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Exponential dichotomies, the shadowing lemma and
homoclinic orbits in Banach spaces!

Daniel B. Henry

Abstract: We prove infinite-dimensional versions of the
shadowing lemma and Smale’s theorem ( for a transverse ho-
moclinic orbit ) of a C' 1 map, not a diffeomorphism, using the
notion of an exponential dichotomy.
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Introduction

The title shows our indebtedness to Palmer’s articles [12, 13]. Based on the
notion of exponential dichotomies we prove infinite-dimensional versions of the
shadowing lemma and Smale’s theorem for a transverse homoclinic orbit of a C?
map (not a diffeomorphism).

Blazquez [1] gives a shadowing lemma, Theorem 4.2, which would be inter-
esting if it were proved. Chow, Lin and Palmer [3] prove an infinite dimensional
shadowing lemma with a special notion of “hyperbolicity”; ours is a natural ex-
tension of that of Palmer [13].

We will need many results about exponential dichotomies, which are treated
in Section 1. Some results are merely quoted from [7], but others — some new,
some appearing only as exercises in [7], along with versions of results of Palmer
[12] and Lin [10] — are completely proved. In fact, the treatment of dichotomies
is more extensive than is strictly necessary here; I couldn’t resist the temptation,
and anyway I hope to extend also some results of Melnikov, Shilnikov and Deng
in later publications.

1 Exponential dichotomies

Let X be a Banach space, J C IR an interval and {T'({,s);t > sin J} C L(X) a
family of evolution operators, i.e.,

T(s,s) =1, T(t,s)T(s,7)=T(t,r) fort >s>rinJ . (1)
Sometimes we assume sup{||T'(¢,s)|]| : 0 £ t —s < 1} < co and sometimes we

assume (t,s) — T'(1,s) is strongly continuous; any such assumption is explicitly
stated when needed.

1Partially supported by FAPESP’s Projeto Temdtico " Transigao de Fase Dinamica e Sistemas
Evolutives”.
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Definition 1.1 A family of evolution operators {T(t,s);t > s in J} has an ex-
ponential dichotomy (on J, with ezponent 3, bound M and projections P(t),
t € J) if there are constants # > 0, M > 1 and projections P(t) = P(t)* € L(X)
fort € J such that:

(i) T(t,s)P(s) = P(t)T(t,s) fort > s in J;

(i1) the restriction T(t, s)|R(P(s)) — R(P(t)) is an isomorphism (bicontinuous
bijection) fort > s in J, and T'(s,t) is defined as the inverse from R(P(t))
onto R(P(s));

(iii) ||T(¢,s)(I — P(s))|| < Me=P(=2) fort > s in J;

(iv) ||IT(t,8)P(s)|| < Me=PC=1) fort < s in J, where T(t,s)P(s) is defined in
(ii).

If dimR(P(t)) = m < oo for some t € J, equality holds for allt € J, by (u1),
and we say the dicholomy has rank m. We sometimes call R(P(t)) = U(t) the
unstable space and N(P(t)) = S(t) the stable space.

Remarks: We only deal with ezponential dichotomies and often say merely dicho-
tomy. Lin [10], among others authors, requires t — P(t) to be strongly continuous;
this follows from strong continuity of the evolution operators, as we show in 1.12.

We have ||P(t)|| < M. Defining the angle ((E, F) between nonzero subspaces
E, F, with EN F = {0} by

(E,F)=inf{le—f|:e€ E,f€ F,|le]=1=]|f]},

it is easy to see, for any non-trivial projection P, that 2/||P|| > ((R(P),N(P)) >
1/]|P||. Thus ((R(P(t)), N(P(t))) > 1/M for allt € J, and the assumption to this
effect in [8] is unnecessary. (In a Hilbert space, there is a geometrically natural
angle 0(E, F), and ((E, F) = 2sin 10(E, F).)

In general, the projection of a dichotomy is not unique. If J D [r, 00) for some
T, the stable subspace S(t) = N(P(t)), t > 7, is unique: S(t) = {z|T(8,¢)z — 0
[or, is bounded] as § — +oo}. If J D (—o0,7] for some 7, U(t) = R(P(t)) is
unique for t < 7:

U(t) = {z| there is a bounded ¢ : (—oc0,t] = X
with ¢(t) = z and ¢(s) = T'(s,r)e(r) when r < s <t} .
In this case, the “backward coninuation” ¢ is unique, p(s) € R(P(s)), and p(s) —
0 as s — —co. If J = IR, the projection is uniquely determined.
Hale and Lin [6] define a trichotomy for 7', which is equivalent to saying

{27 (t,5): t > s in J} has a dichotomy for both A = =+¢, some £ > 0, with
different projections. (If the projections were equal, T' would have a dichotomy.)

Examples
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If {eA*,t > 0} C L(X) is a strongly continuous semigroup and we define
T(t,s) = eAt=2) for t > s, for any interval J C IR {T(t,s),t > s in J} is
a family of evolution operators. If also o(e#*) N S' = @ for some (hence,
every) to > 0, define the projection P by

1

I—P=_—_ p—e‘“"'lda;
2w Il'-‘l:l( ) }

Then e P = PeA! and we have an exponential dichotomy in J with projec-
tion P(t) = P constant. If 3 > 0 and a(e?e)N{u : =Pt < |u| < Pto} =0,
we may suppose the exponent is 8. If the essential spectrum of e?'e is
strictly inside the unit circle, r.,(e#*) < 1, the dichotomy has finite rank.

(2) Suppose A is the generator of a strongly-continuous semigroup on X, B :

3)

IR — L£(X) is strongly continuous with B(t + p) = B(t) for all ¢ and fixed
p > 0. Let {T(t,s),t > s} C L(X) be the family of evolution operators
such that z(t) = T(¢,s)z(s) when t > s and z(-) is a mild solution of
z = Az + B(-)z in [s,t]. Then for t > s T(t + p,s + p) = T(t,s) and
o(T'(s + p,s))\{0} is independent of s (Lemma 7.2.2 of [7]).

Suppose o(T(s + p,s)) N S' = 0 for some (hence, every) s € IR and define

|
-P(t)= — L =Tt “ldp ;
=P =5 [ =T+ o)
then P(t)? = P(t) = P(t + p) for all ¢, T(t,s)P(s) = P(t)T(t,s) for t > s.
For any interval J C IR, {T'(¢,s),t > s in J} has an exponential dichotomy
with projections { P(t)}tey; in this case, t — P(t) is strongly continuous. If
Tess(T'(t + p,t)) < 1, the dichotomy has finite rank. (Most of the argument
for this is in 7.2.3 of [7].)

If ||T(t,s)|| < MeP(=%) for t > s in J, and some B > 0, we have a trivial
dichotomy with projection zero.

