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Absta'act : The aim of this paper is t.o desc" ibe recent 
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Let X be a random variable wit.h normal distribut.ion having zero IIwan and vari­
anep one, and let F be a real valued function in the [,2 space of the Gaussian mea­
sure on R , i.e E (F'(X f) < 'XI. It. is well kltown that F admits the L:!-orthogonal 
expansIOn 

ov 

F(J:) = L amHm{x), 
m=O 

wh~re Hm , m ~ 0, are the orthogonal Hermite polynomials given by 
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dnl 
H ( ' '-) - (_1)111. £' /2_' _' e -:r;' /'2 

111. X - e dx m ' In 2 1, Ho(x) = 1. (2) 

Moreover , E (F(X)) = ao and 

CXJ 

E (F(X)2) = L rl/!a;n-
1n=O 

The orthogonal expansion (1) has been used ill many applications ill 1I1a.t.ht'­
matics and physics. For example, expansions of t.he type 

1 I ''Xl ( - I )''' (2m)! ' , . 
1[X>D] = -2 + ~2 L (2 + 1)1 -2'" 1 H2m+1(-'{) v£7r m . . m. 

m =D 

(4) 

have been very lIseful in probability theory (see [80]). Similar expressions to (1) 
and (3) in terms of multivariate Hermit.e polynomials can b~ obtained for real 
valued functions in the L2 space of the Gaus~ian mpasure OIl Rd. The recent book 
by Thangavelu [86] is an excellent reference for this subj ec t. 

An analogous orthogonal expallsion [or real valLit~d L:l-fullcli6nals of a Wiell(,], 
process was proved by Ito [31], where the role of the "infinite dim ensional" Her­
mite polynomials is played by t.he so called multiple Wiener-Ito intfgral.s. More 
precisely, for an atom less measure space (1', r, 1/), let. \i\/(A) , A E r, be all or­
thogonal Gaussian random measUl'e with variance I!(A), ddined on it complete 
probability space (fl, F, Pi, and let l}(W) = L2(fl, F W , jJ) , ~here F W is t.11f' (T ­

field generated by W. [to [31] proved that any real vplued funcl,ional FE L'2( W) 
admits the L2 -orthogonal expansion 

(5) 
111-=0 

where Im(/m) is the moth multiple Wiener-Ito integral of the lion mndolll kern el 
fm E L2(1'm ), m 2 1, and 10(/0) = fa = E(F) . This expaJlsion i:;; IInique provided 
t1H' kf'rnels are symmetric. Moreover, resembling (3), it holds that 

(6) 

where fm is the symmetrization of 1m. 
We shall refer to (5) as the chaos expansion of the Wienel~ functional F. It 

is also known in the literature as the Wiener chaos decomposition or the chaotic 
representation. 

Several authors have dealt with chaos expansions in the study of fun~tionals of 
Wiener and Gaussian processes arising in different fields of probability, st.ochastic 
processes, statist.ics and mathematical physics (see for inst.ance [2], [3], [9], [30], 
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[40], [44], [45], [47], [55), [57), [60], [65] , [79], [80] and [82]) . For example, ex­
pansions in t.erms of multiple \\li ener-Hi:> int.egrals have traditionally been used in 
the const.ruct.ion of Hida dist.ribut.ions and t.he White Noise Calculus, as shown in 
Hida [19] and Bida ct. al [20]. Ot.her important \Viener dist.ributions , as those 
in Nualart and Zakai [64], Gorost.iza and Nuala.rt [W] , Korezlioglu and Ustunel 
[38], Meyer and Yan [49], Wat.anabe [\H] and ("(,ferences therein, also depend on 
the Wiener chaos decomposition . Likewise, the recent. book by Meyer [51] shows 
t.he usefulness of chaos expansions in Quantulll Probabilit.y, while Hu and Meyer 
[26] and Johnson and Kallianpur [:11] have st udied t.he Fey nman integral through 
chaotic representat.ions. 

The purpose of t.his work is to sur\'(-~y some applicat.ions of chaos expansions 
which haVl' recently been made by several au thors. We include the Wiener chaos 
decomposit.ion of some functionals of vViener and Gaussian processes appearillg 
in large deviations, stochast.ic analysis allel lewl crossing counts. The aim is to 
illustrate how t.his tool is useful in the st.udy of several problems in probability 
and stochastic processes. For t.his review we have drawn freely on the work of 
several co-authors and colleagues, hoping that. this survey will be an incentive for 
t.he study of new applications of chaos expansions. 

