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On the Inversion of Lagrange-Dirichlet Theorem 

Piero Negrini 

Abstract: We consider a Lagrangian differential sys­
t~m. The celebrated theorem of Lagrange-Dirichlet ensures 
that a stationary solution of this system is stable, provided 
that the corresponding critical point of the potential fW1C­
tion is a proper {local} maximum. It is also well-known that 
the statement of this theorem, in general, is not invertible. 
The Problem of the Inversion of Lagrange-Dirichlet theorem 
consists in finding criteria which ensure the instability of the 
equilibriwn. Here we give a review of some of these results. 
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§ 1 Introduction 

Let us consider the Lagrange Differential System (L) related to the La­
grangian function: 

L(q, q) = 1[2j(q, q) + 1[1j(q, q) + U(q) (Ll) 

where L E Ch(Bb X Rn, R), Bb being a ball of radius b, centered at the origin 
q = 0, h a positive integer to be specified later, and: 

1[2j(q, q) = ~(S(q)q, q) _ 

1(1)(q, q) ~ (b(q), q) == (A(q)q, q) 

The function 1[2j(q, q) is a positive-definite1quadratic form, U(q) has a critical 
point at q = 0, U(O) = O. The linear term in the velocity variables 1(1)(q, q) 
contributes to the system (L) by the so called gyroscopic forces: 

F.. ( .) _ (8b;(q) _ 8bj (q») .. 
• q, q - 8 8 q} , 

qj qi 
i = i,···, n . 

If the gyroscopic forces are absent, or equivalently if the i-form (b(q), dq) is 
exact, then the Lagrangian function will be said natural. If the matrix A(O) is 
non singular, the gyroscopic forces will be said non degenerate. 
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In the following we will be concerned with the Lyapunov stability (and the 
opposite property, the instability) of the stationary solution q = 0 of (L). 

Let us recall the classical Lagrange-Dirichlet Theorem (L.D.T.): 

Tbeorelll 1.1. Let h = 2, aJld let q = 0 be a proper (local) maximum for U; 
tllell the stationary solution q = 0 of (L) is stable. 

It is also well known that the proof of this theorem is accomplished by con­
sidering the Energy function: 

E(q, q) = 7hl(q, q) - U(q). 

Indeed, taking into account the hypothesis, the level surfaces of this function define 
a family of fundamental neighborhoods of (q, q) = (0,0). Moreover the Energy is 
a first integral of the system (L) so that these neighborhoods are invariant sets. 

Of course, if we miss the foresaid maximum property for U the Energy does 
not define such a family of neighborhoods. However, as it is well-known, the lack 
of the maximum property for U does'nt imply, in general, the instability of q = O. 
Indeed, one has just to consider this simple case of potential U (Painleve's counter 
example): 

U(q) = exp( - -;.) sin( ~), 
q q 

qER\{OL U(O) = O. 

It is possible to give a more sophisticated version of the Painleve 's counter 
example, just preserving the essential feature of the potential: there exists a se­
quence {hn } of negative real numbers, hn ---+ 0 as 11 ---+ 00, such that the sets 
En = {q E Bb : U(q) = hn } are neighborhoods of the origin q = O. Let us call 
these sets isolating sets. 

It is interesting to observe that in the Painleve 's counter example the ex­
istence of isolating sets is due to the fact that the potential function U is not a 
CW function. Of course, for one degree of freedom Lagrangian analytic systems, 
the absence of the maximum property for analytic potential function U becomes 
a necessary and sufficient condition for the stability. Indeed, neglecting the trivial 
case U(q) == 0, we have: 

aiO ( 1.~) 

a being a nonzero constant, k being a positive integer. Therefore, just by inspect­
ing the level curves in the phase space close to (0,0), one easily realizes that the 
origin is stable if and only if k is even and a is negative. 

Indeed, for one degree of freedom system the hypothesis of analyticity of U 
can be replaced directly by (1.3). Certainly this equivalence falls for higher degree 
of freedom; therefore one has several non e<luiyalent possibilities to prevent the 
existence of the isolating sets. 

-The aim of this paper is to give an account of several instability results 
obtained under different hypotheses on U, each of them ensuring a particular 
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condition of non existence of the foresaid isolating sets. The reader interested 
in to have a quite complete picture of the results on the Inversion of Lagrange­
Dirichlet Theorem could couple this paper with the comprehensive review given 
by Salvadori [1] (see also Hagedorn [2], Laloy et al. [3]) . We begin just recalling 
the well known instability result of Liapunov [4] concerning the case in which the 
absence of the maximum property for the potential at its critical point q = 0 
can be ascertained by inspecting the quadratic part of U ~ From now onward our 
interest will be confined to the so called critical cases, i.e . when the stability 
properties of the stationary solution q = 0 cannot be derived from the analysis of 
the linear part of the Lagrangian vector field (with respect to (0,0» . 

We conclude this Section by considering two theorems, the first one due to 
Qetaev [5], the second to Palamodov [6]: they are a good starting point for intro­
ducing the rest of this paper. 

Theorelll 1.2. Consider the natural LagrangialJ [ullctioll L(q, q) = lh)(q, q) 
+ U[k)(q), U[k)(q) being a homogeneous [unctiOlJ o[ degree k, k 2: 3. Let q = 0 be 
not a maximum point [or U[kr then it is an unstable statiOlJary solutioll. 

Let us recall the very simple, but significative proof of the theorem. We 
consider the Qetaev function: 

V( .)_( 07(2)(q,q») q,q - q, ;::'. 
uq . 

Taking the time derivative along the solutions of the Lagrangian system, one 
has: 

~~ (q, q) = 27(2) (q,-q) + (q, ;q (7[2)(q, q) + U[k)(q»)) 

( .) ( 07(2)(q,q») = 27[2] q, q + q, oq + kU[k](q). 

Let us consider the (nonempty) invariant domain D == {(q, q) : E(q, q) = 
7(2)(q, q) - U[k)(q) < O}. We have: (0,0) E oD. By considering a suitable small 
sphere B r , centered at the origin (0,0), we have: 

Therefore, 

V(q,q) E Br nD => ~~ (q,q) > O. 

So, trajectories starting at the initial point (qo, qo) E Br n D must leave in a 
finite time this set, crossing oBr n D. ~ 

Let us emphasize the role ofthe homogeneity property of U[k)(q) in Theorem 
(1.2): the inner product of the vector fields q and V'U[k)(q) is strictly positive 
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whenever U[kJ(q) is positive. The proof of the Cetaev theorem that we recalled 
here suggests the idea of analyze similarly the stability problem for more general 
potentials, by replacing the vector q with suitable vector v(q), such that: 

(v(q), 8~~q» > 0 

whenever U(q) > O. The second theorem indeed is just a significative case of using 
such a technique. 

Theorem 1.3. Let L(q, q) be a natural Lagrangian function and assume : 

U(q) = U[k](q) + W(q) 

where U[k](q) is a. homogeneous form of degree k, k 2: 3, havillgq = 0 as an i~olated 
critical point. Moreover U[k](q) has not a maximum at q = 0, W E Ck(Bb, R) 
and W(q) = o(lqlk). Then the equilibrium q = 0 is unstable. 

The proof is accomplished by considering the following vector field: 

v(q) = q + alql(2-k)\7U(q), 

where a is a positive parameter. Due to the hypothesis, we can find 6 E (0, b) 
such that: 

A being a positive constant. We consider the following Cetaev function V E 
C(1c-l)(B6 X Rn, R): 

V( .) = (CYl[2](q,q) (» 
q, q 8q ' v q . 

Therefore, with a suitable small we have: 

and therefore, eventually restricting 6: 

Let us now consider initial data (qO, qo) such that U[k(qO) > 0 and E = 
1[2J(qo, qo) - U(qo) < O. As long as the orbit of the motion q(-, qo, qo) lies in. B6 
we have: 

~~ (q, q) 2: ~1[2](q, q) + ~aAlqlk . 
As an immediate consequence we obtain that the motion q(., qo, qo) must leave 

B6 in a finite time, and therefore the instability follows. 0 
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The dynamical interpretation of both these theorems is quite intuitive: more 
or less they ensured the condition under which each motion q(., qo, 40), having 
the initial datum (qO, 40) of positive energy and sufficiently close to (0,0), has a 
nonzero radial component of the velocity, at least until it stays close to the sta­
tionary solution. Therefore, perhaps a quite large part of the kinetic energy can be 
wasted turning around q = 0, but still a sufficient amount remains to move away. 
Indeed this part is continuosly increasing; consequently (q(t, qo, 40), 4(t, qo, 40)) 
cannot stay indefinitely close to (0,0). 

