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Quasi-Stationary Distributions: Continued
Fraction and Chain Sequence Criteria for
Recurrence

Pablo A. Ferrari and Servet Martinez A.

Abstract: We study guasi-stationary distributions (q.s.d.)
for Markov chains. We review some recent results relating
q.s.cl., Yaglom limit and limit distributions conditioned to non
absorption. For birth-death chains we show new relations be-
tween the Markov chain associated to the minimal y-invariant
measure, continued fractions and unigqueness of parameters of
chain sequences.,
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1 Introduction

The main result of this work is Theorem 4.1. There we show that the Markov
chain associated to the minimal 4-invariant measure is recurrent if and only if
some continued fraction is equal to | or equivalently if and only if the parameters
ol some chain sequence are uniquely determined. We use results on continued
fractions obtained by (Wall 1948).

In section 2 we introduce y-invariant measures and the stochastic matrices
associated to them. In sections 3, 5 and 6 we review briefly some recent results on
quasi-stationary distributions (q.s.d.), and their relations with Yaglom limit and
the limit chain conditioned to non-absorption. Section 4 is devoted to the study
ol q.s.d. on birth-death chains.

2 Stochastic Matrices Related to y-Invariant Me-
asures

Let (XN¢ : ¢t > 0) be a Markov chain on N = {0} UN" defined by the transition
matrix P = (py, : r,y € N). We assume that 0 is an absorbing state, poy = 1,
and that P™ = (pg, 12,y € N7) is an irreducible matrix.

A non-trivial measure g on N* is q-subinvariant if 7" <~ and q-invariant

il g P* = 5. From irreducibility any y-subinvariant measure j is strictly positive,

Consider the series Pf (5) = > piy’3™". The irreducibility of P* implies
n20

that these series have a common convergence radii 45" € [1,x) wich does not

depends on &, y. In (Vere-Jones 1962; Seneta 1973) it is shown that there exist

v-subinvariant measures if and only if'4 > 44, The matrix 1”7 is called y-transient
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if Py, (7) < oo and y-recurrent otherwise. Notice that for any v > 3¢ the matrix
P* is y-transient.

Let us relate to a y-subinvariant measure g a matrix M'"“) = (my, : x,y € N¥)
defined by

mry:T_]i:_wa for z,y e N, _ (2.1)

M) is substoch%tic and it is stochastic if and only if g is y-invariant.
From the equality mw — ’—ipy, , the following equivalence holds:

{T] < oo if and only if M“‘l(l} M Z m“‘] < .
n>0

Hence the condition at the right does not depends on g and if

¥ > 70 the substochastic matrix M#) is transient. If P* is yo-recurrent, there
always exists a yg-invariant measure, let g be one of them. P~ is yg-positive (resp.
7o-null) if and only if the stochastic matrix M#) is positive recurrent (resp. null
recurrent). Also this last condition does not depend on the yg-invariant measure
p and can be characterized only in terms of coefficients p,,, see (Seneta 1973).

If h > 0 is a right eigenvector, P*h = vh for v > 0, then we can associate to
it the following stochastic matrix N*) = (ng,),

h,
Ny ="y lh Py for z,y € N*. (2.2)

Now assume that the matrix P* is reversed by a strictly positive measure
m=(m: 2 € N")ie mypry = mypyr for any 2,y € N*. Let p be a y-invariant
measure, then £ = (E= : » € N*) is a y-invariant vector of P*: P*£ = ~4E and it
is easily shown that M(#) = N(%)

Now consider the stochastic matrix M(#) associated to g. From reversibility
we get:

—n Ky Tz (n)

— ] ("] -
Mpy =%  — —Pry, SOMy, =7 ry

Ty K Ty Ko

2 X
Then the matrix M(#) is reversed by the measure E.= (‘—;L cax € N*):

ﬁmw = P—ymw for any »,y € N” (2.3)
Ty Ty

2 2 . . . 2 2
Hence £ = {':—ﬂ :z € N*) is an invariant measure of M(#) EMB) = £

2
Therefore, the matrix P* is yg-positive if and only if ) -;5‘ < .
res. *
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3 Quasi-Stationary Distributions

Probability measures which are y-invariant are called quasi-stationary distribu-
tions (q.s.d). They verify:

PP =g, 1> 0, ) pp =1,

reESs"

and simply computations show that v = 5, where 7, = 1 = Y~ pypy0.
yeEN®
The q.s.d. are also characterized as the probability measures p which satisfy:

P {Xi=z|r>t} =p. VereN, (3.1)
where 7 = inf{t : X; = 0} is the time of the first absorption of the chain.

