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Quasi-Stationary Distributions: Continue d 
Fraction and Chain Se quence Criteria for 

R ecurre n ce 

Pablo A. Ferrari and Servet. lVlartinez A. 

Abs trac t : \Ve st.udy CJllasi-st.at ionary dist.ribut.ions (q.s.d.) 
for 1\;larkov chains. We r ev iew some recellt. result.s relat.ing 
q.s.d .. Yaglom limit. and lilllit. disl.ribut.inI1s condit.ioned 1.0 nOli 
absorption. POI' hirt.h-death chains we show ne w relations b e­
t.ween t.he Markov chain assoriat.ed t.o t.he minimal -i- invariant. 
measure , continued frac t.io ns and uniqlleness of parameters of 
c h ajn sequences. 

K ey wonts: Quasi-st.at.iunaJ'Y dist.ributioll, Yaglon limit., 
birt.h and death chai n . 

1 Introduction 

'I'll(' main result. o f t his work is T lwor('rJI 4.]. There we show that. the Ma.rkov 
(' hai n assoc ia.t.ed to t.he rniniJllal I-invariant. measure is recurrent if alld oll ly if 
some cont.illlwd fraction is equal t.o 1 or eq uival e ntly if a lld o nly if t he paramete rs 
of so m e chain seqUl'nc!' arc unique ly determ ined . We usc results on cont inned 
fr act.ions obtailll'd by (Wall l U4S). 

In s!'ct.ion 2 we int.roduce ,-invariant measures and the st.ochast ic rnat. ri ces 
associat.ed t.o t he tll. In sect ions ;3, 5 and () Wf~ rev iew briefly somp rece llt results o n 
qua.si-st.at.ionary dist.ribut.io ns (q.s.d.) , and I.hei r rel at ions wit.h Yaglorn limit a nd 
t.he limit chain cond it.iolH' d to lIo tl -a hso rpt.ion. Section 4 is devoted to Hw study 
of q.s. d. on hirt.h-death chains. 

2 Stochastic Matrices Related to , -Invariant Me­
asures 

Let. (X/ : I ::::: 0) b e a :Markov ('hai l! o n 1\,1 = {O} U N- ddined by the I.ra ll s itioll 
mat.rix P = (p,.y : J:, y E 1\,1). \Ve aSS llll W that. 0 is a.n a.bsorbing stat.e , Jion = J , 
and t.hat. P* = (P.ry : ;r , y E 1\,1 * ) is a n irrcdtlcihle matrix. 

A non-t.rivial rn('aSll/'f~ p. o n 1\,1 * is i-suhinvar iallt if f1Y* S; i ll a tld i- in va.r ia.nt. 
if p. P* = i 'Ji . From irreducihility any -(-sub illvar iant nwasure II is st,ri ct. ly posit.ive. 

Consider the series F~;Y(-I) = L 1/,":/'-'" The irredtlcibility of P* implies 
lI~n 

that. t.h ese series have a common COllvPJ'gl'tlce radii ill 1 E [I , ·x .) wiell docs not 
depends on ;f. y. III (Ver<~-.Jones HHi:! ; Send .a 1!)7:_~) it. is s hown t.h at. t.!l e re exist 
,-subinvari a nt. IIl easures if a.nd o ul y if , ::::: -(0. T he matrix P' is ca ll ed -,-tra.llsi( ~ nt. 

:121 
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if P;y(') < 00 and ,-recurrent otherwise. Notice that. for any, > 10 the matrix 
P* is ,-transient. 

Let. us relate to a ,-subinvariant measure J.L a matrix NIIJ.<) = (mxy : x, y E N*) 
defined by 

-1 J.Ly i' ... ,* mxy =, -Pyx lor x,y E'~ . 
J.L," 

M(J.<) is substochastic and it is stochastic if and only if J.L is ,-invariant. 

From the equality m~~) = ,-" ~: p~~~), the following equivalence holds: 

P;y(,) < 00 if and only if M£~)(1) = L m~~) < 00. 

n?:O 

Hence the condition at the right docs not depends on J.L and if 

(2.1 ) 

, > ,0 the substochastic matrix M(J.<) is transient. If P* is ,o-recurrent, there 
always exists a ,o-invariant measure, let J.L be one of them. P* is ,o-positive (resp. 
,o-null) if and only if the st.ochastic matrix M(Jt) is posit.ive recurrent (resp. llllll 

recurrent). Also this last condition does not depend on the ,o-invariant measure 
J.L and can be characterized only in terms of coefficients Pxy, see (Beneta 1973). 