The theory is much simpler with discrete time and we see, in Theorem 1.3,
there is little loss in restricting attention to this case.
If J is an “interval” in Z, {T,} 7 € L(X), define

Tom=T; Tym=Th-10-06Tms10T forn>m (2)

when m and n — 1 are in f; then Tp T = Tp i forn>m >l withl and n— 1

in J.

Let J+ = J if J is not bounded above, J* = JU {1 + max f} otherwise, so

Tp,m is well defined for n > m in Jt.

Definition 1.2 If J is an interval in Z, {T, inel}C L(X) and we define
{Tumln >m in J*} as in (2) above, then {Tﬂ}nef has a discrete dichotomy

(with constants M > 1, § € (0,1) and projections P,, n € .)?"') if:
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(i) TaPp = Py T, forne J;
(ii) the restriction T,|R(P,) — R(Pay1) is an isomorphism for n € J;
(i) |[Tnm(I = Pa)|| < MO™™ for n > m in J*;

(1) |Tn,mPm|| £ MO™™™ forn < m J*, where ThinPnz=y € R(P;) 18
defined by Ppz = Ty ny (and well-defined, by (u1)).

Remarks: We often say merely “dichotomy” when discreteness is evident. We
have Ty, ;Pm = PpTpm for all n > m in J* and T, m|R(Pm) — R(P,) is an
isomorphism.

If we define T'(t,s) = Th,m when t € [tn,tnt1), 5§ € [tm,tmsr), t 2 5 [ti =
to+ kp for some fixed p > 0, t, € IR] and if J = Ukej{tk,tk.{.l), then {f(t,s),t >s

in .:"} is a family of evolution operators and it has a dichotomy (with exponent j

and bound M) if and only if {T,, :n € f} has a dichotomy with constants M and
0 =ePr,

It is clear that, for any family of evolution operators {T'(t,s)|t > sin J},
to € J and p > 0, if we have an exponential dichotomy with exponent 3, bound
M and projectioils P(t), and if T,, = T'(tn41,t0), tn = to+np, Unej{t“’ thy1) CJ,
then {T,, : n € J} has a dichotomy with constants M, § = e~ and projections
Po—=Plt:);

The converse also holds provided sup{||7T'(¢,s)|| : 0 < t — s < 1} < co. The
following is a stronger version of Exercise 10, Section 7.6 of [7].

Theorem 1.3 Let {T'(t,s)|t > s in J} C L(X) be a family of evolution operators
with sup{||T'(t,s)|| : 0 <t —s5 <1} < o0, J a closed interval, p > 0, t,, =ty + np
and J C Z an interval such that Unef{tn,tﬂﬂ) = J (or J\{maxJ}, if J is
bounded above). Let T,, = T(tny1,tn) forn € 3.

If{T, :n€ j} has a discrete dichotomy with constants M > 1, 0 = e~ PP ¢
(0,1) and projections {P,,n € J*}, then {T(t,s),t > s in J} has an ezxponential
dichotomy with ezponent (3, bound M’, and projections {P(t),t € J} such that
P(ty) = P, forn'€ J*. Writing K, = sup{||T(t,s)|| : 0 < t — s < p}, we have
K, < K{"H and may use

M’ = max(KZMO™%, K2M? + K,07") .

The projections for the “interpolated” dicholomy are uniquely determined by the
{Pao,ne Jt} and {T(t,s),t > s in J}, when we require P(l,) = P,.

Proof: Let K = sup{||T(t,s)||:0<t—s<pinJ}. Ift € [tn,tny1] C J, define
X()=T(t, ta)R(Pp), so X(tn) = R(Pn), X(tus1) = R(Pu+1). Then

T, = T(tnsr,t o T(L, 1 .
TR R L | [P L] WO

(3)
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By definition, T'(¢,t,)|R(P.) — X (t) is surjective, and it is injective by (3) and
condition (ii) for a discrete dichotomy, so both factors on the right side of (3)
are continuous bijections. Furthere, if y € R(P,), y = Ty n41Pas12 for some
z and |y| < MO|P,4+12| by condition (iv), Puyi1z = Ty and |y| < MO|T,y| <
KM0|T(t,t,)y| for all y € R(P,). Thus both factors on the right side of (3) are
isomorphisms, X(t) is a closed space and

(T (tns1, )X () = R(Pns1)) "' || < KME

I(T(t, ta)|R(Pa) — X ()" < KMB .
For t € [tn,tn+1], define

P(t) = (inclusion X (t) C X)o (T (tn41,t)|X(t) = R(Pn41)) "0 Pay10T (tn41,t) -

(4)
It is then easy to show that R(P(t)) = X(t), P(t)? = P(t) € L(X), P(tas1) =
Ppy1, P(tn) = P, and ||P(8)|| < K2M?20. If t > s are in [tn, tay], T(t, 8) X (s) =
X (t) by definition and

T(f.n+1,5) = T(tn+1,£)|

]oT(t,s)

X(2)=R(Pn+1) X(t)=R(Pntr X(s)—X(1)

so T'(t,s)|X(s) — X(t) is also an isomorphism. Further, by (4),
T(tn-i-lst)‘x(‘) oT(t,s)P(s) = T(tn41,8)P(s) = Pay1T(tn41,t) o T(t,5)
- tﬂ ' ?
T(tn1 :)|x“)op(z):r(z 5)

so T(t,s)P(s) = P(t)T(,s). The equality holds for any t > s in J, by an easy
calculation, so (i) and (ii) of Definition 1.1 hold.

Verification of (iii) and (iv) is now straight-forward. For example, if t > s,
t € [ths1,tn), 5 € [tmt1,tm] with n > m, y = T'(s,t)P(t)z, we have

= (Tltnziz, I = PigiT(tagy;t
y=(T(tns1,5) X(a)—R{P.+1}) m+1,n+1 Pns1 T (tnyr, t)z

so |yl < M2K2gn-m+1|z| < M2K?e~P(*=%)|z|, proving (iv).
_ Most of the following results treat only discrete dichotornies, and often with
J = Z so the projections are uniquely determined.

Theorem 1.4 Let {T,,}>°,, C L(X); then the following are equivalent.
(1) {Th}%, has discrete dichotomy.

oo

(i1) For every bounded sequence {f,}>,, C X, there is a unique bounded se-
quence {z}°,, C X with zn41 = Than + fu for all n.
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Proof: See (7], Theorem 7.6.5.

Remarks: The unique bounded solution is 2, = Y_° Gn k41fc Where Gpm =
Tom(I = Pr) for n > m, Gom = =TnmPm for n < m so ||Gnm| < MOI"—™I;
the double sequence {G, ,,} is the Green function.

