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Comparative aspects of the analysis of stationary time series,
point processes and hybrids

David R. Brillinger
The University of California, Berkeley

Abstract: This paper brings out comparative aspects of
the analysis of time series, point processes and hybrids such
as sampled time series and marked point processes. Second-
and third-order moments and spectra prove useful tools for
addressing certain scientific problems involving such processes.
Illustrative analyses are presented for data on tides, neurons
and earthquakes.
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1. INTRODUCTION.

A time series, Y, is a wiggly line, ¥'(¢), —oo < ¢ < co. A point process, N,
is a collection of times, {r;, j = 0,%1,£2,...}. (It will be assumed that the 7;
are distinct.) A marked point process, J, is a collection of times and associated
quantities, marks, {(7;, M;), j = 0,+x1,%£2,...}. There are also hybrids such as
sampled time series, {Y(7;), j = 0,%1,%2,...}. Time series techniques and
time series data are common. [Point process techniques appear less common,
as do their analyses. Marked point process studies appear the rarest, but are
under substantial current development, particularly for the spatial case. The
paper secks to bring out connections amongst these disparite processes. It will be
seen that the second- and third-order moments can prove to be useful tools with
which to grab onto scientific problems of interest. Estimates of such moments and
corresponding spectra are provided for some particular time series, point process
and marked point process data sets, specifically: ocean tides, nerve cell firings
and earthquake occurrences. Section 4 lists some analytic methods useful for
connecting the processes. The computational details are given in the Appendix.

2. STATIONARY INCREMENT PROCESSES.

In this section some specific processes are discussed. In the cases emphasized
each is a process with stationary increments.

X(.) is called a process with stationary increments if the following holds:
X(t), —oo <1 < 00,1 is a random process such that the joint distribution of the
increments X (t +by) — X(t +ay), ..., X(t+bx) — X(1 + ar) does not depend on
{ forany a; < by, ..., ap < bpand k& = 1, 2, 3, .... The basic ideas are due
to Kolmogorov and may be found pp. 551-559 in Doob (1953). There exists a
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statistical calculus for such processes, see Brillinger (1972).

A stationary time series Y corresponds to a stationary increment process, X,
via

X(t) =/ Y(u) du (2.1)
(

1

A point process, N, corresponds to a stationary increment process in which
all the increments N (t+b)— N (t+a), @ < b, are non-negative integers specifically,
N({t+b)—N(t+a) = #{rj | t+a < 75 <=t+b}. One can write

X(t) =/ dN(u)

A marked point process, J, with real-valued marks, may be represented via
J(t) = Y. Mj; and there is the correspondence

0<r; <t
t
X(t) :/ dJ(u)
0

The case of principal concern of the paper will be the stationary one. Then
E{dX(t)} = cxdl with cx the mean. For simplicity suppose ex to be 0. One
then defines the autocovariance measure, C'yx x, via

E{dX(l +u)dX(t)} = dCx x(u)dl (2.2)
and the third cumulant measure, C'y x x . via

E{dX(t + u)dX(t +v)dX (1)} = dCxxx(u,v)dt (2.3)

The process, X', has a spectral representation

eitA 1
X(t) = / —— dZ(\) (2.4)
iA

with Z a random function such that

E{dZ(AN)dZ(p)} = (A + p)fxx (A)dAdp (2.5)
and
E{dZ(\)dZ(p)dZ(v)} = §(A+ p+v)fxxx (A, p)drdudy (2.6)

4(.) being the Dirac delta function and fxx, fxxx the power spectrum and
bispectrum respectively. The spectra themselves may be generalized functions
containing Dirac deltas.

2.1 The Time Series Casc
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Consider a zero mean stationary time series Y (1), —o0 < t < o. Following
(2.1-2.3) the autocovariance function is given by

E{Y(t+u)Y(l)} = doverduCxx(u) = eyy(u) (2.7)
and the third-order cumulant function by

. a d
E{Y(t+u)Y(t+v)Y (1)} = agcxxx(uﬂl) = cyyy(u,v) (2.8)

The spectral representation is
Y(t) = f e dZ(N)

with Z satisfying (2.5) and (2.6).

