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Recent results on robust estimation in lllultivariate analysis 

Ricardo A. Maronna 

Abstl'act:Classic met.hods in mult.ivariate analysis requil'e 
the estimat.ion of mean vect.ors and covariance matrices, and 
t.heir results can t.herefore be subst.ant.ially alt.ered by a small 
proport.ion of at.ypical observat.ions ( "out.liers"). This paper 
reviews for nonspecialists the current. stat.e of reseal'ch on t.he 
main approaches to replacing means and covariances by a 10-
cat.ion vect.or and a dispersion mat.rix which are not. affec:t.cd 
by outliel'S ( "robust met.hods"), and the I·elat.ionships among 
t.hese approaches . They are: "st.imates based on an "x te n­
sion of the met.hod of Max illJllm Lik.,Jihoud ( "M--estimates"); 
est.imates based on the minimi:tat.ioll of a robust. scale of Ma­
halanobis dist.ances ("S- est.imat.cs" ): and t.wo families of esti­
mat.es based on project.iolls: "P- .,sl.imat.es" and the Stahel-­
Donoho estimates. The advantages and drawbacks of these 
frunilies are compared wit.h l·esper.1. t.o: elfici,mcy, breakdown 
point., maximum bias and eomplltationalcost .. 

Key words: robust. estimat.ion, lIIuJr.ivariatc location and 
seau.er. 

1 Introduction 

Classical methods in Multivariate Analysis require the esti mat.ion of mea.ns and 
covariances. It is well -known, how(~ver, that a small proport.ion of atypical points 
in t.he data ( "outliers" ) suffices to drastically alt.er t.hem. This is dearly illust.rated 
in (Devlin , Gnanadesikan and Kett.elll'ing, 19R2) and (Rousseeuw and Leroy, H)R7). 

As an example, we generate a pseudorandom sample (Xli , X3;), i = 1, ... ,11 of 
size 11 = 20 l.from a bivariat.e normal dist.ribution with zero means, unit variances, 
and correlation p = 0.7. Suppose we are mainly interest.ed in es t.i lilating p. The 
sample correlat.ion is 0 .77. Now we alter t.1lf' sample by changing I he sign of the 
two smallest. x:!; 's. The alt.ered ;;ampl<~ is shown in Figure 1, alld its sample 
correlat.ion is -0 .15. Thus, modifiying IO';{) of t.he observations may yield a drast.ic 
change in t.he est imate. Furthermore , t his shows that. such changes may be ca.used 
by observations that , being at.ypical. cannot. be detected as univaria.t.e outliers in 
a.ny of the cooj·dinat.es. 

Let. X = {Xl , . .. , X,,} repreSl' llt a set of n dat.a points in ~p. Call m(X) a.nd 
C(X) the sample mean vector and covariance matrix based 011 X , respect.ively. If 
c E 3~P and A is any p x p-matrix, and Y = AX + c, then m and C sat.isfy t.he 
affine equivariance propert.ies 

1 Part. of t.his work was done while the aut.\lOr was visit.ing the f)' ·part.fnelll. or Statistics, 
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m(Y) = Aln(X) + c, 

C(Y) = AC(X)A/. 

( 1. I ) 

( 1.2) 

We are interested in defining a location vector t(X) and a positive ddiIlite 
dispersion matrix VeX) satisfying the equivariance conditions (1.1 )-( 1.2) , SllCh 
that, if X is contains only "good" observations, then (t, V) ~ (m, C); and , if a. 
small proportion of observations is modified in any way, (t, V) does not change 
much. These two features may be called "efficiency" and "resistance" , respectively. 
There are several important situations in Multivariate Analysis in which only th(~ 
"shape" of the covariance matrix is required; i.e., one is interested in C only up to a 
scalar multiple ; e.g. Principal Components and Discriminant Analysis . At.t.entioll 
will be devoted mainly to the estimation of the "shape" a .. ';pecL of dispersioll .. 

This paper reviews some recent results 011 these topics. It reflects the aut.hor's 
points of view, and hence does not attempt to be a fair survey. 

