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A priori bounds for C 2 homeomorphisms of the circle 

Edson de Faria 

Abstract: In this paper we establish C2 a-priori bounds 
for the scaling ratios of critical circle mappings in a form that 
gives also a compactness property for the renormalization op
erator. 
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§l. INTRODUCTION 

Understanding the geometric scalings of circle mappings can be viewed as a first 
step towards a smooth classification theory for such mappings. For diffeomor
phisms, this problem was solved by Herman in ' [Hj. Let us briefly state Herman's 
results in this context. 

Let f : Sl ~ S1 be an orientation preserving homeomorphism, let c E Sl be 
a distinguished point and let 

p(f) = [ro,rl,···j 
1 

1 
ro+---

1 
rl+ -

be the continued-fraction development of its rotation number . Let {qn}n~O be the 
sequence of return times of the forward orbit of c to itself, and for each n 2: 0 
let I n be the closed interval on the circle with endpoints r" (c) and r,,+l (c) that 
contains c. Then c divides I n into two intervals, In with endpoint r"(c) and 
In+1 with endpoint r,,+l (c) . The ratio of lengths sn(f) = IIn+1I/IInl is called 
the n-th scaling ratio of f. For example, if f = ROt is the rotation by 27ra and 
a = p(f) is irrational, then writing Pn = sn(f) we have Po = (1 - roa)/a and 

1 
Pn-1 

for all n 2: 1. The main theorem of Herman states that if f is a sufficiently 
smooth diffeomorphism (at least C 3 ) with irrational rotation number a satisfying 
a Diophantine condition 
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where C and f3 are positive constants, then I is smoothly conjugate to the rotation 
ROt. In particular, we have 

lim 8 n (l) = 1 , (1) 
n ..... oo Pn 

in other words I and ROt have asymptotically the same scaling ratios . 
If I is allowed to have critical points, then (1) is no longer true. For instance, 

if a = (v'5 - 1)/2 is the golden mean, then Pn --+ a:= 0.625, while taking I in 
the family 

Ie : x ........ x + () - ~ sin 27rX (mod 1) 
27r 

(2) 

so that its rotation number is the golden mean, computer-assisted work by Shenker 
shows that 8 n (l) --+ 0.7760513 .... One may wonder whether perhaps maps such 
as (2) can be used as models instead of rotations. Let us agree to call I a critical 
circle mapping if I is a local smooth diffeo at all points but one, the critical point, 
around which I is smoothly conjugate to a map of the form x ........ xlxl·- l + a, 
where 8 > 1 is a constant called the type of the critical point; when 8 = 3 we say 
that the critical point is of cubic type. In [dF2] (cf. also [dFd) we proved the 
following theorem. 

Theorem 1. II I and g are smooth critical circle mappings with critical points of 
cubic type and with the same irrational rotation number of bounded combinatorial 
type, then they have asymptotically the same scaling ratios, z. e. 

lim 8 n (l) = 1 . 
n ..... "" sn(g) 

D 

The main ingredients in the proof of this theorem were of a holomorphic na
ture, but the starting point was the fact that the ratios of scaling ratios 8 n (I) / 8 n (g) 
are bounded, and eventually universally so. This fact is known as the real a-priori 
bounds for critical circle mappings, and it was first proved in the C 3 case by 
Swiatek in [SW2] and by Herman & Yoccoz (unpublished). In this note we sketch 
the proof in the case of C 2 mappings. More precisely, we have the following 
theorem. 

Theorem 2. If 0 < a < 1 is an irrational number then there exist constants C l 

and C2 such that 
(aJ If I is a critical circle mapping with rotation number a, then for all 

sufficiently large . n we have lIn I 2: C l IIn+d ; 
(bJ If I and g are critical circle mappings with rotation number a, then for 

all sufficiently large n we have I 8 n ((I)) - 11 ~ C2 . 
Sn 9 

Bounds of the type given by the constants Cl and C2 in this theorem are 
called beau bounds by Sullivan in [Su]. We will prove here parts (a) and (b) for 
C 2-mappings with constants independent of n but possibly depending on 1 and 
g. One can then use this result to get beau bounds exactly as is done by Swiatek 
in [SW2]. 