The autocovariance function (2.7) provides a measure of the dependence of
values of the series lag u time units apart. An estimate is provided in Figure 1
for a tidal series from St. John, Canada. The data are for the time period 1
January to 31 March, 1991. There are T = 2160 observations in all. The top left
panel is an initial segment of the series. The autocovariance estimate here shows
strong periodicity. The power spectrum of (2.5) is particularly useful in making
inferences concerning periodicities and developing predictors. An estimate of a
flattened version is given in the bottom display of Figure 1. Peaks are seen to
stand out. The presence of periodic components in tidal series is basic and ascribed
to the effects of the moon and the sun. A pertinent model is provided by

K
Y(t) = p + pi cos (Wil + @) + €(t) (2.9)
k=1

with the ¢ uniform, ¢, @1, k # [, independent and with epsilon a stationary
noise series with smooth spectrum f,.. The power spectrum of Y is then

fryO) = 3 BB -wn) + s+ )] + LoV (2.10)
k
If for example wg = w) +wq, ¢3 = ¢ + ¢2, then the bispectrum has a term
1
gpxﬂzpaé(f\ —wy)é(p — w2) _ (2.11)

Tidal analysis is discussed in Morettin and d¢ Mesquita (1978), Wood (1978)
and Forrester (1983). Wood (1978) lists various estimates of tidal {requencies.
The model (2.9) was fit to the St. John data by least squares employing the
K = 26 frequencies of the final column of Figure 43 Wood (1978). The right
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hand column of Figure 1 graphs the results. The residuals are much smaller.
(Their standard error is .165 meters. The original standard error was 2.192 m.)
The autocovariance estimate of the residuals and a flattened power spectrum are
also given. Some things remain to be accounted for, there remain clear peaks with
structure about them. '

In nonGaussian circumstances and situations where a basic process has heen
transformed in a nonlinear fashion, the third order cumulant function, ey yy (u, v),
and bispectrum, fyyy (lambda, jt), of (2.8) and (2.6) are of importance. For ex-
ample squaring p; cos(wil+¢1) + pa cos(wat+@2) of (2.9) leads to p3 cos(wal + ¢3)
with ws = w; 4 ws and ¢3 = & + ¢- and the bispectrum term (2.11).

Figure 2 top presents estimates of the third moment function (2.8) for the
original series and for the residuals from the least squares fit. Positive contours are
graphed with a solid line, negative with a dashed line. The third-order cumulant
estimate of the original data suggests perioldicity and asymmetry. The structure
in the case of the residuals is not apparent. The bottom displays of the figure
provides estimates of

min{p}/ fec(w1), p3/fec(wa), p3/fec(ws)} (2.12)

as a function of (wy, wa), where ws = w; + ws This parameter is meant to
examine the hypothesis that harmonic components at frequencies wy, wa, w; +
wy are all present, see Brillinger (1980). Further details are in the Appendix.
Graphed are the values significant at the 1There is clear structure present in the
original series and much of the structure remains in the residuals. There are strong
suggestions of nonlinear interactions.

Cartwright (1969) discusses the generation of nonlinear interactions in tidal
series. Marone and de Mesquita (1993) are concerned with estimating the bispec-
trum removing lower order information.

2.2 The Point Proccss Case

Suppose that the point process N is described via times 13,5 =0, +1,+2, ...
A step function description is provided by N(t) = #{7 |0 < 7, <= (t}.
There are other useful representations for a point process. A representation that
suggests immediate extensions of corresponding time series procedures is

Y(t) = % =Y dt-m) (2.13)

J

with dN (t)/dt a symbolic derivative of the process. From the representation (2.13)
one sees, for example, that a linear filtering is given by

f a(t —w)Y(u)du = Y a(t —1;)

i
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with a(.) the impulse response of the filter. It can be convenient to consider a
point process as a function of intervals, with N(I) counting the number of points
in the interval I. Then one has

N(I) = Y 1= / dN(1)
T;€l 7
and N is seen to be a counting measure on the line.

One basic parameter of a stationary point process is the rate, py, given by
Prob{dN(t) = 1} = pndt = E{dN(1)}
for small dt. A second is the autointensity function, hyy(u) given by
Prob{dN(t+u) = 1 |point att} = hyy(u)du, u # 0 (2.14)

The autointensity is a more primitive concept than an autocovariance being based
on a probability. It is a direct measure of the chance of a further point occurring
u time units after an existing point.

Figure 3 presents an estimate hy y(u) for each of two data sets. The top pan-
els give illustrative segments of the data, whose collection is described in Bryant
et al. (1973). The left hand column corresponds to a sea hare neuron firing as
a pacemaker. The right column refers to a bursting neuron, also of the sea hare.
The middle panels give the estimated autointensities. Complex periodic behavior
is apparent in the pacemaker case. The autointensity estimate in the bursting
case has a broad peak at a lag of about 25 seconds, presumably corresponding
to the spacings of the bursts. The bottom panels provide estimates of the power
spectra, fyn(lambda), and bring out periodicities in an alternate fashion. The
pacemaker firing is seen to have a complex structure not readily apparent in the
basic data. The firing in the bursting case is seen to have a structure suggesting
harmonics in the frequency domain.