I'rom (3.1) it is casy to prove that if ye 1s a q.s.d. then the distribution P, {r € -}
is geometrically distributed. Observe that E,(y™7) < oo for any v > 3, and it is
infinite if ¥ = y,. A q.s.d. with ., = o is called a minimal q.s.d.

From the geometrical distribution of 7 starting from g, we get that a necessary
condition for the existence of q.s.d. is that the chain is gecometrically absorbed at
0:

Jv < | such that Vo e N* : (1 — p(:g) < exy"  ¥n > 0 and some ¢, > ().

The reciprocal has been recently shown for continuous Markov chains (N, ¢
L > 0) which are honest process and the minimal ones associated to stable and
conservative transition rates matrix which also verily
P.{r <t} (). More precisely for this kind of chains the condition of geomet-

L=
ric absorption (1 — p(;_i_.) < e,v* for any t > 0, is necessary and suflicient for the
existence of q.s.d., see (LFerrari, Kesten, Martinez and Picco 1993).

For birth-death chains the set of y-invariant measures 1s a continuous ordered
by v > qu, see (Cavender 1978) and (Ferrari, Martinez and Picco 1992). In this
last work it is also shown, for discrete birth death chains, the equivalence between
the existence of q.s.d. and geometrically absorption by using continued fraction
techniques. In next section we use these tools to study the recurrence of MUY
where i is the minimal q.s.d. For continuous birth-death chains the equivalence
mentioned above was shown in (van Doorn 1991; van Doorn and Schrijner 1992).

4 Birth-Death Chains

Now let us consider the birth-death chain on N with 0 an absorbing state. Denote
(r = Prz-1, Pz = Prz+1 for z € N*, we assume that they are strictly positive.
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This irreducible chain is reversed by the measure:

r—1
ri=1 w=[I-2 forz>2 (4.1)

y=1 Ty+1
A measure p is y-invariant if

Ve €N qegrptrsr + (1= Pr — qo)pts + Pr—iflo—1 = Thta-

For any 7 for which there exists a solution g it is unique up to the multiplicative
constant p; > 0. When the y-invariant measure g is finite, it is a probability
measure when we fix p) = q%(l — 7).

In (Ferrari, Martinez and Picco 1992) it was shown that if there exist 7-
invariant measure for 4 < 1, then the property of being finites or infinites does
not depend on ¥ < 1. Iu fact, it was proven that if E.(7) < oo (that is if
o l'[ E::T) = oo) and if there exists a y-invariant measure g with v, <1, then
r>1 y=
pis a q.s.d. Reciprocally, if p is a q.s.d. the chain is geometrically absorbed, so
E.(7) < co.

Let u be a y-invariant measure. Consider the stochastic matrix M) as in
(2.1), so with coefficients mz, = 7‘1{:{;)3,,. It is also a birth-death chain and for
the description of its coefficients it is useful to introduce the variables:

Wi = _lpx+l‘lr+1
= T
Then:
Merpr = WO forz € N*,
Mer = 7_1(1 — Ps — q:)' (4.2)
Mppoy = ..gp:r—{l?r for z > 2.
w:'-:l
From the equality mgz z—1 + mz 2 + My z41 = 1 it follows:
Wi = Qw‘r(wtl)l) for z > 2,
where g, .(w) = 1=9"'(1=pr—q;)— ““’pzt 9 for x >2 (4.3)
and WI(T) = 1=9"Y1=p;—q).

A necessary and sufficient conditions for the existence of a y-invariant measure

is that the sequence (W”) r € N*) is strictly positive. In this case the associated
vy-invariant measure is defined by

() T W
g = H

for # > 2 with ") > 0.
Qy+1
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Now, consider
7" = infI', where I' = {y : there exists 4{?) a y-invariant measure}.

Then " > 0 and the set I is either empty or the interval [y*, 00).