If h > 0 is a right. eigenvector, P*h = ,h for, > 0, then we can associate t.o 
it the following stochastic matrix Nih) = (nxy), 

-1 hy * 
nxy =, hx Pxy for x, yEN . (2.2) 

Now assume that the matrix P* is reversed by a strictly POSitive measure 
11" = (11"" : x E N*) i.e. 1I"xPxy = 1I"y1'yx for any x , y E N*. Let J.L be a ,-invariant 
measure, then I!. = (&: x E N*) is a ,-invariant vector of po: p*1!. = ,I!. and it 

7r '1rx 7r 1T 

is easily shown that M(J.<) = Nl;') . 
Now consider the stochastic matrix M(J.<) associated t.o p .. From reversibility 

we get: 

( .) _ J.Ly 11",< ( ) so 1TI n =""y n __ pn 
xy I xy 

11" Y Jtx 

2 2 

Then the matrix M(J.<) is reversed by the measure L = (J.<x : J: E N*): 
" "x 

2 J.t 2 
J.lx y * 
-mxy = -m·yx for any ;1.: , yEN 
1I"x 1I"y 

(2.3) 

2 2 2 . 2 

Hence £ = (!!:.£ : x E N*) is an invariant measure of MIJ.<) : LM(J.<) = L. 
7r 7r r 7r 7r 

2 

Therefore, the matrix P* is ,o-positive if and only if " !!...:. < 00 . o "x 
xES' 
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3 Quasi-Stationary Distributions 

Probability meas1II"cs which are ,- invariant are called quasi-stat.ion ary dist.ribu ­
tions (q .s. d). They verify: 

lIP' = Ill, J.1 > 0, L l.lx = 1, 
.rES" 

and sim ply cornpu lations show that ~f = 'I' W here ~/P = I - L ll y Jiyo · 
yEN" 

The q.s.d. are also characterilled as the probability measures II which satisfy: 

PI' {Xt = XIT > t} = J.1x 'ix EN" , (3.1 ) 

where T = inf{t : X t = O} is the time of the first absorption of the chain. 

Fronl (3.1) it is easy to prove that if /1 is a q.s.d. then the distribution PI' {T E .} 
is geometrically distributed. Observe that EI'{!-r) < 00 for any I > 'I' and it is 
infinite if I = II" A q .s. d. with 'I' = ,0 is called a minimal q.s.d . 

From the geometrical distribution of T starting from II, we get tha t a necessary 
condition for the ex istence of q.s.d. is that the chain is geometrically absorbed at 
0: 

3, < 1 such that 'ix E N" : (1 - p~~6) ::::: cx,n 'in 2: 0 and some c" > O. 

The reciprocal has bcen recently shown for con t.inuous Markov chains (.\/ 
2: 0) which are hon est process a nd the minilllal ones a.ssociated to stahle and 

conservat ive transition rates matrix which also verify 
P~.{T < t} -- O. l'vlorc precisely for this kind of chains the condition ofgmlllCt.-

x-- ex.> 

ric absorptioll (1 - ]J~I,~) ::::: C~.,I for any t 2: 0, is necessary and sulTicicnt fo r t.1l<' 

exist.ence of q.s.d. , see (Ferrari , Kestcn, MartinclI and Pi cco 199;~). 
For birth-death chains the set of ,-invariant. measures is a cOlltinuous ordered 

by , 2: ,0, see (Cavender 1978) alld (Ferrari, Martill e;,: alld Picco 19U:2) . III this 
last work it is a lso shown, for discrete birth death chains, the equivalcJl('{! lwtwee ll 
the existence of q.s.d . and geometrically absorption by using continued fractioll 
techniques. In next section we use these tools to study the recurrence of MU'l 
where ji is the minimal q.s .d . For continuous birth-death chains the equivalellce 
mentioned above was shown in (van Doorn 1991; van Doorn and Schrijller 1992). 

4 Birth-Death Chains 

Now let us consider the birth-death chain on N with 0 an absorbing state. Dellote 
qz· = Px ,x- l, ]Jx = ]Jx,x+l for x E N*, we assume that they are strictly positive. 
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This irreducible chain is reversed by the measure: 

x -I 

71"1 = 1, 7I"x = IT ~ for x > 2 
y=1 qy+l 

A measure /1- is ,-invariant if 

Vx E 1\1* : qx+l/1-x+1 + (1- Px - qx)/1-x + PX-l/1-x -l = "J~ .. 