The organization of the paper is as follows . Section 2 presents the basic prop­
erties of multiple Wiener-Ito integrals ; an ant.icipat.ing stochastic integral and 
Sobolev spaces of Wiener functio nals in the sense of Watanabe [91]. Section 3 
contains results by Perez-Abreu and Tudor [71] on large deviations for a class 
of random variables having a special chaos expansion . Section 4 describes t.h e 
recent. work of Nualart and Vives [GO], [61], [62] and Imkeller , Perez-Abreu and 
Vives [29] on t.he intersection local time of t.he Brownian mot.ion and t.heir Wiener 
chaos decomposition. Section 5 sketches an approach based on chaos expansions 
for t.he solution of bilinear stochastic differential eq uations. We include the case 
of a random Gaussian drift in the first. \\liener chaos, as recently given in Leoll 
and Perez-Abreu [42]. Section 6 present.s an application due to tJstiinel and Zakai 
[88] on t.h e Wiener chaos expansio n for Radon-Nikodym derivatives of some trans­
format.ions of the Wiener path. Section 7 hriefly L"I~ views some of t.he new work 
by E. Slud and co-aut.hors ([10) , [11) , [37) , [80) , [81)) on t.h e chaos expansion of 
functionals related to level-crossillp; count.s of a Gaussian process. Finally, Section 
8 includes a resu lt. of Houdre and Perez-Abreu [23] on variance ineq ualiti es for 
functionals of the Wiener process . 

In t.his survey we do not include any mat.erial on chaos expansions for stochas­
tic processes other t.han t.he VViener and Gaussian. We refer to Ogura [67], Nualart. 
and Vives [59] and Surgailis [83] for the Po isson process; to Ito [:33], Segall a nd 
Kailat.h [75] and He and Wang [17] for independent-increment processes; t.o Azema 
and Yor [1] and Emery [12]-[13] for other martingales; to Nualart. and Zakai [63] 
for t.he rnuit.iparameter \\li cner process; t.o l3iane [4] for finit.e Markov chains; to 
Meyer [50] and tlu and Wang [17] for sOl11e discret.p tilllf' processes; to Kallianpuf 
and Perez-Abreu [36] for t.he cylindrical Brownian 1Il0tion on a Hilbert. space, t.o 
Hida. [18] for the generalized Wiener process, and t.o Perez-Abreu [68] for the llU-
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clear space valued Wiener process. Recent.ly, Szulga [84, Sec. :~ .3] has offered a 
general perspective on the study of the infinite chaos order for general processes 
including stable processes. On the other hand , the book by Kwapieri alld Woy­
czillski [39] presents an updated account on multiple stochastic integrals and series 
for L2 and non-L2 processes , while Houdre and Perez-Abreu [24] compile several 
recent contributions and surveys to t.he fields of multiple Wiener-Ito int.eg rals , 
chaos processes and app li cat ions in theoret.ical and applied areas of probability, 
st.ochastic processes and st.at.ist.ics. 

2 Multiple Wiener-Ito integrals and chaos ex-. 
panSlons 

In this section we review basic properties and applications of multiple Wiener-[t,o 
integrals. These tools are by now very useful in the study of Wiener functionals 
and their chaos expansions, as those included in t.he following sections. 

Multiple integrals of Gaussian orthogonal random measures were defined by 
Ito [31] using the so called special elementary functions in L 2(Tm ). These inte­
grals were initially introduced by Wiener [92] and different approaches to their 
construction and extensions to L2-processes are presented in Engel [14], Kwapiell 
and Woyczinsky [39], Major [46], Meyer [48], Neveu [54] and Perez-Abreu [69]. 
For the standard Wiener process WI, t E T = [0,1]' the m-th multiple Wiener·­
Ito integral ImUm) of a function 1m E L2(Tm) coincides with the iterated [t,() 
stochastic integral , i. e., 

(7) 

where 1m is the symmetrization of 1m with respect to the m variables tl , ... , tm. 
We shall denote by i} (Tm) the subspace of square integrable symmet.ri c flln ct ions 
ofTm. 

It is easily seen that multiple Wiener-Ito integrals have the following propert.i es. 
Let 1m E L2(Tm) and gn E L2(Tn) , then ImUm) = Im(im), 

(8) 

(9) 

and in particular 

(10) 

From (9) we observe that multiple Wiener-Ito integrals of different order are or­
thogonal. 



