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Exponential dichotomies, the shadowing lemma and 
homo clinic orbits in Banach spaces! 

Daniel B. Henry 

Abstract: We prove infinite-dimensional versions of the 
shadowing lenuna and Smale's theorem ( for a transverse ho­
moclinic orbit) of a C 1 map, not a diffeomorphism, using the 
notion of an exponential dichotomy. 
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Introduction 

The title shows our indebtedness to Palmer 's articles [12 , 13]. Based on the 
notion of exponential dichotomies we prove infinite-dimensional versions of the 
shadowing lemma and Smale's theorem for a transverse homo clinic orbit of a Cl 

map (not a diffeomorphism). r 

Blazquez [1] gives a shadowing lemma, Theorem 4.2, which would be inter­
esting if it were proved. Chow, Lin and Palmer [3] prove an infinite dimensional 
shadowing lemma with a special notion of "hyperbolicity" ; ours is a natural ex­
tension of that of Palmer [13] . 

We will need many results about exponential dichotomies, which are treated 
in Section 1. Some results are merely quoted from [7], but others - some new , 
some appearing only as exercises in [7], along with versions of results of Palmer 
[12] and Lin [10] - are completely proved. In fact, the treatment of dichotomies 
is more extensive than is strictly necessary here; I couldn't resist the temptation., 
and anyway I hope to extend also some results of Melnikov, Shilnikov and Deng 
in later publications. 

1 Exponential dichotornies 

Let X be a Banach space, J C IR an interval and {T(t, s); t ;::: s in J} C £(X) a 
family of evolution operators, i.e ., 

T(s, s) = I, T(t, s)T(s, r) = T(t , r) for t ;::: s ;::: r in J . (1) 

Sometimes we assume sup{IIT(t, s)1I ; 0 ~ t - s ~ I} < 00 and sometimes we 
assume (t, s) t-+ T(t, s) is strongly continuous; any such assumption is explicitly 
stated when needed. 

1 Partially supported by FAPESP 's Projeto Tematico " Transi<;ao de Fase DinaInica e Sistemas 
Evolutivos" . 
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Definition 1.1 A family of evolution opemtors{T(t, s); t ~ s in J} has an ex­
ponential dichotomy (on J, with exponent /3, bound M and projections P(t), 
t E J) if there are constants /3 > 0, M ~ 1 and projections P(t) = p(t)2 E £(X) 
for t E J such that: 

(i) T(t, s)P(s) = P(t)T(t, s) for t ~ s in J: 
(ii) the restriction T(t, s)IR(P(s)) - R(P(t)) is an isomorphism (bicontinuous 

bijection) for t ~ s in J, and T(s, t)' is defined as the inverse from R(P(t)) 
onto R(P(s)); 

(iii) IIT(t, s)(I - P(s))11 $ Me-{3(t-.) for t ~ s in J; 

(iv) IIT(t,s)P(s)1I $ Me-{3(·-t) fort $ sin J, where T(t',s)P(s) is defined in 
(ii). 

If dim R(P(t)) = m < 00 for some t E J, equality holds for all t E J, by (ii), 
and we say the dichotomy has rank m. We sometimes call R(P(t)) = U(t) the 
unstable space and N(P(t)) = S(t) the stable space. 

J:temarks: We only deal with exponential dichotomies and often say merely dicho­
tomy. Lin [10), among others authors, requires t t-+ P(t) to be strongly continuous; 
this follows from strong continuity of the evolution operators,.as we show in 1.12. 

We have IIP(t)1I $ M. Defining the angle (E,F) between nonzero subspaces 
E, F, with En F = {O} by 

(E,F) = inf{le - fl: e E E,J E F, lei ~ 1 = If I} , 

it is easy to see, for any non-trivial projection P, that 2/11PII ~ (R(P),N(P)) ~ 
I/I1PII. Thus (R(P(t)),N(P(t))) ~ 11M for all t E J, and the assumption to this 
effect in [8] is unnecessary. (In a Hilbert space, there is a geometrically natural 
angle 8(E, F), and (E, F) = 2 sin t8(E, F).) 

In general, the projection of a dichotomy is not unique. If J J [T, 00) for some 
T, the stable subspace S(t) = N(P(t)), t ~ T, is unique: S(t) = {xIT(8,t)x - 0 
[or, is bounded) as 8 - +oo}. If J J (-OO,T] for some T, U(t) = R(P(t» is 
unique for t $ T: 

U(t) = {xl there is a bounded <p: (-oo,t)- X 

with <p(t) = x and <p(s) = T(s, r)<p(r) when r $ s $ t} . 

In this case, the "backward coninuation" <p is unique, <p( s) E R( P( s)), and <p( s) -
o as s - -00. If J = IR, the projection is uniquely determined . 

Hale and Lin [6) define a trichotomy for T, which is equivalent to saying 
{e>.(t-·)T(t,s) : t ~ sin J} has a dichotomy for both ..\ = ±c, some c > 0, with 
different projections. (If the projections were equal, T would have a dichotomy.) 

Examples 
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(1) If {eAt,t ~ O} C £(X) is a strongly continuous semi group and we define 
T(t, s) = eA(t-3) for t ~ s, for any interval J C JR {T(t, s), t ~ s in J} is 
a family of evolution operators. If also u( eAto ) n 8 1 = 0 for some (hence, 
every) to > 0, define the projection P by 

1- P = ~ f (I' - eAto )-ld/t ; 
27n k'l=l 

Then eAt P = PeAt and we have an exponential dichotomy in J with projec­
tion P(t) = P constant. If (3 > ° and u( eAto ) n {I' : e-f3t o ~ 1J.l1 ~ ef3to} = 0, 
we may suppose the exponent is (3 . If the essential spectrum of eAto is 
strictly inside the unit circle, re33(eAto ) < 1, the dichotomy has finite rank. 

(2) Suppose A is the generator of a strongly-continuous semigroup on X, B : 
JR - £(X) is strongly continuous with B(t + p) = B(t) for all t and fixed 
p> 0. Let {T(t,s),t ~ s} C £(X) be the family of evolution operators 
such that x(t) = T(t, s)x(s) when t ~ s and xC) is a mild solution of 
:i: = Ax + B(·)x in [s, t). Then for t ~ s T(t + p, s + p) = T(t, s) and 
u(T(s + p, s))\{o} is independent of s (Lemma 7.2.2 of [7]). 

Suppose u(T(s + p, s)) n 8 1 = 0 for some (hence, every) s E IR. and define 

1- P(t) = -21 . f (It - T(t + p, t))-ldJ.l ; 
1I"t J11J1 =1 

then p(t)2 = P(t) = P(t + p) for all t , T(t, s)P(s) = P(t)T(t, s) for t ~ s. 
For any interval J C JR, {T(t, s), t ~ s in J} has an exponential dichotomy 
with projections {P(t)hEJ; in this case, t 1-+ P(t) is strongly continuous. If 
re33(T(t + p, t)) < 1, the dichotomy has finite rank . (Most of the argument 
for this is in 7.2.3 of(7].) 

(3) If IIT(t, s)U ~ M e- f3 (t-3) for t ~ s in J, and some {3 > 0, we have a trivial 
dichotomy with projection zero. 

The theory is much simpler with discrete time and we see, in Theorem 1.3, 
there is little loss in restricting attention to this case. 