We emphasize that in Palamodov's Theorem the nonexistence of isolating sets 
for the origin can be ascertained just by inspecting the first non zero term U[k](q) 
in the Mac-Laurin expansion of the potential function U(q). This is the essential 
tool for discovering the non vanishing radial velocity. However, this theorem is 
not a generalization of the Cetaev theorem; recall indeed that hete q = 0 has to 
be an isolated critical point for U[k](q). In the following Sections we will see the 
amount of job we need for relaxing such hypothesis. 

Let us give a plan of the rest of the paper. In Sections 2,3,4, we will consider 
only natural Lagrangian systems. Moreover: 

(i) Section 2 is concerned with the problem of the Inversion of Lagrange­
Dirichlet Theorem when the absence of isolating sets is due to the ana­
lyticity of the potential function U, which has not a maximum at q = O. 

(ii) In Section 3 we consider the case in which the absence of isolating sets 
is realized by assuming q = 0 to be a minimum point for the potential 
function U. 

(iii) In Section 4 again we consider the potential function U whose extremal 
properties at the critical point q = 0 can be suitably ascertained from the 
inspection of its k-jet at the origin. In particular the instability of the 
equilibrium will be a consequence of the existence of motions which tend 
asymptotically to it. 

(iv) The last Section is devoted to the difficult problem of the stability of the 
stationary solution q = 0 of (L) system having gyroscopic forces, i.e. when 
the Lagrangian function has a nonzero linear kinetic term 1[1]' We will con­
sider ,in particular, the case of non-degenerate giroscopic forces, i. e. the 
case A(O) non singular. In such a situation we will see that the property of 
q = 0 being a proper minimum for the potential function U is no more suf­
ficient for the instability; the 80 called gyrostatic stabilization phenomenon 
can occur. Then the problem of what happens with the instability prop­
erty of the equilibrium of a natural Lagrangian system when a small non 
degenerate gyroscopic force is switched on is analyzed: we will show that, 
close to the origin, a new invariant set (a Mather set) arises, which turns 
out to be an unstable set being the limit set of a class of motions. 
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§2 The analytic case. 

This Section is mainly concerned with the following problem. Consider 
a n degree of freedom natural Lagrangian system and let the potential function 
U E CW(Bb, R). Then, recall that in the case n = 1 the loss of the proper 
maximum' property of U at q = 0 is a necessary and sufficient condition for the 
Inversion of Lagrange-Dirichlet Theorem. Is the same still true for arbitrary n? 
Hereafter mainly we deal with the case when q = 0 is not a maximum. 

A first important contribution to the problem of the instability of the equi­
librium of analytic natural Lagrangian systems with two degree of freedom, was 
given by Palamodov [6] (and, later on, but indipendently, by Taliaferro [7]). Pre­
cisely we have the following result: 

Theorem 2.1. Let U E CW(Bb,R),Bb C R2. Assume q = 0 be a critical point 
for U, which is not a maximum; then it is an unstable equilibrium of the differential 
system: ij = VU(q). 

The Palamodov' s proof is mainly based on the properties of the level sets 
of analytic functions in the plane. The next-Lemmas allow us to construct a 
suitable Cetaev function. 

First Lemma. Let U: be the intersection of a ball centered at q = 0, having 
radius p suitably small, with a connected component of the set of positive values 
of the potential U, whose closure contains the origill. Tllen it is possible to define 
a continuous vector field u in U: such that: 

(u(q), O~~q» ~ o. 

Moreover, the vector field u is a Cl vector field in U: \K, K being the union of 
a finite number of COO curves, and there exists a positive constant C such that: 

ou,(q) w.w. > Clwl2 
() • J - , 

qj 

for any wE R2, q E U: \ K. 

Second Lemma. Let U be an analytic function in a two-dimension · domain 
containing the origin q = O. Then, for a suitable small p, U: cannot contain 
critical poin ts of U. 

Collecting together the results of these two Lemmas, a Cetaev vector field 
v(q) = u(q) + ciVU(q) can be constructed, choosing u as a suitable small positive 
constant. Consider indeed the Ceteav function: 

V(q,q)' = (v(q),q) 

As long as we consider a motion q(t) avoiding the set K during a time 
interval (tl' t2), we have: 

~; (q(t), q(t)) ~ ~Clq(t)12 + uIVU(q(t)W, 
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and therefore, due to the Second Lemma: 

a being a suitable positive constant. Now, if there exists a solution q(t) = 
q(t, qo, qo);-t 2: 0 which intersects K in a measure zero set S of its existence in­
terval, the proof is easily accomplished. Let us prove indeed that the set C of 
motions, each one of them crossing K in a non zero measure subset S of-[O, 00), is 
at most countable. Let us consider anyone of such possible motions q(.) E C and 
denote its semi-orbit by ')'+ b+ == {Ut>o q(t)}). First of all we remark that, as 
VU(q) does'nt vanish, then also K nyF is a set of non zero measure (as subset 
of K). Consequently if the set C is more than countable, certainly it contains 
at least two motions whose semiorbits intersect each other in a susbset of K of 
positive measure. So the two orbits coincide. ¢ 

Remark that in the preceeding theorem a very important role is played 
by the fact that the configuration space is two dimensional. This limitation is 
removed in the following theorem due to Kozlov and Palamodov [8], [9]. 

Theorem 2.2. Let L be a natural analytic Lagrallgian fUllction and assume tllat 
there exists a positive integer k, k 2: 3, such that the Mac-Laurin expansion of U 
starts with an homogeneous polynomial U[k) of degree k, havillg not a maximum 
at q = O. Then this equilibrium is unstable. 

We will come back again to this result in Section 3. Here we just remark 
that it is a generalization of Theorem 1.2 and that the authors indeed proved 
more than the instability of the equilibrium: as matter of fact this property is a 
consequence of the existence of motions which are asymptotic to the equilibrium. 
Theorem 2.2 does not depend on the number of degreeoffreedom but the absence 
of the maximum property of the potential U at the critical point q = 0 has to be 
again recognized by inspecting the first non zero homogeneous form U[k). 

Subsequently in 1992, Palamodov [10] was able to generalize completely the 
instability resul t for analytic na tu ral Lagrangian of any degree of freedom assuming 
the absence of the maximum property of the potential U(q) at the critical point 
q = O. He was able to exploit the Hironaka theorem [11] on the resolution of the 
singularity of an analytic function (see also [12], pg. 81) in order to construct 
again a suitable <;etaev vector field. Precisely the following theorem was proved. 

Theorem 2.3. Let L( q, q) be a natural Lagrangian function defined in Bb x R n . 

Assume the kinetic energy 1(2) E Cl(Bb X Rn), the potential U E CW(Bb) and 
VU(O) = O. Let U(O) = 0 be not a maximum. Then there exists a neighborhood 
Vo C Bb such that any motion starting in Vo with arbitrarily small positive energy 
E leaves Vo in a finite time r(E). 

Of course, the instability result follows at once _ A relevant consequence of 
the Palamodov' s result is the following: 
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Corollary 2.4. Let us consider a natural Lagrangian system and assume U E 
COO(Bb, R). Moreover let q = 0 be a critical point of finite multiplicity k + 1, and 
not a maximum for U. Tllen the origin 0 is an unstable stationary solution. 

\ 
The proof of this corollary is based on the To~geron result on the sufficiency 

of the jets (see [12]) . Precisely, as q = 0 is a critical point of multiplicity k + 1, the 
k-jet of U is sufficient. It means that we can find a smooth function tP(·) defined 
in suitable neighborhhod Br of the origin, (Br eBb) , such that: . 

U(tP(Q» = U{k}(Q), 

U{k} being the Mac-Laurin polynomial of degree k of U. Moreover tP(q) = 
q + O(lqI2). Therefore we can consider the Lagrangian function in the new coor­
dinates: 

where DtP denotes the Jacobian matrix of tP . Finally we can invoke the result of 
Theorem 2.3 and conclude the proof.O 

. Corollary 2.4 depends of course on the possibility to ascertain the sufficiency 
of some finite k-jet of the potential. To this purpose the following result by Takens 
[13] is interesting. First of all we will precise the meaning of sufficiency. Let us 
consider the germ of a Ck function I : (Rn, 0) -+ (R, 0). The k-jet of I is said to 
be Ci-sufficient iffor every 9 : (Rn, 0) -+ (R,O), having the same k-jet as I, there 
exists a germ of a Ci diffeomorphism tP : (Rn, 0) -+ (Rn, 0), such that: 

g(tP(x» = I(x) 

Let us define now two natural numbers ro(f) and r(f), ro(f) ~ r(f) ~ 00. 