An important, available \'001 is t.h(' so called 111'0(/11('/ f01'1n'llla for multiple in/(-
91'O/S, firs! proved by Ito [31] and later generalized by Shig('kawa [7i] . Namely, for 
1m E i}(Tm) and gn E I}(T") it holds t,hat ' 

_ 1llir~.n) ,,(111) (n) 
Im (/", )1 .. (g,,) - ~ 1 . l' l' 1o.+n -'2r(/", Or g,,), 

"=(l 
(11 ) 

where 

1m () /, 9,,(11 . .. . 1",-1" SI, ... Sn- .. ) = 

r ... J 1",(1\, ... , t m - r , 1/.\, ... '11,. )y .. (s\, .. . , Sn-," U\ .... u,.)dul ... du/'. (12) 
JT' 

In particular (see [;n] or [39. Th . 10 ,3.1]): 

A valuahle rplat.ion Iwt.wpen I)(~ rmit.e polynomials alld Jrlult,iple Wif'llPr-Ho in­
t,pgrals should be noted . For orthonormal runctiolls <PI • ... . <Pn ill [,2('1') it. holds 
t.hat. (see[;n]): 

1l 

Ip,+ '+1' .. (¢>? I" ( ) ... () ¢>~l'n) = II .ji;:i.Hp,(Idq);}). 
i=1 

Specially, for a runction <P wit.h ii¢)iiu('/') = I 

(J!1) 

The ('haos expansion (5) was init.ially pl'Ov('d by K . Ito plJ] IIsing t1w orthogonal 
expansioll of Cameron and Mart.in [8]. AIt.ernat.iVe> proofs of this r('sult, can be 
found. for exalllple , in I(allianpul' [:35) . Kwapierl and Woyczinski [:m) and Neveu 
[54] . All alternative ('('presentation for F E L~(U/ ) is given by (see [5] or [66]) 

1,1 

F = r;( F) + Ii' ~ ,iW, . 
o 

(15) 

where 1jJl E L2([O , 1] x Q) is adapkd and the stochastic int('gral is in tlw sense of 
Ito. 

An important. application of chaos (~xpansions is to t,ht' construction or a 
stochast.ic integral for an ant.icipating st.ochast.ic I)I'OO'SS 'II. E L2(T x 0). The 
original idea seems to be originat.ed in Hitsuda [21), and was later pursued by 
Skorohod [79], Berger and Mizel [:~] and Nlialart. and Pardollx [57] among ot.hers. 
The basic essence is the following : u. E L:!(T x 0), it holds from (5) t.hat for each 
t E T 
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00 

Ut = L: Im(u~), 
m=O 

where for m ~ 1, um E L2(Tm+l). Then, it seems natural to define the integral 
of u (sometimes called the Skorolwd integral) as 

(16) 

whenever 

<Xl 

L: (11/ + I)! Ilu;nlli'(T~+l) < 00, (17) 
m=O 

where U;.,. denotes the symmet.rizat.ion ofu;n with respect to their m+ 1 variables, 
t . e. 

If the process u. is non-anticipating, the stochast.ic integral (16) coincides wit.h 
the Ito stochastic integral ([57]). 

Nualart and Zakai [63], following the above ideas, present generalizations to 
multiple stochastic integrals with random integrands. That is, for k ~ 1, let 
u E L2(Tk x 0) be such that for tJ , ... , tk E T 

00 

Ut" t. = L: Im(u~i. .. 1.), 
m=O 

with 

00 

L: (m + k)! Ilu~lli2(T~+k) < 00. 

m=O 

This leads them to define a multiple stocha.'3tic integral of the random process U 

as 

00 

f k ... J u., . s.8W" ... 8W' k = L: Im+k(u;n)' 
JT m=O 

(18) 

Other useful application of chaos expansions in stochastic analysis is to the 
construction of Wiener distributions is the sense of Watanabe [91]. For Q' E R, 
the Sobo/ev space of order Q' of Wiener functionals D 2,a is defined (see [5] or [91]) 
by introducing the norm 
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( 19) 

on the space of all Wiener funtt.ionals having finite chaos expansions (which is 
dense in L2( W» and completing with respect to 1/ ·1/2 . The case (l' = 1 cor-,a 
responds to the domain of t.he gradient or Malliallin derivative D defined for a 
functional F in its domain (having the chaos expansion (5» by 

00 

DtF = L mlm-1(f,n(t, .». (20) 
m=1 

In particular, for a multiple Wiener-It.o integral 

(21 ) 

More generally, for F E D 2 ,k, some integer k 2: 1, the k-derivative of F is 
given by 

no 

D:" . tk F = L m.(m. -l) . .. (m-~: +I)Im-df,n(tl, .. . tk'·)). (22) 
m=£: 

Using (8HI0), from (22) we obtain that for an FE D'2), having chaos expansion 
(5 ), 

(23) 

and 

00 " 

E(D:' t F) 2 = ~m(m-l) ... (m-k+])m!llf,n( tl , ... tk ,· )II- . (24) 
, . .. k ~ [,2(1' m -k ) 

111.=k 

The case (l' < 0 corresponds t.o a space of distributions of Wiener funct.ionals . 
Similar Soholev spaces are defined for the d-dimensional Wiener processes (see 
(91)) . 