The autocovariance density of a stationary point process, N, at lag u, qn v(u),
is given by

cov{dN(t +u), dN(1)} = [(uw)pny + gnn(u)]didu
while the third-order cumulant density is given by
E{[AN(t + w) — pndt] [AN(t + uz) — prdi] [N () — prdt]} =
gy (g, ua)dtduydus (2.15)
for uy, us, 0 distinct.

Estimates of (2.15) for the pacemaker and bursting cases are given in Pigure
4, top row. Positive contours are graphed with a solid line, negative ones with a



268 David i Brillinger

dashed line. The periodic behaviors of Figure 3 show themselves in an alternate
form. The bottom row of Figure 4 gives an estimate of the quantity (2.12),
graphing points significant at the 1There is a cluster at (1.40,.95) in the pacemaker
case that might not have been suspected. The sum frequency, 2.35, is apparent in
the peridogram. The burst statistic likewise shows some interesting structure.

2.3 Hybrid Cases

Consider a marked point process case with real-valued marks. Realizations
of the process have the form {(r;, M;), j = 0, £1, £2, ...}. A representation
for the process, as a generalized ordinary time series, is provided by

d.
Y(t) = —;(?‘—) = > Mjb(t—1;)
i

As a function of intervals J may be written

Jy = > M,

T; €1

and is seen to correspond to a discrete measure on the line. The autocovariance
density at lag u, gnvn(u), of the process is given by

cov{dJ(t +u), dJ(t)} = [b(u)es + cys(u)]didu

A hybrid process is provided by a sampled ordinary time series, {Y(7;)}.
This can be represented via dJ(t) = Y (t)dN(t), N being the process of sampling
times. This J will have stationary increments when, for example, the processes
Y and N are stationary and independent. A discrete time series corresponids Lo
7; = Jj. The spectral representation of J involves

dZ;()) = / dZy(A — p)dZn(n)

a relationship from which expressions for various spectra may be obtained.

Figure 5 presents the initial stretch of some California earthquake data and of
the corresponding point process of times. The data set consists of the California
earthquakes of magnitude 5 or greater occurring beteen 1931 and 1992. The
second row left, presents an estimate of ¢y (u). Below is an estimate of the power
spectrum, fyy. Approximate 95No special structure is apparent.

An estimate of the third-order cumulant density is graphed in the top left of
Figure 6. The bispectrum f;;; is given by

cum{dZj(X), dZ;(p), dZj(v)} = (A +pu+v)fru0(N, p)dAdpdr



Comparative aspects of the analysis of stationary time series, point processes and hybrids 269

and the bicoherence by

[fr20(N, )I* ] F10(N) fra(s) fra (A + )

Values significantly different from 0 at the 1

A question that arises when dealing with marked point processes is: are the
series of marks, { M; } and the inherent point process, N == {r;}, independent of
each other? This question may be addressed via a second-order moment analysis.

First some definitions pertinent to the bivariate case. The crosscovariance
density at lag u, c¢jn(u), between the jump process J and its inherent point
process, N, is given by

cov{dJ(t + u), dN(t)} = csn(u)dtdu

for u ! = 0. Suppose that the marks M; = Y(7;) correspond to sampled values
of a zero mean stationary series Y. In the case that ¥ and N are independent
cjn will be identically 0. So too will the cross-spectrum, f;n, given by

E{dZ;(N) dZn(n)} = 8(A+ ) fan(N)dAdp

Figure 5, middle right, graphs an estimate of ¢y (u) for the California earthquake
data. The values fluctuate about 0. The sampling properties of an estimate of the
coherence, |Rjy(lambda)|sup2 = |fin(lambda|sup2/f;s(lambda)fn~ (lambda)
are simpler, hence this is the statistic employed to assess the independence. An
estimate is graphed in Figure 5 bottom right. There is some evidence against
independence, 21 points out of 128 exceed the 95

The third-order joint cumulant density may also be used to address tli hy-
pothesis of independence. It is given by

cum{dJ(t + u), dN(t +v), dN(t)} = cinn(u,v)didudv

for u, v, 0 distinct. It will be 0 in the case of ¥ independent of N. An estimate is
given in Figure 6 top right. The crossbispectrum fyny similarly will be 0 in the
case of independence. An estimate based on the corresponding crossbicoherence
is graphed in Figure 6. The points plotted are bifrequencies (lambda, i) where
the bicoherence estimate is significantly different from 0 at the 1There are many.
A comparison of the two bicoherences of Figure 6 shows many more significant
points in the JNN case. This goes along with the process (J, N, N) being more
nonnormal.

