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Abstract: The aim of this paper is Lo describe recent
results on the Wiener-[16 decomposition. We focus on a sur-
vey of new applications of chaos expansions to functionals of
Wiener and Gaussian processes arising from different fields of
probability and stochastic processes.
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1 Introduction

Let X be a randomn variable with normal distribution having zero mean and vari-
ance one, and let F be a real valued function in the L? space of the Gaussian mea-
sureon R, i.c. E(F(X)?) < o. It is well known that F admits the L?>—orthogonal
expansion

o

F(x)= Y amHm(z), (1)

m=0

where Hp,, m > 0, are the orthogonal Hermite polynomials given by
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Ho(z) = (=) 2——e*12 m>1, Hyz)=1. (2)

dr™m

Moreover, E (F(X)) = ag and

o4

E(F(X)?) = Z mlaZ,. (3)

m=0

The orthogonal expansion (1) has been used in many applications in mathe-
matics and physics. For example, expansions of the type

1 1 «—= (=)™ (2m) )
lpr>o = 2 + V2T Z (2m + 1) 2mm! Hom+1(X) (4)
m=l}

have been very useful in probability theory (see [80]). Similar expressions to (1)
and (3) in terms of multivariate Hermite polynomials can be obtained for real
valued functions in the L? space of the Gaussian measure on R%. The recent hook
by Thangavelu [86] is an excellent. reference for this subject.

An analogous orthogonal expansion for real valued L% —functionals of a Wiener
process was proved by Ito [31], where the role of the “mnfinile dimensional™ Her-
mite polynomials is played by the so called multiple Wiener-1té integrals. More
precisely, for an atomless measure space (1,0, v), let W(A), A € I', be an or-
thogonal Gaussian random measure with variance v(A4), defined on a complete
probability space (R, F, P), and let L*(W) = L*(Q, FY, P), where FW is the o-
field generated by W. 1to [31] proved that any real valued functional I € L*(W)
admits the L?—orthogonal expansion

oo A
=Y Ialfal (5)
m=0
where I, (fim) is the m-th multiple Wiener-Ito integral of the won random kernel
Jon € L2(T™), m > 1, and Io(fo) = fo = E(F). This expansion is unique provided
the kernels are symmetric. Moreover, resembling (3), it holds that

%

E(F)? = Z m! ﬁ,;

m=0

00, 6
Loy < (6)

where f,, is the symmetrization of f,,.

We shall refer to (5) as the chaos erpansion of the Wiener. functional F. It
is also known in the literature as the Wiener chaos decomposition or the chaotic
representation.

Several authors have dealt with chaos expansions in the study of functionals of
Wiener and Gaussian processes arising in different fields of probability, stochastic
processes, statistics and mathematical physics (see for instance [2], [3], [9], [30],
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[40], [44], [45], [47], [55], [57], [60], [65], [79], [80] and [82]). For example, ex-
pansions in terms of multiple Wiener-Ito integrals have traditionally been used in
the construction of Hida distributions and the White Noise Calculus, as shown in
Hida [19] and Hida et. al [20]. Other important Wiener distributions, as those
in Nualart and Zakai [64], Gorostiza and Nualart [16], Korezlioglu and Ustiinel
[38], Meyer and Yan [49], Watanabe [91] and references therein, also depend on
the Wiener chaos decomposition. Likewise, the recent book by Meyer [51] shows
the usefulness of chaos expansions in Quantum Probability, while Hu and Meyer
[26] and Johnson and Kallianpur [34] have studied the Feynman integral through
chaotic representations.

The purpose of this work is to survey some applications of chaos expansions
which have recently been made by several authors. We include the Wiener chaos
decomposition of some functionals of Wiener and Gaussian processes appearing
in large deviations, stochastic analysis and level crossing counts. The aim is to
illustrate how this tool is useful in the study of several problems in probability
and stochastic processes. For this review we have drawn freely on the work of
several co-authors and colleagues, hoping that this survey will be an incentive for
the study of new applications of chaos expansions.

