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Some aspects of the dynamics of the Calm-Hilliard equation 1 

N.D. Alikakos and G. Fusco 

Abstract : We describe some aspects of the dynamics of 
the Cahn-Hilliard equation. In particular we consider the dy­
namics of spherical interfaces and discuss a result showing 
that spherical interfaces either persist for ever or until they 
reach the boundary. We also discuss the dynamics of a small 
interface attached to the boundary. 
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1 Introduction 

The phase diagram (u = concentration, T 
schematically represented in Figure 1. 

T 

temperature) of a binary alloy IS 

Figure 1 : Phase diagram of a binary alloy 

If the state of the alloy corresponds to a point A = (tl'A, T A ) above the "curve 
of miscibility" C, then the alloy is in thermodynamical equilibrium. Points below 
the curve C instead do not correspond to thermodynamical equilibrium. If the 
alloy is rapidly quenched from A to A' = (UAI, TAl) below the curve of miscibil­
ity a complicated phenomenon of phase separation begins and the a lloy evolves 
toward a situation where two distinct phases with concentration Ul' and U2, both 
corresponding to thermodynamical equi librium coexist. The concentration Ul, U2 

are determined by the intersection of the curve C with the line T = TA" The 
amount of each of the two coexisting phases is determined by the condition that 

I Partially supported by FAPESP's Projeto Tematico .. Transic;ao de Fase Dimimica e Sistemas 
Evolutivos" . 
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.the average concentration remains constant during separation 

10 udx = 10luA (1) 

where 0, a bounded smooth domain of IR3 , is the region that contains the alloy 
and 101 is the measure of O. 

To model the phenomenon of phase separation we call consider the gradient 
dynamics corresponding to a free energy functional of the type 

(2) 

where F is a double well potential with two equal minima at Ul, 112. Assuming 
conventionally that Ul = -1, U2 = 1 a typical choice for F is F( u) = i (1 - u 2 )2. 

The contribution of F to J, represents the bulk free energy. The other term, by 
penalizing high gradients of the concentration function u, models the contribution 
of surface energy. The parameter e: > 0 is a measure of the importance of surface 
energy versus bulk free energy and it is assumed to be very small: e: ~ 1. When 
e: ~ 1 it can be expected that global minimizers of (2) constrained by (1), are 
functions which are near step functions jumping from u\ to U2 accross a thin inter­
face of G(e:) where most of the energy is concentrated. Global minimizers should 
therefore minimize the measure of the interface which , for e: ~ 1, is expected to 
be almost proportional to the free energy. This is in fact the case as was proved 
by Carr, Gurtin, Slemrod [CGS] in the one dimensional case and by Modica [M] 
and Sternberg [S] in the n ~ 2 case. 

The gradient dynamics associated to the functional (2) under the constraint 
(1) depends on the choice of the Hilbert space with respect to which the gradient is 
computed. If one chooses L6(0) , the subspace of square integrable functions with 
zero average, then one obtains the following modified version of the Allen-Calm 
equation 

{ 

Ut = c:2~u - F'(u) + rAT In F'(u)dx 

au - 0 an -

(3) 
,x E a~, 

which sometimes, due to the presence of the integral term, is referred to as the 
nonlocal Allen-Calm equation. The presence of this non local t.erm is rather un­
satisfactory because, from a physical point of view, only points in a neighborhood 
of any given point x should influence the time variation of the concentration at 
x . If, following Fife, the chosen Hilbert space is HOI, the subspace of t.he Sobolev 
space H- 1 defined by (1) , then one obtains the Call1l-Hilliard equation 

{

"lLt = ~(-E2~u+ F'(u» 

au _ a~u - 0 
an - an -

,x E 0, 
(4) 

,x E ao 
which has a local character. We note explicitly that (1) is valid along solut.ions of 
(4). This follows by integrating both sides of (4) in 0 and by lIsing 

: (-e:2~u+ F'(u) = 0, x E ao 
un 
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which is a consequence of the boundary condition in (4). 
The phenomenon of phase separation is rather complicated and can follow 

different routes including spinodal decomposition and/or nucleat.ion, depending on 
the value of 1tA. It. is remarkable that the Calm-Hilliard equation has a rich variety 
of solutions that can model at least from a qualitative point of view all this highly 
nonlinear behavior. There is now an ample literature on several aspects of the 
Cahn-Hilliard equat.ion. [CI], [C2], [GI] deal with spinodal decomposition, [BF] 
with nucleation, [E], [EF] with the general existence theory and numerical studies, 
[ABF], [BrH], [G2], [BXI], [BX2] study dynamics of layers in one dimension, [P], 
[ABCh], [AF2], [St] study dynamics of layers in higher space dimension . Our 
discussion here focus on the dynamic of (4) for E «: I and t large. In Section 2 we 
give a qualitative description of the ultimate dynamics of (4) and in Section 3 we 
present two theorems that substantiat.e this description. 