Let p be a y-invariant measure. From (2.3) and (4.1) the birth - death chain
2
M) is reversed by the measure E-. We have:

#3 r—1 2 fr—1 -1
2 Nr—
W—I=Pi‘r““ ”(H Wﬁﬂ) (H!-’y%!yu) ,
y=1

z y=1

and from classical results on birth - death chains, for instance see (Karlin and
Taylor 1975),

2 -1
M) is transient if and only if Z (&’-H’TH]) < oo and as it occurs
Tr
reEMN*

2
with reversed chains, it is positive recurrent if and only il )~ %‘- < 0.
reNs 7

To analyse the existence of q.s.d. we introduce the sequence W) = (W .
r € N*) defined by wi) = gTbr(H’,{,-i!‘) for & > 2 and W'lml = 1 and we consider
the quantities:

hy(z,y) =g5L0---0g7,(0), for y>z>2

It can be proven, by using monotonicity arguments, that W) is strictly positive
if and only if:

Vy>2>3 : 0<hy(a,y) <1=9""(1=poci — go1)
Vy>2 : 0<hy(2,y) <.

From this last relation it was shown in (Ferrari, Martinez, Picco 1992) thal the

equality yo = 7" € (0, 1] holds. Moreover I' = [y*, oc) is also verified, in particular
I' is non empty.

In the case p, + qr = I for any x € N* the equations (4.3) take the form:

wiY’ 1 and (4.4)
I'VJ.-” = g-,,r(”"jt_i]l) for any x > 2

] — 11
where g, »(w)=1—- ~oPr—14x
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It turns that this form is well-adapted to be studied with techniques on contin-
ued functions. In this case hy(z,y) is the following approximant of a continued
fraction: _,
Pz— lqr/7-
fies quz-i-l/'Tg >
1— 1’r+19x+3/7

h‘]’(:ﬂ! y) =

'—'.—'F
1= py-19y/7°
From previous discussion we get that there exist y-invariant measures if and

only if there exists ¥ < 1 such that hy(z,y) < 1 for any y > = > 2. In particular
this implies that the continued fraction hy(2,00) = lim hy(2,y) is < 1. We shall
y=—+00

prove below that the continued fraction h,(2,00) gives us all the information to
analyse the recurrence of the matrix M(#) associated to the minimal yo-invariant
measure.

Before to supply the result we shall introduce another concept that we will
relate to y-invariant measures.

A sequence (a:)z>2 is called a chain sequence if it is of the form a, = (1 —
Jr—1)§- for some sequence (g € [0,1])zen+. This last sequence is called the
parameters of the chain sequence. The chain sequences were introduced in (Wall
1948) and in the next paragraph we summarize some of the main results that were
obtained on them.

Any chain sequence (a)z>2 has minimal parameters (L)‘EN' and maximal
parameters (¢ )zen- such that for any other parameters (¢.)zen+ of the chain
sequence: ¢ < ¢z < ¢z, ¢ € N*. The minimal parameters verify

0 ifg, =1 .

L=0 Loy = i ifg, <1 forENG

and the maximal parameters are given by the continued fractions
2 Ar41

Ge=1-—F
1= —ds

1

for z € N*.

The maximal parameters are equal to the maximal ones if and only if
y

Zl H2 (—le%q = 00, or equivalently if and only if §; = 0 (Wall, 1948).
y: r= —-—

The following relations hold between <-invariant measures u and chain se-
quences. Furthermore the next result also gives a criterion for recurrence of the
matrix M#) associated to u by (2.1).
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THEOREM 4.1. An absorbed birth-death chain has a y-imvariant measure if and
only if the sequence (aﬁ,'” =721 - Qr=1)4xr)r>2, 18 a chain sequence. Moreover
if this condition holds and g1 1s the y-invariant measure then the matriz M*) =
(1nyy) assectated to p verifies my ,_ | = q, Jor x € N*, the minimal parameters

of the chain sequence (a'ﬂ]_,-zg.
For v > yo the minimal and marimal parameters of the chain sequence are
different. For v = o the chain induced by M'A) | with j = p), is recurrent if

and only if the minimal and the mazimal parameters of (a¥ "}}_l>3 are equal, and

this holds if and only if hy,(2,00) = 1. When M'®) s recurrent then wire! =
hy,(z + 1,00) for z € N*, so i = p2°) can be compuled as simple continued
fractions.

Proof. From (4.2), (4.4) it follows that if u is a y-invariant measure and M*) =

(m,y) is its induced transition matrix, then atﬂ = Mg p—1My_1 . Set. Jz =

Mg r—1 for 2 € N*, 80 My » = (1= gz—1) and ay”’ = (1= §Gr—1)dz, then (@ )e>2
is a chain sequence. Since ¢; = myg = 1 — my» = 0 we get that ¢, = m, ,._; with
z € N*, are the minimal parameters of the chain sequence.