O. Perron [14], for ordinary differential equations on IRy, and T. Li [9], for
difference equations on Z, obtained analogous conditions for finite dimensions,
though the exponential bounds were not recognized until 1954 (Maizel). These re-
sults were greatly generalized by Massera and Schaffer [11]. Coffman and Schaffer
[4] treated infinite-dimensional difference equations on Z4, with a more general
notion of dichotomy. Slyusharchuk [16] gives a result like 1.4 (with partial proof)
when T,, € L(Xn, Xn41), the spaces depending on n.

Simple examples (with X = ).

(1) T, = a, |a] # 1; the only bounded solution of z,,4; = az, + f, [f bounded]
sz, = S0 a" k14 if la| > 1, or 2, = 30N h1 i Ja] < 1.

(2) T, = a, |la| = 1: z, = a" is a bounded non-trivial solution of z, 4, = az,,
so there is no dichotomy. If z,,4; — T,,z,, = a™ (Vn) then z,, = z¢a" +na™"!
is unbounded for any zg.

B)Tn=2n>0),T, = % (n < 0): {Th}n>o and {T,}n<o both have di-
chotomies, but there is no dichotomy on all Z since z, 41 — T,z = 6, 0 has
no bounded solution. In this example, 2,41 = Tz, (Vn) with z,, bounded
only when all z, = 0. (Example of Slyusharchuk.)

Theorem 1.5 Suppose {T,}%°,, has a discrele dichotomy with constants M > 1,
0 € (0,1) and suppose My > M, 0 <0, <1 and

=01 11
< TN
0<e€< 1109, (M Ml)

Then any sequence {S,}°, C L(X) with sup,, ||Sp, — Ty|| < € has a discrete di-
chotomy with constants My, 0,. If {PS}, {PT} are the corresponding projections,
as sup,, ||S, — Tn|| — 0,

sup IBS = PTIl=0 (supl|Sn = Tull) -

Proof: See [7], Theorem 7.6.7.

The argument for Theorem 1.5 uses the following lemma, stated as exercise 11
in Section 7.6 of [7].
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Lemma 1.6 Ifa>0,6>0,0<r<r <r,r; <1 and
b< (¥ =r)/(1 +rr)
and if {gn}%,, C R satisfies

0< gn <ar™ 4 bzrl“'k'”yk forallne Z ,

and g, = O(r;‘"[) as n — oo, then

gn < ar™ /(L= b(1 +rr))/(r1 = 7)) foralln€Z .

Proof: As suggested in [7], we consider the map ® of real sequences

{fi} 2 {birln—k-llfk}

and show it is a contraction in the norm || - ||, ||f|l, = sup, |falg'"!, when # <
g < 1/r. If S = 3 rin=k=tglnl=I*lthen ||@f||,/IIf]l; < sup, Sn. We have
Sn = ¢3Sy forn < 0, sup,Sp = So = (1+gr)/(g—r)if r < ¢ <1,
Sup, Sn = Syeo = ¢*(1=12)/[(¢—1)(1—¢7)] < (¢47)/(1=7¢)if1 < ¢ < r~'. Thus
if0 = b(14r1")/(r' =7), 0 < L and ||®f||, < 0]|f]| for ¥ < q < 1/7. If fr = ar'l,
0<g<f+Pg< f+Pf+ - -+®*f+d*+!g and ||®**+'g]||,, — 0 as k — co. For
each n, go < T3Lo(®4f)n and |Ifll/r, = a, [|9%fllyyr, < HEERIIR4 fllr,,

which gives the result. e

Remark: Theorem 1.5, on the “roughness” of exponential dichotomies, may also
be proved by continuity using Theorem 1.4 (as in [16]) or (at least for finite
dimensions and invertible operators) by direct calculation as in Palmer [13] (or
Coppel [5] for ODEs), where it is the beginning of the theory. *“Rotighness”
theorems seem to start with Massera and Schiffer [11].

Sakamoto [15] gives a non-symmetric version of the lemma, for sequences O(67% )

inn >0, 00" inn<o0.

Theorem 1.7 Suppose {Tn}=., C L(X) is a bounded sequence and {P,}, {P.}
are bounded sequences ofpmjf‘('twna in L(X), and M > 1,0 E (0 l) are conslants
such that, for all n,

WPl <M, |IPll <M, ||l =Pyl <M;

TnPu — Prl-l-lTn ) R(Tnpn} = ‘R(Pn-p-l) )

Tall < Ollzll if Paz =0, [Tl > 07" jal| if Pz =z .
If 0 <0, <1 and My > M, there ezists € > 0 depending on 0,0, M, M, and

supy ||Tk|| such that: for any {Sn}>, C L(X), f||Sn—=Tu|| <€ and ||P,—P,|| < ¢
for all n, {S,,}°°, has a discrete dicholomy with constants M, 0;.
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Proof: See [7], Theorem 7.6.8. It suffices that 4¢ < ﬁf% ﬁ - MLI)/(I +
M supy ||Tk||)-

Remark: Palmer proves a similar result for ODEs in [12] and for the case of
finite-dimensional invertible operators Ty, in [13].

The following simple result allows us to apply Theorems 1.4, 1.5 to dichotomies
defined only on Z or Z_. It is a simpler version of ex. 15, sec. 7.6 of [7].

Theorem 1.8 If{Tn}n;.g has a discrele dtt‘holomy with projections { P }n>0 and
constanis M,0, dcﬁne T,, =T, forn >0, T,. =0-1P, +0(I — Py) forn < 0,
Po= P, forn>0, P, = Py forn < 0. Then {T,}®, has a dichotomy with
projections {ﬁ } and constants M,0.

If {T, },-“:0 has a discrete dichotomy with projections {P, In<o and constants
M,8, deﬁne T,. =T, forn <0, 'J",1 =0"'Py+0(I = Py) forn >0, P,, =P, for
n<0, B, = Py forn>0. Then {T,},, has a dichotomy with projections {P,}
and constanis M,6.

Proof: A straight-forward calculation. We only note that the condition for a
dichotomy in Z_ uses P, for n < 0 but only 7,, for n < —1, so we may define Ty
conveniently in the second part. (This was overtooked in [7] 7.6, ex. 15, so our
result is simpler.)

Remarks: A similar extension is possible for {T},} defined ouly in a finite interval,
a < n < b. We may also treat continuous time. For example, suppose {T'(¢,s),t >
s > 0} has a dichotomy with exponent 3, bound M and projections {P(1),t > 0}.
Define 7'(t, s) =T(t,s) fort > s >0, T(t,s) = Pt~ ‘)P(0)+e’3(’ (I - P(0)) for
0>t>s, T(t,s) = T(t, O}T(O s)for t > 0> 5. Then T is a family of evolution

operators which has a dichotomy with exponent B, bound M and projections

{P(t),t € R}, P(t) = P (max{t,0}).

