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Introduction 

Prime ideals in ring extensions have been studied extensively in recent years. 
In particular, we wrote a series of papers in which we developed a method to 
study prime ideals of (not necessarily finite) centred extensions (see bibliography). 
It turns out that the method can be extended to study submodules of centred 
bimodules over prime rings, and this has been done in [6] . The purpose of this 
survey is to present some ideas and results of these papers. . 

Let R be a ring and let M be an R-bimodule. We say that M is a centred 
bimodule over R if there exists a generating set of R-centralizing elements; i .e, 
there exists X = (Xi)iEO ~ M such that M is generated over R by the set X and 
aXi = Xia, for every a E R, i E n. A ring extension S ~ R is said to be a centred 
extension of R if S is a centred bimodule over R. 

There are many natural examples of centred bimodules and centred extensions. 
Namely, a group or even a semigroup ring RG. In particular, a polynomial ring 
in any set of, either commuting or non-commuting, indeterminates. Also a matrix 
ring over R, and a tensor product S = RQ9LK, where L is a field and Rand K 
are L-algebras. These are all examples of centred extensions of a ring R, and , of 
course, they are centred bimodules over R. On the other hand, any module M 
over a commutative ring R is a centred bimodule, and if S is an algebra over R, 
then SQ9RM is a centred bimodule over S . Finally, a ring of infinite matrizes 
over R provided that every matrix has a finite number of non-zero entries is also 
a centred bimodule over R. 

In this survey we give the main results of the first two sections of [6]. Then we 
present several applications of these results. Some are applications to the theory 
of bimodules, some others to the study of prime ideals of centred extensions and 
questions on radicals. Thus we take a look to the main results in several papers 

1 The research of the author is partially supported by a grant given by Conselho Nacional de 
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on the subject. We refer the reader to the original papers for proofs. However, 
since [6] has been finished we obtained some new results which are not published 
yet . So we include here some of them, and in this case we include also a short 
proof. At the end we introduce some open questions. 

Throughout this paper R is a prime ring and M is a centred bimodule over R 
with X = (Xi)ien as a set of R-centralizing generators, unless otherwise stated. 
Submodule of M means sub-bimodule. Also, an ideal I of R is always a two-sided 
ideal, and this is denoted by I <J R. The notations C and :J mean strict inclusions. 

1 Closed Submodules 

Assume that N ~ Pare submodules of M. We define the closure of N in P 
by 

[N]p = [N] = {x E P: there exists 04 H:<J R such: thatxH ~ N.}. 

We will omit thesubscriptP when there is no possibility of misunderstanding. 
It is clear that the closure [N]p of N in P is a subm()dule of M with N ~ 

[N]p ~ P. A submodule N of P is said to be closed in Pir [N]p ~ N. 
One of the crucial points of this method is to have a good characterization of 

[N]. It is necessary to consider first the free case. 
Assume that L is free over R with the centralizing basis E = (C;)iEn. Any 

x E L can be uniquely written as a finite sum x = LiEn aiCi, where eLi E R. The 
e-coefficient of x is denoted by x(e); i.e., for x given above X(Ci) = (Ii, i E n. The 
support of x is defined as usual by supp(x) = {e E E : x(e) # O}. 

Let N be a submodule of L. A non-zero element x E N is said to be of minimal 
support in N iffor every yEN with supp(y) C supp(x) we have y = O. We denote 
by m(N) the set of all the elements of minimal support in N. Now we are ready 
to give the very useful notion of minimality in the free case. The minimality of N 
is defined by Min(N) = {supp(x) : x E m(N)}. 

Before considering the general case we need a lemma. The proof is straight­
forward . 

LEMMA 1.1 Let M and M' be two centred bimodules and rp: M - M' an 
I I I 1 J 

epimorphism of R-bimodules. If N ~ Pare submodules of M , N = rp- (N ), 
and P = rp-l(p'), we have [N]p = rp-l([N ' ]pl). In particular, N is closed in P 
if and only if N ' is closed in p'. 

Under the situation of Lemma 1.1 we know that there exists a one-to-one 
correspondence between the set of all the submodules of M' which are contained in 
pi and the set of all the submodules of M which contains [{ errp and are contained 
in P. The lemma shows that this correspondence preserves closed submodules. 
This fact allows us to give a definition of M in(N) in the general case. 

Let M be a centred bimodule over R with X = (Xi )iEO as a set of R-centralizing 
generators. Take a free centred bimodule Lover R with a centralizing basis 
E = (ei)iEo. We fix L and the basis E . Consider the canonical epimorphisms 
11": L - M given by 1I"(e;) = Xi, for every i E n. Now, given a submodule N of 
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M we define the E-minimalityof N as being Min(7r- 1(N». We call it ,simply 
minimality of N, since Land E are fixed. 