Vere-Jones (1970) discussed point and marked point processes associated with
earthquakes. The theory of point processes and marked point processes is pre-
sented in Daley and Vere-Jones (1988).
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A question related to the present context is: assuming ¥ and N independent.
how does one estimate c¢yy and fyy? One answer is given in Brillinger (1972).
Some results of applying the technique are given in Moore et al. (1987).

3. CONNECTIONS.

There are several methods for relating time series, point and marked point
processes and techniques. Advantages of employing these include: computing pro
grams available for one type may be used with the others, models and theoretical
results may be transferred, and generally further msight and understanding may
be obtained.

A point process on the line may be studied via ordinary time series methods
through picking a small cell width é and setting up the discrete time series

Y(t) = N(t,t+ 9 (3.1)

fort = 0, £6, £24, .... This 0—1 series may be fed to either moment or likelihood
based techniques. For example the second-order moments are connected via

eyy(u) = py (6= lul)s+ + gvn(u)8?
for small é. The power spectrum of the discrete series (3.1) is given by
A e 2
Fry(N) = 4G6ins3) Y (A + —~)— Inn(A+ "’r)

j==co

References include Vere-Jones and Davies (1966), Lewis (1970). Guttorp
(1980).

The use of 0 = 1 series for point process likelihoods occurs in Brillinger aund
Segundo (1979) and Berman and Turner (1992). When the model is correct, the
likelihood approach may be anticipated to be the more ellicient.  However the
moment approach has the advantage of being broadly applicable and of having
the same form for distinet types of proceses. Indeed if one moves to the [requency
domain, the moment procedures are essentially the same for time series. poin
processes and marked point processes.

A discrete time series, Y(t), t = 0,1, 2, ..., may be set up as a planar point
process via the correspondence Y (1) — > (¢, Y(t)). A marked point process, with
marks in Rsupp, may similarly be considered a point process lying in Rsupp + |
through the expedient of simply viewing (r;, M;) as a point in Rsupp + 1. Oue
reference is Karr (1976).

A jump process, J, may be associated with a time series in continuous time
through the correspondence

Y(it) = / a(t — u)dJ(u)
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see Priestley (1963), Jowett and Vere-Jones (1972). The spectra are related by

Ix..x(Aa; s Ap—i) =

A APk ) AWM + o4 M) a0 (Ary e Akmy)

on which estimates may be based. The 0-1 time series above corresponds
to a(.) a boxcar function of width 6. Hence A(A) = 2(sin A&/2)/A, which is
approximately é for small 6.

Parallel development of the time series and point process cases is provided in
Brillinger (1978).

4.DISCUSSION AND SUMMARY

In her functioning, Nature appears to make use of each of time series, point
processes and marked point processes. This work has sought to bring out some
parallel definitions and methods for these concepts. The models and techniques
employed are mainly nonparametric and moment based. Another aspect has been
the illustration of both time-side and frequency-side analyses. Generally speaking
the (approximate) sampling properties are simpler in the frequency domain.

Various displays were presented for each data type. In particular the tool of
stacking has been highlighted as being of use in some particular circumstances,

A new statistic (A.6) has been employed in the study of discrete components
in a bispectrum. The statistic has advantages over the biperiodogram for the
biperiodogram will be large in amplitude when any of the frequency components
involved is large. The statistic (A.G) standardizes for this.

Analyses were provided of data taken from three fields: oceanography, neu-
rophysiology and seismology,. In all studies it is good practice to ask: ”What
is the question?” Questions going along with the examples of this paper include:
.LP 1. Tides. How to predict? The analyses presented were in part directed at
understanding if an existing model was satisfactory. .LP 2. Nerve Firings. Ilow
to describe? Description is needed because there are so many types of behavior.
.LP 3. Earthquake Times and Sizes. How to predict? One focus was on whether
magnitudes were related to occurrence times, a second was on the presence of
periodicities.
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Figure legends

Figure 1. St. John tides and residuals. The first column presents statistics
for the tidal series, the second statistics for the residuals of a least squares fit
to the series. The top displays are initial sections of the series themselves. The
middle row provides estimated autocovariance functions. The final row provides
an estimate of the spectrum with the continuous conmponent flattened. The dashed
line is an approximate upper 95

Figure 2. Top left is an estimate of the third-order cumulant function for
the St. John tidal data. Negative values are plotted as dashed lines. Top right
provides the same for the residual series. The points significant at the |

Figure 3. The left hand panels give statistics for a neuron firing regularly,
the right hand panels for a second neuron firing in bursts. T'he middle displays
are estimates of the autointensity (of (2.14)). The bottom row provides the peri-
odograms (A.5).