In each of the following corollaries, we extend the sequence to {7}, as in
Theorem 1.8 (for appropriate Fp), prove the extended sequence has a dichotomy
(by Theorem 1.5, in the first case, or by Theorem 1.4), and then restrict to Z4.

Corollary 1.9 Assume {Th}n>0 C L£(X) [or {Tn}n<o] has a dichotomy with
constants M, 0, and My > M, 0 < 0, < 1, and 0 < e < (1/M—1/M,)(6,—-6)/(1+
00,). If Sp € L(X) with ||Sp —Ty|| < € foralln > 0 forn < 0], then {Spn}n>0 [or
{Sn}n<o] has a dichotomy with constants M, 0, and the corresponding projections
satisfy sup,, ||PS — PT|| = O (sup,, ||Sn — Tx||) as sup, ||Sn, — Tn|| — 0.

Corollary 1.10 Given {Th}nu>0 C L(X), the following are equivalent:
(1) {Ta}n>o0 has a dichotomy.
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(1)) So = {zo|3 bounded (2,)n30 C X with z,,4y = Tz, Vn > 0} splits in X
(i.e., there is a closed subspace Uy so that So & Uy = X) and, for every
bounded {fn}n>o C X, there is a bounded {Xn}nso C X with 24y =
Thzn+ fu,n>0.

Corollary 1.11 Given {T,, }n<o C L(X), the following are equivalent:
(i) {Tna}n<o has a dichotomy.

(11) Uo = {z0o|3 bounded {z,}nco C X with 2,41 = Thzn, Vn < 0} splits in X
and, for every bounded {fn}nco C X, there ezists a bounded {xn}nco C X
with zpy1 = Tnzn + fu for alln <0, and

{(zn) %% € Lo (Z,X) | 2n =0 forn >0, 2n41 = Tnzn for alln < 0}
consisls only of the zero sequence.

Remark: The final hypothesis of (ii) in Corollary 1.11 is ugly but inevitable unless
we change the definition of a dichotomy. With only the first two hypotheses, the
map (zn)% — (Zn41 — Tnzn)®,, in €oo(Z, X) (for the extended sequence) is
surjective; its kernel is the set required to be zero by the final hypothesis. 1 can’t
find an example with the first two hypotheses true and the last false, nor prove
the last unnecessary.

The more general notion of a dichotomy in Coffman and Schaffer [4] gives a
result like 1.10 without assuming Sy splits.

It is sometimes useful to know that the projections of a (continuous time)
dichotomy are strongly continuous; this certainly holds if the evolution operators
are strongly continuous.

Theorem 1.12 Suppose {T'(t,s),t > s in J} C L(X) is a family of evolution
operalors which has an exponential dichotomy with projections {P(t),t € J} and
assume, for some interval [a,b] C J and p with0 < p < b—a, that s — T(s+p,a)
(a-p<s<a)s—T(s+p,s), (a<s<b—p) ands—T(bs) (b—p<s<b)
are strongly continuous. Then t — P(t) : [a,b] — L(X) is slrongly continuous.

Proof: Suppose the dichotomy has exponent £ and bound M. We may extend
T, P from [a,b] to all IR, as in the remark following Theorem 1.8, so T" has a
dichotomy on all IR with exponent 8 bound M and projections {P(t),¢ € IR}, and
for the extension, s — T'(s + p, s) is strongly continuous and sup{||T(s + p, s)|| :
s ER} = K < co. The new T, P agree with the original 7', P in [a, }].

For each ¢ and n € 7, define T,,(t) = T(t + np + p,t + np), Pa(t) = P(t + np);
each t — T, (t) is strongly continuous, ||T5,(¢)]] < K, and {7, (t)}°,, has a discrete
dichotomy with constants M,# = e~”? and projections {P,(t)}*,,. The Green

functions satisfy

Gnm(t) = Gam(8) = Y Gnpgr(t) (Ti(t) = Ti(s)) Gm(s) -
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With m = n = 0 and fixed z € X, s € IR, and any N
|P(t)z — P(s)x| <

S MOFHI(Ty(t) — Te(s))Gryo(s)z] + 2K M2(1 +6%)(1 — 6%) 710N+ 2] .
[k|<N

Given € > 0, choose N large so the second term is < €/2; for t near s, the first is
also < €/2. Thus P(t)z — P(s)z ast — s.

We return to discrete time.
More-or-less the following result has appeared in various places — we only
mention Coppel [5] and ex. 22, sec. 7.6 of [7].

Theorem 1.13 Suppose {T,}=,, C L(X). We have a discrete dichotomy on
Z if and only if the restrictions in both Z, and Z_ have dichotomies and also
X = Sy @ Uy where

Uo = {zo|3 bounded {z,},<0 C X with 2p4y = Tz, forn <0}
So = {zo |3 bounded {z,}n>0 C X with zpyy = Tz, forn >0} .

In case the dichotomies in ZZ,, Z_ have finile rank, X = Sy & Uy means they
have the same rank and also the only bounded solution of 2, = Trz, (alln) is
the zero sequence.

Proof: If we have a dichotomy on Z with projections {P,}*, it is clear the
restrictions in Z4 and Z_ have dichotomies. If Pyzo = 0, 2, = Ty 0(I — Po)zo
is bounded as n — 400 so x9 € So. If 29 € Sp, zn = Ty 020 is bounded and
Pozo = TonPrzpn — 0 as n — o0 so zg € N(Pp) : Sy = N(F,). Similarly
U() = R(Pﬂ)

Now assume we have dichotomies in Zy, Z_ with projections {P;} }nzg,
{P; }n<o. As above, N(Pgh) = Sp and R(Fy ) = Uy, and we assume Ug@®So = X.
Given bounded {fn}%%, C X, we show there is a unique bounded solution of
Znt1 = Tnzn + fn (Yn). In fact

Zn Tno(l = PH)zo+ Y Gl oy fe forn>0
o :

—1
zn = TpoPyzo+ ZG;.L-“J(* forn<0
-0

is the only candidate, and we only need to show these equations are consistent for
a (unique) choice zo, i.e.,

oo -1
(Pg’zu, (1- PO-' ).1'.'0) = (— ZTQ‘;,.}.; P:'f;_-, ZTU.L'+I(1 - Pl:_+l)fk)
0 -0
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has a unique solution zq. It suffices to show
2o — (Pgfzo, (I — Py )zo) : X — R(P) x N(Fy)

is a bijection — which is equivalent to So & Uy = X.

If Pitzo =0, (I — Py )zo = 0 then z, EN(PH)NR(Py) = So NUp = {0}.