Now we are ready to give a description of [Njp directly in the general case. 
We have 

THEOREM 1.2 Let M be a centred bimodule over Rand N ~ P submod­
'Illes of M. Then [Njp is the largest submodule K of P which contains Nand 
satisfies Min(K) = Min(N). Also, [Nj is closed and, moreover, it is the smallest 
closed submodule of P which contains N. In particular, [Nj is the unique closed 
submodule of P which contains N and satisfies Min([N]) = Min(N) . 

The proof of the theorem has two different parts . First we have to prove the 
free case. This has been done in [6j (Lemma 1.1 and Theorem 1.2). The proof of 
the general case in just canonical, and for this reason is not included here. We 
point out that this proof is also not contained in [6j. In that paper we follow a 
different approach for the general case, and so the description we give here is just 
Remark 1.15 of [6j. 

Using Theorem 1.2 we can obtain some interesting consequences. First, we 
can define [Nj in a dual way. In fact, we can use the condition H x ~ N instead of 
the condition xH ~ N. Then we can proof a similar result as Theorem 1.2. Since 
the notion of minimality does not depend on left or right side, it follows that the 
two definitions coincide. So we have the following 

COROLLARY 1.3 For submodules N ~ P of M we have 

[Njp = {x E P : there exists 0 ::p H <J Rsuch that H x ~ N} = 

{x E P: there are ideals A ::p OandB::p Oof RwithAxB ~ N}. 

An element :r E M is said to be a torsion element if there exists an ideal H 
of R with xH = O. Thus the torsion elements of M are just the elements of 
the submodule [OjM of M. A submodule P of M is said to be torsion-free (resp. 
torsion), if [Ojp = 0 (resp. [Ojp = P). It is clear that if N ~ P, then N is closed 
in P if and only if the factor module PIN is torsion-free . 

On the other hand, recall that a right R-module A is said to be prime if for 
x E A and r E R we have that xRr =0 implies either x = 0 or Ar = 0 [3j . The 
submodule B of A is prime in A if the factor module AI B is a prime module. 
According to this definition for N ~ P ~ M, N is prime in P if and only if for 
:r E P and 0 ::p r E R we have that xRr ~ N implies that either x E N or Pr ~ N . 

There is a close relation between the closed submodules we are studying in our 
papers and the prime submodules. We was not aware of this relation when we 
write [6]. So we use this opportunity to give the following. 
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PROPOSITION 1.4 Assume that N C Pare submodules of M. Then N 
is closed in P if and only if N is a prime submodule of P and the factor module 
PIN is not a torsion module. 

Proof. If N is closed in P, then the factor module PIN is torsion-free, so it is 
not torsion . Also, if x E P, O:p r E R, and xRr ~ N, then xRrR ~ N and since 
RrR is a non-zero ideal of R we have x E [Nj = N. Thus N is prime in P. 

Con versely, assume that PIN is not torsion and N is prime in P. If x H ~ N, 
for x E P and 0 :p H <I R, take any 0 :p a E H. We have xRa ~ N. It follows that 
either x E N or Pa ~ N. The argument shows that either x E N or P H ~ N. 
The pro~f is complete because the last possibility gives a contradiction . 

We point out that if S :) R is a centred extension of a prime ring R, the case 
we studied in several papers, and J is an R-disjoint ideal S, then the factot ring 
SI J is never torsion because the identity element of S is nota tors.ion element in 
the factor ring. So the lattice of closed ideals is just the lattice of R-disjoint ideals 
which are prime R-submodules of S. 

If every generator Xi of M, i E 0, is a torsion element, then M is a torsion 
bimodule. Thus [Ojp = P, for every submodule P of M . It follows that P is the 
unique closed submodule of P. So the lattice of closed submodules of P is trivial 
in this case. Thus it is natural to assume that there exist generators of M which 
are not torsion elements. It is easy to see that any such a generator is an element 
of M which is free over R. 

Hereafter, we assume that M is not a torsion bimodule. Consequently, by 
Zorn's lemma there exists a subset E of X which is a maximal R-independent 
subset of X. Denote by L the (free) submodule of M which has E as a centralizing 
basis. There is a nice relation between M and L. 

LEMMA 1.5 For every x E M there exists a non-ze ro ideal H of R such that 
xH~ L. 

Let N ~ P be submodules of M. We say that N is dense in P if [Njp = P . 
Equivalently, the factor module P / N is a torsion module. Lemma 1.5 says that 
for every centred bimodule Mover R there exist.s a dense submodule { whic.h is 
free over R. We will refer to it as a free dense submodule of M . 