(i) r(f) is the smallest natural positive integer such that there exist two posi­
tive real numbers C,6 for which: 

IV'/I 2: Clxl(r(J)-l), Vx: Ixl ~ 6 

(ii) ro(f) is the biggest positive integer such that there are positive real numbers 
C,6 for which: 

I/(x)1 ~ Clxr°(J), Vx: Ixl ~ 6. 

If no such constants C, 6 can be found in (i) (resp. in (ii», we set r(f) = 00 

(resp. ro(f) = 00). . 

Theorem 2.5. Let assume r(f) ~ k. Then if: 

k - r(f) + 1 ~ j(r(f) -ro(f) + 1) . 

for some j, then the k-jet of f is Ci sufficien t. 

Therefore, to apply Theorem 2.3 to a lagrangian problem with potential of 
finite regularity Ck it is enough to verify that the following inequality holds: 

k > 3r(U) - 2ro(U) + 1. 
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If U E Coo, and q = 0 is an isolated critical point such that: 

IV1U(q)1 2:: Clql.B 

in some neighbrhood of q = 0, for some finite number {3, then certainly the k-jet 
of U is C2 sufficient, provided that k 2:: 3{3 - 2m + 2 , m being the first non zero 
derivative of the function evaluated at q = o. 0 

The problem of the inversion of the Lagrange-Dirichlet Theorem for natural 
Lagrangian systems with analytic potential is reduced, due to Theorem 2.3, to the 
problem of considering potential not having a proper maximum at the critical point 
q = O. This problem was solved in the case of two degree of freedom by Laloy et 
al. [14]. The general case of any degree of freedom is still open. 

In the following Sections we will consider the Inversion problem in a wider 
class of Lagrangian functions, allowing weaker regularity, Ch, h ~ 00. Of course, 
we will consider a Lagrangian function whose potential cannot be reduced to an 
analytic potential, like in the case of Corollary 2.4. However, as we will see, other 
conditions will be added on the potential. In particular, the works analyzed in 
the next Section deal with potential of very low regularity, i.e.h E {1,2} , but 
the presence of isolating sets is forbidden by assuming the very strong condition: 
q = 0 has to be a minimum for the potential. 

§3 Variational methods 

This Section is devoted to illustrate the Inversion of Lagrange-Dirichlet 
Theorem when the potential function U has !l minimum at the critical point 
q = O. At a first glance it could seem quite obvious that in similar conditions 
the instability holds. However one can easily realize that this ansatz strictly 
depends on the picture one has for one degree of freedom systems; in principle, 
if the dimension n of the configuration space is greater than 1, the points with 
low speed could permanently rotate, remaining close to the equilibrium. Indeed, 
to prove the instability of the equilibrium is not a quite simple job. Until now 
the results we will discuss in the following are based he~vely on the variational 
nature of the Lagrange differential systems: the techniques employed come from 
variational calculus, or from Riemannian geometry. No other techniques have been 
found, up to now, to handle the Inversion problem in the foresaid hypothesis. 

We recall that the first instability result obtained by variational techniques 
is due to Hagedorn ([2]) who considered a C2 natural Lagrangian function, and 
assumed q = 0 to be a proper minimum for U . 

Due to its relevance, we give hereafter a short account of Hagedorn's work . 
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To this purpose let us remind that the solutions of (L) can be put in a one-to­
one correspondence with the solutions of the differential system related to the 
Maupertuis LeastAction principle, the Maupertuis Action being defined as: 

M(y) = 181 ..j(E + U(y(s))Sk ,j(y(s))~(s)Yj(s)ds. 
80 

Here y(.) E C2([so, stl, B6), y(so) = Yo, y(st) = Yt, B6 is a neighborhood 
of y = 0, such that U(y) > OVy E B6 \ {OJ. Moreover S(y) == ((Sk,j(y))) is 
the positive definite matrix of the kinetic Energy 7[2] and finally E is a positive 
parameter. 

We remark that , due to the fact that the function under the integral sign 
is a homogeneous function of degree 1 with respect to y' , the integral does not 
depend on the parametrization of the curve. A curve yO such that the Frechet 
derivative of M(·) at yO is zero, is called an extremal of the Maupertuis Action . 
Of course if y( .) E C2, then it satisfies the corresponding Euler-Lagrange equation , 
that is we have a geodesic curve. Let y(s) be a geodesic . We set: 

1'1 
t(s) = - . 

'0 

q(t) = y(s(t)). 

Skj (y(s))~ (s)Yj (s) 
2(E + U(y(s))) ds, 

Then it easy to verify that q(t) is a solution of the (L) system, lying on the 
energy level E. Finally, we remark that we have a family of Riemannian metrics 
(the so called Ja~obi metrics) whose metric tensor is given by : 

gi,k(Y) = (E + U(y)) Sk ,j (y) 

where y E B6. 

Hagedorn proved the following theorem: 

Theorem 3.1. Let L E C2(B6 X Rn, R) be a natural Lagrangian function . As­
sume U(q) > 0 jf q E B6 \ {OJ. Then there exists a number r E (0, b) such that 
any point qoE Br is connected to q = 0 by a solution of tIle Lagrangian system, 
having an arbitrarily small positive energy E and entirely lying ill Bb. 

Of course the instability of the stationary solution q = 0 of (L) follows at 
once. 

Hagedorn in his paper explained the reason why this result is not a straighfor­
ward consequence of Riemannian geometry ( with respect to the Jacobi metric), 
in particular of the celebrated Hopf-Rinow Theorem [15], [16] . In his work he 
follows a different approach, using a result by Caratheodory [17] in the Calculus . 
of Variations. We refer the reader for more details to the original Hagedorn paper. 

Here we want to show how the Hopf-Rinow theorem was recently exploited in 
the analysis of the instability problem [18]. Indeed, the authors consider a natural 
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Lagrangian function L E C2(Bb X Rn, R) and they assume q = ° to be a minimum 
of the potential function U(q). Then, for any positive value of E the following 
modified Jacobi metric is considered on Bb: 

exp(YTk(q)S(q)-lYTk(q») (E + U(q))S(q) . 
E + U(q) 

The function k(q) is choosen in this way. Fix r E (0, b) and consider a 
positive function k E C3( B r , R +) satisfying: 

k(q) = 1 'r/q E B r , q -+ aBb => k(q) -+ +00. 
According to a Gordon result [19], the manifold Bb endowed with this 

metric turns out to be complete: at this point the Hopf-Rinow theorem can be 
used, to obtain that any couple of points ql, q2 E Bb can be joined by a geodesic. 
Therefore, just by observing that in fact the modified metric is exactly the Jacobi 
metric on Br,we have: 

Theorem 3.2. Let L E C2(Bb X Rn, R) be a natural Lagrangian and let q = ° 
be a minimum point for the potential. Then for any positive number r E (0, b) any 
positive E and any point qo E Br there exists a solution q( .) of the Lagrangian 
system such that: 

(i) q(O) = qo, 
(ii) E = Hq(O), S(qo)q(O» - U(qo), 

(iii) There exists a positive constant r = r(r, E) ,such tllat q( r) E aBr , and 
q(t) E B r , for t E [0, r). 

Let us compare these two Theorems. Theorem 3.2 shows that the instability 
result still persists for the more general class of potential having a minimum (not 
necessarily a strict minimum) at q = 0. 

Moreover, from one side the instability Hagedorn's result is enhanced, as 
r can be chosen arbitrarely close to b. On the other side, the Hagedorn theorem 
allows to connect any point of a suitable small ball Bf C Bb with the origin by 
means of a geodesic entirely lying in Bb, so that a boundary value problem is 
solved. 