If a = Poa Pob—{] a—be X =S,+Uysoa—b= s+ u for some
s € Sp, u € Up, and then z¢g = a — s = b + u satisfies Po zo = Pi(a—s) = a,
(I—=Py)xo=(—Py)(b+u)=0.

The next result is due to X.-B. Lin [10] for continuous time.

Theorem 1.14 Given {T, }ncn, C L(X) and ng < ny, suppose {Tp }n<n, has a
dichotomy with finite rank and projections {P,},<n, and assume T, , |R(Pn,)
is injective. Then {Tn},.(,.. has a dicholomy with the same rank and projections
<[1-",,},..(,,1 such that ||P, — P.,|| — 0 ezponentially when n — —oo.

Given {Tp}n>n, C L(X) and ng < ny, suppose {T, }adn, has a dichotomy
with finite rank and projections { P,}n>n, and assume the adjoint T, il gl R P, ) i
mjectwe Then {T }a>n, has a dichotomy with the same rank and with pro;ec!lons
{P }n>n, such that ||P, — P, || = 0 ezponentially as n — +oc.

If the constants of the original dicholomy are M,0, we may use the same
“@4” {O‘i" the ezxtended dichotomy but a larger “M”; the erponentia! convergence is
o(e2nl),

Proof: For the first case, define U, = R(F,) for n < ng, U,y = Ty 0 R(FPn,) for
ng < n < ny. By hypothesis, dimU,, = diml/,, < oo so dimU, is independent
of n.and each T,,|U, — Uy 41 is an isomophisny Choose a closed space S, so that
Sp, ® Un, = X and define S, = 7!, S, for n < ny, a closed subspace of X with
TnSn = Sp41NR(TR) C Snti for n < ny. If 2 € SuNUp, Th, w2 € Sp,NU,, = {0}
and Ty, n|U, is injective so z = 0. If z € X, T}, n& = u + s for some u € U,,,
s € Sp, and u = Ty, nuy, for some u, € U, so '}",,l n(z— u,,] € Sp,orz € S+ Un,.
Thus X = U, ¢ S, and there is a projection P,, with 'R,[P J=ln; N(By) =5,
We have

PoiaTa = PaiiTa P + Pogi Tl = By) = PayiTu Pa = TPy

and for n < ny, ’R,(}A;ﬂ] =R(Pn) so ﬁ,,P,, = P, Pnﬁn = ﬁn_
If n < ng

Po = PaPa+ Pa(1 = Pa) = Pa+ Tong Pag PagTag n(l — Pn)

$0 ||Pa — Pal| < ||Paol|M20%("0=") — 0 as n — —oo.
In particular K = sup,, <, || Pall < co.
Ifn<m<ng

IT.m Pl = Ton.on P Pon|| < K MO™"
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and if m € n < ng, similarly
| Tnm(I = Bo)l| < (K + 1)MO™™™

There are finitely many other indices in (n¢,n,] and each T, |R(Pn) — R(Pn41)
is an isomorphism, so we get a dichotomy for {T,,},,.:,,,

For the second case, let S, = N(P,) for n > ny, S, = T,;!,Sy, for ng <
n < n;; we show codimS, = codimS,,, < oo for all n > ny, initially for n = ng.
Suppose uy,...,u, are independent relative to Sy, : 21 crug € Sp, (e € R)
implies all ¢x = 0. Then El ek Thynottk € Sn, implies 31" cxng € Sy, so the
Th,notk are independent relative to Sy, , codinS,, > codimSy, (and similarly
codimS,,, > codimS, for ng < n < ny). Let {;,.. ,Em € X* be a basis for
St = R(P;)). If £ € Sng, Tnyne® € SnyLEk 50 Ty, o &k € Si,. By hypothesis,
the T} .6 are independent so codimS,, > ce:n:llm.S‘,.l and we have equality. If
ng < n < ny, Ty (|R(Py)) is also injective so codimS,, = codimS,, for np < n <
ny, and equality is obvlous for n > n,.

Choose U,, with U, & S,, = X and define U, = T, ,,,U,, for n > ng. If
z € SpNUy, 2 =T, n,z0 for some zg € Uy, and also zg € 5, so zg =0, 2 = 0.
Since N (Thno) C Snos TanolUn, — Un is a bijection and dimU, = dimU,, =
codimS,, = codimS, for all n > ng, T,|Uy, — Un41 is an isomorphism and
Un®Sh=X. If Pﬂ is the pro_]ectlou with T’{P.l) = Iy N(P ) = S,;, we have
P,,HT,, = T, P, for n > ng and N[P )= Sp = N(P,) for n > ny so PP, = P,,
P, Pn = P, for n > ny. Then for n > ny,

j‘:.,rl = Pn;;n + (Jlr - Pn)f)n = Pn + Tn,nl(I - Pnljﬁann,,nPn =P, + O(gg(u_ﬂl))
and the proof is completed as in the first cases.

The last result of this section is due to Palmer [12] for ODEs. A continuous-
time version for retarded FDEs is given by Lin [10]. I am unable to find a
continuous-time version for PDEs which is not a disguised version of discrete
time; Lemma 3.2 of [1] and Theorem 2.2 of [2] are certainly false as stated.

Theorem 1.15 Let {T,,}%,, C L(X) and assume the resirictions in Z and Z _
both have dichotomies ofﬁmte rank. Define Sy, Uy as in Theorem 1.13 and define
L:D(L) C Loo(X) — £eo(X) by

z = (2n)%, € loo(Z, X) 1s in D(L) if sup|a:.,+1 —Thzn| < oo,

and then Lz = (zn41 — Thzn)®, .
Then L is a closed operator, dimN (L) = dim(Sp N Up) < oo, R(L) is closed
with codimR(L) = codim(So + Up) < 0o, and L is Fredholmn with indez

ind L = dimN(L) — codimR(L) = dim Uy — codimSy = (rank Z_) — (rank Z,) .
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Finally, f € R(L) if and only if 0 = 3% (€41, fi) for all § € Lo (Z, X*) with
& = Tgéesr (Vk). We remark that any such & has |€| — 0 ezponentially as
k — *oco, and there are only finitely many linearly independent €.

Proof: Let (zn)Z,, € N(L); (zn) is a bounded solution of 4, = Thz, (Vn) or

zp = Tho(l — Py)zo for n > 0, z, = Ty, 0Py 2o for n < 0 with zo € R(Py)N

N(Pg) = UoNSo. The sequence is determined by zq so dim N'(L) = dim(UoNS).
Let f € R(L) : fa = 241 — Tuzn (Vn) for some bounded (z,)%,, so

Tao(l = PH)zo + 35 G:,k+1fk forn >0
Tn = ;
Tn0Ps 20+ ¥ 2o, G g J forn <0

and z( satisfies
=) =1
(P[;‘-:ﬂ'(l - PO_):"O) - ("' ETﬂ.k+lP:+|fk ) ZT{],}:+1“ i Pk-+1)fk) .
0 — 00

Conversely, any solution z of the last equation determines a bounded (2,,)>, = z
with Lz = f.