The organization of the paper is as follows. Section 2 presents the basic prop-
erties of multiple Wiener-Ito integrals; an anticipating stochastic integral and
Sobolev spaces of Wiener functionals in the sense of Watanabe [91]. Section 3
contains results by Pérez-Abreu and Tudor [T1] on large deviations for a class
of random variables having a special chaos expansion. Section 4 describes the
recent. work of Nualart and Vives [60], [61], [62] and Imkeller, Pérez-Abreu and
Vives [29] on the intersection local time of the Brownian motion and their Wiener
chaos decomposition. Section 5 sketches an approach based on chaos expansions
for the solution of bilinear stochastic differential equations. We include the case
of a random Gaussian drift in the first Wiener chaos, as recently given in Ledn
and Pérez-Abreu [42]. Section 6 presents an application due to Ustiinel and Zakai
[88] on the Wiener chaos expansion for Radon-Nikodym derivatives of some trans-
formations of the Wiener path. Section T briefly reviews some of the new work
by E. Slud and co-authors ([10], [11], [37]. [80], [81]) on the chaos expansion of
functionals related to level-crossing counts of a Gaussian process. Finally, Section
8 includes a result of Houdré and Pérez-Abreu [23] on variance inequalities for
functionals of the Wiener process.

In this survey we do not include any material on chaos expansions for stochas-
tic processes other than the Wiener and Gaussian. We refer to Ogura [67], Nualart
and Vives [59] and Surgailis [83] for the Poisson process; to Ito [33], Segall and
Kailath [75] and He and Wang [17] for independent-increment processes; to Azéma
and Yor [1] and Emery [12]-[13] for other martingales; to Nualart and Zakai [63]
for the multiparameter Wiener process; to Biane [4] for finite Markov chains; to
Meyer [50] and Hu and Wang [17] for some diserete time processes; to Kallianpur
and Pérez-Abreu [36] for the cylindrical Brownian motion on a Hilbert space, to
Hida [18] for the generalized Wiener process, and to Pérez-Abreu [68] for the nu-
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clear space valued Wiener process. Recently, Szulga [84, Sec. 3.3] has offered a
general perspective on the study of the infinite chaos order for general processes
including stable processes. On the other hand, the book by Kwapieii and Woy-
czinski [39] presents an updated account on multiple stochastic integrals and series
for L? and non-L? processes, while Houdré and Pérez-Abreu [24] compile several
recent contributions and surveys to the fields of multiple Wiener-Ito integrals,
chaos processes and applications in theoretical and applied areas of probability,
stochastic processes and statistics.

2 Multiple Wiener-Ito6 integrals and chaos ex-
pansions

In this section we review basic properties and applications of multiple Wiener-Ito
integrals. These tools are by now very useful in the study of Wiener functionals
and their chaos expansions, as those included in the following sections.

Multiple integrals of (Gaussian orthogonal random measures were defined by
1t6 [31] using the so called special elementary functions in L?(7™). These inte-
grals were initially introduced by Wiener [92] and different approaches to their
construction and extensions to L*-processes are presented in Engel [14], Kwapien
and Woyczinsky [39], Major [46], Meyer [48], Neveu [54] and Pérez-Abreu [69].
For the standard Wiener process W, t € T' = [0, 1], the m-th multiple Wiener-
It6 integral Iy (fm) of a function f,, € L%*(T™) coincides with the iterated Ito
stochastic integral, i.e.,

1 tm—1 ta _
fm(fm)=m!/ ] {/ frn{tl----nt-m}dwyll} "‘dW':,.._.pd“’!t,..t (?)
0 0 0

where }':,, is the symmetrization of f, with respect to the m variables t,,....1,,.
We shall denote by EE(T”‘} the subspace of square integrable symmetric functions
of T,

It is easily seen that multiple Wiener-Ito integrals have the following properties.
Let fn, € L*(T™) and g,, € L*(T™), then I,y (fim) = I (fm),

E(Lr:{fm))=0‘ (8)

E{Im(fm )In(gn” = bpnm! < ﬁn»ﬁn >L2(Tm), (9)

and in particular

2

E(In(fm)?) = m! | fm (10)

From (9) we observe that multiple Wiener-Ito integrals of different order are or-
thogonal.

L3 Tm)
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An important available tool is the so called product formula for multiple intc-
grals, first proved by Ito [Jl] and later generalized by Shigekawa [77]. Namely, for

Jm € L? (T™) and g, € L (77) it holds that

min{m.n)

Im{fm}!n{yn} = Z "!(’:) (':) Im+n—2r(fm Or gn), (11)

r=u

where

fm e Inltrs ey, 81, ..80_p) =

/ ...-/f,,,(h,...,t,,,“,-.i:.l....u,-)y,,(s;,...,s,,_,‘.r.f;...,u,}rfr.qmdu,-. (12)
Tr

In particular (see [31] or [39. Th. 10.3.1]):

