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Recent results on robust estimation in multivariate analysis

Ricardo A. Maronna

Abstract:Classic methodsin multivariate analysis require
the estimation of mean vectors and covariance matrices, and
their results can therefore be substantially altered by a small
proportion of atypical observations (“outliers”). This paper
reviews for nonspecialists the current state of research on the
main approaches to replacing means and covariances by a lo-
cation vector and a dispersion matrix which are not affected
by outliers ( “robust methods™), and the relationships among
these approaches. They are: estimates based on an exten-
sion of the method of Maximum Likelihood (“M--estimates™);
estimates based on the minimization of a robust scale of Ma-
halanobis distances (“S-estimates”): and two families of esti-
mates based on projections: “P-estimates” and the Stahel
Donoho estimates. The advantages and drawbacks of these
families are compared with respect to: efliciency, breakdown
point, maximum bias and computational cost.

Key words: robust estimation, multivariate location and
scatler,

1 Introduction

Classical methods in Multivariate Analysis require the estimation of means and
covariances. It is well known, however, that a small proportion of atypical points
in the data ( “outliers™) suffices to drastically alter them. This is clearly illustrated
in (Devlin, Gnanadesikan and Kettenring, 1982) and (Rousseeuw and Leroy, 1987).

As an example, we generate a pseudorandom sample (21, z2;),1=1,...,n of
size n = 20 ;from a bivariate normal distribution with zero means, unit variances,
and correlation p = 0.7. Suppose we are mainly interested in estimating p. The
sample correlation is 0.77. Now we alter the sample by changing !he sign of the
two smallest wxa;’s . The altered sample is shown in Figure 1, and its sample
correlation is -0.15. Thus, modifiying 10% of the observations may yield a drastic
change in the estimate. Furthermore, this shows that such changes may be caused
by observations that, being atypical, cannot be detected as univariate outliers in
any of the coordinates,

Let X = {x;...., X, } represent a set of n data points in R”. Call m(X) and
C(X) the sample mean vector and covariance matrix based on X, respectively. If
c € R and A is any p x p-matrix, and Y = AX + ¢, then m and C satisfy the
affine equivariance properties
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m(Y)=Am(X)+e¢, (1.1)
C(Y) = AC(X)A". (1.2)

We are interested in defining a location vector t(X) and a positive definite
dispersion matrix V(X) satisfying the equivariance conditions (1.1)-(1.2), such
that, if X is contains only “good” observations, then (t,V) ~ (m,C); and, if a
small proportion of observations is modified in any way, (t, V) does not change
much. These two features may be called “efficiency” and “resistance”, respectively.
There are several important situations in Multivariate Analysis in which only the
“shape” of the covariance matrix is required; i.e., one is interested in C only up toa
scalar multiple; e.g. Principal Components and Discriminant Analysis. Attention
will be devoted mainly to the estimation of the “shape” aspect of dispersion..

This paper reviews some recent results on these topics. It reflects the author’s
points of view, and hence does not attempt to be a [air survey.

2 M-—-estimates

One aproach to the definition of robust equivariant estimates is to define t and V
as solutions to

> u(di)(xi — t) =0, (2.3)
n~1 Z ua(di)(x; — t)(xi —t) = V; (2.4)

with d; = d(x;; t, V), where the “squared Mahalanobis distances” d are defined in
general by

d(x;t, V) = (x = t) V7 1(x —t). (2.5)

M-estimates are a generalisation of maximum likelihood estimates for elliptical
distributions. If the observations x; are i.i.d with density f(x;t, V) =
(det V)= fo(d(x;t,V)) - —with fo : R4 — Ry (where Ry = {s : s > 0}) and
d is defined in (2.5)- then the maximum likelihood estimates of t and V satisly
(2.3)-(2.4), with
ur(s) = s~ 2o (s1?), us(s) = ui(s), (2.6)

where ¥y(s) = —d log ho(s)/ds. In particular, for the multivariate normal, fy(t) =
(2m)~"%exp(—1/2), and this implies u;(s) = ua(s) = 1.

Another important case is the maximum likelihood estimate for the multivari-
ate Student distribution with v degrees of freedom, for which

ui(s) = (v +p)/(v +3) (2.