Reciprocally if (ap}),)g is a chain sequence we can write

@) = (1 = §o—1)§r for some parameters (4r)ren-. Hence:

(v) -2
- ay o (1- "?r—‘)(hr
l-gp)=1-+7—7—-=1-——
==~ 1 (1= o)

Consider (9, )ren- the minimal parameters of the chain sequence and call wa =

) N ) m—2 =g )y
L=qg.. Then it verifies the dynamical equation W;'' = 1 — ~ —wﬁ-)'l—, with
initial condition W, sy ¢, = 1. From unicity of solution of (4.2) we deduce

My ry1 = l_ q
holds.

4, Mez—1 = ¢, for x € N*. Then the first part of the theorem

For 4 > 7o the chain induced by the matrix M*) with u = p'?)| is transient.
From the usual criterion on birth-death chains (see Karlin and Taylor 1975) we get

~ Y
: S Mgiwmt T =
that the transient property is equivalent to ygl -rl:[.J ot = 00. Since mg gy =

4, Mepp1 =1 —q we doduco from the referred result of (Wall 1948), that the

minimal paramet.erb of (a}Y )x> , are different from the maximal ones.

For 4 = 7y the last discussion gives that the chain induced by M(#) is recurrent
if and only if the maximal and the minimal parameters of (a” ));23 are equal.
Consider M®) = (m,,) and denote §, = My z—1,pr = 1—§». Since at’®) = po_1Gs
we get:
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=2 -~
P1427 _ P1q2
hy,(2,00) = -7 = P23
1 — P2q37p | P . L
s —
_P.l:‘h:+l70 1—M—r+1

From results of (Scott and Wall 1940) and more precisely Theorem 11.2 of
(Wall 1948), we get:

% oo £

q1 : 1471
hy (2,00)=1— ——— where S=1+
o ) 1 -§-1 ;)I;Ipl+r

=

Now, the chain given by matrix M is recurrent if and only if S = 0o, which is
equivalent to h,,(2,00) = 1 — ¢;. Since p; = 1, we get the result.

Finally, for any v > 4o the following equations are verified by the continued
fractions

ﬁr—lé;c
l — hy(z+1,00)

Pr—14:

——— forz > 2.
Phy(z,50) ©©

, 0 hy(z+1,00)=1-

hy(z,00) =

Let ji = p(7). If the chain associated to M (#) is recurrent, then h,,(2,0) = 1 and
the result holds because Wi and V, = hoo(x + 1, :x) obey the same evolution
equations with the same initial condition WH") Vi o]

Ezrample. Random Walks. In (.hls case g = q,pr =p=1—¢q Vz € N". (uusndor

the non symmetrlc case, ¢ # 1. We have yo = 2/¢(1 — ¢) and g, »(w) =1 - 4“
Then hy,(2,00) = — and ,u("“) is transient.

5 Relation with Yaglom Limits

Intimately related to q.s.d. is the concept of Yaglom limit. Let us define it. Denote
by d the period of the Markov chain (X;) and consider

C(z,r) = {y : p¥"*" > 0 for some n}. The measure u¥ is the Yaglom limit of
(X¢) if the following limit exists,

(nd+r)
" - . ry . 5
py = him 1 — pnd+n) for y € C(a, 1),
P x0
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if it does not depends on z € N* and 3} py =1forany 0<r<d.
yeC(xz,r)
The existence of this limit was established for branching process by (Yaglom
1947), for finite chains by (Darroch and Seneta 1965) and for birth-death chains
by (Good 1968; Kijima and Seneta 1991; van Doorn 1991).

If P* is also aperiodic and such that for any y € N the set
{z € N* : pzy > 0} is finite, then if the Yaglom limit pY exists, it is a q.s.d. In
Proposition 6.1 of (Ferrari, Kesten, Martinez and Picco 1993) it was shown that
pY is in this case, the minimal q.s.d.

Let X be a birth-death chain with 0 an absorbing state and such that p;+¢, =
1, Yz € N*. From solidarity property arguments, it is easy to show that if the
following quantities exist

(n)
p;' = lim __._L!L(:]. for any y € N*
n4y—1 even l = plﬂ

and 3 p¥ = ¥ p) =1, then the measure u¥ is the Yaglom limit of the

y odd y even
birth-death chain. For the absorbed random walk g, = ¢ > % constant for z € N*,
it was shown in (Seneta and Vere-Jones 1966) that the Yaglom limit exists, being

y-1 o
py o= y( E) (-—»1 4”9) if y is odd,
q q

y-1
y = ——— | —=if y is even.
Hy (\/: ¢ )2/

Now, for the random walk the minimal q.s.d. is:

y—1 v
" P 1 —2,/pq
w=iyff)
q q

Due to the fact that the period of the chain is d = 2 the Yaglom limit x¥ is not
a q.s.d. In order to analyse, for birth-death chains the relation between u¥ and
the minimal q.s.d. j it is useful the following observations.