If J is an "interval" in 'Il, {Tn} ne.1 E £(X) , define 

Tm,m = I , Tn,m = Tn- 1 0 . .. 0 Tm+1 0 Tm for n > m (2) 

when m and n - 1 are in J; then Tn,mTm,l = Tn ,l for n ~ m ~ I with I and n - 1 
in J. Let J+ = J if J is not bounded above, J+ = J u {I + max J} otherwise, so 
Tn m is well defined for n > m in J+. , -

Definitioll 1.2 If J is an interval in 'U" {Tn : n E J} C £(X) and we define 
{Tn ,mln ~ m in J+} as in (2) above, then {Tn}nEJ has a discrete dichotomy 

(with constants M ~ 1, BE (0,1) and project ions Pn, n E J+) if: 
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(i) T"P" = P"+lT" for n E J; 

(ii) the restriction T" IR(P,,) -> R(P,,+I) is an isomorphism for n E J; 

(iii) IIT",m(I - P,,)II :5 Mo,,-m for n ~ m in j+; 

(iv) IIT",mPmll $ M()ffl-" for n :5 m in j+, where T",mPmx = Y E R(Pn) lS 

defined by Pmx = Tm,uY (and well-defined, by (ii)). 

Remarks: We often say merely "dichotomi' when discreteness is evident. We 
have T",mPm = P"T",m for all n ~ m in J+ and T",mIR(Pm) -> R(P,,) is an 
isomorphism. 

If we define T(t, s) = T",m when t E [tn, tn+1 ), S E [tm, tm+t}, t ~ S [tk = 
to + kp for some fixed p > 0, to E IR] and if J = UkE;{tk, tHI), then {T(t, s), t ~ s 

in J} is a family of evolution operators and it has a dichotomy (with exponent f3 
and bound M) if and only if {T" : n E j} has a dichotomy with constants M and 
() = e-{3p. 

It is clear that, ' for any family of evolution operators {T(t, s )It ~ s in J}, 
to E J and p > 0, if we have an exponential dichotomy with exponent f3, bound 
M and projections P(t), and if Tn = T(tn+l,tn), tn = to+np, UnE;{tn,tn+d e J, 

then {Tn: n E .1} has a dichotomy with constants M, () = e-(3p and projections 
P" = P(tn). 

The converse also holds provided sup{IIT(t,s)1I : 0 :5 t - s :5 I} < 00 . The 
fbUowing is 'a stronger version of Exercise 10, Section 7.6 of [7]. 

:' 
Tbeorem 1.3 Let {T(t, s)lt ~ s in J} e C(X) be a family of evolution operators 
with sup{IIT(t,s)1I : 0:5 t - s $ I} < 00, J a closed interval, p> 0, tn = to + np 
and j e 7l an interval such that UnE;{tn,t~,+d = J (or J\{maxJ}, if J is 

bounded above). Let T" = T(tn+l' tn ) for n E J . 
If {Tn : n E j} has a discrete dichotomy with constants M ~ I, 0 = e-{3p E 

(0,1) and projections {Pn, 71 E j+}, then {T( t, s), t ~ s in J} has an exponential 
dichotomy with exponent f3, bound M', ' and projections {P(t), t E J} such that 
P(tn ) = Pn for nE j+. Writing Kp = sllp{IIT(t, s)1I : 0 $ t - s $ p} , we have 
J( < J(p+l and may use p- 1 

M' - max(K 2 MO- 2 f{2M2 + f{ 0- 1) - p 'P P . 

The projections for the "interpolated" dichotomy are uniquely determined by the 
{Pn,n E j+} and {T(t,s),t ~ s in J}, when we 1'equirf, P(t .. ) = Pn. 

Proof: Let K = sup{IIT(t,s)11 : 0:5 t - s:5 p in J}. If t E [tn,tn+d eJ, define 
X(t) = T(t, tn)R(Pn), so X(t n ) = R(Pn), X(t .. +I) = R(P .. +t}. Then 

Tn I = T(tn+l, t)1 0 T(t, tn)\ . (3) 
'R(Pn)-'R(Pn+.} X(t)-"R(P,,+,) "R(Pn)-X(t) 
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By definition, T(t, t,,)I'R.(Pn) - X(t) is surjective, and it is injective by (3) and 
condition (ii) for a discrete dichotomy, so both factors on the right side of (3) 
are continuous bijections. Furthere, if y E 'R.(Pn) , y = Tn,n+1Pn+IX for some 
x and Iyl :::; MOIPn+1xl by condition (iv), P,,+IX = T"y and Iyl :::; MOITnyl :::; 
J( MOIT(t, tn)YI for all y E 'R.(Pn). Thus both factors on the right side of (3) are 
isomorphisms, X(t) is a closed space and 

P(t) = (inclusion X(t) C X)o(T(t,,+I, t)IX(t) - 'R.(Pn+I»-1 oPn+1 OT(tn+l, t) . 
(4) 

It is then easy to show that 'R.(P(t» = X(t), p(t)2 = pet) E C(X), P(tn+d = 
Pn+l , P(tn) = Pn and IIP(t)lI:::; J(2M 20. 1ft ~ s are in [tn,tn+l]' T(t,s)X(s) = 
X(t) by definition and 

T(tn+I,S)1 = T(tn+l,t)1 oT(t,s)1 
X(x)-'R(Pn+,) X(t)-'R(Pn+,) X(.)_X(t) 

so T(t, s)IX(s) - X(t) is also an isomorphism. Further, by (4), 

T(tn+l,t)! oT(t,s)P(s) 
. X(t) 

T(tn+l, s)P(s) = Pn+1T(tn+l, t) 0 T(t, s) 

= T(tn+1, t)1 0 P(t)T(t, s) 
X(t) 

so T(t,s)P(s) = P(t)T(t,s). The equality holds for any t ~ s in J, by an easy 
calculation, so (i) and (ii) of Definition 1.1 hold. . 

Verification of (iii) and (iv) is now straight-forward. For example, if t ~ s, 
t E [tn+l, tn], S E [t m +1, tm ] with 71 ~ m, y = T(s , t)P(t)x, we have 

so Iyl :::; M2 J(20n-m+llxl :::; M2 K2e-P(t-')lxl, proving (iv). 
Most of the following results treat only discrete dichotomies, and often with 

J = 7f, so the projections are uniquely determined. 

Theorem 1.4 Let {Tn }~oo C C(X) ; then the following are equivalent. 

(i) {Tn}~oo has discrete dichotomy. 

(ii) For every bounded sequence {in }~oo eX, there IS a unique bounded se­
quence {x }~oo C X with Xn+l = Tnx" + in for all n. 
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Proof: See [7], Theorem 7.6 .5., 

Remarks: The unique bounded solution' is Xn = E~oo Gn ;k+I/k ,where Gn,m = 
Tn,m(I - Pm) for 11 ~ nI, On,m = '-Tn,mPm for 11 < m so 1I0 n,mll ~ MBln-ml; 
the double sequence {On,m} is the Green function. 

O. Perron [14], for ordinary differential equations on IR+, and T. Li [9], for 
difference equations on ~+, obtained analogous conditions fo:r finite dimensions, 
though the exponential bounds were not recognized until 1954 (Maizel). These re­
sults were greatly generalized by Massera and Schiiffer [11]. Coffman and Schiiffer 
[4] treated infinite-dimensional diff~rence 'equations on ~+, with a more general 
notion of dichotomy. Slyusharchuk [16] gives a result like 1.4 (with partial proof) 
when Tn E C(Xn , Xn+d, the spaces depending on n. 