Im(fru)fl (yl} — Il’fl+l(!lll %) M ) + JIm—l(.i“-u'l e } { I:‘}
A valuable relation between Hermite polynomials and multiple Wiener-1to in-
tegrals should be noted. Tor orthonormal functions @1, ...,¢, in L*(7") it holds

that (see[31]):

Lpstipa (697 - @ 93P H\/p. Hy, (11(¢:))-

Specially, for a function ¢ with ||o|[ 24y = 1

1(6°7) = /Pt (11(6)). (11)

The chaos expansion (5) was initially proved by K. Ito [31] using the orthogonal
expansion of C‘ameron and Martin [8]. Alternative proofs of this result can be
found. for example, in Kallianpur [35], Kwapien and Woyezinski [39] and Neven
[54]. An alternative representation for /" € L*(W) is given by (see [5] or [66])

I
F = !‘,'u-')+/ v i, (15)

0
where 1 € L2([0, 1] x Q) is adapted and the stochastic integral is in the sense of
Ito.

An important application of chaos expansions is to the construction of a
stochastic integral for an anticipating stochastic process u € L*(T x Q). The
original idea seems to be originated in Hitsuda [21], and was later pursued by
Skorohod [79], Berger and Mizel [3] and Nualart and Pardoux [57] among others.
The basic essence is the following: u € L*(T x €2), it holds from (5) that for each
teT



340 Victor Pérez-Abreu

o0
Uy = Z Im(u:ﬂ}\
m=0

where for m > 1, u,, € L3(T™*'). Then, it seems natural to define the integral
of u (sometimes called the Skorohod integral) as

1 00
/ wWy = 3 I (), (16)
0 m=0
whenever
Z(m + DI, [z 2me ) < 00, (17)
m=10

where 1, denotes the symmetrization of u;, with respect to their m+1 variables,
i.e.

- 1 m
W (.- tm) = Ty {u:n{tl. wtm) D Ul (e tien b tign, “,z,,,}} .
i=1

If the process u, is non-anticipating, the stochastic integral (16) coincides with
the 1t6 stochastic integral ([57]).

Nualart and Zakai [63], following the above ideas, present generalizations to
multiple stochastic integrals with random integrands. That is, for £ > 1, let
u € L*(T* x Q) be such that for t;,....,tx €T

5]

E: tyot
Upyoty = Im(ﬂ,; k)!

m=0

with

o0

Z{m + k)! ”ﬁ;nlli'z('}""""'} < 0o.

m=0

This leads them to define a multiple stochastic integral of the random process u
as

coi | Migoas Wz Wiz = Yo T L) (18)
=y 2, o

Other useful application of chaos expansions in stochastic analysis is to the
construction of Wiener distributions is the sense of Watanabe [91]. For o € R,
the Sobolev space of order a of Wiener functionals D> is defined (see [5] or [91])
by introducing the norm
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Pl &= Z(m + 1)m! : (19)

m=0

7

L2(Tm)

on the space of all Wiener functionals having finite chaos expansions (which is
dense in L*(W)) and completing with respect to [lls.o- The case a = 1 cor-
responds to the domain of the gradient or Malliavin derivative D defined for a
functional F in its domain (having the chaos expansion (5)) by

DF =Y mhpoy(Fnlt, ). (20)

m=1

In particular, for a multiple Wiener-Ito integral

Dilu(fm) = Moy (1, -)). (21)
More generally, for I' € D**, some integer k > 1, the k-derivative of F is
given by

™

Df W F=Y mm=1)-(m=k+ Dlpoi(fnlts, . te,7). (22)

m=k

Using (8)-(10), from (22) we obtain that for an F' € D** having chaos expansion

(5),

1 ;
Sty oo ti) = E(DE_ F) (23)
and
JC'J'(JD:"I___“‘JF‘)2 = Z m(m—1)---(m—k+1)m! "ﬁ,,{!.....f;-_, }":r - (24)
m=k t

The case v < () corresponds to a space of distributions of Wiener functionals.
Similar Sobolev spaces are defined for the d-dimensional Wiener processes (see
[91]).