[
=1
—
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The case v = 1 corresponds to the Cauchy distribution. Tyler (1987) studied a
“distribution-free” M-estimate which can be considered as the limit case of (2.7)
when v — 0; and recently Adrover (1993) found this estimate to have certain
optimal properties.

If follows from (2.3)-(2.4) that t and V can be respectively viewed as a weighted
mean and a weighted covariance matrix, with weights depending on the d;’s. Since
#y and uy are usually decreasing, it follows that “distant™ observations receive
smaller weights.

The existence and uniqueness of solutions of (2.3)-(2.4), as well as their con-
sistency and asymptotic normality, were first derived by Maronna (1976) under
certain restrictions. A more general definition of M-estimators is given by Huber
(1981). A very general result on existence and uniqueness for an important. clas
of M-estimates is given by Kent and Tyler (1991).

Numerical computing of M-estimates can be performed by an iterative al-
gorithm which takes advantage of their expression as weighted means and co-
variances. More sophisticated algorithms have been implemented in the package
ROBETH (Marazzi, 1993).

Given V = [v;;], we can estimate correlations by v;j/(viivj;j)*/*. Using the
Maximum Likelihood estimate for the Cauchy distribuution (henceforth CMLE)
on the simulated bivariate sample yields correlation estimates of (.75 for the orig-
inal sample and 0.55 for the altered one, thus exhibiting a good behavior for both
cases.

To see what happens in higher dimensions, we now generate a normal spherical
sample of size 100 in dimension 10. The CMLE applied to this sample yields all
correlations very near to those obtained ;from C. Now we modify the sample by
replacing ten points x; by 2u + x; /2. where u = (1,.... 1). The result is that
now all correlations become larger than 0.65!.

This is an example of a drawback of M-estimates: their robustness decreases
when the dimension increases. To make this assertion more precise, let us intro-
duce a measure of robustness. 'I'he breakdown poinl 6* of an estimate is —roughly
speaking - the largest proportion of observations which may be arbitrarily altered
without the estimate becoming totally meaningless. More precisely, let T(X) be
an estimate defined for samples X of size » and taking values on a space 7. Let
m € {0,...,n}, and call ., the set of all samples of size n obtained by replacing
in elements of X by arbitrary values. Let my be the maximum of all m such that
there exists a compact A’ C T for which T(Y) €KX ¥V Y € .1),. Then the break-
down point of T at X is defined as ¢*(T, X) = mqo/n. In the jargon of robustness,
Y is called a contaminated sample, and m/n is the contamination proporlion.

This is the so-called finite-sample replacement breakdown point (Donoho and
Huber, 1983). The asymptotic version is as follows. Given a distribution Fy, the
analogue of a comtaminated sample is an “e-contaminated distribution”: (1 —
¢)Fy + ¢, where (7 is an arbitrary distribution. Assume that the estimate T
is defined as a functional on distributions. Then the contamination (or “gross
error”) breakdown point ¢*(T, Fy) of T at F is the supremum of ¢ € [0, 1] such
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that T((1 — €)Fo + ¢G) remains in a compact for all G. A very general account of
the concept of breakdown point is given in (ITampel, 1971).

In our case, we have T = (t, V), and hence 7 = RP x SP,, where SP) is
the space of symmetric positive definite p x p-matrices. For (t,V) to remain
in a compact it is necessary and sufficient that ||t|| be bounded, and that the
eigenvalues of V be bounded away from 0 and from infinity. The last condition
implies that the condition number of V ~i.e., the ratio of its largest to its smallest
eigenvalue- remain bounded.

M-estimates are robust against contamination which is not concentrated on
any hyperplane (Tyler, 1986); but are very sensitive to contamination concen-
trated in a small cluster. Tyler (1991) found that for any M—estimate,

" <1/(p+1)—1/n, (2.8)

the upper bound being attained, among others, by the CMLE given by (2.7)
with ¥ = 1. Tyler also described the form of the breakdown. Let (t,V) be a
multivariate M—estimator with breakdown point 6. Let m observations tend to
a point —say xo- where m > né". Then t — xp, and the smallest eigenvalue of
V tends to 0. This implies that for large p and very asymmetric contamination,
M-estimates may be even less reliable than the classical ones!