2 M-estimates 

One aproach to the definition of robust equivariant estimates is to define t and V 
as sol u tions to 

L ul(d;)(x; - t) = 0, (2.3) 
;=1 

n 

n- 1 L u2(d;)(Xi - t)(Xi - t)' = V ; (2.-'1 ) 
;=1 

with d; = d(Xi; t, V), where the "squared Mahalanobis distances" d are defined in 
general by 

d(x; t, V) = (x - t)/V-l(X - t) . (2.5) 

M- estimates are a generalisation of maximum likelihood estimates for elliptical 
distributions. If the observations Xi are i.i.d with density f(x; t, V) = 
(det V)-l fo(d(x; t, V)) - - with fo : ~+ -- 3r+ (where ~J~+ = {s : S ~ O}) and 
d is defined in (2 .5)- then the lllCtxinlulll likelillood estimates of t and V satisfy 
(2 .3)-(2.4), with 

(2.(j ) 

where 1/;o(s) = -d log ho(s)/ds . In particular , for the multivariate normal , Jo(/) = 
(27r)-n/2 exp(-t/2), and this implies ttJ(s) = !L 2( S) == 1. 

Another important case is the maximum likelihood estimate for the lI111ltivari ­
ate Student distribution with v degrees of freedom, for which 

Ul(S) = (v + p)/(v + s) (2 .7) 



The case 1/ = 1 corresponds t.o the Cauchy dist.ribut.ion. Tyler (1987) studied a 
"dist.ribution--free" M- estimat.e which call I_H' consi<krc' d as t.he limit. case of (2.7) 
when 1/ - 0; and recent.ly AdroVl~ r (1093) foulld t.his pstirnat.~' to have cert.ain 
optimal propert.ies . 

If follows fl'Om (2.3)-(2.4) that. t alld V can be respect.ively viewed as a weighted 
mean and a weighted covariance matrix, with wpight.s depending 011 the dj's . Since 
'It] and 'tI-:J are usually decreasing, it. follows t.hat. ·'distant." obs(~rvatiolls rece iV<' 
smaller weights . 

The existence and uniqueness of solutions of (2.3)-(2.4), as well as their con­
sist.ency and asymptotic normality . were firs t derived by !'v[arouua (197() under 
cert.ain restrictions . A more general definit.ion of M- est.i mators is given by Huber 
(1981). A very general r<~s u\t. 011 pxist.e ll ce and uniqueness for an important das 
of M--est irnat.es is giwll by Kent and Tyler (1091) . 

Numerical comput.ing of l\1--'estil1lates can be performed by an iterative al­
gorithm which t.akes advantage of their expression as weighted means and co­
variances. More sophisticated algorithms have been impl f'm ented in t.he package 
ROBETH (Marazzi , 1993). 

Given V = [Vi j), we can est.im at.e conelations by vij /( ViiVjj )1/2 . l ising t.he 
Maximum Likdihood estimate for t.he Cauchy dist.ribuut.ion (henceforth CMLE) 
on the simulat.ed bivariate sample yields correlation es timates of 0.75 for t.he orig­
inal sample alld 0.55 for t.he a.lt.en'd Olle, t.hus exhibiting a good hehavior for bot.h 
cases. 

To see what, ha ppens in higher dinl<~llsions, we now gf'nerat.e a norm al spherical 

sample of size 100 in dimension Ill. The CIVI LE applied t.o t.his sample yields all 
correlations very near t.o t.hose obtailwd ;.from C. Now we modify the sample by 
replac ing t.en point.s Xj by 2U+Xi/2, wlw/'(~ u = (1 , ... , 1)' . The ft~sult is that 
now all correlat.ions becom e larg(-~ r than 0 .65!. 