2 The ultimate dynamics of the Cahn-Hilliard 
equation 

A basic concept for understanding t.he asymptotic behavior of dissipative sys­
tems is the concept of a "Global Attractor": a compact, connect. set. which is 
invariant and attract.s all orbits of the system [II]. The gradient structure of the 
Calm-Hilliard equat. ion implies the existence of a global attractor A, in a suitable 
Sobolev space H. As we have ant.icipated in the introduct.ion, we are interested in 
the dynamics of (4) for 0 < E «: 1. In particular on those aspect.s of t.he dynamics 
that are meaningful in the limit E ~ 0 and therefore are expected to havea regular 
behavior in the limit E ~ O. From this point of view the global attract.or A£ is 
probably not the right object to take under considerat.ion. In fact A£ has a very 
singular bahavior for E --;. O. For instance it. is possible t.o show that. 

lim dimA£ = 00 ,-0 (5) 

and 

lim number of stationary solutions of (4) = 00 . 
<-0 

(6) 

The stationary solutions that appear in the attractor when E --;. 0 are expected to 
be more and more unstable in the sense of having a higher and higher dimensional 
unstable manifold. Therefore they should not be of particular importance for 
understanding the ultimate dynamics of (4). To this end one should inst.ead 
concentrate the attention on subsets of the attractor of fixed dimension and try 
to understand their behavior in the limit E --;. O. A nat.ural object. to consider is 
then the maximal compact invariant set [{, contained in t.he set 

(7) 



N.D. Alikakos and G. Fusco 

(for suitable chosen values of c) and it is also natural to conjecture that, for generic 
F and n, for each 0 < c ~ 1, tpere is a sequence CO,Cl, ... , CN. such that 

(8) 

and 
diml{c = i, for Ci ::; C < Ci+l . (9) 

When one adopt.s this point of view, the relevant question becomes the descrip­
tion of the set l{c for Ci ::; C < Ci+l and i a fixed small integer. In particular the 
description of the set l{i = l{c;' These sets in fact, unlike t.he global attractor A<, 
are expected to be of fixed complexity and to have a well defined limit for c -+ O. 
As was mentioned above the set l{0, which is the set of global minimizers (under 
the assumption that global minimizers are isolated), is made of layered functions 
which in the limit c -+ 0 approach step functions with values ttl and U2. For fixed 
i and c -+ 0 the same should be true for the set l{i. Then it becomes relevant to 
understand the evolution of layered functions and therefore the dynamics of inter­
faces or ftonts. Pego [P] derived by t.he met.hod of mat.ched asymptot.ic expansion 
the following law of evolution of an interface r in the singular limit. c -+ O. 

{ 
D.J1 = 0 
~ =0 an 
p = cal{ 

, x E n\r 
, x E on 
,x E r, 

( 10) 

(11 ) 

Here r is an orientable imbedded surface non intersecting on , f{ = [{(x) is the 
mean curvature of r at x, a, (3 positive constants, v = v( x) is the velocity of 
r at x Erin the direction normal t.o r at x. The sign convent.ion for l{ is 
that the curvature of a sphere is positive and the normal velocity of a shrinking· 
int.erface is taken t.o be positive. The notation [~]r stands for t.he jllmp of t.he 
normal derivative of J1 accross r. The function JI represent.s t.he first. t.erm in t.he 
asymptot.ic expansion of t.he expression -c" D.u + F'( 1/) which in physical t.erms 
corresponds to the chemical potential. The unknown in equat.iolls (10), (11) is 
a family of manifolds t -+ r t. The mathematical t.IH'ory for (10), (11) is still 
incomplete. For t.he case r c IR2, Xinfu Chen [Ch] has proYf'd local exist.ence 
of a weak solution. Earlier result.s were given by Duchon and Robert [DR] who 
considered the case when ro is a graph. P. Const.ant.in and 1'vI. Pugh [CP] st.udied 
a closely relat.ed problem. 