The former results on the breakdown point hold also for V when t is known,
but not conversely, implying that the weakness lies in the matrix V.

3 S—estimators

A step towards the goal of defining equivariant estimates with a high breakdown
point for all dimensions was Rousseeuw’s Minimum Volume Ellipsoid Estimate
(MVEE) (Rousseeuw, 1984 and Rousseeuw and Leroy, 1987), defined as follows.
Among all ellipsoids {x : d(x;t, V) < 1} containing at least half of the data points,
choose (t, V) such that detV -i.e., the volume of the ellipsoid- is minimized.
Rousseeuw showed that this estimator has asymptotic breakdown point 1/2 flor
all dimensions, and that its finite sample breakdown point is ([n/2] — p+ 1)/2n
(where [.] denotes the integer part), thus making a significant improvement in
robustness over M-estimators. Recently Davies (1993) studied the asymptotic
behavior of the MVEE.

Davies (1987) generalized this estimate as follows. Given (t, V), let d(t, V) =
(d(xi;t, V) : i = 1,...,n). Let s be a scale statistics; define the multivariate
S-estimator (t, V) as a solution of

(t, V) = arg min{s(d(t,V)): V € SP,, det(V) = 1}.

It is easy to show that if s is the mean, then t and V are the sample mean and
a scalar multiple of the sample covariance matrix, respectively; and that if s is
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the median, the the solution is the MVEE. By the way, we see that by their very
definition S—-estimators can yield only the “shape” of dispersion.

Davies specialized Lo the case in which s is an “M-estimate of scale”, defined
as follows. Given a sample of nonnegative values z = (zy,.. ., z,), define the scale
M-estimator s = s(z) by ave{p(z/s)} = 6, where “ave” is the average, and p is a
bounded nondecreasing function with p(0) = 0 and p(oc) = 1.

Davies (1987) found an upper bound for the finite-sample replacement break-
down point of any affine-equivariant location and scatter statistics, namely

6 < [(n—p+1)/2)/n, (3.9)

if X is in general position. Davies proved that in order that an S-estimate (t, V)
attain the maximum breakdown point (3.9), one must have

b=(n—-p-1)/2n. (3.10)

A slight modification of the MVEE attains this maximum breakdown point. It
is obtained by taking p(z) = I(z > 1) (where [ is the indicator function) and ¢ as
in (3.10) ; this implies that s is the k-th order statistics, with k = [(n+p+ 1)/2]
(instead of k = [(n + 1)/2] as in the median). Henceforth, we shall refer to this
modified estimate as the MVEE.

A higher asymptotic efficiency may be obtained by using a smooth p-function,
such as the “biweight” function, defined by

p(2)=(1-2)2%I(z<1). (3.11)

Numerical computing of S-estimates presents difficult problems, due to the
existence of many local minima. An attempt to approximate the MVEL, bhascd
on subsampling, is given in (Rousseeuw and Leroy, 1987). The reliability of this
algorithm has been questioned by Cook and Hawkins (1991). An attempt to
improve on this procedure is given by Ruppert (1993). Rocke and Woodruff (1993)
and Woodruff and Rocke (1993) experiment the use of heuristic programming for
computing the MVEE. Smooth S-estimates seem to present less difficulties than
the MVEE.

In our example, the correlation estimates based on the MVEE are 0.85 for the
original sample and 0.45 for the modified one, showing a much worse behavior than
the CMLIS. Note however that, according to (2.8) and (3.9), the breakdown points
of CMLE and MVELE are 0.28 and .45 respectively. To understand why the Latter
had a worse behavior than the former, despite a higher breakdown point, we need
a nore general measure of behavior: the bras under contammation. Let A(., ) be
a measure of dissimilarity on 7 (if T = R, usually A(t), t2) = |[t; — tu]]). Then
the bias of T at G is bias(T;e,G) = A(T((1 — ) + ), T(Fo)). Consideration
1s often restricted to pomntwise contamination, which corresponds to (7 ol the lorm
G = bx,, i.e. the point mass at xp. In this case the bias is expressed by the bras
Junetion: b(T;¢,xp) = bias(T; ¢, 6x,).
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For the location vector, a suitable measure of dissimilarity is A(t),to) = (1 —
to)' V(Fo)~'(t1 — to). If we are interested in the shape of scatter, then a measure
18

A(Vl ’ VU) = (p(AngAE).

where ¢ is any measure of nonsphericity, and Ag is such that AjA, = Vn'l.
These bias measures are clearly invariant under affine transformations. The sim-
plest measure of nonsphericity of a matrix W is its condition number cond(W).
Another one is the likelihood ratio test statistics for nonsphericity (Muirhead
1982), namely

o(W) = (tr W/p)?/ det(W), (3.12)

where tr denotes the trace.