This is an example of a drawback of lVI -est.inmtes: their robustness decreases 
when the dimension increases. To make this assertion more precise, let. us intro­
du ce a Ineasure of robustness . The brf akdo'llJ1/. point 8* of all estimat.e is --roughly 
speaking-- t.he largest proport.ion o r observat.ions which may be arbitrarily altered 
wit.hout the est imat.e becoming tot.ally mean ingless. Mor<-~ 1.Hf'cise\y, le t. T(X) be 
an est. imate defined for samples X of size nand t.aking valu<'s on a space T. Let 
111 E {O, . .. , n} , and call Xm t.he set. of all samples o r size 'n obt.ained by r('p lacing 
m eif>ments of X by arbit,rary values. Let. 'mo hf' til<' lIlaximullI o r all 1T1 stich th a t 
t.herf> exist.s a compact. A' C T for which T(Y) E K V Y E ;\:'", . Then the break­
down point of T at X is defined as 8*(T, X) = mo/n . In !.Iw jargon of robustness, 
Y is called a contaminated sample, and m/n is the rontamination proportion. 

This is the so- called finit e- sample replaCfment b1'wkdo-wn point (Donoho and 
Huber, 1983) . The asymptotic version is as follows. Given a distribution Fo, the 
analogue of a comtaminated sample is an "(- contamillated distribution": (1 -
c)Fo + d;', where G is an arbitrary distribut.ion. Assume that the estimat.e T 
is defined as a functional on distribut.ions . Then the contamination (01' "g1'oo5.s 
crTOr") breakdown point i*(T, Fo) of T at Fo is the supremum of ( E [0,1] such 
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that T«1 - f)Fo + fG) remains in a compact for all G. A very general account of 
the concept of breakdown point is given in (Ilampel, 1971) . 

In our case, we have T = (t, V), and hence T = lRP x SP p , where SPp is 
the space of symmetric positive definite p x p-matrices . For (t, V) to remain 

. in a compact it is necessary and sufficient that IItll be bounded, and that the 
eigenvalues of V be bounded away from 0 and from infinity. The last condition 
implies that the condition number' of V -i.e., t.he ratio of its largest to its smallest. 
eigenvalue- remain bounded . 

M-estimates are robust against. contamination which is not concentrated on 
any hyperplane (Tyler, 1986); but. are very sensitive to contamination concen­
trated in a small cluster. Tyler (1991) found that. for any M-estimate, 

8· ~ l/(p + 1) - l/n, (2.8) 

the upper bound being attained, among others, by the CMLE given by (2.7) 
with II = L Tyler also described the form of the breakdown. Let (t, V) be a 
multivariate M-estimator with breakdown point 8· . Let m observations t.end t.o 
a point -say xo- where m 2: n8· . Then t --+ xo, and the smallest eigenvalue of 
V tends to O. This implies that for large p and very asymmetric contaminat.ion , 
M-estimates may be even less reliable than the classical ones! 

The former result.s on the breakdown point. hold also for V when t is known, 
but not conversely, implying that. the weakness lies in the matrix V . 

3 S-estimators 

A step towards the goal of defining equivariant estimates with a high breakdown 
point for all dimensions was Rousseeuw's Minimum Volume Ellipsoid Estimate 
(MVEE) (Rousseeuw, 1984 and Rousseeuw and Leroy, 1987), defined as follows . 
Among all ellipsoids {x : d(x; t, V) ~ I} containing at least half of the data points, 
choose (t, V) such that det. V ·-i. e. , t.he volume of the ellipsoid- is minimized . 
Rousseeuw showed that t.his est.imator has asympt.otic breakdown point. 1/2 for 
all dimensions, and that. it.s finit.e sample breakdown point is ([11/2J - P + 1)/211 
(where [.J denotes the integer part.), I,hus making a significant improvement. in 
robustness over M-estimators . Recent.ly Davies (1993) studied the asympt.ot.ic 
behavior of the MVEE. 

Davies (1987) generalized this estimate as follows. Given (t, V), let d(t, V) = 
(d(x;; t, V) : i = 1, . . . , n). Let s be a scale statistics; define the multivariat.e 
S-estimator (t, V) as a solution of 

(t, V) = arg min{s(d(t, V) : V E S1?P' det(V) = l}. 

It is easy to show that if s is the mean, then t and V are the sample mean and 
a scalar multiple of the sample covariance matrix , respectively; and that if .s is 
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t he rnedian , the the solution is the MVEE. By the way, we see that by t.h eir V('J"Y 

definition S- estirnators can yield only the "shape" of dispersion. 
Davies speciali :ted to the case in whi ch s is an "M--estimate of scale", defined 

as follows. Given a sample of nonnegat ive values z = (ZI , . .. , zn), d efin ( ~ t.he scale 
M- est imator s = s(z) by ave{p(z/s)} = 6, where "ave" is the average, a lld p i;; a 
bounded nondecreasing function with p(O) = 0 and p( 00) = 1. 