Simple examples (with X = <t). 

(1) Tn = a, lal =I 1; the only bounded solution of xn+1 = aXn + In [J bounded] 
is Xn = E: an-k-I/b if lal > 1, or Xn = t~:; an- k- I Ib if lal < 1. 

(2) Tn = a, lal = 1: Xn = an is a bounded non-trivial solution of Xn+1 = aXn, 
so there is no dichotomy. If Xn+1 - Tnx" = an (\In) then Xn = xoan + nan-I 
is unbounded for any Xo . 

(3) Tn = 2 (n ~ 0), Tn = ~ (n < 0): {T,'}n~O and {T,'}n~O both have di­
chotomies, but there is no dichotomy on all ~ since Xn+1 - Tnx'n = 6n ,0 has 
no bounded solution. In this example, Xn+1 = Tnxn (\In) with Xn bounded 
only when all Xn = O. (Ex,ample of Slyusharchuk.) 

Theorem 1.5 Suppose {Tn}~oo has a discrete dichotomy with constants M ~ 1, 
() E (0,1) and suppose Ml > M, () < (}I < 1 and 

BI - B ( 1 1 ) 
0< c ~ 1 + BBI M - MI 

Then any sequence {Sn}~oo C C(X) with supn IISn - Tn II ~ c has a discrete di­
chotomy with constants M I , BI . If {P~}, {PJ'} are. the corresponding projections, 
as SUPn IISn - Tnll -+ 0, 

sup IIP~ - PJ'II = 0 (sup IISn - TnlD . 
n n 

Proof: See [7], Theorem 7.6.7. 

The argument for Theorem 1.5 uses the following lemma, stated as exercise 11 
in Section 7.6 of [7]. 
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Lemma 1.6 If a ~ 0, b ~ 0, 0 < l' < 1" ~ 7'11 1'2 ~ 1 and 

b < (1" - 1')/(1 + "1") 

and if {gn}~oo C rn. satisfies 

00 

0< 9 < arlnl + b "rln - k - I1 g _ n _ 1 L...J k for all n E ~ , 
-00 

and gn = O(r~lnl) as n -> ±oo, then 

gn ~ ar~nl /(1- b(1 + rrd/(rl - 1'» for all n E ~ . 

Proof: As suggested in [7], we consider the map ~ of real sequences 

387 

and show it is a contraction in the norm 1I·lIq, IIfllq = sUPnlfnlqlnl, when 1" ~ 
q ~ 1/1". If Sn = L:~oo rln-k-llqlnl-Ikl, then lI~fllq/llfllq ~ supn Sn· We have 
Sn = q-2S2_n for 71 ~ 0, SUPn Sn= So = (1 + qr)/(q - ' 1') if l' < q , ~ 1, 
supn Sn = S+oo = q2(I-r2)/[(q-r)(l-q7')] ~ (q+r)/(I-rq) if 1 S q < 1'-1. Thus 

if 0 = b(l+rr')/(r'-':r), 0 < 1 andll~fllq ~ Ollfll q for 1" ~ q ~ i/r'. If fn = ar~nl, 
o ~ 9 ~ f+~g ~ f+~f+' .. +~k f+~l:+lg, and 1I~l:+lgllr2 -> 0 as k -> 00. For 

each n, gn ~ L:~=o(~kf)n and IIfllt/rl = a, lI~kflll/rl ~ b(;;~~dll~k-lflltlrl' 
which gives th'e result. , . " , 

Remark: Theorem 1'.5, on the "roughness" of exponential dichotomies, may also 
be proved by continuity using Theorem 1.4 (as in [16]) or' (at least for finite 
dimensions and invertible operators) by direct caIculation as in paJ.iner [13] (or 
Coppel [5] for ODEs) , where it is the beginning of the the6ry."Rolighne~s" 
theorems seem to start with Ma.<;sera and Schaffer [11] . 

Sakamoto [15] gives a non-synunetric version of the lernrna, for sequences O(O'f.) 
in n ~ 0, O(O~I) in n ~ O. ' . 

Theorem 1.7 Suppose {Tn}~oo C £(X) is a bounded sequence' and {Pn }, {Pn } 

are bounded sequence.s of projections in £(X), and M ~ 1,0 E (0,1) are constants 
such that, lor all 71, • 

IlPnll~ 'M, IIPnll~ , (vi, 111 - P,.II . ~ M : '. 

TnP" = Pn+ITn , , n(Ti,Pn~ = R.( P,,+d ; ' . . 

IITnxll:S Ollxll if Pnx=O, 1IT"xll 2 0- 1 IIxll ' if Pn3.: ~x . 

If 0 < 01 < 1 and Ml > M, the1'e exists € > 0 depending on (J,81 J..,M,M 1 al!d 
sUPk IITkll such thai: f or any {S'n} ~oo c £(X), iJIIS,. -T"II ~ € and liP" -P"II ~ € 

Jor alln, {8,. }~oo has a discrete dichotomy with constan ts M I, (J] . 
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Proof: See [7], Theorem 7.6 .8. It suffices that 4€ ~ 16~;.66(k - ,J.. )/(1 + 
M SUPk IITkll)· 

Remark: Pahner proves a similar result for ODEs in [12] and for the case of 
finite-dimensional invertible operators Tn in [13] . 

The following simple result allows us to apply Theorems 'lA, 1.5 to dichotomies 
defined only on 7l+ or 7l_. It is a simpler version of ex. 15, sec. 7.6 of [7]. 

Theorem 1.8 If {Tn }n~O has a discrete dichotomy with projections {Pn}n~o and 

constants M,O, ' define Tn = Tn for n ~ 0, Tn = 0- 1 Po + 0(1 - PO) for n < 0, 
Pn = Pn for n ~ 0, Pn = Po for n ~ 0. Then {Tn}~oo has a dichotomy with 

projections {Pn } and constants M, 8. 
If {Tn }n<O has a discrete dichotomy with projections {Pn}n~O and constants 

M,8, define Tn = Tn for n < 0, Tn = 0- 1 Po + 8(1 - Po) for 71 ~ 0, Pn = Pn for 

n ~ 0, Pn = Po for 11 ~ 0. Then {Tn}~oo has a dichotomy with projections {Pn} 
and constants M, O. 

Proof: A straight-forward calculation. We only note that the condition for a 
dichotomy in 7l_ uses Pn for 11 ~ ° but only T,. for n ~ -1, so we may define To 
conveniently in the second part. (This was overtooked in [7] 7.6, ex. 15, so our 
result is simpler.) 

Remarks: A similar extension is possible for {T,.} defined only in a finite interval, 
a ~ 11 ~ b. We may also treat continuous tirne. For exarnple, suppose {T(t, s) , t ~ 
s ~ o} has a dichotomy with exponent p, bound M and projections {P(t), t ~ OJ. 
Define T(t, s) = T(t, s) for t ~ s ~ 0, T(t, s) = e{3(t-3) P(O) + e{3(3-1)(I - P(O)) for ° ~ t ~ s, T(t, s) = T(t, O)T(O, 05) for t ~ ° ~ o5 . Then T is a family of evolution 
operators which has a dichotomy with expouent p, bound M and projections 
{P(t),t E lR}, pet) = P (max{t,O}). 