Unfortunetely, despite their high breakdown point, S-estimates may have a
very high bias under pointwise contamination, as proved by Yohai and Maronna
(1990). This reveals that the breakdown point cannot be the sole criterion used
to evaluate robustness : if an estimate has breakdown point €, this means that
its bias under a contamination proportion ¢ < €* is bounded; but this does not
imply that the bound is smalll.

In order to make S-estimators more efficient, Rousseeuw proposed reweighted
S-estimalors. Given the S—estimators (t, V), define the d;’s as in (2.5). Let W
be a weight function, and w; = W(d;). Define (t*,V*) as a weighted mean and
a weighted covariance matrix with weights w;. The most usual choice is “hard
rejection”: W(d) = I(d < dy), where the threshold dj is conveniently chosen
(depending on p) in order to find the best behavior.

4 P-estimates

The unpleasant features of S-estimates show that it does not suffice fuir an esti-
mator to have a high breakdown point, but rather that the behavior of ifs bias
function must be taken into account. Maronna, Stahel and Yohai (1992 devel-
oped an idea that had been successfully used by Maronna and Yohai (1993) to
find regression estimates with low maximum bias, and which took into account
all univariate projections of the data. Note first that the covariance matrix C has
the property that, if A is such that AA = C~! then

var(a’AX)=1Va€eS, ={aeh:||a||=1}; (4.13)

i.e., the dispersion of the transformed data is constant in all directions. The
idea is to replace the variance by a robust (univariate) dispersion estimate s. A
simple possibility is the median absolute deviation: MAD(z) = med(|z — med(z)|
(where “med” stands for the median). Since in general there will not exist a
transformation for which the dispersion is constant, we look for one making it
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“as constant as possible”. Thus, we define the P-estimator V of multivariate
dispersion as V = (A’A)~!, where

A = arg min{log sup |s(a’AX) - 1|}; (4.14)
aes,
or, alternatively

Supaes, s(a’AX)
infaes, s(a’AX)’

A = argmin (4.15)
with the restriction
inf s(a’AX)=1. (4.16)
aes,

It is proved in (Maronna et al., 1992) that solutions of (4.14) and of (4.15)-
(4.16) differ only in a scalar multiple.

For our simulated sample, the estimated correlation based on a P-estimate is
0.75 for the original sample, and 0.72 for the modified one, showing an excellent
behavior for both cases.

The maximum bias of these estimates is computed in (Maronna et al., 1992)
and shown to be much better than that of M- and S-estimates for p > 5. Simu-
lations in that paper also show that they behave better than the MVLEL for finite
sample sizes.

However, some simulations show P-estimates to behave rather erratically as a
function of data —even for normal data— when the ratio n/p is not large enough
(e.g. =5); and this drawback should be fixed to make the estimator reliable.

Numerical computing of P—estimates is much harder than that of S-estimates,
because of the double optimization process involved (over matrices and over di-
rections). Maronna et al. (1992) found a subsampling algorithm with a shortcut
which saves much effort; but even so, computing for large p seems still impractical.

5 The Stahel-Donoho estimate

Another estimate based on projections was the one defined independently by Sta-
hel (1981) and Donoho (1982). It was the first robust equivariant estimate of
multivariate location and scatter having a high breakdown point for any dimen-
sion. The estimator is defined as a weighted mean and a weighted covariance
matrix, where each point has a weight which is a function of an “outlyingness”
measure, with points having large outlyingness receiving small weights. The outly-
ingness measure is based on the idea that if a point is a multivariate outlier, there
must be some one-dimensional projection of the data for which it is a (univariate)
outlier.