Concerning the rigorous relationship bet.ween t.he Cahn-Hilliard eqllat.ion and 
the limit problem (10), (11) Alikakos, l3ates and Xinfu Chell [ABCh] proved con­
vergence under the assumpt.ion t.hat (10), (11) admit. a smoot.h solu tion. During 
t.he evolut.ion of a layered function according t.o equat.ion (-1). t.he energy (2) shou lei 
be mostly concentrated in the int.erface and therefore, due t.o the gradient. charac­
ter of (4), in t.he limit. c ---;. 0 t.he measure of. the int.erface should be nonincreasing. 
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It is easy to show that the limit evolution defined by (10) , (11) has this property 
and that moreover in agreement with the constraint (1) the regions inside and 
outside f have constant. measure during the evolution. In fact we have ' 

d 
dt If tI -l, v = -(3 l, [~~] = -(3 1 ~p = 0 , ( 12) 

d 
dt Inti - r /{v = -~ r p rap] = -~ r l\7pl2 :S 0 , Jr, €a Jr, an €a Jn (13) 

where nt is the region enclosed by f t and Iftl, Inti are the measures off t and nt. 
In the following we limit ourselves to the case of layered function with a con­

nected interface homeomorphic to a sphere. On the basis of the above discussion, 
such an interface, if sufficiently far from the boundary of n will first approach a 
spherical shape. This will require a time interval of O(I/c) and is proved in [eh] 
in the case n c IR2 under the assumption that the interface is initially close to 
a circle. The subsequent evolution cannot be guessed on the basis of the limit 
problem (10), (11). In fact spherical interfaces are equilibria of this problem as 
one checks by taking: p = cO' 1/ R, R = radius of the sphere, v = O. On the ot.her 
hand, global minimizers should always correspond to interfaces that intersect the 
boundary an. The reason being t.hat, when this is the case, part. of t.he bound­
ary is used together with the interface for enclosing a region of given volume and 
therefore an interface of smaller mea'3ure is needed. Therefore one can expect that 
once the layer has assumed an approximatly spherical shape it will not, in general, 
remain in equilibrium inside n as suggested by (10), (11) but it will slowly drift to 
the boundary keeping its spherical "bubble" shape. This is actually t.he case and 
we give below, cf. Theorem A, a rigorous result in this direct.ion. Theorem A is 
taken from [ABrF] where a complete proof can be found. In t.he following we only 
sketch the main argument. Another proof which also renders detailed information 
on the dynamics of spherical interfaces can be found in [AF2] (cL Theorem 7.2). 

The drifting of the bubble toward the boundary is extremaly slow and it t.akes 
a time interval of order ee/< (c > 0 a constant which depends on t.he init.ial posit.ion 
of the bubble but is independent of c) t.o approach an. When t.he distance of the 
bubble from the boundary becomes of the same order of magnit.ude a<; the layer 
thickness, which is O(c), a rather drastic and quick transformation takes place 
resulting in a layered function with an interface intersecting an. We assume this 
interface is still connected as one can expect when the radius oft.he original bubble 
is sufficiently small. In this situation, after attaching to the boundary the int.erface 
should be close to a half sphere and the region enclosed by it can be regarded as 
a "drop" on an. The subsequent evolution qf the interface can again be guessed 
by assuming that the energy is almost concentrated in t.he layer and t.herefore by 
assuming that along the evolut.ion the measure of the interface is non increasing. 
Therefore it is natural to expect that the drop, in order to reduce the measure 
of the interface, will crowl on the boundary toward regions of higher, and higher 
curvature. In Section 3 we present a theorem, Theorem B, which substantiates 
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Figure 2: The evolution of a small int.erface 

this conjecture and indicat.es t.hat., after a time rescaling, t.he dynamic of a small 
drop on 80. is described by the ordinary different.ial equat ion 

~ = grad [(&0(0 , ( 14 ) 

where ~ is the cent.er of the drop and [(&0(0 is the mpan clII'vat.ure of an at. 
~ E 80. . Figure 2 summarizes t.he various phases of t.he evolut.ion of solutions of 
(4) with a connected int.erface enclosing a small region as dpscri Iwd a bove. 

Keeping in mind what we have said so far we can guess t.he st.ructure oft.he set.s 
1(i in some simple cases . Assuming 0. C IR'2 and, as beforE' , t.h a t. t.h e int.erface is 
simply connected and encloses a sm all region , t.h e set [\ '2 should he homeomorphi c 
t.o n. Away from a n E-neighbo rhood of 8n t.h e int.erio r of n should correspond to 
the slow motion of a bubble. The bound ary 8 0. instead should w rrpspond to t.he 
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Figure 3: The sets J(i, i = 0, 1,2 when n = ellipse 
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crow ling of a drop on the boundary of n and can be ident.ified with the set J(1 . 