In his paper Hagedorn made mention to the fact that the same result 
he obtained still could be true assuming weaker regularity for the potential. In 
fact, under the assumption of U E Cl only the instability result was successively 
obtained by Taliaferro [20] and later on by Mawhin and Hagedorn himself [21] . 
The authors employed techniques from the theory of the so-called direct methods 
in the Calculus of Variations and proved the following theorem: 

Theorem 3.3. Let L E Cl (Bb X Rn, R) be a natural Lagrangian and let q = ° 
be a minimum point for the potential. Then, for any {j E (0, ~), tllere exis ts a 
solution of the Lagrangian system starting from the iIlitial datum (0, qo), Iqol ::; h, 
and arriving at a finite time r on the boundary aBb-b. 

At this point one can wonder if it could be possible to prove the existence 
of motions which are asymptotic to the fixed point q = 0, i.e. solutions q(t) of (L) 
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such that q(t) - 0 as t - +00. It is quite immediate to realize that the answer in 
general is not. However, if the point q = 0 is a proper minimum we have a result 
which follows at once from a theorem by Bolotin and Kozlov [22]. We will return 
later on this work; for our purpose here we restate in a weaker form the stronger 
result they obtained. 

Theorem 3.4. Let M be a compact Riemanniann manifold, T M tIle tangent 
bundle and let L E C2(T M, R) be a natural Lagrallgiall whose kinetic energy 
is defined in term of the metric of M. Let U(O) = 0 be a proper minimum for 
the potential function U. Then for any qo E M tllere exists a motion q( t, qo, go) 
asymptotic to q = O. 

Let us now exploit this result. We can consider our Lagrangian function 
L(q, g) = Hq, S(q)q) + U(q), defined in Bb X Rn, as a local representation of a 
Lagrangian function LM globally defined on a compact manifold M. The kinetic 
matrix and the potential function of LM are obtained by means of a C2 extension 
on M of the functions Sand U, in such a way that M is a compact Riemanniann 
manifold and q = 0 is a strict minimum point for the potential. Now the conditions 
of Theorem 3.4 occur and we obtain the following corollary. 

Corollary 3.5. Assume L E C2(Bb X Rn, R) be a natural Lagrangian function 
and let q = 0 be a proper minimum point for the potential. Then, for any r E (0, b) 
there exist a point qo EaBrand a motion q(t, qQ, qo) which is asymptotic to q = O. 

We end this Section with the following open problem: is it possible to 
generalize the previous techniqu.es for analyzing the case in which the potential 
function does have not a minimum at q = 0 but there exists a connected com­
ponent U == {q E B,. : U(q) > O} such that 0 E aU? Of course the Jacobi 
metric cannot now be considered in all the neighborhood of q = 0, being meaning­
full only in the domain of possible motions, i.e. in the manifold with boundary: 
{q E B,. : E+ U(q) ~ OJ. The paper by Kozlov ([23]) is a very useful reference for 
interesting dynamical problems involving such kind of domains. 

§4 The existence of motions asymptotic to the equilibrium. 

At the end of Section 3 we mentioned that up to now there is not the 
possibility of using variational methods for solving the problem of the Inversion 
of the Lagrange-Dirichlet theorem in the case when the potential function U has 
not a maximum at q = O. However, from the results quoted in Section 2 we know 
that under such a condition the Inversion Problem is solved if U E cw . Therefore 
we want to consider here the case of a Lagrangian function L with regularity 
C h , h :::; 00, and a potential function U having not a maximum at the critical 
point q = O. Of course, the problem in this general form cannot be solved. Indeed 
more conditions will be added on U, specifically we will assume that the absence 
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of the maximum can b~ ascertained in a suitable way. Then the instability of the 
equilibrium q = 0 is obtained by proving the existence of motions asymptotic to 
the origin. We start with the f?llowing result of Kozlov [24]: 

Theorem 4.1. Let L be COO(Bb X Rn) be a~ 11atural Lagrangian function al1d 
let U(q) = U[2](q) + U[k](q) + W(q)j U[2](q) is a quadratic negative semidefil1ite 
form, U[k](q) is a homogeneous polynomia] of degree k, whose restrictio1l 01l tIle 
subspace I< == {q : U[2](q) = O} has not a maximum at q = 0, a1ld W(q) = o(lqlk). 
The1l there exists a motion asymptotic to q =. O. 

As recalled by Kozlov,- Koiter [25] already considered the case of analytic 
potential and diml< = n - 1, proving the instability of the origin by means of a 
suitable Cetaev' s function. 

Of course, Theorem 4.1 generalizes the result of Theorem 2.2. In both these 
two theorems, the existence of a solution of (L) which tends aymptotically to the 
equilibrium is obtained in two steps. The first one is the construction of a formal 
solution, whose general term decays as - +00. However, while in Theorem 2.2, 
where the Lagrangian function is assumed to be analytic, the proof is completed 
by showing the convergence ofthis formal solution to a true solution, in the case or' 
Theorem 4.1 this convergence is, in general, impossible. However, by exploiting a 
very powerful result of Kuznetsov[26] relative to Coo differential systems, Kozlov 
was able to prove that there is a solution of the (L) whose asymptotic expansion 
is exactly given by the foresaid formal solution. For its relevance we quote here 
the Kuznetsov theorem. 

Theorem 4.2. Let f E COO(D), D bei1lg a 1lei~IlborllOod of (x = 0, r = 0). 
Q01lsider the differe1ltia] system: 

rm ~; = f(x, r), 

and assume that there exists a formal solutio1l of tIlis equatio1l: 

x(r) = L:Xnrn. 
n~O 

Tlle1l there exist a positive 1lumber T and a solution of tIle differential system 
x(.) E COO(-T,T), such that x(r) is the asymptotic expansion ofx(r), i.e. for 
any integer N one has: 

r - 0 => r~Nlx(T) - x(r)l- O. 

In fact, Kozlov needed to use a stronger version of the Kuznetsov theorem, 
i.e. he considered the case offormal solutions whose coefficients Xn are polynomial 
functions ofln r: Xn = Pj(n)(ln r), j(n) being the degree of the polynomial suitably 
related to n (j(n) :::; n), and r = t- 1 . Palamodov observed that Kuznetsov 
theorem can be extended to cover also this case. 
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Let us give just a sketch of the starting point of the iterative procedure 
employed to construct the formal asymptotic solution. For sake of simplicity in 
the exposition we 'consider here just the. case in which the quadratic part of U is 
zero. Later on we will come back to the general case considered in Theorem 4.1. 
Therefore let us assume: 

U(q) = U[l:](q) + W(q), ( 4.1) 

where U[l:](q) is a homogeneous polynomial of degree k ~ 3, having not a maxi­
mum at the origin, W(q) E COO(Bb), W(q) = O(lql(l:+l». Let us assume that the 
positive maximum of U[l:](q) on the ellipsoid {q E Rn : (q, S(O)q) = 1} is taken 
at e. We consider the auxiliary differential system, which can be considered as a 
rather rough simplification of the system (L): 

(4.2) 

This system has the particular solution q(O)(t): 

q(O)(t) = z(t)e 
. 1 -2 

z(t) = (U[l:) (e)(k - 2)2) '(2-'k'f t (k-.j, t > O. 
(4 .3) 

Precisely the function q(O)(t) is considered as the starting point of the 
iterative procedure in constructing formal solutions. 

For further details we refer the interested reader to the . original papers of 
Kozlov [8], Kozlov and Palamodov [9]. 

At this point it is natural to wonder if the Coo regularity is just a techni­
cal device, or there is some obstruction to obtain the Inversion of the Lagrange­
Dirichlet theorem for natural Lagrangian function having a finite regularity poten­
tial. In fact, it turned out that the existence of motions asymptotic to the equilib­
rium still persists weakening the regularity assuptions. Of course, the Kuznetsov' 
s theorem cannot be longer helpful in such circumstances, and a new approach 
to the problem is needed. For potential function of the type (4 .1), having finite 
regularity, two similar results on the existence of asymptotic motions were in­
dipendently obtained in [27] and [28]. In the first paper, Taliaferro using a fixed 
point argument in a convenient functional space was able to prove the following 
theorem: 

Theorem 4.3. Let k > 0 and e: E (0,1] be two real numbers. Let U E C2(Bb \ 
{O}, R), U[l:] E C3(Bb \{O}, R), U[k)(sq) = sl: U[l:) (q), 'Is> 0, q E Bb \{O}. Denoting 
by Ui (resp. utl:]) tlle i-derivative of U (resp . of U[l:)) ' i = 0, 1,2, we assume: 

Moreover let us suppose there exists a ij such that U[l:](ij) > O. Tlle kinetic energy 
7[2] is assumed to be a C2 function. Then if k E (0,2) (resp.k ~ 2) there exists a 
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positive real number 'Y and a solution q(t), t E (-00, 'Y) (resp. q(t), t E (0, 'Y)) 
of the Lagrangian differential system tending to ° as t --+ -00 (resp. as t --+ O+). 