Let p(.) and o(.) be shift and scale equivariant (resp. shift invariant and
scale equivariant) univariate location and dispersion statistics. Note that il z =
{z1,...,2n} is a univariate sample, one may detect suspicious observations by
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looking at high values of |z; — p(z)|/o(z). Define now for any y € R the “multi-
variate outlyingness™ r:

r(y,X) = supri(y,a, X), (5.17)
a

where the “univariate outlyingness” ry is
ri(y,a, X) = |a'y — p(a'X)|/o(a’X), (5.18)

and the supremum is over a € R with a # 0 or equivalently over a € 5.

Let the “weight function” w : Ry — R4 be bounded and continuous, with
r2w(r) being bounded. The Stahel- Donoho estimator (SDE) of location and scat-
ter (t(X), V(X)) is defined as

n
b= ¢(X) = ZisL (5.19)
=1 Wi

and

iy Wilxi — t)(xi — t)'
= ;
2=y Wi
with w; = w(r(x;,X)). The value of ri(y,X) is affine invariant, i.e. r(y.X) =
r1(Ay+b,AX +b). for any nonsingular A and any b € R”; and this implies that
(t, V) are affine equivariant. Note that if g and o are respectively the mean and
the standard deviation, then r(y,X) = (y —m)'C~!(y —m), where m and C are
the sample mean and covariance matrix, respectively. Stahel (1981) showed that
(t, V) has asymptotic breakdown point 1/2 at continous multivariate models if p
and o have asymptotic breakdown point 1/2 (see Hampel et al, (1986), Theorem
5.5.3). Donoho (1982) derived the finite sample breakdown point of (t, V') for the
case in which g and ¢ are the median and the median absolute deviation (MAD)
respectively.

No further results on these estimators were published in the ensuing years,
one likely ground being the seeming intractability of their propertics and of their
computation. Stahel (1981) himself had proposed an algorithm based on sub-
sampling for the approximate computing of (t, V), but no attempts were made
at experimenting it. The popularity and better tractability of the MVEE and in
general of multivariate S—estimators may also explain the lack of interest in the
Stahel-Donoho estimators.

Recently, Tyler (1993) obtained important results on the replacement finite-
sample breakdown point of (t, V). In particular, he derived conditions under
which it attains the upper bound (3.9). The two most important cases in which
maximum breakdown is attained are:

V=V(X)= (5.20)

e 4 is the median, and o the average of the k;~th and the ko—th smallest
absolute deviations about g, with

ki=p—1+[n+1)/2] and ko =p— 1+ [(p+2)/2]. (5.21)
This is a slight modification of the MAD.
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e 4 and o are the maximum likelihood estimates for location and scale corre-
sponding to a sample from a location—scale family of distributions based on
Student’s t-distribution with v degrees of freedom, with

y=21P (5.22)
n—p

Maronna and Yohal (1993) showed that SDE has order \/n-consistency. They also
computed numerically the bias for 4 and o chosen as in (5.21) and different weight
functions. The best results were obtained for functions of the form w(r) = I(r <
¢) + (¢/r)*I(r > ¢) (“Huber weights”); where the apropriate value of ¢ depends
on p. The maximum bias of the SDE was better than those of M-estimates and
MVEE.

For our simulated bivariate data, the estimated correlations are 0.7 and 0.6 lor
the original and the altered sample respectively, thus showing a very satisfactory
behavior. Numerical computing of the estimate is difficult for p > 2, due to the
maximization in (5.17), which involves functions with many local extrema. How-
ever, Maronna and Yohai (1993) experimented Stahel’s subsampling algorithm,
which turned out to yield satisfactory results at least for p < 10. For samples of
size n = 30, the computer times needed, using the GAUSS system on a PC with
55 Mhz frequency for p = 4, 6 and 10 were 1.1, 2.3 and 5.4 minutes respectively.
S-estimates require about the same time, while the P-estimate required 2, 7 and
15 minutes respectively.