A priori bounds for C 2 homeomorphisms of the circle 489 

§2. CROSS-RATIOS, POINCARE LENGTH AND KOBE'S PRINCIPLE 

We shall need certain abstract distortion tools that we proceed to explain. Follow
ing Sullivan [Su], we define the Poincare density of an open interval I = (a, b) ~ IR 
to be 

(b - a) 
PJ(x) = (x-a)(b-x) 

Integrating PJ(x) dx we get the Poincare metric on I . Thus, the Poincare length 
of J = (c, d) ~ I is 

fJ(J) = l PJ (X)dX = -logCr[I,J], 

where Cr[I, J] = (a - c)(d - b)j(a - d)(c - b) is the cross-ratio of the four points 
a, b, c, d . If f : I -> 1* is a diffeomorphism, then the derivative of f measured with 
respect to the Poincare metrics in I and I*, 

is called the Poincare distortion of f. It is identically equal t.o one if f is Mobius, 
in which case f preserves cross-ratios . Now consider the symmetric fun ction 6J : 
I x I -> IR given by 

{

log f(xl - C(y) 

6J (x, y) = 
log f'(x) 

, x#- y, 

, x = y 

Then an easy calculation shows that 

(3) 

Note that when f is C 3 its Poincare distortion is controlled by the second order 
mixed derivative of 6J , since in that case 

where Q is the square (a, t) x (t, b) . Moreover, when (x, y) -> (t, t) the integrand 
above becomes -6 Sf(x), where Sf is the Schwarzian derivative of f . This is 
consistent with the fact that maps with negative Schwarzian increase the Poincare 
metric and consequently decrease cross-ratios . Now, for C 2 mappings we have the 
following infinitesimal version (originally due to Sullivan) of a result of de Melo & 
van Strien [MS] . 
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Lemma 3. Let f : 1-+ IR be a C 2-difJeomorphism onto its image. Then there 
exists a gauge function u, depending only on the C 2 norm of f, such that \70, is 
u-H older, i. e. 

(4) 

for all Zl and Z2 in I X I. In particular, log Dr f(x) ::; Ix - alu(lx - aD for all x 
in I . 

Proof We prove (4) with oxo, replacing the gradient and some gauge function u x 
replacing u. We have 

Ox o (x, y) = J'(x)(x - y) - f(x) + fey) 
, (I(x) - fey)) (x - y) 

Now let p. : {(x, h) E I x IR : a::; x + h ::; b} -+ IR be given by 

{ 
f(x + h~ - f(x) 

p.(x, h) = 
f'(x) 

,h #- 0 

,h = 0 

Then p. is C 1 provided f is C 2 , and so we can write (5) as 

p.(x, O)(x - y) - p.(x, y - x)(x - y) 
oxo,(x , y) = 

p.(x, y - x)(x - yF 

OhP.(X,1'l) 
p.(x , y- x) , 

(5) 

(6) 

for some 0 ::; 1'l ::; Ix - yl. Let m = inf Ip.(x, h)1 > 0 and M = sup IOhP.(X, h)l, both 
depending only on the C1-norm of p. . Then if Zi = (Xi, Yi) E I x I we have from 
(6) 

M 
IOxO,(Zl) - ox o/(z2)1 ::; -2 1P.(Xl' Yl - xI) - P.(X2' Y2 - x2)1 . 

nl 

Thus, writing rp(z) = p.(x, y - x), we can take 

ux(t) = sup Mm- 2 Irp(zI) - rp(z2)1 . 
IZ1-Z21~t 

We define uy for OyO, in the same way. Then the sum u = U x + uy satisfies (4). 
Finally, from (3) and the mean-value theorem , we have 

log DJ/(x) ::; Ix - alux(lx - al) ::; Ix - alu(lx - al) , (7) 

and the Lemma is proved . D 

We note that the above definitions and Lemma 3 still make sense when I 
is an interval in any Riemannian one-manifold. Therefore we have the following 
result. Recall that a circle homeo without periodic points is called minimal if the 
w-limit set of any point is the whole circle. 
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Lemma 4. Let f be a minimal C2 circle homeomorphism, let N be a positive 
integer, and let I = I(N) <;;; Sl be an interval such that (a) I, fI, f2 I, . .. , fN I 
are k-quasidisjoint for some k > 0 independent of N; and (b) f restricted to each 
fi I is a diffeomorphism with C 2-norm uniformly bounded from below. Then the 
Poincare distortion of fN on I is bounded independently of N, and goes to zero 
as N -+ 00 . 