Davies (1987) found an upper bound for the finit e- sample replacem ent. break­
down point of any affine-equivariant location and scatter statistics, nam ely 

6" :S [en - p + 1)/2]/n , (3.9) 

if X is in general position . Davies proved that in order that an S-es timat.e (t, V) 
attaill the maximum breakdown point (3.9), one must. have 

6 = (n-p-l)/2n. (:3.1 ()) 

A slight mod ifi cat ion of the M VEI~ attains this maximum breakdowlI poi lit.. It 
is obt.a ined by taking p( z) = I(z 2 I) (where I is t.he illdi cat.or function) and 6 as 
ill (3. 10) ; this implies t hat oS is t.he k-t.h order st.atistics, wit.h k = [(n + l' + 1)/:2] 
(instead of A: = [en + 1) /:2] as in the lJl edian). Hencefort.h , we shall refe r to this 
lllod ifi ed cs t illiate as the MVEE. 

A hi~h"r ' ;lsy mp totic effi ciency may be obtained by using a smooth p-fullction , 
such as the "hi weight" fun ct ion , defined by 

pi ( z) = (1 - z) 2 J (z :S 1) . 

Numeri cal compu t illg of S·-estimates presents difficult problems , due 1.0 t. he 
exist.ence of llIallY local lIliniIll a. An attempt to a pproxim a t.e t.he M V 1': 1':, hased 
0 11 s ubsampling , is given in (Rousseeuw and Leroy, 1987) . The reliability or t hi s 
a lgor it hm has been questioned by Cook and Haw kill s (1991) . An at telilpt. 1.0 

improve on this procedure is given by Ruppert (1993) . Rocke and Woodruff" (HJ93) 
and Woodruff and Rocke ( 1993) experiment the use of heuristic programming for 
comp uting the MVEE. Smooth S- estimates seem to present less difficult.ies than 
the MVEE. 

In our example , the corre la tion estimates based on the MVEE are 0.85 for t he 
original sam pl e a nd 0.45 for the modified one, showing a mu ch worse behavior t.hall 
the CM LE. Note however that. ac.cording to (2.8) and (3 .9), the breakdown poillt.s 
ofCI'vlLE and MVEE are 0.28 a lld OAG respect ively. To underst a lld why til<' lat.kr 
had a worse behav ior t.h a n t he ro rmer , desp ite it higher breakdow li POill!. , \\"(~ II< ~ed 

a 110r" !.!/~ lll'ra l llIeasure of behavior: the bias under con taminatioll . Let .:J. ( ... ) 1)(' 
a lIl e aS IlJ"( ' ofdiss illlilarity 0 11 T (ifT = »(1', usually ~(tl , t 2) = Ilt J - t :! il) '1/ 11'11 
the bias of Tat G is bias(T ; t, G) = ~(T(( 1 - c)Fo + (G), T(Fo)). COllsid (·ra!,.i()lI 
is Oftt' ll res tricted to pomtwise contaminati on, which co rresponds to G of tlw rOJ"ll1 

C = 15x o, i.e. the point mass at Xo . In this case the bi as is expressed by t ill' billS 

function : b(T ; c, xo) = bias(T ;t, 6x o)' 
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For the location vector, a suitable measure of dissimilarity is ~(tl ' t o) = (tJ -
to)'V(FO)-l(tl - to). If we are interested in the shape of scatter, then a measure 

IS 

~(V 1, Va) = rp(Ao V lA~), 

where rp is any measure of nonsphericity, and Ao is such that A~Ao = VOl. 
These bias measures are clearly invariant under affine transformations. The sim­
plest measure of nonsphericity of a matrix W is its condition number cond(W). 
Another one is the likelihood ratio test statistics for nonsphericity (M uirhead 
1982), namely 

rpo(W) = (tr W Ip)P I det(W) , (3.12) 

where tr denotes the trace. 
Unfortunetely, despite their high breakdown point , S- estimates may have a 

very high bias under pointwise contamination, as proved by Yohai and 1\,laronna 
(1990). This reveals that the breakdown point cannoL he the sole criterion used 
to evaluate robustness: if an estimate has breakdown point c', this means that 
its bias under a contamination proportion c < c' is bO'llnded; but this does not 
imply that the bound is small!. 