6 Comparisons

Maronna and Yohai (1993) performed a simulation to compare several estimates,
namely:

e The Maximum Likelihood estimate for the Cauchy distribuution (CMLE),
chosen among M—-estimates for its maximum breakdown point.

e The MVEL.

e The S-estimate with biweight function (3.11) (“S-E”). with the parameter
& chosen as (3.10).

e Reweighted versions of both types of S-estimates, with the “hard rejection”
weight function, trying different values of the cutoff threshold in order to
find the best behavior.

e The Stahel-Donoho estimate (SDE)with p and o given as in (5.21), and
“Huber weight function”, with different values of c.

e The mean and covariance matrix (“COV”).



314 HRicardo Maronna

P-estimates were not included because of their much higher computational cost.
The dimensions chosen were: p = 2 (with n = 10 and 20), p = 4 with n = 20,
and p = 6 with n = 30. The distributions employed were:

e The unit normal spherical distribution.

e The Cauchy spherical distribution, chosen as an extreme case of heavy tailed
symmetric situation.

e Contaminated normal samples CN(e, k), chosen as an extreme case of asym-
metric contamination. They consisted of n — m observations distributed
as Np(0,I), and m observations concentrated at kby with m = [ne] and
b} = (1,0,...,0). The values € = 0.10 and 0.20 were chosen. Several values
of k were used, searching for the worst behavior of each of the estimators.

For each estimate V and each distribution, the measure of error (the substitute
of mean squared error) with respect to the spherical form was chosen as the
“median error” ME(V) = medlog po(V), where ¢ is defined in (3.12). Medians
rather than means were used, because of the skewness and heavy-tailedness of the
empirical distributions of ¢g.

In view of the bulkyness of the output of the simulation, four criteria were
displayed for each estimator: the ME’s for normal and Cauchy distributions, and
the maximal (over k) ME’s for CN(e, k) for e= 0.10 and 0.20.

When x is spherical normal, it is proved (Muirhead 1982) that nlogeg(C)
converges in law to a linear combination of chi-squared distributions. Thus, if V
is any of the estimators, the ratio of the median error for COV to the corresponding
value for V may be considered as a measure of efficiency. Define the "efficiency™ of
the estimator V for the normal (resp. Cauchy) distribution as ME(V)/ME(V)
where V is the COV (resp. CMLE). It was considered more clear to display the
efficiencies rather than the ME’s for both spherical distributions. The Stahel-
Donoho estimate showed in general the best behavior. Details may be found in
(Maronna and Yohai, 1993).

To give an comparative idea of the behavior of the different types of estimates,
we plot the ME’s corresponding to CN(e, k) as a function of & for p = 4 (the values
corresponding to k = 0 in the plot ae actually for ¢ = 0). Figure 2 displays for
€ = 0.20 the behavior of the Cauchy Maximum Likelihood, the best choice of the
Stahel-Donoho, S- and Covariance estimates (labeled as CMLE, SDE, the S-E
and COV, respectively). A remarkable feature is the “redescending” behavior of
the S-E: its ME is the lowest one for large k, but its maximum ME is the largest.
The SDE has both the smallest maximum ME and the smallest ME for ¢ = 0. We
see that the CMLE behaves worse than COV, the reason being that ¢ is larger
than its brakdown point, causing the phenomenon described below (2.8).

The efficiencies of the SDE, S-E and CMLE are 0.82, 0.80 and 0.73 respectively
for the normal distribution; and 0.91, 0.56 and 1.0 for the Cauchy distribution.
Thus, the SDE is seen to combine a high efficiency for spherical distributions with
a relatively low ME for asymmetric contamination.
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It remains an open problem to find some variant of the SDE keeping all of
these advantages and at the same time exhibiting the “redescending” behavior of
S-estimates.



Ricardo Maronna

316

1 i 1 i L L 1 i 1

sjulod |po1dAyp yym piop pajoinwis | ainbiy

00 S0— Q't= S}— Q0¢—

Ny

Q'

0z 6|

4



317

Recent results on robust estimation in multivariate analysis

4

AOD
31IND
33—
3as

1 A L " 1 n 1 L 1 n L

0Z' 0= 3 '$=d :S|DWIOU P3}PUIWDIUOD 1O} 10418 uDIpay 'z a4nbiyg

0l



318 Ricardo Maronna

References

Adrover, J. (1993). Minimax estimates for the linear model and multivariate
analysis (in Spanish). Ph. D. Thesis. University of Buenos Aires.