In each of the following corollaries, we extend the sequence to {Tn }~oo <!S in 
Theorem 1.8 (for appropriate Po), prove the extended selluence has a dichotomy 
(by Theorem 1.5, in the first case, or by Theorern 104), and then restrict to 7l±. 

COrOllal"y 1.9 Assume {Tn}n>o C C(X) [or {Tn}n<o} has a dichotomy with 
constants M,O, and Ml > M, 0-< 0) < 1, and 0 < € ~ (11M -1IMd(0)-8)/(1+ 
oOd· IISn E C(X) with IISn -T,.II ~ € f01' all 71 ~ ° lorn < OJ, then {Sn} .. >O [or 
{SOn }n<O} has a dichotomy with constants M) ,0) and the cOr7'esponding proje~tiono5 
satisfy suP .. lIP; - p!1I = 0 (SliP .. IISn - Tn II) as SllPn liS,. - T .. II---> 0. 

Corollary 1.10 Given {Tn },,~o C C(X), the following a1'e equivalent: 

(i) {Tn}n>o has a dichotomy. 
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(ii) So = {xo/3 bounded (xn)n~O C X 'with X,,+l = Tnx,,,'Vn 2: O} ·splits in X 
(i. e., there is a closed subspace Vo .so that So $ Vo = X) and, for every 
bounded {fn}n~O C X, there is a bOU1ided {Xn}"~O C X with x 7l +1 
Tnxn + In, n 2: O. 

Corollary 1.11 Given {Tn }n<O C.c(X), the following are equivalent: 

. (i) {Tn}n<o has a dich(Jtomy. 

(ii) Vo = {xo/3 bounded {xn}n<O C X with X7l +1 = Tnxn, 'Vn < O} splits in X 
and, for every bounded {In}n<o C X, there exists a bounded {xn}n<O C X 
with X n+l = Tnxn + In for all n < 0, and -

{(xn)C::Ooo E £oo(7l,X) / l :" = 0 fo~n 2:0, X n+l = Tnl:n for all n < O} 

consists only of the zero sequence. 

Remark: The final hypothesis of (ii) in Corollary 1.11 is ugly but inevitable unless 
we change the definition of a dichotomy. With only the first two hypotheses, the 
map (xn)~oo 1-+ (Xn+l - fnxn)~oo in £00(7l, X) (for the extended sequence) is 
surjective; its kernel is the set required to be zero by the final hypothesis. I can't 
find an example with the first two hypotheses true and the last · false, nor prove 
the last unnecessary. 

The more general notion of a dichotomy in Coffman and Schaffer [4] gives a 
result like 1.10 without assuming So splits. . 

It is sometimes useful to khow that the projections of a (continuous lime) 
dichotomy are strongly continuous; this certainly holds if the evolution operators 
are strongly continuous. 

Tluiorem 1.12 Suppose {T(t,s),t 2: sin J} C C(X) is a family of evolutioll 
operators which has an exponential dichotomy with projections {P(t), t E J} and 
assume, for some ~nterval [a, b] C J and p with 0< p < b - a, Owt s 1-+ T( s + p, a) 
(a-p~s~a), sl-+T(s+p,s), (Cf~s~b--p), andsHT(b,sr(b-p~s~b) 
are strongly continuous. Then t 1-+ P(t) : [Ct, b] -+ .c(X) is stro.ngly contiliuous. 

Proof: Suppose the dichotomy has exponent f3 and bound M. We may extend 
T, P from [a, bl to . all IR, as in the remark following Theorem 1.8, so T has a 
dichotomy on all IR with exponent f3bound M and projections {P(t), t E IR}, and 
for the extension, s 1-+ T(s + p, s) is strongly continuous and sup{/IT(s + p, s)/1 : 
s E IR} = I< < 00 . The new T, P agree with the original T rP in[a, b] . 

For each t and n E 7l, define T,,(t) = T(t + np + p, t + np) , Pn(t) = P(t + np) ; 
each t 1-+ Tn(t) is strongly continuous, /ITn(t) 11 ::; I<, and {T,.(t)}~oo has a discrete 
dichotomy with constants M , (J = e-/3r and projections {Pn(t)}~;.,. The Green 
functions satisfy 

00 

. Gn,m(t) - G",m(s) = L Gn,k+l(t) (n(t) - Tk(S))Gk ,m(s) . 
- 00 
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With m =:=·n = 0 and fixed Z EX, s E IR"and any N ' 

IP(t)z - p(s)xl :<' 
~ , . -

Given £ > 0, choose N large so the second term i~ '< £72; for t near s, the 'first is 
also < £/2. Thus P(t)z -+ P(s)z as t -+ s . 

We return to discrete time. 
More-or-Iess the following rE;!sult has appeared III varIOUS places - we only 

mention Coppel [5] and ex. 22, sec. 7.60f[7]. 

Theorem 1.13 Suppose {Tn}~oo C £(X) . ' We have a ' discrete di'cho(omy on 
71, if and , only , if the restrictions in ' both 71,+ and 7l_ have dichotomies and, also 
X = So $ Uo where 

Uo {xo ,I 3 bounded {xlI}n~o C X witl~X~+1 = Tnxn for n < O} , 

, So {zo 1'3 bounded {zll}n2:0 e,K w~th Zn+1 ';:;= Tnx .. for n ~ OJ 

In case the dichotomies in 71,+1 7l_ have finite rank, X = 5'0 $ Uo 'means they 
have lhe same rank and also the only bounded solution' oj Xn+1 ~Tnxn (all n) is 
the zero sequence. . , 

Proof: If we have a dichotomy on 7l with projections{Pn}~oo' it is clear the 
restrictions in 7l+ and 7l_ have dichotomies. If Poxo = 0, Xn = Tn,o(I - Po)xo 
is bounded as n -+ +00 so Xo E So. If Xo E So, Zn = T" ,oxo is bounded and 
Po:r:o = To,nPnzn -+ 0 as n -+ 00 so Zo E N(Po) : 5'0 = N(Po). Similarly 
Uo = R(Po). ' 

Now assume we have dichotomies in 7h+,71_ with projections {P:}n>O, 
{P;}n~O. As above, N(Po+') = So and R(Po-) = Uo, and we assume Uo ffiS'o = X. 
Given bounded {fn }~oo eX, we show there is a unique bounded solution of 
zn+1 = Tnzn + In (\>'n). In fact 

= 
Zn = Tn,o(l"": pt)zo + L G~,k+dk for n ~ 0 

o 
-I 

Zn Tn ;oPo-zo+ LG~,k+llk for n ~ 0 
-00 

is the only candidate, and we only need to show t.hese equatiot'ls are consistent for 
a (unique) choice Zo, i.e., 
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has a unique solution Xo . It suffices to show 

is a bijection - which is equivalent to So Ef:l Uo = X . 
If Po+xo = 0, (I - Po-)xo = 0 then Xo E N ( Po+) n R(Po) = So n Uo = {OJ . 
If a = Po+ a, Po- b = 0, a - b E X = So + Uo so a - b = s + u for some 

s E So, u E Uo, and then Xo = a - s = b + u satisfies PdXO = Po+(a - s) = a, 
(I - Po-)xo = (I - Po-)(b + u) = b. 

The next result is due to X.-8. Lin [10] for continuous time. 

Theorem 1.14 Given {Tn}n<n\ C £(X) and no < nl, suppose {Tn}n<no has a 
dichotomy with finite rank and projections {Pn}nS;no and assume Tn\,noIR(Pno) 
is injective. Then {Tn }n<n\ has a dichotomy with the same rank and projections 

{Pn}n<n\ such that IIPn - Pnll -.0 exponentially when n -. -00. 