There is an important. connection (the dualily relation) between the stochas-
tic integral (16) and the derivative (20). Namely, whenever u satisfies (17), the
integral (16) is the unique element in L?(W) such that

1 1
I (I/ u,&W,) = E (-/ D, F'u.,df) vV FeD. (25)
0 0

In fact, it can be shown that the integral operator (16) from L*(T x Q) to L*(W)
is the adjoint of the derivative operator D from L*(W) to L*(T x Q). Moreover,
under appropriate conditions, the following integration by parts forinula holds
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1 ' 1
Dt (/ U_;(SW,) = Uy +/ D[ N,é”’ra. (26]
0 0

As an application of this duality relation, from (15) it is possible to obtain the so
called Clark-Ocone formula (see [5] or [66]): For F' € D*!

1
F= E[F}+/ E(DF | F¥V)dw,,
0

where {F¥ ;0 < t < 1} is the filtration of the Wiener process.
The following duality relation hetween (18) and (22) is sometimes useful:

v (F/ Uy, 6Wa, ---éWza) - E‘f D} Fui dty..dte ¥ F e D*F
Tk Tk
(27)

3 Large deviations for some Wiener functionals

The probability distribution of a chaos random variable L, (f,n), f: € E"’(T”' ), is
known only in the cases m = | and 2. 1t is quite well known that the probability
distribution of the Wiener integral /,( f,) is Gaussian with zero mean and variance
[ f1 Hie:'m . On the other hand, as shown for example in Imkeller [28] or Varberg
[99],:'9(,?3) ha.s the d istrihm-i?n of the random variahle L-": iy Al \';"“.l.).wlloro
X1,X3, ..., are independent chi-square random variables with one degree of freedom
and A Ao, ... are the eigenvalues of the integral operator Ko in L*(T) defined by

fg, 2'.6.,

(K2g) (1) = /T fa(s, O)g(s)ds, g € LA(T).

For a general m > 3, all the moments of the random variable I,,( f,,, ) are finite,
but Nualart, Ustiinel and Zakai [58] have shown that the characteristic function
of Ly(fm) is not analytic. Shigekawa [77] has proved that every multiple Wiener-
Ito integral has a density, but no explicit expression for it still remains an open
problem to find an expression for it. However, exponential tail estimates for the
distribution of I,,,( f,») have been studied by Borell [6], McKean [47] and Plikusas
[72] amongst others. Recently, Pérez-Abreu and Tudor [71] have shown that for
each m > 1, fp, € L*(T™), 2 > 0 and o > 2, it holds that

" 1/m
P(]Ln{fm)l > 1') < [\.0 CXp —-—l‘ (-l'—) ) {28}

a \ m! || fnll} 2ipm)

where the constant
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. (2p)!
Ko=) oy <o (29)

p=0
is independent of m.

By using exponential tail estimates of the type (28), it is possible to prove a
large deviations principle for the random variables {¢™/2I(f,,);< > 0}. Namely,
(see for example [56]) for any € > 0 there exists an xy such that for each & > aq

exp(—(A4(fm) + €)2*™) < P(I(fm) > 2) < exp(—(A4(fm) — €)a*/™),

with a similar estimate holding for the negative tails replacing Ay (fm) by A_(fin),
where

-2/m
I a7 1] T
A+(!ﬂ?) o 5 lmlp {/ v ‘A‘Ll]"' fm(-"_-)@"(" (g.)div ”q’”.f.'-'('f'] = 1}]

and

=2fm
A_(fm}=%[—inf{ / /{Ul]mfmuw"""‘mdg: ii¢||';’..-{-.~1=lH :

On the other hand, the fact that the constant (29) does not depend on m, allows
the large deviation principle for the random variables { ¢ = S>7°_ /2L, (f,,):
¢ > 0}, where the kernels satisfy that there exists a constant C' such that for cach
m 2> |

m! ||fm|l> < C™/ml. (30)

More precisely, it holds (see [T1]) that for every Borel set £ in R

- Ien‘f Alz) < |ill;§lillf{ log P(F e F) < linglsup(log P(F e E)<—inl A(x),
rek° £—+ £E—

rekll
where
Ay S ||9' Y G =2 (31)
2 LTy’ '
GO =3 [ o [ Il )t < (32)
m=0 [(‘I,I}"'

E° and E are the interior and closure of £, and 6 denotes the derivative of . Chaos
random variables for which the kernels satisfy (30) are called chaos expansions of
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ezponential type. Examples of such functionals are provided by the applications
of Section 5.