There is an import.ant. eonnection (th e duality relation.) between th(~ stochas­
t.i c integral (Hi) and th(' derivative (20) . Namely, wheneveru satisfies (17) , th r 
integral (16) is the uniqu(~ element ill L 2(W) such t.hat 

E (F llut 8Wt) = E (1 1 
Dt F1t tdl) V F E D2 ,1. (2.') ) 

In fact , it can be shown that t.he integral operator (16) from L'2(T x n) t.o L2(Hl ) 
is t.he adjoint of t.he derivativp operator D from l./ (W) to f } (T x n). Mor-rover, 
under appropriate condit.ions, the following integration by parts formula. holds 
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Dt (11 
us8Ws) = Ut + 11 Dt ll s8Ws. (26 ) 

As an application of this duality relation , from (15) it is possible to obtain the so 
called Clark-Ocone formula (see [5] or [66]) : For F E D2 ,1 

where {Ft ; 0 :::; t :::; l} is the filtration of t.he Wiener process. 
The following duality relation between (18) and (22) is somet.imes uSt' ful : 

(27) 

3 Large deviations for some Wiener functionals 

The probability distribut.ion of a chaos random va ria ble [mUm), 1m E ["(T1I1) , is 
known only in t.he cases 111 = 1 and 2. It is quit.e well known that the probabi li ty 
distribution of the Wiener integralll Ul) is Gaussian wit.h zero meaJl and vari ance 
1111 11~ 2(T) . On the ot.her hand, as shown for example in Imkeller [28] or Val' berg 

[90], [ 2(12) has the distribut.ion of the random variable V = 2::: 1 .\; (y7-1 ),where 
xi x~, ... , a re independent chi-square random variables with one degree of freedom 
and '\1)2, ... are the eigenvalues of the integral operator J{2 in L'.!(T) defined by 
12 , i.e., 

(J{2g ) (t) = f h(s, t)g(s)ds , 9 E L 2 (1'} . 
.IT 

For a general 111 :::: 3, a ll the moments of the ra Jldom variabl.- In, U rn) are finite, 
but Nualart, Ustiinel and Zakai [58] have shown that the characteri sti c function 
of [mUm) is not analytic. Shigekawa [77] ha.'> proved that every mu ltiple Wiener­
Ito integral has a density, but no explicit expression for it still remains an open 
problem to find an expression for it. However , exponential tail estimates for the 
distribution of Im(fm) have been studied by Borell [6], McKean [47] and Plikusas 
[72] amongst others. Recently, Perez-Abreu and Tudor [71] have shown that for 
each m:::: 1, 1m E i'.!(T1H) , x> 0 and (}' > 2, it holds that 

(28) 

where the const.ant 
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• 'Xl (2p)! 
J\o = ~ < <x' 

L... p!(2o)p 
p=O 

(29) 

is independent of ffi. 

By using exponential t.ail estimates of I.he type (28), it is possible t.o prove a 
large deviations principle for t.he random variables {f m /"!. JUm); ( > O} . Namely, 
(see for example [56]) for any ( > 0 there exisl.s an J:o such t.hat. for each ;t > ;/:0 

wit.h a similar est.imate holding for t.he negative t.ails replacing A+ Um) hy A_ Um) , 
where 

and 

On the other hand , the facl. that. the const.ant (29) does not depend on m, allows 
t.he large deviat.ion principle for the random variables {F' = 'L~=o f m / 2 Im U",) ; 
( > O}, where t.he kernels satisfy that t.here exist.s a constant. c: such that. for ('ach 
m> 1 

I II! 112 < (lm/ . I 7n. m _ .' 7/1. •• (30) 

More precisely, it holds (se~' [71) t.ha.t for every Borel set. E in R 

- inf A(J:) < liminfdogP(F' E E) < limsupdogP(F' E £) < - illf A(x) , 
rEE· - ,-0 - ,-0 - ' .EE 

where 

A(x) = ~ inf {ilOII:2(TI ; G(O) = x} , (31) 

G( 0) = fl · .. J fm (tm )00 m (t.» )dtm < 00, 
",=0 [O,l)m 

(32) 

EO a.nd E are the interior and closure of E, and 0 denotes the derivat.ive of o. Chaos 
random variables for which the kernels satisfy (30) are called chaos expansions of 
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exponential type . Examples of such functionals are provided by the app licat.ions 

of Section 5. 
Ledoux [41] and Nualart ct. al [5G] have proved the large deviat.ions principle 

for the processes {[m/2 1m (/;,,) , t E [0 , 1]; [ > a} in t.he spac!' (,'([0,1]). Namely, if 
t.he chaos process {Im(f;,,); t E [a , I]} has a cont.inuous v<' rsi, iiI. t IWll for any Borel 
set. E in C([O , 1]) and ( > a small enough, it holds that. 