Gi:;;en {Tn }n>no C £(X) and no < nl, suppose {Tn }n>n\ has a dichotomy 
with finite rank a~d projections {Pn}n~n\ and assume the adJ~int T;:'\,no IR(P;:'J is 
injective. Then {Tn}n>no has a dichotomy wi/It the same rank and with pT"Ojections 

{Pn}n~no such that IIPn - Pnll -.0 exponentially as n --+ +00. 

If the constants of the original dichotomy are M, () , we may use the same 
"()" for the extended dichotomy but a larger "M"; the exponential convergence is 
O( ()2Inl). 

Proof: For the first case, define Un = R(Pn ) for n :$ no, Un = Tn,noR(Pno) for 
no :$ n :$ nl. By hypothesis, dim Un\ = dim U"u < 00 so dirn Un is independent 
of n and each Tn IUn --+ Un+1 is an isomophisrn. Choose a closed space 8n\ so that 
Sn\ Ef) Un\ = X and define Sn = T;;\~nSn for n :$ nl, a closed subspace of X with 
TnSn = Sn+lnR(Tn) C Sn+1 for n < nl . Ifx E snnun , Tn\,nx E Sn\nUn\ = {OJ 
and Tn\,nIUn is injective so x = O. Ifx E X, T,,\ ,nx = u+,s for some u E Un" 
s E Sn\ and u = Tn\,nun for some Un E Un so Tn\,n(x - un) E Sn\ or x E Sn + Un. 

Thus X = Un Ef) Sn and there is a projection Pn with R(Pn ) = Un, N(Pn ) = Sn . 
We have 

Pn+ITn = Pn+1T n Pn + Pn+ITn(l - Pn ) = Pn+ITnPn = TnPn 

and for n :$ 710, R(Pn ) = R(Pn ) so PnPn = Pn , PnPn = Pn . 
If n :$ 710 

Pn = PnPn + Pn(l - Pn ) = Pn + T",noPnoPnoTnu ,n(l - Pn) 

so IIPn - Pnll :$ IIPno IlM2()2(n o-n) --+ 0 as n --+ -00. 

In particular I{ = SUPn<n IIPnll < 00. _ 0 

If n:$ m:$ no 
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and if m ~ n ~ no, similarly 

There are finitely many other indices in (no, nd and each Tn IR(Pn ) -+ R(Pn+d 
is an isomorphism, so we get a dichotomy for {Tn}n<nl· 

For the second case, let Sn = N(Pn ) for n ~ nl, Sn = T;;l~nSnl for no ~ 
n < nl; we show codim.5'n = codim.5'nl < 00 for all n ~ no, initially for n = no· 
Suppose UI, ... , Urn are independent relative to Sno : L7' CkUk E Sno (Ck E TIl) 
implies all Ck = O. Then L~l ckTnl,noUk E .5'''1 implies L~n Cknk E .5'no so the 
Tn1,no Uk are independent relative to Snl' codirnSn1 ~ codimSno (and similarly 
codimSn1 ~ codimSn for no ~ n ~ nl). Let ~I' ... ,~rn E X* be a basis for 
S~l = n(p~.) . If x E Sno, Tnl,nox E Snl..l~k so T~l ,no ~k E S~o. By hypothesis, 
the T~ .. no~k are independent so codimSno ~ codimSn1 and we have equality. If 
no < n ~ nl, T~l , nln(p~.) is also injective so codimSn = codimSn1 for no ~ n < 
nl, and equality is obvious for n ~ nl . 

Choose Uno with Uno EB .5'no = X and define Un = T,',"oUno for n > no. If 
x E Sn n Un, X = T,l,noxO for some Xo E Uno and also Xo E S'''o so Xo = 0, x = O. 
Since N(Tn,no) C Sno, Tn,nolUno -+ Un is a bijection and dim Un = dim Uno = 
codimSno = codimSn for all n ~ no, TnIU" -+ Un+1 is an isomorphism and 
Un EB Sn = X. If Pn is the projection with R(P,,) = U", N(Pn ) = Sn, we have 

Pnt}Tn = TnPn for n ~ no and N(Pn ) = Sn = N(Pn ) for n ~ nl so PnPn = Pn , 

PnPn = Pn for n ~ nl . Then for n ~ nl, 

and the proof is completed as in the first cases. 

The last result of this section is due to Palmer [12] for ODEs. A cont inuous­
time version for retarded FOEs is given by Lin [10]. I arn unable to find a 
continuous-time version for POEs 'which is not a disguised version of discrete 
time; Lemma 3.2 of [I] and Theorem 2.2 of [2] are certainly false as stated. 

Theorem 1.15 Let {T,l}~oo C .c(X) and assume the restrictions in 72+ and 72_ 
both have dichotomies of finite rank. Define So, Uo as in Theorem 1.13 and define 
L : V(L) C £oo(X) -+ £<Xl(X) by 

x = (xn)~oo E £00(72, X) is in V(L) if sup IXn+1 - Tnxnl < 00 , 
n 

and then Lx = (Xn+1 - Tnxn)~oo. 
Then L is a closed opemtoT·, dimN(L) = dirn(So n Uo) < 00, n(L) is closed 

with codimn(L) = codim(So + Uo) < 00, and L is Fredholm with index 

ind L = dimN(L) - codimn(L) = dim Uo - codimSo = (rank 72_) - (rank 72+) 
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Finally, IE R(L) il and only ilO = L::'oo({k+I,/k) lor all {E f oo (71,X·) with 
6, = T;{k+1 (tIk). We remark that any such { has I{kl ---> 0 exponentially as 
k ---> ±oo, and there are only finitely many linearly independent { . 

Proof: Let (xn)~oo E N(L); (xn) is a bounde,d solution of Xn+l = Tnxn (lin) or 
Xn = Tn,o(l - pt)XCI for n ~ 0, x" = T",oPo- xo for n ~ 0 with Xo E R(Po-) n 
N(Po+) = uonSo . The sequence is determined by Xo so dimN(L) = dim(UonSo) . 

Let IE R(L) : In = Xn+l - Tnxn (lin) for some bounded (xn)~oo, so 

_ {Tn,o(1- pt)xo + L:~ G~,k+lh" 
Xn - . 

Tn,oPo- Xo + L::=!o C;;,k+ 1 /k 

for n ~ 0 

for n ~ 0 

and Xo satisfies 

Conversely, any solution Xo of the last equatioll determines a bounded (x,,)~oo = x 
with Lx = I. 

An argument similar to that in Theorern 1.1:3 shows «(I , b) E R( Po+) x N( Po-) is 
in the range of Xo 1-+ (Pt xo, (I - Po )xo) if allel only if a - b E N( Po+) + R( Po-) = 
So + Uo . 

Thus I E R(L) if and only if, for all {.l(S·o + Uo) , 

-I 00 

0= ~){,TO,k+l(I - Pk-+1)/k) + L({,To,k+lP:+Jk) 
-00 0 

or 0 = L::'oo({k+l,!k) where {k = T;,k(l - po-·){ for k ~ 0, {k = (TO ,kP:t{ for 
k > O. Now {.l(So + Uo) rneans { E N(Pt)1. n R.(Po-)1. = R·(pr) n N(Po-·) or 
{ = pt·{ = (I - po-·){, which is {a, so {k-I = Tk_l{k for all k. Conversely, a 
bounded solution of this equation has {o E (S'o + Uo).L . It. ollly remains to note 
that 

codimR(L) = .dim(So+Uo)1. = codirn(So+Uo) = codirnSo-dirnUo+dim(UonSo) . 