Ledoux [41] and Nualart ef. al [56] have proved the large deviations principle
for the processes {¢™/ 21, (f%,),t € [0,1];€ > 0} in the space (*([0, 1]). Namely, if
the chaos process {In,(f%,):t € [0, 1]} has a continuous version. then for any Borel
set E in ('([0,1]) and ¢ > 0 small enough, it holds that

P{Emrzlm[fr(:l) € E] ~ QXIJ[_%(AH:{E')))' {:;'n

where A, (E) = sup,ep Am(g) with

] - t(L,,)08™(L,,)dt,, = g(t) } .
LJIT]/ \/{.l),l]"' f (L) (L )dt,,, = g( }}

These type of results are useful to prove laws of iterated logarithin for chaos
processes, as it has been shown by Mori and Qodaira [52], [53] (see also [15]).
Conditions for path continuity of the chaos process X; = [,,,(f},) are provided
in Marcus [43], Mori and Oodaira [52] and Nualart et. al[56]. General conditions
for the path continuity of a chaos expansion process Xy = 3" I, (f},) remains
an open problem, as well as their corresponding large deviations principles in the

space ('([0, 1]).

Aiilg) = %inf{"ﬁi

4 Intersection local time of a d-dimensional
- Brownian motion

The study of chaos expansions for the local time of multiparameter and d-dimensi-
onal Brownian motions has seen considerable interest in recent years, as shown by
the works of Nualart and Vives [60], [61], [62], Imkeller, Pérez-Abreu and Vives
[29], and Shieh [76]. These Wiener chaos decompositions give the existence of
such functionals as well as their degree of smoothness in the case when they are
distributions in the sense on Watanabe [91].

Let W;,t € T = [0, 1], be a standard Wiener process and consider the occupa-
tion measure of W defined by

t
#i-,f(A)=/ 14(W,)ds, A€ B(R).
0

It is well known (see for example [27]) that this measure has a density L (called
the local time), which can be formally defined as

t
Lt = f 6,(Wa)ds, (34)
0
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where 8,(W;) denotes the composition of the Dirac delta function 8, with Ws.
For s# 0 this composition is a Wicner distribution in the sense of Watanabe [o1].

The basic idea for studying the intersection local time through chaos expan-
sions is for using the Wiener chaos decomposition of 6,.(W,) to compute the inte-
gral in (34). In the Wiener process case (sec [60] or [61] ) this integral provides a
smoothing effect and therefore the local time LY is well defined and belongs to a
Sobolev space of random variables.

More specifically, let p.(z) be the one dimensional Gaussian density, z.e.,

22
exp (———) —m<e<os, €>0. (35)

1
e(z) =
P} = Tome P\ "2
Using the relation (14) betwcen multiple Wiener-Ito integrals and Hermite poly-
nomials, it holds (see [29] or [60]) that for any 0 # h € L*(T), + € R, and ¢ > 0,
the chaos expansion of p.(I1(h) — ) is given by

pe(li(h) —z) =

&r

_l%
38 1Al sy + ) Hon |~ | Pz,
m=0 ( \ Al agry + € L

In particular, for @ = 0 we have

™)

B oo {_Um 2 —(m+4 &2m
pe(Ii(h)) = ; I, [W (”h"L’{TJ + ‘) “h )] (36)
Then (see [60]) it holds that
be(11(N)) = 1i|1%)1p({f1(h) —a) in D> for any a < —1/2 (37)
and
! "
L= liw/ p(Wds in D** for o < 1/2. (38)
v 0

Similar results can be obtained for the local time of a multiparameter Wiener
process Wy, t € [0,1]%,k > 1 ([60]). For this case, the local time L% belongs to the
space D> for a < k — 1.

We now describe analogous ideas for the study of the double intersection local
time of a d-dimensional Wiener process W, = (W!,.W#, 0 <t < 1,d > 2,
where the single Brownian motions W}, ...W¢ are independent.. Using completely
different techniques, the double intersection local time of the planar (d = 2) and
the 3—dimensional Brownian motions is studied in Rosen [73], [74] and Yor [93],
among others.
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For z = (21,...,24) € R? consider the double intersection local time, formally
defined by

d

Wi f/msssrg H so(Wi — Wi — z;)dsdt, (39)

i=1

and let

d
ne(€) = /f,(,s,s.s] [1p (Wi = Wi —ziydsdt, «>o. (40)

Their corresponding renormalizations are:

d d
= [ / 0<s<i<t {1’[ So(W{ — Wi —2;)— E (H 8o(Wi — Wi — m) } s,

i=1 i=1
(11)
and
d d
n(e) = / / 0gsgi< {Hp(( Wi-Wi-2)-E (Hmn-': —Wi- -m) } dsdl.
i=1 i=1
(42)