1. {11 '11 2 J 1 t ' 0 m } Am(g) = - lllf () 0 ; • • , fm(Ln)fJ (tm)dtm = g(t) . 
2 L-(T) [a ,1]m 

These type of results are useful t.o prove laws of iterated logarithm for chaos 
processes, as it has been shown by Mori and Oodaira [52], [53] (see also [15]). 

Conditions for path continuity of t.he chaos process X t = 1",(/,;,) are provided 
in Marcus [43], Mori and Oodaira [52] and Nualart. et . 11.1 [56]. General conditions 
for the path continuity of a chaos expansion process X t = L~=() lm(f;, , ) remains 
an open problem, as well as t.heir corresponding large deviat.ions principles in t.he 
space C([O, 1]) . 

4 Intersection local time of ad-dimensional 
Brownian motion 

The study of chaos expansions for the local time of mu I t.i pant-meter and d-di mensi­
onal Brownian motions has seen considerable interest. in recent. years , as shown by 
the works of Nualart and Vives [GO], [61], [62], Imkeller, P{)rez-Abreu and Vives 
[29], and Shieh [76] . These Wiener chaos decompositions give t.he existence or" 
such functionals as well as their degree of smoothness in the case when they are 
distributions in the sense on Watanabe [91] . 

Let Wt , t E T = [0, I], be a standard Wiener process and consider the occupa­
tion measure of W defined by 

J.Ltv(A)= t 1A (W.,)ds , AEB(R) . 
.fa 

It is well known (see for example [27]) that this measure has a density L~ (called 
the local time), which can be formally defined as 

(34) 
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where bx (W.) denot.es t.he composition of t.he Dirac delt.a function bx wit.h W • . 
For s# ° this composit.ion is a Wielwr distribution in the sense of Watanabe [91] . 

The basic idea for studying the intersect.ion loca l tillle through chaos expan­
sions is for using t.he Wiener chaos decomposition of b",( W.) t.o compute the inte­
gral in (34). In the Wiener process case (se(' [60] or [61] ) this intf'gral provides a 
smoothing effect and t.herefore the local time L~ is well defined and belongs to a 
Sobolev space of random variahles. 

More specifically, let Pc(x) be the OIW dimensional Gaussian density, i.e .• 

1 (x:!) Pf(X) = --exp -;-
V27rf 2f 

(35) 

Using the relation (14) between mult.iple Wiener-Ito integrals and Hermite poly­
nomials , it holds (see [29] or [60]) that for any ° f. II E L:!(T). J: E fl, and ( > 0, 
the chaos expansion of p,( It (h) - x) is given by 

In particular, for x = ° we have 

(36) 

Then (see [60]) it holds that. 

bAIl (h») = Iimp,( 11(11) - x) in D'! 'cr for any n < -J/2 (37) 
<.(0 

and 

L~. = lim t Pc( I"V., )ds tTl D'J,a for n < 1/2. 
<10 Jo (38) 

Similar results can be obt.ained for t.he local t.ime of a multiparameter Wiener 
process Wt,t E [0 , Jjk,k 21 ([60]) . For this case, the local time L!, belongs to t.he 
space D'2 ,Ct for n < ~, - ~. 

We now describe anaiogous ideas for t.he st\ldy of the double intersection local 
time of a d-dimensional Wiener process Wt = (W/l .... Wtd), ° :S t :S 1, d 2 2, 
where t.he single Brownian motions W/, ... W/ are independent. Using completely 
different t.echniques. the double intersection local time of the planar (d = 2) and 
the 3-dimensional Brownian motions is st.udied in Rosen [n], [74] and Yor [93], 
among ot.hers. 
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For x = (Xl , ... , Xd) E Rd consider the double intersection local tim e, forrnally 

defined by 

d 

1)x = JJ 'O~s~t~l II 80 (VV; - W ; - x;)elsdt , 
1,=1 

(39) 

and let 

d 

1)x(f) = JJ , o~s~t~J IIpf(W; - W; - x ;)dsdt , (> n. (40) 
1=1 

Their co rresponding renormalizations are: 

1); = JJ ,o~s~ t ~ l {g 80 (W; - W; - X i) - E (g bo(Wt - W; - Xd) } elselt , 

( tj 1 ) 
and 

1).; (f ) = JJ 'O~ " ~t ~J {gP«(W; - w; - ;c;) - E (gP«VV; - w; - :c ;) ) } (I.~dl . 
(4L) 

By using (37) , Imkeller et . at [29] have shown that. for x =f. 0 

17x = lillll}.v (I' ) 
<j 0 

. (\ ') 4 - d 
III D ,- for CI' < --. 