The authors of the latter work used a more geometrical approach to the 
problem. In fact the effort was made to prove that. the solution q(O)(t) (given by 
(4.3)) of_the rather rough approximation of (L) corresponds to the equilibrium 
solution of an enlarged first order differential system (S). These two differential 
systems are related in such a way that any trajectory of (S) tending to the equi­
librium corresponds to a motion of (L) tending to q(O)(t). Finally the proof of the 
instability was completed by discovering that the equilibrium solution of (S) has 
a nonempty stable manifold. The precise result is in: 

Theorem 4.4. Let L be a natural Lagrangian function, L E Ch(Bb X Rn, R), h > 
k > 2, h, kEN. Let U be the potential function: 

U(q) = U[k](q) + W(q). 

Here U[k] is a homogeneous polynomial of degree It: having not a maximum at 
q = 0, W(q) = o(lqlk). Then the Lagrangian system has a motion asymptotic in 
the future to the origin. 

Let us sketch the main steps of the proof. 
(i) The following change of coordinates is performed: 

q = z(t)[e + Q] 

obtaining a non autonomous differential system. (Here z(t), e have the 
same meaning as in (4.3)). 

(ii) The function z = z(t) is inverted, taking therefore z has the independent 
variable, and the system (L) is rewritten in the form of a convenient first 
order system (E) of 2n variables, whose right hand side explititely depends 
on the variable z. 

(iii) The system (E) is enlarged by considering a new independent variable tP 
and adding the equation: 

dz 
dtP = -z. 

In this way it is obtained the foresaid differential system (S), which is 
autonomous and has the origin as a fixed point. The proof of the theorem is 
accomplished by the analysis of the hyperbolic properties of the origin. Further 
details can be found in the quoted paper. 0 

Later on in [29] an analougous of Theorem 4.1 under a weaker regularity assump­
tion on the Lagrangian was proved by exploiting the techniques introduced in [28]. 
Precisely the existence of an asymptotic motion to q = 0 was proved in the case 
L E Ch (h ~ k + m(k) + 3, m(k) being the integral part of k;3), assuming on the 
k-jet of U the same conditions as to the ones in Kozlov's paper [24] (see Theorem 
4.1). 
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By introducing a suitable change of coordinate, q --> (x, y), x ERn" y E 
R n 2 , 7tl + n2 = n, we can represent the Lagrangian function L in the following 
form: . 

L = ~(x, G(l)(x, y)x) + (x, G(c)(x, y)iJ) + ~(iJ, G(2)(X, y)iJ) + V(x, y), 

with G(1),G(c),G(2~ respectively nl X nl,nl X n2,n2 X n2 matrices satisfying the 
conditions: 

with: 

G~,~(O, 0) = Ca,p, 

G~c}(O , y) = O(lIyllk-2), 

G~V(O, 0) = C;,j, 

and V(x, y) defined by: 

1 
V(x, y) = 2(x, l(x,y)x) + V[kj(y) + W(y), 

lEch-l(Rn,L(Rn',Rn,», la,p(O,O)=-w!ca,p, waiO, 

V[kj(y) = U[kj(O, y), W(y) = O(lIyllk+ 1). 

The kinetic coefficients of the transformed Lagrangian function will be 
C h - 2 and the potential V will be C h - 1 . 

Then we have the following theorem: 

Theorem 4.5. Under the previous assumptioIls, tlle LagraIlgiall system admits 
a solution wllich tends to the fixed point 0 in the future. 

We give a sketch of the proof of the theorem. The starting poin t is of course 
the asymptotic solution of the system: 

passing through the maximum point e of the potential function V[kjO restricted 
to the ellipsoid :{y E R n 2: (y, G(2)(0, O)y) = I}. Let us denote such solution by: 

Y(O)(t) = z(t)e, 

where z(·) looks like in (4.3). The goal is to prove that the Lagrangian system 
admits a solution whose leading term, for · t --> 0+, looks like z(t) . The main 
problem is to control the x-variables, the potential having a shielding effect in 
this direction. Therefore we introduce the Banach space (X, II * lit), where 

/ 
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and 

1I~lh = SUP{lIdjd~~t) IIt~, t E [to, +00), j = 0,1, 2}. 
tl 

For ~ E X, by putting in the y-part ofthe equations of motion (~(t), 4>(t)) in place 
of (z, z), we obtain the system which will be called in the following the reduced 
system. This reduced system is analyzed following the ideas already exposed in 
proving Theorem 4.4. In particular, there is a solution y(tl~), suitably related to 
z(t), which tends to y = 0 as t -+ +00. Precisely: 

y(tl~) = y*(z(t)) + y(tl~), ( 4.4) 

where y*(z) is a polynomial of degree m(k) + 1, and y(tl~) = O(z(t)m(kHt) as 
t -+ +00. Moreover the following Lipschitz estimates hold: 

lIy(tl~l) - y(tl~2)1I::; L(a)z(t)m(kH~lIe1l1 - eIl2lh, 

lIy(tlelld - y(tlell2)11 ::; L(a)z(t) 41 II ell 1 - eIl2lh, 

where L(a) > 0, L(a) -+ 0 as a -+ 0+. 

(4 .5) 

These estimates are obtained by a careful analysis of the stable manifold 
for the fixed point of the autonomous differential system (/3) related to the reduced 
system; their role is essential in showing that a particular cI> E X can be found, 
so that the couple (cI>(t), y(tlcl>)) solves the Lagrangian system (L) . This last step 
is performed by introducing an operator on the X space. In doing so one has 
to proceed carefully in order to masterize the effect of oscillating terms arising 
from the quadratic part of the potential. A voiding details let us briefly give an 
account of the key ideas to overcome such a difficulty. We replace the x-part of 
the Lagrangian differential system with a forced system, obtained by substituing 
in the right hand side (Y('I~), Y('leIl)) in place of (y, if) . Such a system can be 
represented in the form: 

Za = Mcr,p(z(t»zp + P~(z(t), z, x, y(tlell), yet, leIl», 

where ((Ma ,p(z(t»)) is a symmetric matrix, whose entries are polynomialfunc­
tions of degree [m(k) + 1] with respect to the z variable, and 

Pcr(z(t), z, x, y(tl~), y(tl~» =0(lz(t)l(m(k)+2)lxl , IxI2)+ 

0(lx12 + liJ(tlellW)+ 
O(ly( tlell )1(k-l)l) . 

Then, by standard results in the theory of analytic perturbation of symmet­
ric operators a suitable basis of eigenvectors of ((MO',p( z(t»)) can be found such 
that the linear part of the forced system takes, in the new normal coordinates, the 
diagonal canonical form. At this point we are ready for introducing the operator 
on X we mentioned before. Indeed, by means of this last normal system a good 



100 Piero Negrini 

operator from X to itself is defined, and due to all the mentioned properties of 
y(tl~), it is possible to prove the existence of a fixed point, concluding the proof 
of the theorem. Further details can be found in the original paper. 0 

With theorem 4.5 it is finished our review of results on the Inversion of 
Lagrange-Dirichlet Theorem in the case of natural Lagrangian System. Of course, 
several questions are stil~ unanswered. Reconsidering all the results, perhaps the 
most interesting open problem is the following. 

Problem (P). Consider the case of a polynomial poteIltial function of degree k , 
U(q) = U{J:}(q) and let q = 0 be not a maximum poilJt . We kllOW, (see TIJeorem 
2.3), that the equilibrium is unstable. Let us llOW perturb tlJis potential, and 
consider tHe Lagrangian function with a potential U given by: 

U(q) = U{J:}(q) + W(q) , 

W(q) = o(lqlk) . 

Then we ask what kind of restrictions have to satisfies W to ensure the 
origin is still an unstable equilibrium for the perturbed Lagrangian system. 