In order to make S-estimators more efficient, Rousseeuw proposed reweiqh.t ed 
S -estimalors. Given the S- estimators(t, V), define the d;'s as ill (2.5). Let. I~' 

be a weight function, and Wi = W(d;). Define (t', V') as a weighted mean and 
a weighted covariance matrix with weights Wi, The most usual choice is "hard 
rejection": W(d) = I(d ~ do), where the threshold do is conveniently chosen 
(depending on p) in order to find the best behavior. 

4 P-estimates 

The unpleasant features of S-estimates show that it does not suffice fui an esti­
mator to have a high breakdown point, but rather that the behavior of i I s bias 
function must be taken into account . Maronna, Stahel and Yohai (L992) devel­
oped an idea that had been successfully used by Marollna and Yohai (HJ93) to 
find regression estimates with low maximum bias, and which took into account 
all univariate projections of the data. Note first that the covariance matrix C has 
the property that, if A is such that AA = C- 1 , then 

var(a' AX) = 1 Va ESp = {a E ?RP : /lall = I} ; ( 4.13) 

i .e., the dispersion of the transformed data is constant in all directions . The 
idea is to replace the variance by a robust (univariate) dispersion estimate s. A 
simple possibility is the m edian absolute deviation: MAD(z) = med(lz - rned(z)1 
(where "med" stands for the median). Since in general there will not exist a 
transformation for which the dispersion is constant, we look for one making it 
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"as constant as possible" . Thus, we define the P-estimator V of multivariate 
dispersion as V = (A' A)-I, where 

or, alternatively 

with the restriction 

A = argmin{log sup Is(a' AX) - II}; 
aES, 

. sUPaEs, sea' AX) 
A = arg mm . f ( ) , 

m aES, s a'AX 

inf sea' AX) = l. 
aES, 

(4.14) 

(4 .15) 

(4.16) 

It is proved in (Maronna et al., 1992) that solutions of (4.14) and of (4 .15)­
(4.16) differ only in a scalar multiple. 

For our simulated sample, the estimated correlation based on a P-estimate is 
0.75 for the original sample, and 0.72 for the modified one, showing an excellent 
behavior for both cases. 

The maximum bias of these estimates is computed in (Maronna et al., 1992) 
and shown to be much better than that of M- and S- estimates for p ~ 5. Simu­
lations in that paper also show that they behave better than the MVEE for finit e 
sample sizes . 

However , some simulations show P-estimates to behave rather erratically as a 
function of data - even for normal data- when the ratio nip is not large enough 
(e.g. =5); and this drawback should be fixed to make the estimator reliable. 

Numerical computing of P-estimates is much harder than that of S- estimates , 
because of the double optimization process involved (over matrices and over di­
rections). Maronna et al. (1992) found a subsampling algorithm with a shortcllt 
which saves much effort; but even so, computing for large p seems still impractical. 

5 The Stahel-Donoho estimate 

Another estimate based on projections was the one defined independently by Sta­
hel (1981) and Donoho (1982). It was the first robust equivariant estimate of 
multivariate location and scatter having a high breakdown point for any dimen­
sion . The estimator is defined as a weighted mean and a weighted covariance 
matrix, where e·ach point has a weight which is a function of an "outlyingness" 
measure, with points having large outlyingness receiving small weights . The outly­
ingness measure is based on the idea that if a point is a multivariate outlier, there 
must be some one-dimensional projection of the data for which it is a (univariate) 
outlier . 