An argument similar to that in Theoremn 1.13 shows (a,b) € R(P ) x N(Py ) is
in the range of z¢ — (Pg zo, (I — Py )zo) if and only ifa—b € N(P)+R(Py) =
So + Up.

Thus f € R(L) if and only if, for all £L(Sy + Ua),

-1 ou
0= (&, Toxsr(I = Pep ) fi) + 3 € Toesr Py, fie)
Lt -

or 0= Y% (Ek41, fi) where & = T3 (1 — Py " )€ for k <0, & = (Tok PF)"€ for
k > 0. Now £ L(Sp + Up) means € € N(P}H)r NR(Py )t = R(PF*)NN(P;™) or
£ = P[;*‘.E = (I — Py 7)€, which is &, so &y = T7_ & for all k. Conversely, a
bounded solution of this equation has & € (Sy + Up)t. It only remains to note
that

codimR(L) = dim(So+Uo)t = codim(So+Uy) = codimSy—dim Up+dim(UpNSy) .

2 The shadowing lemma

Let X be a Banach space, V open in X and f:V — X of class "', Aset C C V
is invariant if f(C') = C.
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Definition 2.1 A compact invariant ' C V is hyperbolic if, for every orbi
()P C C [yns1 = f(yn) for all n], {Df(yn)}Zs has a discrete dichotomy
with finite rank m and constants M,0, where m, M, 0 are independent of the orbil
considered.

This is not the usual definition of “hyperbolic structure” but it is equivalent.

Lemma 2.2 Assume f is C'' on a neighborhood of the compact invariant set C
and f|C 1is injective. Then C is hyperbolic if and only if there exists continu-
ous P : C — L(X) with P(y)®> = P(y), rankP(y) = constant, Df(y)P(y) =

P(f(y))Df(y) and Df(y)|R(P(y)) — R(P(f(y))) an isomorphism for all y € C,
and for some conslanis M > 1, 0< 0 < 1, and any integer n > 0, y € C,

[Df*(y)(I = P(y))| < Mo™
[Df~"(y)P(y)| < MO"

where, by definition,
Df~"(y)P(y)z = w € R(P(f™"y)) when P(y)z = Df"(f™"y)w.

Remark: N(P) = {(y,2)|ly € C, P(y)z = 0} is the stable vector bundle, and
R(P) the unstable bundle, of the usual definition.

Proof: It is clear that any such P(-) gives us a dichotomy on any orbit {f"(y)}*.,
C C. Suppose C is hyperbolic and y € C: there is a dichotomy for { D f(f"(y))} ..
with projections {Pn(y)}%,,.

If z = f(y), there is also a dichotomy for {D f(f™(2)}2%, with projections
{(Pa(2)} B, and f7(2) = f7*1(y), 50 Pa(2) = Pai(y) of Pa(f(¥)) = Pusi(v),
Pu(y) = Po(f™(y)) for all n € ZZ. Define P(y) = Po(y); then P(f(y))Df(y) =
Df(y)P(y) and Df(y)|R(P(y)) — R(P(f(y))) is an isomorphism for each y € C.
Ifn>1, ;

Df™(y) = Df(f*"'(v)) - DI (f(¥)) Df(y) = Tn,0 when T = Df(f*(y)) ,

which gives the estimates claimed.

Proof of continuity of P(-) is more interesting. Since (' is compact and f|C' —
C is a continuous bijection, the inverse is also continuous. Suppose £ > 0, N is a
positive integer and y € C'; there is a neighborhood Vy of y so that, if y' € V, NC|
[/ (y) = f*(¥')] < € when |n| < N. Also there is a neighborhood U of €', K > 0
and an increasing function wg(:) with wo(t) — 0 as ¢t — 0% such that

|IDf(z)| < K forz € U, |Df(z)— Df(y)| <woljz—y|) forz e U,yeC .

We also assume K exceeds the Lipschitz constant of f|C. Then |Df(f"(y))—
Df(f™*(¥'))| < wo(e) for |n| < N, and it is bounded by 2K for all n. If G, m(y),
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Gn,m(y’) are the Green’s functions for the dichotomies, then for y' € V,,

|P(y) — P(¥) D" Go 1 (W)(DF(f* () — DF(F(Y))Gro(v)

IA

2M32wo(e)/(1 = 6%) + AK M29*N+1 /(1 — 6%) |
which is small if € is small and N is large.

Remark: The notation U, K,wq(:) will be used below; they were defined with
greater generality than is necessary here. Note that we avoid any hypothesis of
uniform continuity of Df on an open set since f is merely C'.

Lemma 2.3 Suppose {T,},, C L(X) has a discrete dicholomy with constants
M,8, and there ezist g, : X — X (n € Z) with g,(0) = 0, |gn(z) — gn(2')| <
|z — 2’| when |z| < 7, || < r, and M < (1 — 8)/(1 + 60). Finally suppose
hn € X forn € Z with sup,, |h,| < r((1 —0)/(1 +0) — My)/M. Then there is a
unique sequence {z,}° C X such that

|zn| < v and 2p4) = Tuzn + gn(2n) + hn foralln € Z .

Proof: Let S, = {sequences {z,}%,, C X | sup, |z,] <7} and define

(C@)n =D Guisi(he + gi(xr)) for 2 € Sp, n€Z

-0

It is easily verified that ['(S;) C S; and I is a contraction for the sup-norm in S;.
The fixed point of I' is the desired sequence.

Theorem 2.4 (The shadowing lemma) Lel X be a Banach space, V an open sel
in X, f:V —= X aC" map. Assume there is a compact invariant sel C C V
which is hyperbolic and f|C is injective.

Then for any € > 0, sufficiently small, there exists 6 > 0 such that, for each
sequence {yn}=, C C with |yny1 — f(yn)| < 6, Yn (a “b6-pseudo-orbit”) there is
a unique orbil {x,}*°,, CV, 2,41 = f(2,) for all n, such that |z, —y,| <€, Vn.