In other words, we arrived to the problem of finding conditions under which 
the instability property turns out to be structural (in the sense of Krasovskii [30]) . 
For the sake of commodity of the reader we recall here briefly the definition of 
structural property. Let us consider a differential system: 

z = I(x, t), 

1 E C1(D x R, Rn), D being a neighborhood of x = 0 in Rn . A property of the 
system is said to be structural ih. continuous function", : D\ {O} --+ R+ , ",(0) = 
0, can be found such that the property still holds for the perturbed system: 

z = I(x , t) + R(x , t) 

where R E C1(D x R, Rn), and: 

IR(x, t)1 ::; ",(x). 

Let us now consider the following property for the umperturbed system: 
x = 0 is an unstable equilibrium. As was proved by Krasovskii this property is 
not structural; the reader is referred to the system (19.4) , pag 83 in the quoted 
book [30]. Let us just remark that neither this system nor the perturbed one 
are Lagrangian, so that we can consider unsolved the problem if the instability 
is a structural property, relatively to the class of Lagrangian differential systems. 
Let us now restrict the unperturbed system considering 1 E C1 (D, R n): In this 
autonomous case Krasovskii proved that the following property is structural: x = 
o is an unstable equilibrium of the umpertubed system and there exists a solution 
of the umperturbed system xH, xo) tending to x = 0 as t --+ 00 . Consequently, 
due to the reversibility of the solutions of a natural Lagrangian system we have 
the theorem: 
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Theorem 4 .6. Consider the class of natural Lagrangian system. TIle property: 
"there exists a solution of the umperturbed Lagrangian systems which is asymp­
totic in the future to q = 0" is structural. 

Consider again the Problem (P) and assume the existence of asymptotic 
motions to the solution q = 0 of the Lagrangian system with potential U{/c}. Now 
we know the Problem (P) has a solution but how can we find the function '1(q, 4)? 
Up to now we are not able to answer to such a question. We think that at this 
point the relevance of the existence of asymptotic motions is evident. The reader 
interested in to have more informations on this subject is referred ·to [30],[31]. 

§5 Gyroscopic forces. 

Let us now spend some more time to analyze the case in which 7bJ is not 
zero, i.e. when in the system (L) are present the so called gyroscopic forces . In 
this case, the analysis of the stability problem of the equilibrium becomes even 
harder. Indeed, as it is well known, the gyroscopic forces can have a "stabilizing 
effect". For instance, they can contribute to the spectrum of the linearized system, 
so that only purely imaginary eigenvalues arise. In this case , for the discussion of 
the problem of the stability it could be necessary to invoke tools from the K .A. M. 
theory [32] (and this could be sufficient only for systems with 2 degree offreedom) . 
In any case, we want to emphasize that also for linear Lagrangian system with 
gyroscopic forces the problem of the stability of the equilibrium is still unsolved . 

We begin our review with the classical result of Salvadori [33], giving a 
criterion of instability for a linear system (L) . Let us consider the the quadratic 
lagrangian function : 

S, U, are symmetric positive definite matrices, A an antisymmetric matrix. Let us 
consider the Qetaev function: 

C(q,4) = (q, Sq), 

and its derivative along the motion : 

Therefore we have the following theorem. 

Theorem 5.1. Assume tIle matrix U + AS-l A has purely positive eigenvalues, 
then the stationary solution q = 0 is unstable. 

Let us remark that a kind of" effective potential" , the function lief f (q) = 
«(C-AS-IA)q,q), and not only the potential U, is required to have a minimum 
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at q = O. Indeed, as we know by the Kelvin classical result, in the case of quadratic 
Lagrangian function having a configuration space of even dimension, a minimum 
of the potential could be stabilized by sufficiently strong gyroscopic forces (see 
for instance [34]). If one consider two degree of freedom system it is easy to give 
explicit and sharp condition on the strenght of the gyroscopic matrix. Moreover, 
comparing this estimate with the condition in Salvadori's theorem, one easily 
recognize that the latter is not optimal. Of course it would be very interesting to 
give necessary and sufficient condition for the stability in the general case of n­
dimensional linear Lagrangian system. Bolotin and Negrini very recently proved 
that if the potential function UejJ has a maximum at q = 0, then the gyroscopic 
stabilization occurs. Also the paper [36], recently appeared, contains relevant 
results on the problem of the linear gyroscopic stabilization. 

A request similar to that in Theorem 5.1 appears in a theorem of Hagedorn 
[37] dealing 'with a non linear Lagrangian system. Let us consider indeed the 
Lagrangian function: 

L(q,4) = ~(S(q)q, q) + (b(q), 4) + U(q). 

Hagedorn assumed L to be a C2 Lagrangian and proved the following theorem: 

Theorem 5.2. Let the function 

. 1 
UejJ(q) = U(q) - 2(b(q), S-l(q)b(q» (5.1 ) 

have a proper local minimum at q = O. Then q = 0 is unstable. 

The theorem was proved considering the following Jacobi Variational Prin-
.ciple: 

J = 1:1 (J2(E+ U(q»(q,S(q)q) + (b(q),q»)ds 

Of course, a geodesic corresponds, by means the reparametrization s = s(t) 
already considered in Section 2, to a solution of the system (L) lying on the energy 
level E. 

In fact Hagedorn proved more than the instability; indeed, he was able 
to prove again the same result as he proved for a natural Lagrangian system in 
Theorem 3.1. Indeed let us consider the function: 

J2(E + U(q»(u, S(q)u) + (b(q), u) (5.2) 

for any positive value of E, (q, u) E Bb X R n == T Bb. It is easy to check, exploiting 
the property of UeJ J being a positive definite function in Bb, that a non degenerate 
metric on the tangent bundle T Bb is defined by means of (5.2). Therefore the proof 
of the theorem can be accomplished like in Theorem 3.1. 

Later on Bolotin and Kozlov [22] considered the potential function and 
the kinetic energy depending also on time. Precisely, the Lagrangian function is 
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assumed to be in C2 (T M x R, R), T M being the tangent bundle of a compact 
Riemannian manifold M. Moreover: 

eti412 ~ C2 $ L(q, q, t) 

c31vl2 $ (v, 8:~q L(q, q, t)v) $ c41v1 2 , 

(5.3) 

where 1·1 is the norm induced by the Riemannian metric. Then one can consider 
the corresponding Hamiltonian fUliction H E C2(T* M x R, R), by means of: 

8L . 
p = 8q (q, q, t). 

Let consider now H(p, q, t)lp=o == Ho(q, t) (the reader can easily compare 
this function with the function Ue/J when the Lagrangian looks like (1.1)). If this 
function is negative definite with respect to q = 0, i. e. there exists a function 
K(q) having a strict maximum at q = 0, and 

Ho(q, t) :;; K(q), 

then there exist trajectories of the Lagrangian system which are asymptotic to q = 
o. The existence of such asymptotic motions is proved by means of a variational 
approach to the problem, directly working on the Hamilton Functional: 

Jey) = 100 L(r(t), -y(t), t)dt 

Moreover the authors considered also the case of Ho(q, t) to be a negative 
semidefinite function, and proved the instability of the origin. The results are 
recasted in a more precise form in the following theorem. 

Theorem 5.3. Let L satisfies (5.3), let Ho(q, t) be a llegative definite function, 
and assume that the solutions of tIle Lagrangian system exist in tIle future. Then 
from any qo EM starts a motion tending to q = 0 in tIle future . If Ho(q, t) isjust 
a negative semidefinite function, tllen any qo E M can be cOI1Ilected to 0 by means 
of a motion starting at allY initial time TO, witll arbitrary small initial velocity ciTo 
in a fillite time T (depending on qo , TO, IciTO!). 

Of course one can consider the particular case of time independent La­
grangian having a compact configuration manifold, and easily obtain Theorem 3.4 
as a corollary of Theorem 5.3. 

In the frame of analytic Lagrangian function, Furta [38] considered the 
special case of a potential function U: 

U(q) = U[k](q) + W(q) . (5.4) 
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where the homogeneous form U[kJ(q), k ~ 3 has not a maximum at q = 0, and 
W(q) = O(lql(H1» . The condition on the gyroscopic terms is: 

(kt') 
b(q) = o(lql ). 

In [28] the authors generalized this result to the case of a Lagrangian func­
tion of finite regularity. 

Let us remark the common shortcoming of all the results quoted up to here: 
the gyroscopic forces are requested to be " weak" , with respect to the conservatives 
one. 

In ([39]) Furta considered the case of Coo Lagrangian function where the 
balance between the gyroscopic forces and the potential ones can be completely 
reversed. Precisely, he proved the following results. 

Theorem 5.4. Let U be a Coo function: . 