(4.1 ) 

For any, for which t.here exists a solution /1- it. is unique up to t.he mult.iplicative 
constant /1-1 > O. When t.he ,-invariant measure fJ is finite , it is a probability 
measure when we fix /1-1 = ..1..(1 -,) . q, 

In (Ferrari, Martinez and Picco 1992) it was shown that if there exist. ,­
invariant measure for, < 1, then the property of being finit.es or infillites does 
not depend on , < 1. 11\ fact, it was proven that if E x( r) < 00 (that is if 

r z= (TI ...J!.JL) = (0) and if there exists a ,-invariant measure Il with -(I' < 1, then 
x>1 y=1 qy+' 

/1--is a q .s.d . Reciprocally, if /1- is a q.s.d . the chain is geomet.rically absorbed, so 
Ex(r) < 00. 

Let /1- be a ,-invariant measure. Consider the stochastic mat.rix M(J1.) as in 
(2.1) , so with coefficients mxy = ,-l£;pyx. It is also a birth-death chain and for 
the description of its coefficients it is useful to introduce the variables : 

W ("r) _ -1/1-x+l 
x -, --qx+l· 

/1-x 

Then: 

m x ,x+l W~'Y) for x E N*, 

mx,x = ,-1(1- Px - qx)' 

-2Px-IQx C > 2 , ~ orx_ . 
Wx _ 1 

From the equality m x ,x-l + mx ,x + m x ,x+l = 1 it follows: 

where 

and W('Y) 
1 

1 -1(1 ) -2 Px-Iqx ,. > 2 - , - Px - qx -, --- lor x _ 
w 

(4.2) 

(4.3) 

A necessary and sufficient conditions for the existence of a ,-invariant measure 
is that the sequence (w1'Y) : x E N*) is strictly positiYC. In this case the associated 
,-invariant measure is defined by 

x-I W('Y) . 
/1-~'Y) = /1-i'Y),X-l IT - .-y- for :l' ~ 2 wit.h "(I'Y) > O. 

y=1 qy+l 
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Now, consider 

," = inf r, where r = h : there exists /-l(-r) a ,-invariant measure} . 

Then ," > 0 and the set r is either empt.y or the interval [," ,00 ). 

Let /-l be a ,-invariant measure. From (2 .3) and (4 .1) the birth - death chain 

M(IJ) is reversed by t.he measure ~ . We have: 

and from classical results on birth - death chains , for instance see (Karlin and 
Taylor 1975) , 

( ') )-1 
M(IJ) is transient if and only if L ~; w~ .. ~) < 00 and as it occurs 

xE""" .r. 

2 

with reversed chains, it is positive recurrent if and ,,"ly if L ~ < 00. 
x EN. z; 

To analyse t.he existence of q.s.d. we int.roduce t.he St~quence w("y) = (W;-Y) 

x E N") defined by WpJ = g-y,x(W!2:.\) for x ~ 2 and W::-y) = 1 and we consider 
t.he quantities: 

for y ~ x ~ 2. 

It can be proven , by using monotonicity arguments, that W( -y ) is strictly positive 
if and only if: 

Vy ~ x ~ 3 

Vy ~ 2 

0< h-y (x , y) < 1 - ,-1(1 - Px-I - qx-d 
o < h-y (2 , y) < 1. 

From this last. relat.ion it. was shown in (Ferrari , Mart.inez, Picco 1992) that. the 
equality 'A = , " E (0 , 1] holds. Moreover r = [,", 00) is also verified , in particular 
r is non empty. 

In the case Px + qT = 1 for any x E N" the equations (4.3) take the form: 

( 4.4) 



326 P. A. Ferrari and S. Martinez 

It turns that this form is well-adapted to be studied with techniques on contill­
ued functions . In this case h-y(x, y) is the following approximant of a continued 
fraction: 

1 - PY_IQy;,2 

From previous discussion we get that there exist ,-invariant measures if and 
only if there exists, < 1 such that h-y(x, y) < 1 for any y ~ x ~ 2. In particular 
this implies that the continued fraction h-y (2,00) = lim h-y(2, y) is ~ 1. We shall 

y .... oo 

prove below that the continued fraction h-yo(2, 00) gives us all the information to 
analyse the recurrence of the matrix M(iJ) associated to the minimal,o-invariant 
measure. 