2 The shadowing lemma 

Let X be a Banach space , V open in X and f : V ---> X of c1a.ss C 1 . A set C C V 
is iuvariaut if f( C) = C . 
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Definition 2.1 A compact inva7'ia1lt C C V is hypel'bolie if, for every orbit 
(Yn)~oo C e [Yn+l = fey,,) for all nj, {Df(y,,)}~oo has a discrete dichotomy 
with finite rank m and constants M, B, where Ill, M, B arc independent of the orbit 
considered. 

This is not the usual definition of "hyperbolic structure" but it is equivalent. 

Lemma 2.2 Assume f is e 1 on a neighborhood of the compact invariant set C 
and fie is injective. Then C is hyperbolic if and only if there exists continu­
ous P : C -+ C(X) with p(y)2 = P(y) , rankP(y) = constant, Df(y)P(y) = 
P(J(y»Df(y) and Df(y)IR(P(y» -+ R(P(J(y») an isomorphism for all y E C, 
and for some constants M 2: I, 0 < () < I, and any integer n 2: 0, y E C, 

where, by definition, 

IDf"(y)(I - P(y»1 ::; MB" , 

IDr"(y)p(y)l::; M(}" 

Df-n(y)p(y)z = w E R(p(J-ny» when P(y)z = Df"(J-ny)w. 

Remark: N(P) = {(y, z)ly E C, P(y)z = O} is the stable vector bundle, and 
R(P) the unstable bundle, of the usual definition . 

Proof: It is clear that any such PO gives us a dichotomy on any orbit {J"(y)} ~oo 
C C. Suppose C is hyperbolic and y E C: there is a dichotorny for {D f(J" (y» } ~oo 

with projections {Pn(Y)}~oo' 
If z = fey), there is also a dichotorny for {DfU"( z )} ::"oo with projections 
{Pn(Z)}~oo, and J"(z) = J"+l(y), so Pn( z) = Pn+1(y) or PnU(y» = Pn+1(y) , 
Pn(Y) = po(Jn(y» for all n E 'lL. Define P(y) = Po(Y) ; then P(J(y»Df(y) = 
Df(y)P(y) and Df(y)IR(P(y» --. R(P(J(y))) is an isomorphism for each y E C. 
Ifn2:1, 

Df"(y) = Df(f"-l(y» . .. Df(J(y»Df(y) = Tn,o when Tk = Df(Jk(y» , 

which gives the estimates claimed. 
Proof of continuity of P(·) is more interesting. Since C is compact and flC --> 

C is a continuous bijection, the inverse is also continuous. Suppose c > 0, N is a 
positive integer and y E C; there is a neighborhood Vy of y so that , if y' E Vy n C, 
If"(y) - f"(y')1 ::; c when Inl ::; N. Also there is a neighborhood U of C, I< > 0 
and an increasing function woC-> with woe t) ~ 0 as t --> 0+ such that 

IDf(x)1 ::; f{ for x E U, IDf(x) - Df(y)1 ::; wo( lx - yl) for x E U, Y E C . 

We also assume f{ exceeds the Lipschitz constant of fiC. Then IDf(f"(y»­
Df(f" (y'»1 ::; wo(c) for Inl ::; N, and it is bounded by 2I< for all n. If Gn,m(Y), 
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Gn,m(Y') are the Green's functions for the dichotomies, then for Y' E Vy , 

IP(y) - P(y')1 = I~GO'k+l(Y)(DI(Jk(y» - DI(Jk(Y')))Gk,O(Y') I 
< 2M2wo(c:)/(1 - 02) + 4J(M 202N+1 /(1- 02) , 

which is small if c: is small and N is large. 
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Remark: The notation U, 1<, woO will be used below; they were defined with 
greater generality than is necessary here. Note that we avoid any hypothesis of 
unilorm continuity of DI on an open set since I is merely C1'. 

Lemma 2.3 Suppose {Tn }~oo C £(X) has a discrete dichotomy with constants 
M,O, and there exist gn : X --+ X (n E 'fl) with gn(O) = 0, Ign(x) - gn(x')1 :s 
'Ylx - x'i when Ixl :s 1', Ix'i :s 1', and 'YM < (1 - 0)/(1 + 0). Finally suppose 
lin E X lor n E 'fl with SUPn Ihnl :s 1'«1 - 0)/(1 + 0) - M'Y)/M . Then there is a 
unique sequence {xn}~oo C X such that 

Ixnl :s l' and Xn+1 = Tnxn + y,,(x,,) + lin fOl' all 11 E 'fl . 

Proof: Let Sr = {sequences {xn}~oo C X I sUPn IXnl :s ).} and define 

00 

(r(x»n = LG,.,k+~(lIk + Yk(XA:) for x E Sr, 11 E 7L, , 
-00 

It is easily verified that r(Sr) C Sr and r is a contraction for the sup-norm in 5'r. 
The fixed point of r is the desired sequence. 

Tbeorelll 2.4 (The shadowing lernrna) Lel X be a Banllch .space, V an ope1l set 
in X, I : V --+ X a C l map. A.s.sume there i.s a compact invariant .set C C V 
which is hyperbolic and lie is injective. 

Then for any c: > 0, sufficiently small, thCl'C exists 6 > 0 .such that, for each 
sequence {Yn}~oo C e with IYn+l - l(y,,)1 :s 6, VII (a "6-p,s eudo-orbit") there is 
a unique orbit {xn }~oo C V, x n+ 1 = 1(2:,.) for 1111 11, such thai IXn - y" I :s c: , VII. 

Proof: The crucial point is to show, for 0 :s 6 :s 60 , given any 6-pseudo-orbit 
{Yn}~oo C e, {DI(y,.)}~oo has a dichotomy with constants M' 2: 1,8' E (0,1), 
which are independent of the 6-pseudo-orbit considered . Then the result will 
follow from the last lemma. In fact, x" = y" + z" where we require IZn I :s c: and 

with lin = I(Yn) - y,,+l , g,,(z) = I(y" + z) - f(y,,) - Df(y,,):: · We have Ih,,1 :s 6, 
gn(O) = 0, and for small c: > 0 so t.hat. B.(C) C U 

IDYn( z )1 = IDI(y" + z ) - DI(y,,)1 :s wo(c:) for Izl :s c: 
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where wo, U come from the proof of Lemlna 2.2. Choose E > 0 small so that 
B,(C) C U and also Wo(E) < (1 - O')/(M'(l + 0')), and t.hen (, > 0 small so that 
o ~ 00 and also 0 ~ E« 1 - O')/(M'( 1+ 0')) - wo(E)); then Lenuna 2.:3 applies. 

To see we have a dichotorny along any o-pseudo-orbi t, {y,,} ~ 00 c C, first choose 
the integer N so MON ~ ~; show {DfN (YNi)}~oo has a dichotolny with constants 
2M,3/4 (by Theorem 1.7); then if VNi+k = Df(Jk(yNi )) for 0 ~ k < N, i E 'Il , 
DfN (YNi) = VNi+N,Ni = VNi+N-I 0 ··· 0 VNi+1 0 VNi and we may "interpolate" a 
dichotomy for {Vj }~oo' by Theorem 1.3, with constants M" 01 = (3/4)I/N ; and 
finally, since Supn IDf(Yn) - Vnl ........ 0 as 0 ........ 0, Theorem 1.5 gives the dichotomy 
with constants M' >MI , 0' E (0 1 ,1), for 0 < {, ~ 00, if 00 is slnall. 