U(q) = U[k)(q) + W(q), 

k ~ 3, W(q) = O(lql(H1». Consider the Lagrangian system: 

ij = A(O)q + Y'U(q), 

and assume Mo == Ker A(O) f: {O}. Moreover assume that U[k)(q) can take positive 
values on Mo. Then there exists a solution asymptotic to q = O. 

Theorem 5.5. Consider the Coo Lagrangian system: . 

ij = f(q, q) + A(q)q + Y'U(q) 

where f(q, q) is a quadratic function with respect to q, A(O) is an antsymmetric nOll 
degenerate matrix, U(q) = U[k)(q) + V(q), U[k) being a homogeneous polynomial 
of degree k ~ 3, V(q) = 0(lql(H1». Moreover, assume one of tlle two following 
conditions is satisfied: 

(I) 

(II) 

o is an isolated critical point for U[k)(q) and k is odd. 

A(O) 8'U!k!(q) + 8'U!k!(q) A(O) == O. 
8q8q 8q8q 

Then there exists a solution asymptotic to q = O. 

The method employed in proving of these two theorems is based on the 
construction of formal asymptotic solutions of the corresponding differential sys­
tems. Then the proofs are accomplished by using the Kuznetsov's theorem. To 
give the idea of the procedure, let us consider the second theorem where A(O) is 
a nondegenerate matrix. Let us introduce the following equation: 

aU[k)(q) = ,xA(O)q. 
aq 

(5 .5) 
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We are interested in finding non trivial solution q, for some nonzero A: 
indeed this solution is used to perform the first step of the iteration. 

Each one of the Hypotheses (I) and (II) in theorem (5.5) is a sufficient 
condition for the existence of nontrivial solution. We start with the condition (I). 
By virtue. of the assumption: 

VU[k)(q) = 0 ¢:::::> q = 0, 

we can consider the vector field u(q)= I~~:::~:~I and the vector fields family: 

u,(q) = -sA(O)q + (1 - s)u(q), s E [0,1]. 

Suppose by contradiction that u,(q) :I 0, q:l O. Then deg(u(q» = 
deg(-A(O)q) = det(A(O» = 1. On the other hand, if k is odd the vector field u(q) 
is even, and consequently deg( u( q» is even. Consequently we have the following 
result: 

Lemma. If q = 0 is an isolated critical point of VU[k)(q) and k is odd, then 
equation (5.5) admits a nontrivial solution. 

The condition (II) of Theorem 5.5 means that there exists a harmonic 
function W[k)(q) such that: 

Therefore the equation (5.5) again admits a solution q which is the point 
on the unit sphere where W[k)(q) takes the maximum (or the minimum). 

Let us add some more remarks on the equation (5.5). A necessary condition 
for the existence of a nontrivial solution for some A :I 0 is: 

0= {q E R : U[k)(q) = O} :I {O} . 

This condition is a trivial consequence of the homogeneity property of U[k). 

Therefore, of course, U[k) cannot be a sign definite function. 
If n = 2, we have ,also a sufficient condition. Indeed, if there exists a q EO, 

which is a noncritical point of U[k) , then VU[k)(q) and A(O)q are non zero vectors, 
both orthogonal to q, an therefore collinear each other. If n ~ 4, the previous 
condition, i.e. that the set 0 does no~ coincide with the set of the critical points, is 
of course no more sufficient to ensure the solvability.of (5 .5). As a simple example, 
consider the Lagrangian function 

The set 0 does not coincide with the set of the critical points of U[k). 
However the system (5.5) has only the trivial solution. It may be interesting to 
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remark that the corresponding Lagrangian system does not admit motions which 
are asymptotic to the equilibrium q = O. 

In [41] another criterion for the existence of non trivial solution of (5.5) 
was given. Precisely, the matrix A(O) is considered such that: 

A(O)=JC=CJ 

where 

(0 -1) 
h = 1 0 ' 

and C is a symmetric positive definite matrix. Moreover U[kJ(q) is assumed to be 
a pluriharmonic function. Under such hypothesis there exists a function W[kJ(q) 
such that: 

Therefore the critical points of W[kJ on the ellipsoid: 

{q E R n : (q,Cq) = I} 

are the solutions of the equation (5.5) . 0 

The existence of asymptotic motions for Ch Lagrangian systems, h < 00 

was analyzed in [40], [41]. Let us consider the contents of these papers in some 
extent. 

We begin by the first paper. Here two natural numbers k, h, k ~ 3, h ~ 
3(k - 1), are considered and the following assumptions are made on the terms of 
the Lagrangian function (1.1). . 

(Hi) A(-),S(-) E Ch(Rn,L(Rn,Iin», A(O) is an antisymmetric, nonsingular 
matrix. 

(Hii) U(q) = U[kJ(q) + W(q), W(q) = o(lqlk) . 
(Hili) For some ,\ E R \ to}, there exists a nonzero vector q, solving the equation 

(5.5) 

If min {n, k} ~ 4, we need a further hypothesis . Let us denote by H (q) the 
Hessian matrix of U[kJ(q) at q = q. We consider the two spaces: Tq:= {v E 
Rn, (v, A(O)q) = O} and T; := {v E Tq, (v, q) = O}. Then: 
(Hi,,) If min{n',k} ~ 4, the quadratic form 

(v, H(q)v) 

is positive (or negative) definite with respect to all VET; . 

The main result in [40] is the following Theorem. 
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Theorem 5.6. Assume the previous hypotheses. Then tlle Lagrallgiall system 
admits a motion which is asymptotic to the fixed point q = 0, i.e. tllere exists a 
solution q(t) tending to 0, either as t -+ +00, or as t -+ -00. III particular, the ­
solution q = 0 is an unstable equilibrium. 

Let us make a remark on the hypothesis (Hiv). It is added in order to 
avoid to meet in the procedure of the proof some" dangerous resonance" in the 
spectrum of A-I(O)H(q). Therefore its role is purely technical: indeed, in the 
successive paper [41] this hypothesis was removed. 

After this preliminary remark, we pass to the description of the procedure 
followed in proving Theorem 5.6. 

The main step is to show that, by means of a change of variables: 

(q, q) +--+ (x, y), 

the system (L) becomes equivalent to the following differential system: 

x = A(y)x + X(x, y), 

. 1 BU[kl(Y) 
Y = B(x, y)x + A- (0) By + Y(y). 

(5.6) 

The right hand side of this system have the following properties: 

(i) A(y) := E1(y)E2(y), where El(y), E2(Y) are matrices whose entries are 
polynomials of degree k - 2. Moreover: Ef(y) = -E1 (y), 
1;1(0) = _A:"'I(O), E2T (y) = E2(y), E2(0) = -A(0)S-1 (O)A(O). 

(ii) X E Ch-l(R2n, Rn), X(x, y) = O(lxl2 + Ixllylk-1 + lyl(3k-4). 
(iii) BE Ch-I(R2n, L(Rn, Rn), B(x,y) = O(lxl+ Iyl) 
(iv) Y E Ch-l(R2n, Rn), Y(y) = O(lylk). 

From now on, we concentrate our analysis on system (5.6), assuming for 
sake of definiteness that there exists a real negative number A, such that (5.5) 
admits a non trivial solution q. -

Then, we are lopking for asymptotic solutions of (5.6) which stay" close" 
to an asymptotic solution of the following " basic system": 

y = A-I(O) BU~;(Y) (y). 

One can readily verify that this system admits the solution: 

1 
yo(t) = t"{IAI(k - 2}"q, - a = - k _ 2· 

To construct the foresaid asymptotic solution of (5.6), we fix a positive 
number to (in the following to will be chosen sufficiently large) and we consider 
the linear space: 

X = {f E Cl([to, 00), Rn): sup[ldJd·f(t) It- 2(k-1)",j = 0,1, t E [to, 00)] < oo} . 
tJ 
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We make X into a Banach space, by introducing the norm: 

If It := sup[ldJd' f~t) Ir 2(k-l)a,j = 0,1, t E [to, 00)]. 
tJ . 