2 

Thus , the do uble intersect ion local t ime 1),,, is a well defined randolll vari a bl ~ ['o r 
d = 2,3 a nd a dist ribu t ion va lued series for d 2: 4 . Furt hermore 

l1x = L d [ ( 1° '" ) 1 1 . [ t ] ;c· j. { II ~l:' Js , H (J 1 . ) Pt_ ,,(·Ei )d .wlt , (4:3 ) 
.Jo~s~t~J i = l V ni: t - s 1- .5 n, 

where I:, (-) denotes the n- th mul t iple Wiener-Ito integral wi t. h respect to t h ,~ i- t h 
Brownia n motion W i . Alth o ugh the existence of 17." for d= 2 a ll el 3 is well kllown 
([73], [74], [9:3]) , the chaos expa nsion gives the expressioll (43 ) for lh as well as its 
existence for genera l d 2: 4. 

For d = 2, it was recognized by Va radha n [89] (see a lso [73]) t ha t 1]x -+ ex:. as 
Ixl -+ 0 and therpfo re a renorm ali;m tio n is ll Pcessary. Using chaos expans io ns , it. 
was proved in [29] t. hat for x =f. 0 

1);' = lim 11=, (1' ) in D~·a for CI' < 1 
., ' I n ., 
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and moreover, also in D2 .<> for 0' < J. 

1/~ = lim 7]; . 
Ixl-O 

Similar expansions to (43) are given foJ' 17; in [29] . 
For the case d = 3, the Wiener chaos decomposition technique gives (see [29]) 

that 

weakly in D2 ,(~ for Q' < 1/2, but not st.rongly. TI\f' ext.ra renormaliza1 ion fac­
tor 1/ Jlog( I/e) was suggested by Yor [9~], who proved convergence ill law of 

1/ Jlog( 1 / {)7]0 (f). 
Finally, for d ~ 4 it has been proved in [29] t.hat the Iwt 

{((d- 3/2)17~(d;O < { ::;]} 

is bounded in n 2.Ir for Q' < (4 - d)/2 and therefore weakly sequclJ1.ially eompact. 
Moreover, the /)2 ''' -nOI'I11S converge to a nOll-zero quantity as ( goes to zero, but 
eventually existing weak limit.s of this net have not been ident.ified. 

5 Bilinear stochastic differential equations 

The use of chaos expansions toget.her wit.h thc anticipating integral (16) and the 
product formula for multiple Wiener- Ito int.egrals (11). provide an easy approach 
t.o the study of anticipat.ive bilinear stochastic different.ial equations driven by a 
Wiener process. Although thc idea of the method is somehow element.ary, it. raises 
int.eresting infinite systems of deterministic integral equat.ions which solutions in 
many cases are st.ill unknown . 

As an illust.ration , let. Wt , i E T = [0 . 1] , be a st.andard Wiener process on a 
probabilit.y space (n. :F,P) . Consider I.he anli('ipatil1e bilinear stochastic di.fJeren­
tiat equation 

dXt = A(i)X/ + B(i)XtdWt , 0 < t ::; 1. Xo = ~, (44) 

where B(t), t E [0 , 1]' is a suitable family of deterministic functions and the random 
drift A(t) lives in a finite chaos, i. C., for an n ~ 1, there exist kernels a E L 2(Tu +1 ), 

such that A(t) = In (a t ), t E T. 
It is said that t.he equation (44) has a "1 rone; "olution X = (X t , t E T), if the 

stochastic process X . is ill L2(T x n) a ll(l. satisfies that for each t E T 

X t = Xo + 1t A(s)X.ds + 11 l[o ,t)(s)B(s)X.6W. , 

where the last integral is in the sense of (16). 

( 45) 
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Assume that the initial condit.ion has the Wiener chaos decomposition 

00 

r "'"' i () l~2 (I'm) .I~O = L..J m gm , f/tIl E ~ , (46) 

m=O 

It is important. to observe t,hat we do not assume t.hat X 0 is :F(~! - 'l1(-~as llrabl e nor 
that A(s) is not anticipating. 

Let. the potential solution Shave t.he following chaos expansion [or each I E '(' 

00 

X t = L i",(f/n)' 
m=O 

where f;" E l}(Tm ) , m 2: 1, f~ = E(Xd· Then, writing (46) and (47) in (45) we 
obtain 

(18) 

We first apply the product formula (13) in the second and third integral of 
the right hand side of (48) . Then we use the stochast.ic int.egra l (16) in the las t 
integral of this equation. Finally, by the uniqueness of chaos expansions up 1.0 

symmetric kernels, from both sides of (48) it is possible to ident.ify kernels of the 
same order . 