Figure 3 describes this situation for t.he case when n is an ellipse. 

3 Two theorems on the dynamics of "bubbles" 
and "drops" 

If a> 0 is a given number we let na = {x E n I d(;z:, on) > a}. Let. p > 0 be fixed 
and assume that np is non empty. Let 6 > 0 be so small t.hat. n pH i= 0. For each 
~ E OpH/2 define s( : n -+ IR by setting 

and let d( = d(~, on) - p. 

, Ix - ~I < p, 
, Ix - ~I > p, 

(15) 

Theorem A.[ABrF] There exist l > 0 and constants c, G > 0, such that, given 
~o E npH , there is a sohtiion u', c: E (0, l] of equation (4) with the following 
properties 

(i) lIu'(O) - s(oll£l(o) < Gc:, 

(ii) one of the following holds 
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(a) inf Ilu£(t) - S€IILl(O) < G€, Vt E [0,00), 
€EOp+6 

(b) there is T > 0 stich that 

cd€O 

(iii) T> e € . 

inf lIu"'(T) - illL'(o) < G€ . 
€E&Op+6 

Proof: We only indicate the main points and refer t.o [A RrF] for a complete proof 
and related results. We also assume F(u) = i(1- u2)2. 

The rescaled stat.ionary Ca.1m-Hilliard equat.ion 

Ll( -Llu + F'(u)) = 0, x E IR3 , (16) 

admits a one parameter family of bounded radial solut.ions u(-, p) : IR3 ---> IR 

t/(X,p) = U*(lxl,p) , 

where the function U*(7',p) is increa.,ing in 7' E (0,00) and satisfies 

{ U"(p, p) = O(p-l) , 
I+U"(O,p)=O(p-l) . 

Moreover as 7' ---> 00, U*(7', p) approaches exponentially a const.ant. n(p) < 1 

( 17) 

(18) 

a(p) - U"(7', p) = O(e-I/(p)(,' -p) , 7' > p; v(p) = F"(a(p»)1/2, (19) 

and 
1 - a(p) = O(p-l) . (20) 

These results are .proved in [A F2] (cf. Proposit.ion .2.1) in t.he lR2 case but. t.he 
proof, with obvious modificat.ions, applies to IR" . For each ~ E 0.p+h / 2 define a 
function u€ : n ---> IR by setting 

where a€ is determined by imposing t.he condit.ion 

in 11.€dx = in t/.Edx , 

(21 ) 

(22) 

for some fixed ~ E 0.1'+ ,) a nd it. is assllmed a€ = O. A st.andard argument. based on 
the est.imat.e (19) shows (cf. Lemma 3.1 in [AF2]) t.hat. 

(23) 
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Here and in the following c, C, ... stand for generic constant.s independent of [ 
that can change from line t.o line. The function tt€ depends on [ and for [ «: 1 
presents an internal layer in an [-neighhorhood of the sphere {x I Ix - ~I = p} . 
Moreover, as [ ~ 0, u€ -+ s€ pointwise and uniformly in compact.s non intersecting 
{x Ilx-~I=p} and 

(24) 

The main point in the proof is an analysis of the set He defined in (7) when 

c= sup J.(u€)+e- f 
€EOp +6 

Let <P E He be a function that satisfies 

(25) 

(26) 

(27) 

where 1/ > 0 is a number to be fixed later , b > 0 is a small fixed number and 

1I/1I~1 .1 = [211\7 Illi, + 1l/llil ' 
We shall show that 

(28) 

Figure 4: The sets He, N and He n N 
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This estimate can be interpreted by saying that the i.ntersection between He 
and the set N defined by conditions (27) is very thin, cf. Figure 4 where M = 
{u€ I ~ E np+d· . 