Let Il( .) and 0-(.) be shift and scale equivariant (resp . shift invariant alld 
sCcde equivariant) univariate locatioll and dispersion statistics . Note that if z = 
{Zl' . . . , zn} is a univariate sample, one may detect suspicious observations by 
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looking at high values of IZi - J.l(z)l/u(z) . Denne now for any y E 3~" tlw "multi­
variate outlyingness" r: 

r(y,X) = SUprl(y,a,X), 
a 

where the "univariate out.lyingness" rl is 

rl(y, a, X) = la'y - J.l(a'X)I/u(a'X), 

and the supremum is over a E ~ with a # 0 or equivalently over a E Sr· 

(5.17) 

(5 .18) 

Let the "weight function " w : R+ - R+ be bounded and continuous, with 
r2 w(r) being bounded . The Stahel--Donoho estimator (SDE) of location and scat­
ter (t(X), VeX»~ is defined as 

Ln w ·x · 
t = t(X) = i ~l ' , 

Li=lWi 
(5.19) 

and 
",,, w·(x - t)(x· - t)' 

V = V(X) = L...i-l '~ . , 

L i =l Wj 
(5 .20) 

with Wi = w(r(xi,X» . The value ofrl(Y,X) is affine invariant , i.e. I'dy , X) = 
7'l (Ay+ b , AX+ b) . for any nonsingular A and any b E ~P; and this implies that 
Ct, V) are affine equivariant . Note that if J.l and u are respect ively the mean and 
the standard deviation, then r(y , X) = (y-m)'C-1(y-m) , where m and C are 
the sample mean and covariance matrix , respect ively. Stahel (H)81) showed that 
(t, V) has asymptotic breakdown point 1/2 at continous multivariate models if J.l 
and u have asymptotic breakdown point 1/2 (see Harnpel et aI, (1986) , Theorem 
5.5.3). Donoho (1982) derived the finite sample breakdown point of (t , V) for the 
case in which J.l and u are the median and the median absolute deviation (MAD) 
respecti vely. 

No further results on these estimators were published in the ensuing years, 
one likely ground being the seeming irltractability of t.heir properties and of t.heir 
computation. Stahel (1981) himself had proposed an algorithm ba..<;ed on sllb­
sampling for the approximate computing of (t , V) , but. no attempts were made 
at experimenting it . The popularity and better tractability of the MVEE and in 
general of multivariate S- estimators may also explain t.he lack of int.erest in the 
Stahel- Donoho estimators. 

Recently, Tyler (1993) obtained important result.s 011 the replacement finite­
sample breakdown point of (t , V). In particular , he derived conditiolls undpr 
which it attains the upper bound (3 .9). The two most important cases i'n which 
maximum breakdown is attained a re: 

• J.l is the median, and u the average of the kl -·t.h and t he k2- th smallest 
absolute deviations about J.l , with 

kl = p-l + [(n+ 1)/2] a nd k3 = p- 1 + [{]J+2)/2] . (5.21) 

This is a slight modificat.ion of the MAD . 
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• J.l and (j are the maximum likelihood estimates for location and scale corre­
sponding to a sample from a location-scale family of distributions based on 
Student's t-distribution with 1/ degrees of freedom, with 

n+p 
1/= -­

n-p 
(5.22) 

Maranna and YohaI (1993) showed that SDE has order y'n-consistency. They also 
computed numerically the bias for J.l and (j chosen as in (5.21) and different weight 
fun ct ions. The best results were obtained for functions of the form w(r) = I(-r :S 
c) + (c/r)~ 1(7' > c) ("Huber weights"); where the apropriate value of c depends 
on p. The maximum bias of the SDE was better than those of M-estimates and 
MVEE. 

For our simulated bivariate data, the estimated correlations are 0.7 and O.(i for 
the original and the altered sample respectively, thus showing a very satisfactory 
behavior. Numerical computing of the estimate is difficult for p > 2, due to the 
maximization in (5 .17), which involves functions with many local extrema. How­
ever, Maronna and Yohai (1993) experimented Stahel's subsampling algorithm , 
which turned out to yield satisfactory results at least for p :S 10. For samples of 
size n = 30, the computer times needed, using the GAUSS system on a PC with 
55 Mhz frequency for p = 4, 6 and 10 were 1.1,2.3 and 5.4 minutes respectively. 
S-estimates require about the same time, while the P-estimate required 2, 7 and 
15 minutes respectively. 