For example, in the case n = 1, i.e. , A(t) = heat) , we obtain the following 
infinite system of deterministic integral equations (see [42]) : 

f6 = go + 1t 11 a1'(s)f[(s)dsdl' , 

Tn t 

f t ( 1 "'"' 1 ,. f" . . I '" ll , .. . , i.",)=gll, (i" ... , lm)+- L..J a (ti) m_,(t] , ... ,ti_] , t;+] , ... , t",.)CI' 
m. ; =[ 0 

+ (111+ 1) t t a'·(s)J;n+J(s,t] , ... ,tm )dsdl' io io 

Under the assumption that the initial condition Xo has a finit e chaos ex pall­
sion, Leon and Perez-Abreu [42] have shown that the above syst.em (49) has a 
solution . Moreover, there is an explicit expressioll for t.he kernels of the unique 
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solution X of (45) , and for each t E T these kernels are of f'xponential type (30) 
and they satisfy 

co 

L (m + I)! Ilf,nll~ 3(Tm +l ) < 00. 

m=O 

In a personal communication, C. Tudor has observed that the above results still 
hold if the initial condition Xo has an infinite chaos expansion of exponent.ial type 
(30). 

For the case when the drift A(t) is not. random, i.e., n = 0, the Wiener-Ito 
decomposition approach gives in a straightforward manner the kernels for the 
chaos expansion of the solu tion of (44) , as Shiota [78] , Perez-Abreu [70] and Tang 
[85] show. 

For drifts leaving in higher finite chaos, i.e., n 2: 2, the question of existence 
and uniqueness of solutions to the corresponding infinite systems of deterministic 
integral equations is an open problem. On the other hand , although the above 
approach is simple, it does not lead t.o a general theory of anticipative stochastic 
differential equations. The latter could be achieved with the help of an anticipative 
Girsanov's transformation as presented by Buckdahn [7] and Ustiinel and Zakai 
[87]. However, the chaos expansion approach could be still useful in the case when 
W t , t E T, is a multiparameter Wiener process (see [85]) and a Girsanov's type 
theorem is not available or when the assumptions of the latter theorem are not 
satisfied. 

6 Wiener chaos expansion for Radon-Nikodym 
derivatives 

In this section we present, in a few words, an application of chaos expansions to the 
study of Radon-Nikodym derivatives of transformations of the Wiener measure. 
The result is due to Ustunel and Zakai [88] and we give her!' the main ideas. 

Let T = (0 ,1]' n = G(T), F = B(n) , and P be the Wienn measure in n. Let 
H be the Cameron-Martin space, i.e., 

H = {f E L(T); f(t) = 1t J'(s)ds and 1tl(fl(s» 2dS < oo.} 
Consider the transformation of t.he Wiener path Tw = w +u(w) , u E H , and 

let Po T- 1 denote the corresponding induced measure on FW. 
The idea presented in Section 2 for defining the Malliavin derivative and 

the \Vatanabe distributions for real valued chaos random variables extends to 
H -valued random elements (indeed for an arbitrary separable Hilbert space). 
We do not pursue t.his generalit.y here, but in the remaining of this section we will 
need of this more general sPt. up (see [5, C. 3]) . We shall proceed in a formal way 



350 Victor Perez-Abre u 

using the fact that expressions (5) , (16) , (22). (23) and (27) also hold in t.his case. 
We denote by tl om the 111th fold t.ensor produ'ct of tl E H with itself. 

Under suitable assumptions onu and P 0 T- 1 , ( Jstiinel and Zakai [88] haVf-: 

I d N'k d l ' . dPoT-J I I f II . I proved that t le Ra on- 1 '0 ym ( envatlve dP las t le 0 oWll1g c laos ex-
panslOn: 

dPoT- 1 co 
-d-P- = 1 + 2: Im(fm) , ( 50) 

m=l 

where 

( m ( ) ) 
_ I 111 . m - j 0 j 

fm(t 1 , ... , t",) - -I E ~ . D t .t tl • 
rn . L-t J J 1JI 

j=1J 

m>1. (51 ) 

A sketch of the proof of (50) and (51) is the following (see [88] for detai Is as well 
as for a more general result). Let gm(w) = 4;(lt(et) , ... , It( e,,,)) where 4;(-, .. . , .) is 
a polynomial of order 111 or less and e; E H. Then it can be shown that 

Using the analogous duality relation of (27) we obtaill 

Since 

E( )) ' ( dP 0 T- J ) 
gm(w+tl =E Ym elP , 

we have that 

E( elPOT- 1 )_ 
gm dP -

which means that the projection of elP 0 T- 1 / d P Oll the m-tll Wiener chaos is tli(' 
same as that of 

F - ~~J I 0 n 111 - ~ 1 • • • 1.l (s 1, ... , sn)b W, 1 •.. 15 Ws n • 

n=O n. Tk . 
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Then, from the analogous of (22) we have that 

fm(tJ, . .. , 1m ) = ~ E(D7'tmFm). m! I 

Additional computations yield (51). 