Before to supply the result we shall introduce another concept that we will 
relate to ,-invariant measures. 

A sequence (ax)x~2 is called a chain sequence if it is of the form ax = (1 -
ifx-l)iix for some sequence (if x E [0, l])xEN°. This last sequence is called the 
parameters of the chain sequence. The chain sequences were introduced in (Wall 
1948) and in the next paragraph we summarize some of the main results that were 
obtained on them. 

Any chain sequence (ax )x~2 has minimal parameters (~)xEN0 and maximal 
parameters (qX)XEN0 such that for any other parameters (ifx)xENO of the chain 
sequence: ix ~ iix ~ qx, x E N· . The minimal parameters verify 

q = 0, q = { ~%+l 
-1 =+1 1-'l., 

if q = 1 
if -;; < 1 for x E N'; 

-"-$ 

and the maximal parameters are given by the continued fractions 

for x E N·. 

The maximal parameters are equal to the maximal ones if and only if 
00 y 

L 11 (1:~ ) = 00, or equivalently if and only if ql = 0 (Wall, 1948). 
y=lx=2 ...", 

The following relations hold between ,-invariant measures J.i and chain se­
quences. Furthermore the next result also gives a criterion for recurrence of the 
matrix M(iJ) associated to J.i by (2.1). 
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THEOREM 4.1. An absorbed birth-death chain hat; a '"'!-illvar'ianl m easure if and 

only if the sequence (a~")') = ,-2(l_q;1"_])qx).r~2' is a elwin sequ ence. Moreover 
if this condition holds and J-l is the ,-invariant measure then the mairiJ: MUl) = 
(7nxy ) associated to J-l verifies m .t:,,"- l = 9..." for J: E N*, the minimal parameters 

of the chain sequence (a~")' » )x~:? 
For, > ,0 the minimal and maximal parameters of th e chain seque.nce a1'e 

different. For, = ,0 the chain induced by M({l), with j.J = J-lho ), is recurrent if 

and only if the minimal and the maximal parameter's of ((!~'"Yo) ) ~'~ 2 an: equal, and 

this holds if and only if h")'o (2 ,00 ) = 1. When MUi) is recurrent then w~ i 'o) = 
h")'o( x + 1,00) for x E N* , so ji. = J-l ho) can be computed as simple continued 
fractions. 

Proof. From (4 .2) , (4.4) it follows that if J-l is a ,-invariant. measure and M(lll = 
) . . . d d . . . h (")') ' S -(nlxy IS ItS 111 uce tranSitIOn matnx, t en a," = m ,.: ",, -llH j : -l ,;1"' et q" = 

mx,x- l for x E N* , so mX-l ,l' = (1- qx-d and a~")') = (1- <1 ,,-I}qI, then (a~")'» ) X ~2 
is a chain sequence. Since iii = miD = 1 - 171' 12 = 0 we get that ii ." = 111x ,x-I with 
x E N* , are the minimal parameters of the chain sequence. 

Reciprocally if (a~")'» )X> 2 is a chain sequence we can write 

a~i' ) = (1 - q.r:- dqx for sO~1e parameters (qx )xEN< . Hence: 

Consider (q ) XEN< the minimal parameters of the chain sequence and call w~")') = 
=: 

J - q . Then it verifies the dynami cal equat.ion wl")'J = 1 - , - 2 (l-q'; ~)l )'1.', with 
= W,' _ I 

initial condition wi")') = 1 -IJ..] = 1. From unicity of solut.ion of (4.2 ) we ckduce 
m x,x+! = 1 - 9..." , mx ,x-l = 9..." for x E N* . Then the first part of t.he theorem 
holds. 