By using (37), lmkeller ef. al [29] have shown that for o # 0

5 4—d
ne = limae(e) in D™ for o < b ;
e|0 2

Thus, the double intersection local time 7, 1s a well defined random variable for
d = 2,3 and a distribution valued series for d= 4. Furthermore

d iy
1 Ve ( 2 )
Ve = It - H b )dsdt) |, (43)
b ; ./‘/ngsgrgi]'_‘[[vﬂ-i- ( =5 Vi—s Pr-

i=l

where I’ () denotes the n-th multiple Wiener-lto integral with respect to the i-th
Brownian motion W, Although the existence of 7, for d=2 and 3 is well known
([73], [74]. [93]). the chaos expansion gives the expression (43) for 1, as well as its
existence for general d > 4.

For d = 2, it was recognized by Varadhan [R9] (see also [73]) that 7, — > as
|z] — 0 and therefore a renormalization is necessary. Using chaos expansions, if
was proved in [29] that for x # (

W= ]{i]l':]l na(¢) in D> for a < 1
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and moreover, also in D% for o < |,
- . *
o = lim g},
|e|—0 *

Similar expansions to (43) are given for % in [29].
For the case d = 3, the Wiener chaos decomposition technique gives (see [29])
that 1
o = lim ———==1;3(¢€)
e—0 1
log -

weakly in D*“ for a < 1/2, but not strongly. The extra renormalization fac-
tor 1/4/log(1/¢) was suggested by Yor [93], whc proved convergence iu law of

1/\/log(1/)m5 (¢).

Finally, for d > 4 it has been proved in [29] that the net

{r'd“:‘ﬁ]u;[f};ﬂ << l}

is bounded in D> for a < (4 — d)/2 and therefore weakly sequentially compact.
Moreover, the D*“-norms converge to a non-zero quantity as ¢ goes to zero, but
eventually existing weak limits of this net have not. been identified.

5 Bilinear stochastic differential equations

The use of chaos expansions together with the anticipating integral (16) and the
product formula for multiple Wiener-1to integrals (11), provide an easy approach
to the study of anticipative bilinear stochastic differential equations driven by a
Wiener process. Although the idea of the method is somehow elementary, it raises
interesting infinite systems of deterministic integral equations which solutions in
many cases are still unknown.

As an illustration, let Wy, t € 7" = [0, 1], be a standard Wiener process on a
probability space (€2, F.P). Consider the anlicipalive bilinear stochastic differcen-
tial equation

dX; = A(1)X,+ B(1)XNdW, , 0<t <1, Xo=§&, (44)

where B(t),t € [0, 1], is a suitable family of deterministic functions and the random
drift A(t) lives in a finite chaos, 1.¢., for an n > 1, there exist kernels a € L*(T"*!),
such that A(t) = I,(a'),1 €T.

It is said that the equation (44) has a <trong <olution X' = (X,t € T'), if the
stochastic process X is in L*(T x Q) aud satisfics that for each £ € T'

t |
X, =,\.n+f A(s)X,ds+/ 10.0(8) B(s) X, 6W, (45)
(1] 0

where the last integral is in the sense of (16).
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Assume that the initial condition has the Wiener chaos decomposition

Xo= Y Imlgm), gm € LXT™), m>1, go= E(Xo). (46)

m=0

It is important to observe that we do not assume that Xy is }]‘;‘; —measurable nor
that A(s) is not anticipating.
Let. the potential solution X have the following chaos expansion for cach f € 7

Xi= Y Il (47)

m=l

where ff € EQ(T”‘], m > 1, f§ = E(X¢). Then, writing (46) and (47) in (45) we
obtain

Z Im{fr!n) - Z l‘m(f»’m) + A "H(““') Z '(rn(f:;)d""

m=0 m=l( m=l)
1 oo
+ / lo,)(s)B(s) D Ln(f3,)6W,. (18)
o m=0

We first apply the product formula (13) in the second and third integral of
the right hand side of (48). Then we use the stochastic integral (16) in the last
integral of this equation. Finally, by the uniqueness of chaos expansions up to
symmetric kernels, from both sides of (48) it is possible to identify kernels of the
same order.