Denote 77 first absorption time when the chain starts at z. {r" = n} is
non-empty if and only if n + x is even. Then:

P,,{'r)n—l}_]

if n 4+ x1s odd, P,{‘r - ”]

When n + z is even and the Yaglom limit ¥ exists the following relation hold:
lim P.{r>n-1} _ 1 .
e Pz{r>n} I —qupg

n4xr even
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By using these relations in (Martinez and Vares 1992) it was shown that if the
Yaglom limit x4 exists and if we define 7y = /1 - qu.li and

TY
1+ 9y

P

,u:,' if z is odd and ji, = ,ul.' if z is even,

T 14y
then jiis a q.s.d. and v, = 1 — quu1 = vy. Moreover ji is the minimal q.s.d. so

¥ ="

Kesten has recently made a big progress in the study of Yaglom limit. e has
proved that for a wide class of substochastic matrices P’* there exists the Yaglom
limit. The matrices P* studied in (Kesten 1993) verify the following hypotheses:

(K1) 3L < oo such that py =0 if |z — y| > L, with z,y € N;

(K2) 36 > 0, M < oo such that for any £ € N* there exist » > 1 and
I < kyy .., ky < M depending on z, verifying pg’;" >6g fors=1,..,rpand g.c.d.
KLy R ) =205

(K3) 36 > 0, N < oo such that for any = € N* there exist | < n,m < N
depending on z, verifying pi’:H > 6, and pg:_)_l > 6y;

(K4) 37 < 1 such that E;(y™7) < oo for some z € N* (then for all x € N*).

Kesten proved that conditions (K1-K3) imply the existence of a measure p
and a function h, both strictly positive, such that

puP* = vyp, P h=yh.

When (K4) is also satisfied then p can be taken as a probability measure, so
v=1-= 3 pyp:o and p is the Yaglom limit,
zEM-

(n)
lim ny(“) = py for any y € N*
S Pro

6 Non Absorbed Conditioned Process

Let us introduce the general framework. Consider a Markov chain (X,) taking
values on N with 0 an absorbing state.
For n > k > 1 we have:

P{Xp=zp, Xp—1 =2p_1,.. -, X1 = 2|7 > n, Xp = 20} =

A Py {r>n—1¢}
=1P=£—1{T >n—{+1}

Dz, T
£
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From this relation it was shown in (Martinez and Vares 1992) that if there

. . P,{r>n-1
exists n]livrclo e for any couple z,y such that p;y, > 0 then

lim P{X, = zq, ..., X§ = 21| > n} exists.

n—oo

Set.

. _ [ Pyr>n-1)
Mg = (nl‘_";'o P.(r > n) ) -

Then if the matrix M = (zy )z yeNe is stochastic the limit distribution
ﬂlin:o P..(X1 = z1,..., Xg = zi!~ > n) defines a Markov chain on the N*, with

transition matrix M and initial state zo. A particular situation where M is
stochastic occurs when for each z € N* the set {y € N* : p;y > 0} is finite.

If P is aperiodic, reversed by some measure 7 > 0, the Yaglom limit px"
exists and {z € N" : p;y, > 0} is finite for any y € N*, then M = M) For
birth-death chains it can be also proven that if 4 exists then M = M%) where ji
is the minimal q.s.d. All these results were shown in (Martinez and Vares 1992).

In all these results the reversibility plays an important role. To clarify this fact
recall that under m-reversibility, if 4 a y-invariant measure the function h = £ is
a y-right eigenvector and N = M#) Hence, if P* can be reversed the matrices
associated to right or left eigenvectors are the same.

When there is no reversibility the matrix N®) is the relevant one. In fact it
follows from the computations made in (Kesten 1993) that for the matrices verify-
ing conditions (K1) - (K4) the transition matrix M defining the limit distribution
conditioned to non absorption is M = N(®) where h is the y-right eigenvector.

This work was partially financed by FONDECYT under grant 1208-91 and
Fundagao VITAE.
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