Proof: The crucial point is to show, for 0 < § < ég, given any é-pseudo-orbit
{vn )} C C, {Df(yn)}>s has a dichotomy with constants M’ > 1, § € (0, 1),
which are independent of the é-pseudo-orbit considered. Then the result will
follow from the last lemma. In fact, z,, = y, + z,, where we require |z,| < € and

Ingl — {)f(yn)zn - yn(:rl) + hl’l

with hn = f(yn) — Ynt1, 9n(2) = flyn +2) = f(yn) — Df(yn)z. We have |4, | <8,
gn(0) = 0, and for small € > 0 so that B.(C') C U

|Dgn(2) = |Df(yn + 2) = Df(yn)| < wole) for |z] < €
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where wg, U come from the proof of Lemma 2.2. Choose ¢ > 0 small so that
B.(C) C U and also wo(e) < (1 —@)/(M'(1 +0)), and then & > 0 small so that
§ < 8 and also & < e((1 —6)/(M'(1+60')) — wo(e)); then Lenuna 2.3 applies.

To see we have a dichotomy along any §-pseudo-orbit {y, },, C C', first choose
the integer N so MOV < '5; show {Df™ (yni)} ™ has a dichotomy with constants
2M,3/4 (by Theorem 1.7); then if Vi = Df(f*(Yni)) for0< k< N,i€Z,
DfN(yni) = VNnigNNi = VNignN-10---0 Vi1 0 Vvi and we may “interpolate” a
dichotomy for {V;}%,,, by Theorem 1.3, with constants M;, 6, = (3/4)"N; and
finally, since sup,, |Df(yn) — Va| — 0 as § — 0, Theorem 1.5 gives the dichotomy
with constants M’ > My, 8’ € (6,,1), for 0 < & < &g, if &g is small.

By induction, |Yngm — f™ ()| <61+ K+ -+ K™ ') form > |, n € Z.
lynsm = F™Wa)l < l¥ntm = fWnm=1)| + |f(Yn4m-1) — FUM™ )l € 6+
Klyntm-1—F""1wa)|] Let K* = 14+ K+---+KN=1; then |ynisn — N (yni)| <
K*6 for all i € Z. Now P : (" — L(X) is uniformly continuous and has modulus
of continuity wy(-) so

|P(FY (yni)) = Plynien)| S wp(K70) .

We apply Theorem 1.7 with 7; = Df¥(yn:), Pi = P(yni), f)i+1 = P(fN(yni)),
so T} P; = ﬁ.-HTL We have |F’;—+| — Piy1]| < wp(K6), which is uniformly siall for
small 8, so we have a dichotomy for {T;} = {Df"(yni)}>., with constants 2M
and 3/4. (1t suffices that 32M (1 + M KN )w,(K*8,) < 1.)

Define V; (j € Z) as above, Vy; = DfN(yn:), and let f‘{t,s) = Vi.m when
t>s t€[nn+1),s€[mm+1). By Theorem 1.3, {T(t,s),t > s} has a
dichotomy so also {V;}*,, has a dichotomy with constants M,,0, = (3/4)'/N
(We may use M, = max(2M KN (3)=2 2KV + AM?K*V).)

Finally, if n=Ni4+ k (0<k< N,i€eZ)

IDf(yn) = Val = |DFf(ynitr) — DF(f5 (unvi))l € wo(K78) .

Given M' > My, 1 > ¢ > 0,,for 0 < § < & (and small &) {Df(yn)}*,, has a
dichotomy with constants M’ #’, for any é-pseudo-orbit {y,}°, C C. (It suffices

8'—8 1 1
t.hat Lv‘[)( !{.60) S “IW““]—(E — i}";}}

3 A transverse homoclinic orbit

Theorem 3.1 Assume V C X is open, f:V — X 15 C'' and also:

(i) zo € V 1s a hyperbolic fired point of f (f(xo) = xy, o(Df(zo)) NS =0)
with finite rank, i.e. v 5(Df(20)) < | or o(Df(xo))N{A € € : |A] > 1}
consists only of isolated etgenvalues of finite mulliplicity;

(i1) there exists a homoclinic orbil {y,}>, C V\{zo}, vns1 = f(yn) for all n,
and y, — xg as n — +o0;
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(i21) the homoclinic orbil is transverse, i.e.

g1 = Df(yn)nn for alln, sup |n,| < oo imply all 3, =0 .
1n

Then C = {zo;yn (n € Z)} is a compact invarianl hyperbolic sel, f|C' is
injective, and for ¢ > 0 sufficiently small, there is N, such that, for any
posttive integer N > N and for each ¢ € S = {0,1}%, there is a unique
orbit 27 [z, = f(27), Vn] such that |z — nf| < e, Vn, where

s _ Jxo fo(i)=0 S ey .
=5 Jegol » MEONEDIEL N <IN,

and o — z7 15 mjective from S to €., (7, X).
Define d(o,0') = 377 27" A (maxjk<n |o(k) — o’ (k)|) with A(t) = t/(1+1)
and o, ' € S. Then (S,d) ts a compacl melric space, homeomorphic lo the

“middle thirds” Cantor set, and ¢ — 22 : S — X s conlinuous, for each

n € 7.

The zero sequence o =0 gives & = g for all n.

If o € S\{0} has finite support (a(i) = 0 for all large |i|) then x° is a
homoclinic orbil, z;, — xy as n — oo,

If & is periodic with period p, n v— a7 1s periodic with period (2N + 1)p. If
o # 0, ¢ has least period p if and only if 27 has least period (2N + 1)p.

(iv) Assume also that f|V 1s injective.

Then o — zf 1s injeclive with compact unage K; K s a lopological Can-
tor sel and the restriction ¢ of ¢ — zf S — N s a homeomorphism;
FNHYK) = K, and fPNYK — K ispoBop™" where B:5 — S 1s the
Bernoulli shift, f(a)(n)=oc(n+1) forueZ, o € 5.

Suppose, finally, that (1), (11) and (iv) hold bul perhaps not (112) and also:

(v) Df(x) € L(X) is mjective wilh dense vange [D[(2)* wmjective] for each
reV.
Then the global stable and unstable manifolds W*(ay), W*(20) are C'' 1m-
mersed submanifolds of V, dim W"(xy) = codimW*(a) < o0, y,, € W*(xyp)
NW¥(zg), and (itt) ts equivalent to sayimg W*(zo)M, W*(xq) for some (or
every) n € Z.

Proof: It is clear that (' is compact and invariant. For any n, f(yn) = yms1 #
xg = f(xo), and if f(yw) = [(yp) for some p >, n— y, is periodic for n > mn
and does not tend to xy as n — +20; thus f]C" is injective.