For, > ,0 the chain induced by t.he matrix M(Il), with 11, = J-l(i'l, is transient . 
From the usual criterion on birth-death chains (see Karlin and Taylor 1975) we get 

00 y 

that the transient property is equivalent to L: n m x.r -I = 00. Since mx x-I = 
y =l r =2 171 x ,:\'·+1 I 

9..." , mx,x+! = 1 - ir we deduce, from the referred result of (Wall 1948) , that the 

minimal parameters of (a~")' \: ~ 2 are different from t.he maximal ones. 
For ~f = ~lo t.he last discussion gives that. the chain induced by M({l) is recurrent 

if and only if the maximal and t.he minimal parameters of (a~")'o) )X> 2 are equal. 
C 'd M ({l) - ( ) d d - - - - 1 - S· Go) - - -,anSI er - 1T/xy an enote qx -1T/':c.x-l,Px - -q", . lllceax -Px -lqx 

we get: 
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-2 
Plq210 

h,o (2, 00) = -----"---"2,.----
P2q310 1 - -----"----

....., .:C 

1_ PxQx+1 

From results of (Scott and Wall 1940) and more precisely Theorem 11.2 of 
(Wall 1948), we get: 

_ CX) e _ 
. . ql h 5- '"' IT ql+r h-yo (2, 00) = 1 - _ were = 1 + ~ -_ -

1 - 5- 1 (=0 r=O PI+r 

Now, the chain given by matrix M is recurrent if and only if § = 00, which is 
equivalent to h-yo (2,00) = 1 - iit . Since PI = 1, we get the result. 

Finally, for any I 2 10 the following equations are verified by the continued 
fractions 

h () Px-dx h ( 1 ) 1 Px-lq;,; t' 2 
' -y x,oo = 1-h-y(x+1,00)' so -y x+ ,00 = - , 2 h-y(x,00) Jorx2 . 

Let ji = J.1C"Yo). If the chain associated to M(jj) is recurrent, then h-yo(2, 00) = 1 and 

the result holds because W~-yo) and Vx = h-yo(x + 1,00) obey the same evolution 

equations with the same initial condition wi-yo) = V; = 1. • 

Example. Random Walks. In this case qx = q, Px = P = 1- q \Ix E N*. COlJsider 
the non symmetric case, q # ~. We have 10 = 2Jq(1 - q) and g-yo ,x(w) = 1- 4~' 
Then h-yo(2, 00) = ~ and J.1C"Yo) is transient. 

5 Relation with Yaglom Limits 

Intimately related to q.~.d. is the concept ofYaglom limit. Let us define it. Denote 
by d the period of the Markov chain (XL) and consider 
C(x, ).) = {y : p~~d+") > 0 for some n}. The measure J.1Y is the Yaglom limit of 
(Xd if the following limit'exists, 

(nd+r) 
Y I' Pxy ( 

J.1 y = 1m (d) f<?r y E C x, 1'), 
n_oo 1 n +r 

- Pxo 



Quasi-st,ationary distJ'i butio1l8 

if it does not depends on x E N* and L Il~ = 1 for any 0 ~ r < d. 
yEC(x ,r) 

329 

The existence of this limit was established for branching process by (Yaglom 
1947), for finite chains by (Darroch and Seneta 1965) and for birth-death chains 
by (Good 1968; Kijima and Seneta 1991; van Doorn 1991). 

If P* is also aperiodic and such that for any yEN the set 
{x E N* : Pxy > O} is finite, then if the Yaglom limit IlY exists, it is a q.s.d. In 
Proposition 6.1 of (Ferrari, Kesten, Martinez and Picco 1993) it was shown that 
",l' is in this case, the minimal q.s.d . 

Let Xl be a birth-death chain with 0 an absorbing state and such that Px+q", = 
1, Vx E N*. From solidarity property arguments, it is easy to show that if the 
following quantities exist 

IlY -,-y - lim 
n-oo 

n+1I-1 e .... en 

(11 ) 
Ply 

---'-"-~ for any y E N* 
1 (n) 

- PIO 

and L Il~ = L Il~ = 1, then the measure Ill' is the Yaglom limit of the 
y odd y even 

birth-death chain. For the absorbed random walk qJ' = 'I > ~ constant for x E N*, 
it was shown in (Seneta and Vere-Jones 1966) that. (lie' Yaglom limit exists, being 

y(ly-I C-q4
Pq ) ifyisodd, 

= y (lY- I C -q4Pq ) 2~ if y is even. 

Now, for the random walk the minimal q.s.d. is: 

- (l)y- 1 1-2...jfiq Il = y -
y q q 

Due to the fact that the period of the chain is d = 2 the Yaglom limit Ill' is not 
a q.s .d. In order to analyse, for birth-death chains the relation between Ill' and 
the minimal q .s.d . jJ. it, is useful the following observations. . . 