6 Comparisons 

Maranna and Yohai (1993) performed a simulation to compare several estimates, 
namely: 

• The Maximum Likelihood estimate for the Cauchy distribuution (CML!,;) , 
chosen among M-estimates for its maximum breakdown point. 

• The MVEE. 

• The S-estimate with biweight function (3.11) ("S- E") . with the paralllet.cr 
b chosen as (3.10). 

• Reweighted versions of both types of S-estimates, with the "hard rejection" 
weight function, trying different values of the cutoff threshold in order to 
find the best behavior. 

• The Stahel-Donoho estimate (SDE)with J.l and (j given as in (5.21), and 
"Huber weight function", with different values of c. 

• The mean and covariance matrix ("COY"). 
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P- estimates were not included because of their much higher computational cost. 
The dimensions chosen were: p = 2 (with n = 10 and 20), p = 4 with n = 20 , 

and p = 6 with n = 30. The distributions employed were: 

• The unit normal spherical distribution . 

• The Cauchy spherical distribution, chosen as an extreme case of heavy-- tailed 
symmetric situation . 

• Contaminated normal samples CN(f, k) , chosen as an extreme case of asym­
metric contamination. They consisted of n - m observations distributed 
as Np(O, I) , and m observations concentrated at kb 1 with m = [n t ] and 
b~ = (1 , 0, . .. , 0) . The values f == 0.10 and 0.20 were chosen. Several values 
of k were used, searching for the worst behavior of each of the estimators . 

For each estimate V and each distribution , the measure of error (the subst itute 
of mean squared error) with respect to the spherical form was chosen as the 
"median error" ME(V) = med log 'Po (V), where 'Po is defined in (3.12). Medians 
rather than means were used, because of the skewness and heavy-tailedness of the 
empirical distributions of 'Po . 

In view of the bulkyness of the output of the simulation, four criteria were 
displayed for each estimator: the ME 's for normal and Cauchy distributions, and 
the maximal (over k) ME's for CN(f, k) for f= 0.10 and 0.20. 

When x is spherical normal , it is proved (Muirhead 1982) that n 10g'Po(C) 
converges in law to a linear combination of chi- squared distributions . Thus, if V 
is any of the estimators, the ratio of the median error for COY to the corresponding 
value for V may be considered as a measure of effi ciency. Define the" effi ciency" of 
the estimator V for the normal (resp . Cauchy) distribution as ME(Vo)/ME(V) 
where V o is the COY (resp . CMLE). It was considered more clear to display the 
efficiencies rather than the ME 's for both spherical distributions. The Stahel­
Donoho estimate showed in general the best behavior. Details may be found in 
(Maronna and Yohai, 1993) . 

To give an comparat.ive idea of the behavior of the different types of estim ~tes, 

we plot the ME's corresponding to CN(f, k) as a function of k for p = 4 (the values 
corresponding to k = 0 in the plot ae actually for ( = 0) . Figure 2 displays for 
f = 0.20 the behavior of the Cauchy Maximum Likelihood , the best choi ce of (he 
Stahel- Donoho , S- and Covariance estimates (labeled as CMLE, SDE, the S-- E 
and COY, respectively). A remarkable feature is the "redescellding" behavior of 
the S- E: its ME is the lowest one for large k, but its maximum ME is the largest. 
The SDE has both the smallest maximum ME and the smallest ME for f = O. We 
see that the CMLE behaves worse than COY, the reason being that f is larger 
than its brakdown point, causing the phenomenon described below (2.8). 

The efficiencies of the SDE, S- E and CMLE are 0.82 ,0 .80 and 0.73 respectively 
for the normal distribution; and 0.91,0.56 and 1.0 for the Cauchy distribut.ion. 
Thus, the SDE is seen to combine a high effi ciency for spherical distributions with 
a relatively low ME for asymmetric cont.amination. 



R f"cenl re!->ull ..... on I ' . IH1S1 "st i IlH\.ti , ,n ill nlllltj ' ";trial e aual.ysi ..... 

It ff~mains an open problem t.o find some variant of the SDE keeping all of 
t.hese advantages and at t.he same time exhibiting the "redescending" behavior of 
S-estimates . 
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