A quite standard argument shows that each </> E N, uniquely determines a 
~ E np+6/2 such that 

</> = u€ + t/J (29) 

with t/J orthogonal to the manifold M in the L2 sense 

(t/J,uU = 0, i= 1,2,3, (30) 

where ut is the derivative of u€ with respect to ~i. ~hen we. expand J£( </» in the 
form 

J£(</» J£(lI€) + In (c 2 'Vu€'Vt/J + F'(u€)tP) 

+~ r (c21'Vt/J12 + F"(u€)t/J2) + I u€1/,3 + ~ r 1/-,4 
2 in in 4 in 

We estimate the various terms of (31). 

a) J£(</» - J£(u€) < e-; . 
To show this we note that </> E He implies 

J£(</» - J£(u€) < sup J£(u€) + e-; - J£(u€) 
€Enp +6 

(31) 

On the other hand , if ~ , ~ are any two points in npH and R£., RZ are t.he balls of 

center ~ , ~ and radius d.= Il]i)l{d«, an), d(~, on)}, then 

(33) 

This is a conseqllence of t.he est.imate (23) and of t.he fad, t.hat. aside from the 

small correction clue t.o the presence of (If. the fllnct.ions /If. I ' uZI _ are one a 
n( n( 

translation of the ot.her , From t.he defiti(t.ia,n of 1I€, U· and ill particular from (I!ll 
it follows that u€(x) - o:(p/c) = O(e-;), for J: E<n\Rf. and t.11!' sa me is 1 ... 1<' for 

uZ(x) - o:(p/c). Therefore (:33) impli~~ ' . 

IJ£(uf.) ~ J«1/Z)1 = O(e-;) (31\) 
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that together with (32) proves a). 

b) f (c2Vu(V'I/J + F'(u()'I/J) = f (-c2~u(+F'(u())'I/J+c2 f 'l/Jau€ = O(e-~) . 
In In Jan an 
From equations (22) , (26) , (29) it follows 

i'I/J=o, (35) 

and equation (16) and the definition of u€ imply 

- c2~u€ + F'(u€) =const . (36) 

Ther.efore the first integral on the right hand side of b) vanishes. The other integral 
is O(e-~). In fact 00';,( =O(e-~), because u€ approaches exponentially a constant 

for Ir;(1 -+ 00 and by the trace theorem II'l/JIIL2(an) :S Cclll¢llwl .2 . . 
c) f (e2IV¢12 + FI/(u€)¢2) ~ Ce211¢II~I . 2 . In . 

This estimate is a rather standard consequence of the estimat.e 

(37) 

which, under the condit.ions (30) and '(35), is shown to be true in [AFl] (cf. the 
proof of the estimate 4.13). 

d) Ii u€¢31 :S C1]e211¢11~;.2 . 

To show this one first proves that ¢ E N implies 

(38) 

From this and the Sobolev imbedding theorem it follows 

Putting together a), b), c), d) we obtain from equation (31) 

( 40) 

which, assuming 1] < CIC', implies (28). 
The estimate (28) is the main step .in 'the proof of the theorem . In fact, for 

e 4;:: 1, it results e-~ < 1]es , and therefore, if u(t) = uW ) + ¢(t) is a solution of 
(4) such that 

(41 ) 
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then the only possibility for (27) to be violated is that the second of the conditions 
(27) is violated. That is, there is I > 0 such that 

inf IItt(I) - tt{lIw1,> = "6 , (42) 
{EaopH/> • 

that, assuming "6 sufficiently small, yields the existence of 0 < T < I such that 
~(t) E on pH . 

This essentially proves points (i), (ii) of the theorem. Point (iii) is also a 
consequence of the estimate (28) and is obtained by estimating with the help of 
(28) and some improved form of it the right hand side of (4). 0 

Remark: As we have seen the proof of Theorem A is essentially an analysis of 
the set He and uses the fact that (4) is a gradient dynamics correspoding to the 
functional J.. Therefore a statement like the one in Theorem A also applies to 
any other gradient dynamics that can be associated to J. and satisfies (1), in 
particular to the dynamics defined by equation (3). 

We end this section by quoting whithout proof a theorem taken from [AChF] 
and dealing with the dynamics of an infinitesimal "drop" crowling on on. 

Theorem B: There exist € > 0 such that, given ~o E on, there is a family tt., 
€ E (0, l] of solutions of (4) that satisfies 

{
lim ft. (x, C 1 T) = 1 
!-o 

limtL.(~(T),C1T) =-1 .-0 

, x E n\{~(T)}, 

where ~( .) : [0 ,00) - an is the soilltion of the problem 

{ * = ,Bgrad J(an(~) , 
~(O) = ~o . 

( 43) 

( 44) 

In equation (44) J{ao is the mean curvature of on wit.h the sign convention 
that the curvature of a sphere is positive and ,B is a constant . 
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