Dpflo(.e T J' first absorption ti me when the chain starts at x. { T X n})s 
non-em pty if and only if n + x is evell . Then : 

. . P:v{T> n-l} 
)f n + ;/: )s odd, p { } = 1 

x T> 11. 

When 11. + x is even and the Yaglom limit Ill' exists the following relation hold: 

lim 
n_oo 

n+.r even 

P",{T>n-l} 
Px{T> n} 

1 
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By using these relations in (Martinez and Vares 1992) it was shown that if the 

Yaglom limit J-LY exists and if we define /y = }1 - q1J-Lf and 

1 Y 'f' dd d - IY Y'f . {Lx = ---J-Lx I x IS 0 an J-Lx = ---II", I x IS even, 
1 + /y 1 + IY 

til e ll ii. is a q.s.d. and Il' = 1 - qllli = 11'. Moreover {L is the minimal q.s.d. so 
-;'1' = IU , 

Kesten has recently made a big progress in the study of Yaglol11 limit . lie h,L~ 
pl"Oved that for a wide class of substochastic matrices P* there exists the Yaglorn 
lililil. The matrices P* studied in (Kesten 1993) verify the following hypotheses: 

(to) 3£ < 00 such that Pxy = 0 if Ix - yl > £, with X,y EN; 
(K:2) 360 > 0, M < 00 such that for any x E N* there exist l' ~ 1 and 

I :S A: I , .. . , kr :S M depending on x, verifying p~~.) ~ Do for s = 1, ... , 1'x and g.c.d. 
(k l ' ... , k,.) = 1; 

( 10) 315 1 > 0, N < 00 such that for any J: E N* there exist 1 :S 11,11t :S N 

depellding on x , verifying pt;+l ~ 151 and P~';-l ~ D1; 
(hA) 31 < 1 such that EX(J-T) < 00 for some x EN' (then for all x E N·). 

Kesten proved that conditions (K1-K3) imply the existence of a measure /L 
a nd a function h, both strictly positive, such that 

J-LP' = lOJ-L, P' h = loh , 

Whell (hA) is also satisfied then /L can be taken as a probability mecL'3UI'e , so 
i = 1 - L /LyPzO and /L is the Yaglom limit , 

z EN -

(n) 

lim Pxy = /Ly for allY y E N* 
11-00 1 . (11) 

- ]7,,0 

6 N on Absorbed Conditioned Process 

Let us introduce the general framework. Consider a Markov chain (Xd taking 
values on N with 0 an absorbing state. 

For n > k ~ 1 we have: 
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From this relation it was shown in (Martinez and Vares 1992) that if there 
. I' P {T>n-l} r I eXists n!!~ ;.: {T>n} lor any coup ex, y such that Pxy > 0 then 

lim P{Xo = xo, ... , Xk = xklr > n} exists. 
fl.- OO 

Set 

( I. Py(r > n - 1)) 
1m Pry . 

n-oo Px(r> n) 

Then if the matrix if = (mxy )x ,YEN° is stochastic the limit distribution 
lim Pro(."YI = Xl, ... ,Xk = xkl :- > n) defines a Markov chain on the N* , with 

n-oo 

transition matrix if and initial state Xo. A particular situation where M is 
stochastic occurs when for each x E N· the set {y E N* : Pry> O} is finit.e. 

If P* is aperiodic, reversed by somf' mea.'>urf' 11' > 0, the Yaglom limit pY 
exist.s and {x E N* : P", y > O} is finite for any yEN·, t.hen it = MU.I Y). For 

birth-death chains it can be also proven that. if p}' exists then il = M(jl) where it 
is the minimal q .s.d. All these results were shown in (Martinez and Vares 1992). 

In all these results the reversibility plays an important. role. To clarify this fact. 
recall that. under 1I'-reversibility, if p a ,-invariant measure t.he function h = ; is 
a ,-right eigenvector and N(h) = MU,) . Hence, if P* can be reversed the matrices 
associated to right or Ipft eigenvect.ors are the same. 

When there is no reversibility the matrix N(h) is t.he relevant one. In fact. it 
follows from the computations made in (Kesten 1993) that for the matrices verify­
ing conditions (K1) - (K4) the transition matrix it defining the limit distribut.ion 
conditioned to non absorption is if = N(h), where h is the ,o-right eigenvect.or. 

This work was partially financed by FONDECYT under grant 1208-91 and 
FundaC;30 VITAE. 
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