Since xp is hyperbolic with finite rank, {Df(ay)}=. has a dichotomy with
finite rank and constaut projection P.,. By Corollary 1.9, since Df(y,) — D f(xq)
as n — oo, for some positive integer N, both {Df ()} u<—n and {Df(yn) bu>w
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have dichotomies, both with the same rank (since the projections are close to
P.,). Let n_n € U(—=N); there is a sequence {1a}%, with gni1 = Df(yn)in
(Vn) and 1, is bounded as n — —oo. If Ty _n9-n =0 =9y [Tk = Df(ye)],
then 7, = 0 for all n > N so, by hypothesis (iii), all 9, = 0, 7-n = 0. Thus
Tn,-n|U(=N) is injective and, by Theorem 1.14, we may extend the dichotomy
to {Df(Yn)}n<n, still with the same rank. [lypothesis (iii) and Theorem 1.13 say
we have a dichotomy for {Df(yn)}%., so €' is hyperbolic.

As noted in the proof of the shadowing lemma, for small 8, > 0 if {7,,}%,, C
C is any é-pseudo-orbit with 0 < & < 8, {Df(9n)}> has a dichotomy with
constants (say M,0) independent of the pseudo-orbit considered. Choose £ > 0
sufficiently small so the shadowing lemma (2.4) applies, B.((') C U, wy(e)M <
(1 —0)/4 [wo, U from Lemuna 2.2] and |z¢ — yo| > 2¢ and |y, — yo| > 2¢ for all
n # 0. Choose § in 0 < § < 8y so we may apply the shadowing lernma and N, > 0
so that |yen — yo| < 8/2 for N > N,; choose any integer N > N.. Then for
every o € S, {17}, is a é-pseudo-orbit so there is a unique orbit {z}%,, with
|22 — 97| < e for all n. If ¢ # o' in S, there exists 1 with a(i) # o'(i) so, if
n= (2N + 1)i, |2 — 27 | > |yo — 20| — 26 > 0, and o — 27 is injective. It is clear
that 97 ony1 = r;ﬁ("] and |z5'7) — r;ﬁ("]| <e, |[[ANt(29) - N san1| < € for all

n, so by uniqneness f2¥N+1(27) = #5°) for all n.

Again by uniqueness, if o is periodic with period p, n — 27 is periodic with
period p(2N + 1), while o = 0 gives 27 = 2 for all n. If 0 £ 0 and n +— 27
is periodic with period M, we show M is a multiple of 2N + 1. Suppose M =
(2N + 1)k + m for some integers k > 0 and m with |m| < N. If m = 0, it follows
as above that #¥o = o; if m # 0, we find a contradiction. Now |7 — Manml < 2
so |7 — r}i::_am] < 2¢ for all n. There exists i with o(i) = | and we choose
n = (2N + 1)i so 55 = yo. If gra(i) # 1, |eo — yo| < 2e, which is false; if
Bka(i) = 1, |yo — Ym| < 2¢, which is also false unless m = 0.

Regarding the symbol space S: if ¥(0) =0, ¢'(£) > 0, ¢"(£) <0 and (L) #0
for ¢ > 0, then % is strictly increasing and (a + b) < y¥(a) + P(b) for a,b > 0.
Since t — t/(1 4 t) has these properties, d is a distance (inetric) for S, and (S, d)
is clearly complete. For any integer N let Sy = {c € S| o(i) =0if|i| > N}, a
finite set; given any o € 5 there exists oy € Sy with o(i) = on (i) for |i| < N so
d(o,on) < 27N, s0 S is totally bounded, hence compact. Deline 0 : S — IR by

0(c) = 20(0) +

0 is a continuous map whose image is the set. of numbers in [0,3] whose ternary
expansion contains only 0 and 2, i.e. the “middle thirds™ Cantor set (. The
restriction 8.5 — (' is a continuous bijection, hience a homeomorphism,

Now we show o — z7 : S — N is continuous for each n. Since Mwy(e) <
(1 — 8)/4, we may choose @, in # < 0 < | so that A-fw[e‘](ﬁ,l'_" - I—LH.J < 3.
Given o € S and a positive integer m, suppose @ € S with d(7,0) < 27™; then
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(i) = o(i) for |i| < m. Let m' = m(2N + 1) so 5 =y for |k| < m'. In notation
like that of the shadowing lenma

[2%]
g =+ G e (i 2) + hg)
-0

and similarly for 97, 27. If |n| < m/,

(=]
T - = Z(Gz.k-u =GR ) 0(0g X)) + )
-y

o0
+) G e (9(0F 27) — 9 2F) + h§ = hY) .

-0
Now
GG =G5l = | Y Gl (DF(T) = DFGIR))GT,
; k| >m’
< MK ) glimktlgli=K
|k[>m'
C,"B!l{"jl for all 7,3
< 2M?K _
- e 20 2m’ —|i+7] N 2 ’
T—a’ T for i i £ m

where €’ = sup; ; S, gli-k=11gli-klg=l"=3l < o by the calculation in Lemma
1.6. Then for |n| < m’

‘ 25
AN D B2 g =1t (5 1 e (e)

-_— - 92
k| <m?
+ 3 2MAKCET (8 + ewl(e)
|k|>m!
+ D MOn=E2(6 4 ewo(e)) + Y MO ENwg(e) 2 — 2] -
|k|>m! |k|<m!

W

This implies, for a constant C"' = O(6 + cwo(g)),

|1]|l<d‘:‘1, Fxg - J:EV(GTJ'—J’: % ﬂrln’+k] < " ,,
3 T

with fixed n and m — oo (or & — o), we see 27 — z7.
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If o has finite support, d(3*(a),0) — 0 as i — +00, s0
x::::f‘(o]ﬂx;-’:::g m=2N+1)i+j, |jI<N] asn— oo

(iv) Assume also that f is injective. Then the orbit [27]%, is.determined by any
of its points so o — z§ : S — X is a continuous injection with compact image
K c V, and the restriction ¢ of ¢ +— z§ : 5 — K is a homeomorphism. Also
FEVEL(22) = a:g(o) so fPNHK - Kispofopl

Finally assume (i), (ii), (iv) and (v) but not (iii). Theorem 6.1.9 of [7]
shows the global manifolds W*(x,), W¥(x¢) are immersed (' submanifolds of
V with complementary dimensions, dimW"(xy) = codimW?®(z¢) < oo, and
Yn € WH(20) N W?(20) for all n. We have

Ty W (z0) = {nm € X | I{nk}k>n bounded with niyy = Df(yx)y for all k > n}

Ty W (z0) = {nn € X | I{ns }x<n bounded with neyy = Df(yx)ne for all k < n}

(These are merely interpretations of the dillerence equations defining the deriva-
tives: see Theorem 5.2.2 of [7] for the case of continuous time).
Then W?*(zo)M,, W¥(20) is equivalent to T, W?*(xzo) NT,, W (o) = {0}, i.e.

()% bounded with ey = D f(ye)ye for all & implies 1, = 0 (so all 5. = 0)

which is (iii).
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