Proof The Poincare distortion satisfies a chain rule. Therefore, if x is in I, we 
have by (7) and Lemma 3 

N-1 

I L log Df,If(i(x))1 
;=0 

N-1 

< L u(li II) Ii II 
;=0 

N-1 

< u(eN ) L liII , 
;=0 

where eN = maXos;<Nlfi II- This last sum is bounded by k, while eN is also 
bounded independently of N. Since f is minimal , there are no wandering intervals 
and therefore eN goes to zero as N goes to 00 . [J 

This lemma tells us that, in the small, long compositions of uniformly C 2 

diffeos defined over quasi-disjoint intervals are nearly projective. Now the so
call1ed J( obe principle says that if a diffeo is nearly projective over an interval 
I, then in a small subinterval J with definite space inside I the diffeo is in fact 
almost linear. The space s(I, J) of J inside I is by definition the ratio between 
the length of the smallest of the two components of I \ J and the length of J . 
Kobe 's principle can be stated as follows . 

Lemma 5. Let f : 1-+ IR be a C 2-diffeo onto its image, and let J <;;; I be such 
that s(I, J) > O. Then there exists a constant C depending only on s(I, J) and 
the Poincare distortion of f such thai 

f'(x) I log I'(y) I ~ Clx - yl 

for all x and y in J . Moreover, for fixed space, C goes to zero with the Poincare 
distortion. 

Proof See [MS, Ch. IV]. [J 

§3 . THE A-PRIORI BOUNDS 

Now we use these ideas to give a brief sketch of the proof of Theorem 2. The first 
return map to I n consists of f9n restricted to In+1 and f9n+l restricted to In. 
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This pair is called the n-th renormalization of I. Our problem is to bound the 
Cl-norms of these renormalizations (after we rescale both maps by a linear map 
taking In onto an interval of unit size) by a constant depending on I but not on 
n. The key point is to get uniform space around the two intervals containing the 
critical value of I, namely l(In) and l(In+I). Once this is accomplished, Lemmas 
4 and 5 give C l control of the renormalizations of I independently of n. For this 
purpose consider the collections 

and 
Bn = {In+l , IIn+l , 12 In+l , ... , r .. -l In+d 

We have the following combinatorial facts . 

Lemma 6. For each n ~ 0, the union An U Bn is a partition 01 SI . o 

Lemma 7. For each i in the range 1 ~ i ~ qn+l - 1, the inverse composition 
I-HI: li(In) - l(In) extends as a diffeomorphism to an interval Ji,n containing 
Ii (In) and its two nearest neighbors in An U Bn . 0 

The fundamental observation of Swiatek in [Swd is that the smallest interval 
in An U Bn already has universal space around itself. More precisely, we may 
assume without loss of generality that Ii In E An is the smallest interval in An UBn . 

Then by definition of space we have 

where 1;,n is given by Lemma 7 . Using Lemma 4, we transfer this space to space 
around l(In) as follows. We view the composition I- i+l as made-up of factors of 
two types . There are bounded lactors, namely those whose domains are far away 
from the critical point and which have uniformly bounded C 2-norms, and there 
are singular lactors, namely those whose domains fall inside a fixed neighborhood 
of the critical point. The singular factors have positive Schwarz derivative, and 
therefore can only increase space. The sub-compositions bet.ween t.wo singular 
factors are made-up of bounded factors and therefore distort space by an addi
tive, uniformly bounded amount, by Lemma 4. Hence the whole composition 
has uniformly bounded distortion of space, which gives us space for f(l,,) inside 
I- i+l (1;,n) ' This fact plus a similar argument produces space around /(1,,+1) 
also. Finally, we can use Lemma 5 to get that the C 1 norm of r"+' restricted to 
In is uniformly bounded , thereby proving (a) and (b). Lemma 5 does not apply 
immediately to the whole composition, for not all factors in it are bounded. It 
is necessary to segregate the singular factors from the bounded factors , shuffling 
them appart by conjugating the bounded ones by the singular ones. This can be 
safely done because such conjugations are bounded operators in the space of C 2 

diffeos with the C 2 topology. 
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