We fix I E X and we consider the" y-reduced system": 

il= B(f(t), y)f(t) + A-1(0) Ou~!(y) + Y(y). (5 .7) 

System (5.7) admits at least one solution, denoted by y(tlf), satisfying in 
particular: 

y(tlf) = y.(t") + ii(t If) , 
where y.(ta) is a polynomial (in the to' variable) of degree k - 2, and does not 
depend on f, whereas ii satisfies the inequality: 

where b E (0,2)" and K(to) - 0+ as to - +00. Using these properties, one can 
proceed along the same path followed in the proof of Theorem 4.5 in order to 
define a suitable operator T acting on the space X . Of course any fixed point i of 
T gives rise to the solution (1(-), Y('li)) of the system {L} . Therefore, the proof is 
accomplished by proving that T is a contraction. We skip further details referring 
the interested reader to the cited paper. 0 

As already announced, in paper [41] the result of Theorem 5.6 was improved in 
two aspects : 

(i) Hypothesis (iv) is removed . 
(ii) The regularity assumption on L is weakened. To be more precise, let us 

introduce the normalized solution a of the equation (5.5), i. e. let us fix A: 

We consider the matrix E = _A-l(O)\7 2U[k](a) and we call A the largest 
real part of the eigenvalues of E; then we take h ~ h(A, k) == (k - 2)A + k - 1. 
We remark that if Hypothesis (iv) is assumed, then h(A, k) = 2k and the result 
of Theorem 5.6 still holds for C2k Lagrangian functions. 

-
Moreover in [41] an effort is made toward the problem of the analysis of systems 
for which the equation (5 .5) cannot be solved. To give an idea of such analysis, 
let us start again by consid-ering a Coo Lagrangian function and suppose that U 
has a proper minimum at q = O. Let.us consider the configuration space to be a 
compact Riemannian manifold M (the Riemannian metric defining the quadratic 
kinetic energy); we know that every point of M can be joined by a motion of zero 
energy to the origin. Now we switch on a small non-degenerate gyroscopic force . 
Is the instability property preserved? We are not able to answer such a question, 
a part the following particular case: 
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Tbeorem 5.7. Let n = 2 be the dimension of the configuration space; moreover 
let us assume that the potential function U satisfies: 

U[I:) being a homogeneous form of degree k, k 2: 3, having a proper minimum at 
q = O. Then this stationary solution is stable. 

In other words, no matter how small is the intensity of a non-degenerate 
gyroscopic force, a stabilization phenomenon occurs. The proof of this theorem is 
obtained by using the K. A. M. theory. 

For higher dimension we have a weaker result: the stabilization occurs at 
least formally, i.e . the instability cannot be discovered by any finite algebraic 
procedure. More precisely, we have the following theorem. 

Tbeorem 5.S. Consider the Coo Lagrangian functioll (1.1), with non-degenerate 
gyroscopic forces. Then the Lagrangian system has a formal n-dimellsiollal in­
variant manifold N C TM passing through the equilibrium position q = O. In 
local coordinates (q, q), this formal invariant manifold is represented by meallS of 
formal power series: 

q = I(z) = z + 1[21:-3](z) + ... , q = g(z) = g[l:-l](X) + . .. , x ERn 

and: 
(i) the restriction of the Lagrangian system to N is: 

A(O)i: +VV(x) = 0, 

where the (2k - 3)-jet of V coincides with tIle (2k - 3)-jet of U . 
(ii) there exists a non-negative formal integral F(x) = F(2)(X) + ... of tile 

Lagrangian system, such that N = {x E Rn : F(x) = O}. 
(iii) If the equilibrium q = 0 is a strict minimum of U, alld moreover tllis 

minimum is (2k - 3)-decidable, i.e. 

U(q) 2: IqIV, c> 0, k ~ v ~ 2(k - 1), 

,then the equilibrium is formally stable. 

Now we ask what happens to the family of asymptotic solutions existing in 
the case of natural Lagrangian with potential having a proper absolute minimum 
on M at 0 (0= {q = O}) when we switch on a small non degenerate gyroscopic 
lorce F = eA(q)q? It turns out that close to 0 there is an unstable invariant set 
having a set of semyasymptotic solutions. More precisely, let us assume H, A E 
C2, U E CI:. We have: 
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Theorem 5.9. Let 0 E M be a point of strict local minimum of the potential 
U, and suppose that the nondegenerate gyroscopic force is of type F = cA(q)q , 
where c is sufficiently small. Then there exists a compact ill variant se t ~ C T M 
such that: 

(i) The projection of~ to M is injective, 
(ii) ~ tends to (0,0) as c -+ O. _More precisely, jf the first non zero form U[kJ is 

non degenerate, then: 

• k Iql = O(c~) , V(q, tj) E ~; 

(iii) ~ is an unstable invariant set and every solutioll in ~ is orbitally unstable. 
Moreover, there is a ball B eM, independent of c, such tllat for any 
closed invariant set C C ~, any 6 > 0, and any point qo E B, there exists 
a solution q(t), t ~ 0, such that q(O) = qo and dist(q(t), tj(t)), C) < 6 for 
some t ~ O. 

(iv) for any point qo E B there exists a solution q(t) , t ~ 0 starting from qo and 
whose w-limit set intersect with ~. Moreover, every recurrent ill BirklJO/f' 
s sense trajectory in the w-limit set is contained ill ~. 

We recall that G . Birkhoff [42] called a solution q(t) as in (iv) semiasymp­
tyotic to the set ~ as t- 00. 

The proof of the Theorem is based on global variational methods; the set 
~ is defined, according to Mather [43], as the union of supports of invariant Borel 
probability measures /1 with compact support in T M that minimize the mean 
action functional : 

A(/1) = f L d" iTM 
Instability of the set E and the existence of solutions satisfying (iv) follow 

from the results in [44], [45]. Then, to complete the proof of Theorem 5.9 we just 
need to show that diam(E) -+ 0 as c -+ 0; the interested reader is referred to the 
quoted paper ([41]) . 0 

To explain the content of Theorem 5.9 let us consider the following example . 
Let n = 2 and L given by: 

The corresponding Hamiltonian function is: 

1 c 
H(q,p,c) = 21p + 2Jql2 - U[k)(lql) , 

and Ho(q, c) = H(q, 0, c) = £s41q12 - U[k)(lql) . 

We remark that: Ho(q, c) = min{L(q, q, c) , q E R 2} = L(q , ~Jq , c). 
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Let us consider the minimum of Ho(q, €); we have 

€2 €2 
VU[k)(q) = "4 q ~ U[kj(q) = 4k Iq12 . 

Now it turns out from the proof of Theorem 5.9 that the set I: is exactly 
the set of minimum points of L, i.e. the closed trajectory '1 given by: 

• € J 
q = 2 q 

€2 
U[kj(lql) = 4k Iq12. 

In the general case, the idea of the construction of I: is similar. The diffi­
culty is that the set of minimum points of the Lagrangian is not longer invariant . 

Let us now conclude this review of the results on the Inversion of the 
Lagrange-Dirichlet Theorem with the result, [46], which is a generalization of 
the Theorem 5.6. We consider the Lagrangian (1.1) where again the potential 
function U(q) has a k-jet starting with a semidefinite negative quadratic form 
and we assume that the null space of U[2J(q) has even dimension n1. By using a 
suitable coordinates system, we write the Lagrangian function directly as follows : 

L = ~ < (x,y)S(x,y)(i,y) > + < b(x,y),x > +~ < y,AC(x,y)x > + 

~ < y,A(y)y > +~ < x,l(x,y)x > +V[kJ(Y) + W(y), 

where x E Rn 1 , y E Rn2 , n1 + n2 = n, and: 

bE ch(Rn, Rnl), 

AC E chRn, L(Rnl, R n ,)) 

A E ch(Rn, L(Rn2, R n ,)), 

IE ch(Rn, L(Rnl, Rnl)), 

W(y) = o(l(x, vW) 
Moreover we assume: 

(H;) A(O) is an antisymmetric, nonsingular matrix. 
(Hi;) For some'\ E R\ {O}, there exists a nonzero vector y, solving the equation: 

8V~~(Y) = '\A(O)y. 

(H;;;) Let us denote by H(y) the Hessian matrix of V[kj(y) at Y = y. We con-
sider the two spaces: Tfj := {v ERn" (v,A(O)y) = O} and TJ {v E 
Tfj,(v,y) = O}. Then, if min {n,k} 2: 4" the quadratic form 

(v, H(Y)v) 

is positive (or negative) definite with respect to all v's, v E TJ. 

Then, we have the theorem: 
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Theorem. Under the previous assumptions the Lagrangian system admits a so­
lution which is asymptotic to the solution q = 0; ill particular, tllis equilibrium is 
unstable. 
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