Cook, R.D. and Hawkins, D.M. (1990). Comments to (Rousseeuw and van
Zomeren, 1990). Jr. Amer. Statist. Assoc. 85, 640-644.

Davies, P.L. (1987). Asymptotic behavior of S-estimates of multivariate loca-
tion parameters and dispersion matrices. Ann. Statist. 15, 1269-1292.

Davies, P.L. (1993) The asymptotics of Rousseeuw’s minimum volume ellipsoid
estimator. Ann. Statist.

Devlin, S.J., Gnanadesikan, R. and Kettenring, J.R. (1981). Robust estimation
of dispersion matrices and principal components. Jr. Amer. Statist. Assoc. 76,
354-362.

Donoho, D.L. (1982). Breakdown properties of multivariate location estima-
tors. Ph. D. Qualifying paper. Harvard University. Donoho, D.L. and Iluber,
P.J. (1983). The notion of breakdown point. In: Festschrift in honor of Erich
Lehmann, K. Doksum and J.L. Hodges (eds.). Belmont, Wadsworth.

Hampel, F.R., Ronchetti, E.M., Rousseeuw, P.J. and Stahel, W.A. (1986).
Robust Statistics: The Approach Based on Influence Functions. John Wiley and
Sons, New York.

Huber, P.J. (1981) Robust Statistics. John Wiley and Sons. New York. IKent,
J.T. and Tyler, D.E. (1991). Redescending M-estimates of multivariate location
and scatter. Ann. Statist. 19, 2102-2119.

Marazzi, A. (1993). Algorithms, Routines and S funciions for robust statistics.
Wadsworth and Brooks, Cole. Maronna, R.A. and Yohai, V.J. (1993). Bias-
robust estimates of regression based on projections. To appear in Ann. Statist..

Maronna, R.A. and Yohai, V.J. (1993). The behavior of the Stahel-Donoho
estimator. Technical Report. Department of Statistics. University of Washington.

Maronna, R.A., Stahel, W.A. and Yohai, V.J. (1982). Bias-robust estimators
of multivariate scatter based on projections. Jr. Mult. Anal. 42, 141-161.

Muirhead, R.J. (1982) Aspects of Multivariate Statistical Theory. John Wiley
and Sons. New York.

Rocke, D.M and Woodrufl, D.L. (1993). Computation of robust estimates of
multivariate location and shape. Stalisi. Neerland. 47, 27-42.

Rousseeuw, P.J. (1984). Multivariate estimators with high breakdown point.
In Mathematical Statistics and its Applications, vol. B (W. Grossmann, G. Pflug,
I. Vincze and W. Wertz, eds.). Reidel, Dordrechts, Netherland.

Rousseeuw, P.J. and Leroy, A.M. (1987). Robust Regression and OQutlier De-
tection. John Wiley and Sons. New York.

Rousseeuw, P.J and van Zomeren, B.C. (1990). Unmasking multivariate out-
liers and leverage points. Jr. Amer. Statist. Assoc. 85, 633-639.

Ruppert, D (1993). Computing S-estimators for regression and multivariate
location/dispersion. Jr. Comp. Graph. Stalist.



Recent results on robust estimation in multivariate analysis 319

Stahel, W.A. (1981). Breakdown of covariance estimators. Research report
31, Fachgruppe fiir Statistik, E.T.H. Ziirich.

Tyler, D.E. (1986). Breakdown properties of the M-estimators of multivariate
scatter. Unpublished manuscript.

Tyler, D.E. (1987). A distribution-free M—estimator of multivariate scatter.
Ann. Slatisi. 15, 234-251.

Tyler, D.E. (1991). Personal communication.

Tyler, D.E. (1993) Finite Sample Breakdown Points of Projection Based Mul-
tivariate Location and Scatter Statistics. To appear in Ann. Slatist.

Woodruff,D.L. and Rocke, D.M. (1993) Heuristic search algorithms for the
minimum volume ellipsoid. Jr. Comp. Graph. Statist. 2, 69-95.

Yohai, V.J. and Maronna, R.A. (1990). The maximum bias of robust covari-
ances. Clomm. Stat. Theor. Meth. 19, 3925-3933.

R. Maronna

Departamento de Matematicas
Casilla Correo 172

1900 La Plata

Argentina