For example, in the case n = 1, 1.e., A(t) = I;(a"), we obtain the following
infinite system of deterministic integral equations (see [42]):

t pl
fo=g90+ f / a”(s)f] (s)dsdr,
0 0

m

1 ! .
:”(“.....fm):fhn{!h.,..f:u]"'—Z/ ﬂ-r“,‘)fm_l([],...,t,'__l,ff_;_l,....f,“)dl‘
m iz o

¢l
+ (m+ l]/ / a”(s) o1 (8,0, bn)dsdr
o Jo

m

+ ;ZB[ti)l{t.«(t}f;«;_l((iln‘urii—l'ti+l~wptm))' m> 1. (49)
i=1

Under the assumption that the initial condition Xy has a finite chaos expan-
sion, Leon and Pérez-Abreu [42] have shown that the above system (49) has a
solution. Moreover, there is an explicit expression for the kernels of the unique
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solution X" of (45), and for each ¢ € T' these kernels are of exponential type (30)
and they satisfy

oo
Z (?T.'. + IJ' ”fr.n”i"i Tmt1) < 0.
m=0 )
In a personal communication, C. Tudor has observed that the above results still
hold if the initial condition Xq has an infinite chaos expansion of exponential type
(30).

For the case when the drift A({) is not random, i.c., n = 0, the Wiener-Ito
decomposition approach gives in a straightforward manner the kernels for the
chaos expansion of the solution of (44), as Shiota [78], Pérez-Abreu [70] and Tang
[85] show.

For drifts leaving in higher finite chaos, 2.e., n > 2, the question of existence
and uniqueness of solutions to the corresponding infinite systems of deterministic
integral equations is an open problem. On the other hand, although the above
approach is simple, it does not lead to a general theory of anticipative stochastic
differential equations. The latter could be achieved with the help of an anticipative
Girsanov’s transformation as presented by Buckdahn [7] and Ustiinel and Zakai
[87]. However, the chaos expansion approach could be still useful in the case when
W,,t € T, is a multiparameter Wiener process (see [85]) and a Girsanov’s type
theorem is not available or when the assumptions of the latter theorem are not
satisfied.

6 Wiener chaos expansion for Radon-Nikodym
derivatives

In this section we present, in a few words, an application of chaos expansions to the
study of Radon-Nikodym derivatives of transformations of the Wiener measure.
The result is due to Ustunel and Zakai [88] and we give here the main ideas.

Let T'=[0,1],2 = C(7"), F = B(£2), and P be the Wiencr measure in . Let
H be the Cameron-Martin space, i.e.,

t t1
H:{feL(T}; f[t}:/f’(.s)d.s and fu (f'(s))gdé‘(oo.}

Consider the transformation of the Wiener path Tw = w + u(w), u € H, and
let PoT~! denote the corresponding induced measure on F%W .

The idea presented in Section 2 for defining the Malliavin derivative and
the Watanabe distributions for real valued chaos random variables extends to
H—valued random elements (indeed for an arbitrary separable Hilbert space).
We do not pursue this generality here, but in the remaining of this section we will
need of this more general set up (see [5, C. 3]). We shall proceed in a formal way
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using the fact that expressions (5), (16), (22), (23) and (27) also hold in this case.
We denote by ™ the mth fold tensor product of u € H with itsell.
Under suitable assumptions on u and P o T~ Ustiinel and Zakai [88] have

proved that the Radon-Nikodym derivative & f;},‘ has the following chaos ex-

pansion:

dPoT™!
e e T e l + Z IHI Jrl?l] (‘-)U)
dP r’l'&_
where
l m o )
k) = —E DL ouBi L om> L 51
S (ty Y= ;(J) e m > (51)

A sketch of the proof of (50) and (51) is the following (see [88] for details as well
as for a more general result). Let gn(w) = é(Li(e1), ..., Ii{em)) where (-, ....) is
a polynomial of order m or less and ¢; € H. Then it can be shown that

1 "
gm{id-’ + “[W]] = Z m(*’—)” gm{‘-‘-"]‘ UI'IN)H“-‘"

n=f(

Using the analogous duality relation of (27) we obtain

E[gﬂl(w_!_u(w)) — E'. ( IJm Ld]/ / -"' ¥ ,,‘,5)1)6!4;.” f L “’"I"—¢,,) .
n= H : Tk

Since

, dPoT™!
Elgm(w+u))=F (.‘hni)

dP

we have that

. dPoT!
E (QNT) =

(qm[wlz f / B (51, ..., 50)0 W, « 'M’Vs.,) .

which means that the projection of dPoT~!/d P on the m-th Wicner chaos is the
same as that of

Fn = Z n'/ /um"(-"l VS )6 W, et OW, .

n=0
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Then, from the analogous of (22) we have that

1
fnltr, - tm) = — E(D].., Fm)-

Additional computations yield (51).