7 Chaos expansions for functionals of 
level-crossing counts 
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We now give a brief account. of the work by E. Siud ([80],[81]) on chaos expan­
sions for the number of level-crossing counts of a Gaussian process and related 
funct.ionals. 

Let X t , -t ~ 0, be a stationary Gaussian process with zero mean, variance one, 
and correlation function 

(52) 

with (J" a nonatomic probability measure on R . It. is assumed that )' (i) is twice 
differentiable and we shall denot.e p2 = -1'''(0) . Let VJ : R -+ R be a continuously 
differentiable function (which in many applications is the zero function) and let 
N1/J(T) be the continuous time number of crossings of'lj; by tl1(> Gaussian process 
Xt , O 'S t 'S T. 

Slud [80], [81] proved that N1/J(T) is a well defined random variable having the 
chaos expansion 

N1/J(T) = E(N1/J (T» + L [",Urn), (53) 
m=1 

where for m 2: 1 

{ 11/ P exp( _z2y2 /2)H j (-zy)yi -2 dY]u=1/J(.), z=1/J ,(. )ds } } . (54) 

The main idea of Slud [80] , [81] for the proof of (53) and (54), is to exhibit the 
crossings-indicator 1[(x,_1/J(t))(X,+h-1/J(t+hl<O] first using the Hermite polynomials 
expansion (similar to (4)) of the indicator l[xo~c] for an arbitrary level c, and 
then applying the product formula (11). 
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Strictly speaking, all t.he results in this section have to consider the com plex 
domain. The underlying idea is to use the spectral represent.ation of X t as the 
Fourier transform of a complex Gaussian measure with both real and imaginary 
parts being independent-increments real Gaussian processes. In this case there 
is an analogous theory available for complex multiple Wiener-Ito integrals , as 
presented, for example, in Ito [32] and Major [46] . 

Chambers and Slud [10], [11] and Siud [80], [81] have used chaos expansions 
similar to (53) and (54) to prove central and noncentra l limit theorems for func­
tionals related to level crossings counts of X . Similar kind of limit theorems for 
nonlinear functionals of a Gaussian process have been a customary application of 
the Wiener chaos decomposition . For expository works to this particular subject , 
the reader is referred to the excellent book by Major [,16], the recent above papers 
by D. Chambers and E . Slud, and references therein . 

Recently, Kedem and Siud [37] (see also [81)) have used t.he above expansions 
in the study of some statistical problems of Gaussian processes. We hope that 
more statistical applications will appear in the near fu tu re . 

8 Variance inequalities for Wiener functionals 

We finally present some inequalities, due to Houdre and Perez-Abreu [2:3], for the 
variance of functionals of the Wiener process Wt, t E T = [0,1] . Alt.hough (6) 
provides an identity for the variance of t.he functional (5) , these inequa lities give 
useful approximations to the variance. 

Let F E D 2 ,k,k = 1, ... ,2n-1 (respectively k = 1, ... ,211) for some 11. > 1. 
Then, the following right (respectively left) inequality holds: 

where 

E IIDk FI I ~2(Tk) = E hk ... J (DLtkF)2 dt1···dtk . 

Houdre and Perez-Abreu [23] have obtained (55) as particular cases of a general 
covariance identity for functionals of the Wiener process. Hu [25] has recently 
generalized these inequalities to diffusion processes. We here present a simple 
proof of (55) due to C . Houdre (see also [22]) using chaos expansions. 

Let F have t he Wiener chaos decomposition (5). Using (21) , (22) and (24) on 
the right hand side of (55) we h~ve 
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00 _ 2 2n-J (_l)k+l 
+ ~ j!ll/ill .. ~ j(j-l)·· · (j-k+1) . 

. ~ P(Tl) ~ k! 
]=2» k=J 

. (1 k+" 
Now , from the facts that 2:t=1 ~j(j - 1) ··· (j - k + 1) = 1 and 

2»-1 (':"1)k+1 . . . L k! J(J-l) · · · (j-k+l)-1~0, 
k=] 

by using (6) we obtain 

This proves the right. hand side inequality in (55) and a similar argument shows 
the lower inequality. 
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