By induction, IYn+m - rn(Yn)1 ~ 0(1 + J( + ... + l(m-l) for m 2: 1, n E 'Il. 
[IYn+m ~ fm(Yn)1 ~ IYn+m - f(Yn+m-I)1 + If(Yn+m-d - f(Jm-I(Yn))1 ~ 0 + 
J(IYn+m-1 - f m- 1 (Yn )1.] Let J(" = 1 + J( + ... + J(N-I; then IYNi+N - fN (YN;)I ~ 
1<"0 for all i E 'fl. Now P : C ........ [(X) is uniforrnly continuous and has modulus 
of continuity wp (-) so 

We apply Theorem 1.7 with Ti = DfN (YNi) , Pi = P(YNi), Pi+1 = p(fN (YN;)), 
so Ii Pi = Pi+ITi. We have IPi+1 - Pi+11 ~ wp(l{*o), whi ch is uniformly slnall for 
small 0, so we have a dichotomy for {Ii} = {DfN (YNi)}~oo with constants 2M 
and 3/4. (It suffices that 32M(I + M J(N)wp(l(*oo) ~ 1.) 

Define Vj (j E 'fl) as above, VNi = D fN (YNi), and let T(t , 8) = V" ,m when 

t 2: s, t E [n, n + 1), s E [m,11I + 1) . By Theorem 1.:3 , {T(t , s), t 2: s } has a 
dichotomy so also {V;}~oo has a dichotolny wit.h constants M1 , 01 = (:3/4)I/N 
(We may use Ml = max(2MJ(2N(~)-2,~J(N +4M2 J(2N) .) 

Finally, if n = N i + k (0 ~ k < N , i E 'Il) . 

IDf(Yn) - V"I = IDf(YNi+k) - Df(fk(YN;))1 ~ woCJ("o) . 

Given M' > MI, 1 > 0' > 01, for 0 < 0 ~ 60 (and small 60 ) {DI(Yn)} :':"oo has a 
dichotomy with constants M', 0', for any o-pseudo-orbit {Yn}~oo C C. (It suffices 

that wo(I(* 00) ~ t~9199" ( "'; 1 - "'~ I)') 

3 A transverse homo clinic orbit 

Theorelll 3.1 Assume V C X is open, I : V ........ X is C l and also: 

(i) Xo E V is a hyperbolic fixed Jloint of f (f(a:o ) = a:u, (J(Df(xo)) n 8 1 = 0) 
with finite rank, i.e. l'w(Df(xo)) < 1 or (J(Df(xo)) n P E (]; : 1).12: I} 
consists only of isolated eigenvalues of finit e mulliplicily; 

(ii) there exists a Iwmoclinic orbit {Yn } ~oo C V\ {xo}, Yn+ 1 = I(Yn) for all n , 
and Yn ........ Xo as n ........ ±(X); 
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(iii) the Iwmoclinic orbit is transverse, i. e. 

rln+l = Df(Yn)lln for' all n, Sli p 11/nl < 00 imply allrln = 0 
n 

Then C = {xo; Yn (n E 7l)} is a compact invariant hyperbolic set, flC is 
injective, and for E > 0 sufficiently small, ther'e is N, such that, for any 
positive integer N ~ Nt and for each (T E S' = {O, l}7l, there is a unzque 
orbit XO [X~+l = f(;r~), 'rin} such that l:z:~ - rl~1 :S E, 'rin , where 

° {xo rl = 
n Yj 

if (T(i) = 0 
if (T(i) = 1 n = (2N + l)i + j, -N :S j :S N , 

and (T f-+ XO is injective from S' to fo:;(71,X). 

Define d«(T, (T') = l:~ 2-n~ (maXlkl~n 1(T(k) - (T'(k)l) with ~(t) = t/(l + t) 
and (T, (T' E S. Then (5', d) is a compact metric space, homeomorphic to the 
"middle thirds" Cantor set, and (T --+ ;(;~ : S' --+ X is continuous, for each 
nEll. 

The zero sequence (T = 0 give$ x~ = J:o fur all 11 . 

If (T E S'\{O} has finite support ((T(i) = ° for all large Iii) then J;o is a 
Iwmoclinic orbit, J;~ --+ Xo as 11 -. ±oo. 

If (T is periodic with period p, n f-+ x~ is pcriodic with pcr'iod (2N + 1 )p. If 
(T f 0, (T has least period p if and only if :1:0 has least period (2N + l)p . 

(iv) Assume also that fJV is injective. 

Then (T f-+ xg is injective with compact image [{ ; I( is a topological Can­
tor set and the restriction r.p of (J f-- J:g : S ~ I": is a Iwm e01l107"]1hism; 
f2N+l(K) = K , and f2N+II[( --+ f{ is r.poj3or.p-1 where (3: S --+ S IS the 
BeT'1wul/i shift, j3«(T)(n) = (T(n + 1) Jor' 11 E 7l, (T E S'. 

Suppose, finally, that (i) , (ii) and (iv) Iwld but pC1'lW]IS 1Iot (iii) and also: 

(v) Df(x) E LeX) is injective with dense 1"Il1lge [Df(J:)* injective} fur each 
x E V. 

Then the global stable and HlIstablc 1I1.all iJolds lV" (J:u), W" (xo) an: (,d im­
mersed submanifolds oJ V, dinl W"(J:u) = codirnW"(J:u) < 00, Yn E vV"(xo) 
nW"(xo) , and (iii) is equiva lent to sayingWS(xo)ifi y" W"(xo) Jor' some (or 
every) 11 E 7l . 

Proof: It is clear t.hat. C is compact. and illvariallt. For allY 11 , f(Yn) = Yn+1 f 
:1:0 = f(xo), and if f(Ym) = fey,,) for sonte l' > 11/, n f-- YII is periodic for 11 ~ 111 

and does not t end to J:o as 11 ~ + 00; thlls fl(' is inject.ive . 

Since J:o is hype rbolic wit.h fillite rallk , {DI(J:u)}'::',,-" has a dichotolllY with 
finit e ra nk and COtlst.ant. projectioll Pr-v. By Corollary 1.9 , simp Df(Yn) ~ Df(J:o) 
as 11 -> ±oo , for sonw posit.ive illl.c)!/'r N , both {DJ(Yn)}"50- N and {Df(Yn )}n~N 
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have dichotomies, both with the same rank (since the projections are close to 
Poo). Let II-N E U(-N); there is a sequence {lln}~oo with Iln+l = Df(Yn)lln 
(\In) and lIn is bounded a.<; n -4 -00. If TN,-NII-N = 0 = lIN [Tk = Df(Yk)], 
then lIn = 0 for all n ~ N so, by hypothesis (iii), all 11" = 0, 1}-N = O. Thus 
TN,_NIU(-N) is injective and, by Theorern 1.14, we may extend the dichotomy 
to {Df(Yn)}n<N, still with the same rank. lIypothesis (iii) and Theorern 1.13 say 
we have a dichotomy for {Df(Y,,)}~oo' so e: is hyperbolic. 

