 

j 

respectively. These satisfy central limit theorems in various circumstances allowillg 
approximate distributions of derived statistics to be set down. 

A crude estimate of the power spectrum is provided by the periodogram 

(A.5) 

This appears in Figure 3. 

The spectrum (2.10) shows lines superposed on a (smooth) curve. To make 
the lines stand out more: the data is tapered prior to Fourier transforming and 
the curve is flattened. The flattening was done by applying a resistant heavy 
smoother to the log periodogram values to obtain an estimate of the spec(.ruII1, 
which is then divided out . In a related context Tukey (1963) suggests dividing the 
periodogram by the result of a repeated running median and in a testing situatioll 
Chiu (1989) suggests dividing by trimmed means of periodograms. 

A crosspectral estimate lJ N may be computed by breaking a data set of kngth 

T into L segments of length V, computing the crossperiodogram, (2ITV)-ldj d~ , 
for each and averaging . The coherence may then be estimated by IfJ~ I" / JL n: 1\" 

Likewise a bispectrum estimate may be obtained by averaging the biperiodograllls 

The bicoherence may be estimated via 

Its distribution, in the case that the population value !J JJ, is 0 is exponential 
with mean V/2ITL. See Huber et al. (1971). 

In the case of a line in the bispectrum it can be more useful to consider the 
statistic 
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with IT the periodogram and f supT a heavily smoothed resistant estimate of the 
power spectrum . The large sample distribu tion of (A .6) under the null hypot.hesis , 
PI, P2, P'J = 0, is that of 

where the e's are independent exponentials depending 011 whether all {J's are 0, 
two are 0 or just one. The critical value employed is based on the last . 
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