7 Chaos expansions for functionals of
level-crossing counts

We now give a brief account of the work by E. Slud ([80],[81]) on chaos expan-
sions for the number of level-crossing counts of a Gaussian process and related
functionals.

Let Xy;,1 > 0, be a stationary Gaussian process with zero mean, variance one,
and correlation function

r(t) = E(XN:Xo) =f exp(ixt)o(dr), (52)
0

with ¢ a nonatomic probability measure on R. It is assumed that »(2) is twice
differentiable and we shall denote p? = —#”(0). Let ¢ : R — R be a continuously
differentiable function (which in many applications is the zero function) and let
Ny (T) be the continuous time number of crossings of ¥ by the (Gaussian process
X, 01T

Slud [80], [81] proved that Ny (7') is a well defined random variable having the
chaos expansion

Ny(T) = E (Ny(T)) + Z Lo (fm), (53)

m=1

where for m > 1

T
Sty - ) = / exp(is(ty + ... +tm )[%Hnl(u)exp(_“z/g)
(4]

MZH“‘_i(u)% Z t,..4,,

m 5 -
i=1 1<h<...<l;,,

1/p .
{‘[0 exp(_z2y2/2)Hj(_zy)yJ_2dy]u=¢'(s}.z=¢"{s)ds]} . (54)

The main idea of Slud [80], [81] for the proof of (53) and (54), is to exhibit the
crossings-indicator lix,—y(t))(X4n—w(t+h)<0] first using the Hermite polynomials
expansion (similar to (4)) of the indicator ljx,>. for an arbitrary level ¢, and
then applying the product formula (11).
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Strictly speaking, all the results in this section have to consider the complex
domain. The underlying idea is to use the spectral representation of X as the
Fourier transform of a complex Gaussian measure with both real and imaginary
parts being independent-increments real Gaussian processes. In this case there
is an analogous theory available for complex multiple Wiener-Ito integrals, as
presented, for example, in Ito [32] and Major [46].

Chambers and Slud [10], [11] and Slud [80], [81] have used chaos expansions
similar to (53) and (54) to prove central and noncentral limit theorems for func-
tionals related to level crossings counts of X. Similar kind of limit theorems for
nonlinear functionals of a Gaussian process have been a customary application of
the Wiener chaos decomposition. For expository works to this particular subject,
the reader is referred to the excellent book by Major [46], the recent above papers
by D. Chambers and E. Slud, and references therein.

Recently, Kedem and Slud [37] (see also [81]) have used the above expansions
in the study of some statistical problems of Gaussian processes. We hope that
more statistical applications will appear in the near future.

8 Variance inequalities for Wiener functionals

We finally present some inequalities, due to Houdré and Pérez-Abreu [23], for the
variance of functionals of the Wiener process Wy, t € T' = [0,1]. Although (6)
provides an identity for the variance of the functional (5), these inequalities give
useful approximations to the variance.

Let F € D** k = 1,...,2n — 1 (respectively k = 1,...,2n) for some n > 1.
Then, the following right (respectively left) inequality holds:

2n-1

+1 5
Z( “E |D* F 7oz, < Var(F) < ): (= E"D."F‘||;‘Q{.N]. (55)
where

E

Dk,bﬂ"“”*)_f,/ ]D o, d!, N

Houdré and Pérez-Abreu [23] have obtained (55) as particular cases of a general
covariance identity for functionals of the Wiener process. Hu [25] has recently
generalized these inequalities to diffusion processes. We here present a simple
proof of (55) due to C. Houdré (see also [22]) using chaos expansions.

Let F' have the Wiener chaos decomposition (5). Using (21), (22) and (24) on
the right hand side of (55) we have

Im—1 2n-=1

Z( B [* Fl iy = Z( ZJ(J D--(-k+03t |5

L3(T7)
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2n-1 (_ )1+|

=S B 3 G-k

2n-— (— ]‘-+l

+ZJ'"1’J"“THZ ( =1)=uli = b+ 1)

j=in

Now, from the facts that Z‘i:] ;ILJ(J —1)---(j—k+1)=1and

=1yt :
Y S i-n-G-k+n-120,

k=1

by using (6) we obtain

...n—l{ 1)
> k—L 1D F |3 apuy = Var(F) > 0.
k=1

This proves the right hand side inequality in (55) and a similar argument shows
the lower inequality.
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