As noted in the proof of the shadowing lenuna, for slnall bo > 0 if {I),,} ~ 00 C 
C is any b-pseudo-orbit with 0 < b ~ bo, {Df(I},,)}~oo has a dichotomy with 
constants (say M, () independent of the pseudo-orbit considered. Choose £ > 0 
sufficiently small so the shadowing lemrna (2.4) applies , Bc(e:) C U, wo(c:)M < 
(1 - ()/4 [wo, U from Lemma 2.2] and 13:0 - Yol > 2c: and Iy;, - Yol > 2c: for all 
11 i= O. Choose b in 0 < b ~ bo so we may apply the shadowing lemma and Nc > 0 
so that IY±N - Yo I < .b /2 for N ~ Nc ; choose any integer N ~ Nt. Then for 
every (T E 8, {1}~}~oo is a b-pseudo-orbit so there is a unique orbit {x~}~CXJ with 
Ix~ - 7J~ I ~ £ for all 11. If (T i= (T' in 8, there exists i with (T( i) i= (T' (i) so, if 
n = (2N + 1 )i, Ix~ - 3:~' I ~ IYo - 3:0 1- 2c: > 0, and (T I---> 3.: 0 is injecti ve. I t is clear 
h 0 _ {3(0) _ I I' j3(0) {3(0)1 Ij'2N+l( .0) 0 I r - II t at 1},,+2N + 1 - I}" ane x" - I}" :s c:, 3'ft - 1},,+2N + 1 ~ c: lOr a 

n, so by uniqneness j2N+l (x~) = 3.:~(0) for all 11 . 

Again by uniqueness, if (T is Iwriodic with period p, 11 I---> x~ is periodic with 
period p(2N + 1), while (T == 0 gives x~ = 3.:0 for all 11. If (T 't ° and 11 I---> x~ 
is periodic with period M, we show M is a lI1ultiple of 2N + 1. Suppose M = 
(2N + l)k + m for SOllie integers k ~ 0 and 1l! with Iml ~ N. If m = 0, it follows 
as above that fJk(T = (T; if m -:f 0 , we find a cont.radictioll. Now IIJ~ - 11~+M I ~ 2c: 

k 

so 11)~ - 1}~+';,,1 ~ 2£ for all 11 . There exist.s i with O"(i) = I and we choose 
n = (2N + l)i so 1)~ = Yo . If fJk(T(i) -:f I , Ixo - yol :s 2c: , which is false; if 
f3k(T(i) = 1, Iyo - Yml ~ 2£, which is also falsI' unless 111 = 0. 

Regarding the symbol space S: if ljJ(O) = O,~"(l) ~ O,r(l) ~ 0 and 4! (l) 't ° 
for t > 0, then 1/J is strictly increasing alld~) (rt + b) ::; 4)(a) + 1/!(b) for a, b 2 O. 
Since l t---+ l/(l + t) has these properties, d is a distance (lllet.ric) for 8 , and (8, eL) 
is clearly complete. For any integer N let S'N = k E S' I (T(i) = 0 if Iii> N}, a 
finite set; given any (T E 8 there exists (TN E .'-iN with (T(i) = (TN (i) for Iii ~ N so 
d«(T, (TN) ~ 2- N , so S' is t.ot.ally boullded, hellce cornpact.. Delille 0 : S' ~ If{ by 

• ~ 20"(11) 20"(-11) 
O«(T) = 2(T(O) + ~ :f!,,-I + :P" ; 

1 

o is a continuolls rnap whose irnage is t.he sct. of nlllnbers ill [0, :3] whose t.ernary 
expansion contains only 0 and 2, i.e. t.Iw "Illiddip t.hird;.;" (:"ntor set C. The 
restriction OIS -4 C is a cont.inllous bijectioll, 1!eIlCf' a hOllwulllOrphislll. 

Now we show (T I---> 3.:~ : S· ~ X is collt.illllOIlS for earll 11. Since Mwo(C:) < 
(1 - 0)/4, we may choose Ol in (J < 01 < I so thaI. J\I/w(c:)( &, ~8 + l-~&,) ~ &. 
Given (T E S' and a positive illteger 111, SIlPpO;;'~ Ci E . ...,· with cI(Ci, 0") < 2-"'; then 
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O'(i) = O'(i) for Iii ~ m. Let 1// = 1II(2N + I) so 11f: = Ilf for Ikl ~ m' . In notation 
like that of the shadowing lellllllCl 

('>..) 

;!:~ = II~ + L G~.k+ I (!I( Ilf , xf:) + 1If:) 
-<XI 

and similarly for ll , XU. If Inl ~ m', 
00 

x~ - x~ = L(G~ .k+1 - G~. k+d(g(llk,;!:f:) + Ilk) 
-00 

00 

+ L G~.k+1 (9(llk' xk) - u(llf , xf) + hI, - hf) . 
-= 

Now 

1( "° C'" I r ij - rij L Gi,k+1(Df(llk) - Df(IIf)GL 
Ikl>m' 

< 2M2/{ L 0Ii-k - 1I01i- k l 

Ikl>m' 

< 
for all i, j 

for Iii, Ijl ~ m' 

where (" - sup· . ",= Oli-k-IIOIi-klg-li-il < 00, by t he calculation in Lemma 
I - tl) L-- 04J 1 

1.6. Then for Inl ~ m' 

Ix~ - x~1 < L 2~~ ~~O 02m/- 1n+k+1I(8 + EWo(E» 
Ikl~m' 

+ L 2M2 [((:'O\1.:+1-n l (8 + EWo (E) 

Ikl>m' 

+ L MOln- k - 112(8 + EWo(E» + L MOln-k-1Iwo(E)lx'k - xfl 

Ikl>m' Ikl~m' 

This implies, for a constant (:" = 0(8 + EWo (E» , 

with fixed nand m --+ 00 (or 0' ---- 0'), we see x~ --+ x~. 
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If 17' has finite support, d(f3i( 17'),0) -+ 0 as i -+ ±oo, so 

X O = x~'(o) -+ x O = xo [n = (2N + l)i + i, Iii::; N] as 7l -+ ±oo . 
n) ) 

(iv) Assume also that f is injective. Then the orbit [x~]~"" is. determined by any 
of its points so 17' t-+ xg : S -+ .x is a cont.inuous injection with compact image 
K C V, and the restriction tp of 17' t-+ xg : S· -+ K is a Itorneomorphisrn. Also 

f2N+l(xg) = xg(o) so f2N+IIK -+ K is tpof3otp-l. 

Finally assume (i), (ii), (iv) and (v) but not (iii) . Theorem 6.1.9 of [7] 
shows the global manifolds W'(;.r:o}, WU(xo) are immersed C 1 submanifolds of 
V with complementary dirnensions, dirn W"(;l:O) = codiIllWS(xo} < 00, and 
Yn E WU(xo) n W'(xo} for all 7l. We have 

(These are merely interpretations of the difrerence equatiolls defining the deriva­
tives: see Theorem .5.2.2 of [7] for the case of collt.inuous Lirlle). 
Then W'(xo}i'fi Yn W"(;.r:o} is equivalent. t.o Ty" W'(xo} n 1;" WU(xo) = {U L i.e. 

(l/d~oo bounded wit.h 1/1.:+1 = Df(Yk}l/k for all k implies 1/" = 0 (so alil/k = 0) 

which is (iii). 
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