Figure 4. The lefthand panels are the estimated cumulant densities, as esti-
mated from (A.2). Negative contours are plotted as dashed. The bottom panels
are the statistics (A.G) significant at the 1

Figure 5. Analyses of the California earthquake data. The top displays arce
the magnitudes and times and just the times respectively. The bottom left is
the power spectrum estimate with an approximate 95The bottom right is the
estimated coherence with an upper 95

Figure 6. Estimates of third-order cumulant densities for the marked point
process and point process. The bottom two are points of the estimated bicoherence
significant at the 1
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APPENDIX

This section provides some details of the estimates and computations. Given
data, X(¢), 0 <= t < T, general estimates of the fx x and My x are
indicated in Brillinger (1972) for processes with stationary increments.

If Y denotes the mean of the data Y (1), t = 0, ..., T — 1 of a discrete time
series, then an estimate of the autocovariance function is

T =ul

i 1 - ey

ylw) = 7 D Y(+u)=TY() - V]
t=0

and of the third cumulant function is

; 1 ; =
Yyy(wv) = = 2 Y(t+w) =YY (t+v) = YY) - V]
0<=t,t+u,t+v<=T-1
These appear in Figures 1 and 2.

An estimate of the rate ol a point process, N, is pysupd’ = N(1')/1. while
an estimate of the autointensity is

Ry = #{|rj — 7 — u| < b}/2bN(T) (A.1)

The estimate (A.1) was introduced in Griffith and Horn (1963) and considered in
Cox (1965). It appears in Figure 3.

Following the discussion of Section 4 an estimate of the third-order cumulant
density at u, v, 0 distinet is given by

dnan () = clyy(u,0)/6 (A.2)

where Y 1s the corresponding 0 — I time series based on cells of small width a.
This appears in Figure 4.

In the marked point process case one can consider the statistic
> MM = /] dJ(t)dJ(s) (A.3)
|ry=Tk—u|<b [t—s—ul<b

(with j # kand t # s) in analogy with (A.2). One bases an estimate of
cov{dJ(t + u), dN(t)} on

Y M= /f“ LGN G) (A.4)

|Tj=Ta—ul<b

These appear in Figure 5, having adjusted the marks to mean 0.
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In estimating frequency domain parameters it can be convenient to work with
the empirical Fourier transform
T
dk(\) = / e MdX(t)

0

In the cases of a discrete time series, a point process, a marked point process this
becomes _
Z Y(t)e—it,\l Z e—-ir,)\‘ Z 1"'-?‘;;[’_”’}‘
t j i
respectively. These satisfy central limit theorems in various circumstances allowing
approximate distributions of derived statistics to be set down.

A crude estimate of the power spectrum is provided by the periodogram
1
T _ T 2 [
() = 5=ld"(Y) (A.5)

This appears in Figure 3.

The spectrum (2.10) shows lines superposed on a (smooth) curve. To make
the lines stand out more: the data is tapered prior to Fourier transforming and
the curve is flattened. The flattening was done by applying a resistant heavy
smoother to the log periodogram values to obtain an estimate of the spectrum,
which is then divided out. In a related context Tukey (1963) suggests dividing the
periodogram by the result of a repeated running median and in a testing situation
Chiu (1989) suggests dividing by trimmed means of periodograms.

A crosspectral estimate f:{‘N may be computed by breaking a data set of length

T into L segments of length V, computing the crossperiodogram, (2#11’)‘_‘;!5_@.
for each and averaging. The coherence may then be estimated by |fTy1*/f7; [Xn -
Likewise a bispectrum estimate may be obtained by averaging the biperiodograms

lover(27)*VdY (A)dY (v)dV (A + p)
The bicoherence may be estimated via
[)F}"Jllz / fj‘ifj‘.’fg‘}

Its distribution, in the case that the population value fj;;, is 0 is exponential
with mean V /27 L. See Huber et al. (1971).

In the case of a line in the bispectrum it can be more useful to consider the
statistic

min{|IT(A)? / F7O), [T (@) / £ (), HTA+ ) / fFA+n)}  (A6)
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with I7 the periodogram and fsupT a heavily smoothed resistant estimate of the
power spectrum. The large sample distribution of (A.6) under the null hypothesis,
P1, p2, p3 = 0,is that of

min{e;, ey, es}, min{e,, es}, €

where the e’s are independent exponentials depending on whether all p’s are 0,
two are 0 or just one. The critical value employed is based on the last.
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