We have the following 

THEOREM 1.6 Assume that J{ ~ Pare submodules of M such that J{ 

is dense in P. Then there is a one-to-one correspondence between the set of 
all the closed submodules of P and the set of all the closed submodules of J{. 

Moreover, this correspondence associates the closed submodule N of P with the 
closed submodule I of J{ if N n J{ = J (equivalently N = [Jjp). 
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The above theorem is very interesting for several reasons. One of these is 
because when applied to a free dense submodule L of M reduces the study of 
closed submodules to the, free case. This reduction can also be done using Lemma 
1.1, as we have already seen. However the last way is much more convenient, since 
we are having a free module contained in M . Thus the reduction works inside the 
given bimodule M, while in the first case we have to define a new free bimodule 
such that M is a factor module of it. We have 

COROLLARY 1.7 Assume that P is a submodule of M and L is a free 
dense submodule of M . Then there is a one-to-one correspondence via contraction 
between the set of all the closed submodules of P and the set of all the closed 
submodules of P n L. In particular, there is a one-to-one correspondence between 
the set of all the closed submodules of M and the set of all the closed submodules 
of L. 

Using this corollary we can give a new characterization of [N]p in terms of 
another notion of minimality. In fact, we define the minimality of N as the 
minimality of N n L as a submodule of the free module L. Then we can prove a 
theorem corresponding to Theorem 1.2 using this new concept of minimality. In 
[6] we follow this approach. 

We want to explain why we change the presentation of the subject in this 
paper comparing with [6]. First, we wanted to make more evident the new ap­
proach. Second, there is also a natural advantage using this way. We can give the 
characterization of the closure of an ideal just from the begining. With the other 
approach we have to develop a lot of machinery before we are in position to give 
this characterization, as we can see in [6]. 

2 Enlarging and Contracting Closed 
Submodules 

Let Q be either the maximal (complete) or the Martindale right quotient ring 
of R ([18], Chap. IX; [13], Section 4.3; [16]). The extended centroid of R is the 
center of Q, and we denote it here by C. Recall the following basic properties . 

LEMMA 2.1 (i) R ~ Q. 
(ii) If J is a dense right ideal (resp. nonczero idea0 of Rand f: J -+ R is a 

homomorphism of right R-modules, then there exists q E Q such that f(r) = qr, 
for all r E J. 

(iii) For any ql, ... , qn in Q there exists a dense right ideal (resp. non-zero 
idea0 J of R such that qd ~ R, for i = 1, ... , n. 

(iv) If qJ = 0 for some q E Q and dense right ideal (resp. non-zero idea0 J . 
of R, then q = O. 
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(v) Q is also a prime ring and C is a field. 
(vi) q E C if and only if there exists a non-zero ideal I of R and an R-bimodule 

homomorphism f: 1-+ R such that f(r) = qr, for every rEI . 

The purpose of this section is to ,extend the bimodule M to a Q-bimodule M' 
and then to contract M' to a vector space V over C. We show that the.re exists 
a one-to-one correspondence between the closed submodules of M, M', and the 
subspaces of V. First we have to consider the free case. 

Let L be a free centred bimodule with the centralizing basis E = (Ci)ien. 
Denote by L" the free Q-bimodule Lien EflQCi, where Eis a centralizing basis of 
L". Put V = Lien C C;, a vector space over C with the same basis E . 

Assume that N is a submodule of Land r = {Cl, ... ,Cn} E Min(N). Take 
any C E r, say C = Cl, and consider the non-zero ideal H of R defined as the set 
of all a E R such that there exists x . = aCl + a2c2 + .,. + anCn EN . Then such 
an x is unique and the map J;: H -+ R defined by f;(a) = aj is a (well-defined) 
R-bimodule map, where al = a. Hence there exist Ci E C with cia = ai, for 
i = 1, ... , n, where Cl = 1. We write mr,e = Cl + C2C2 + ... + CnCn . We can 
easily see that the element mr,e is the unique element of V such that for every 
element x E N with supp(x) = r we have x = mr,ex(c) = x(c)mr,e . Moreover, 
supp(mr,e) = rand mr,e(c) = 1. 

Denote by Mc(N) the set of all the elements mr,e constructed above, where 
r E Min(N) and e E r. So Mc(N) ~ V and for every m E Mc(N) there exists 
a non-zero ideal H of R with mH = H m ~ N. 

Now, given a Q-submodule P of L" denote by Po == P n L and by Pv = 
CMc(Po), the subspace of V generated by Mc(Po). 

THEOREM 2.2 Let L be a free centred bimodule over R and suppose that 
P is a submodule of L·. Then there is a onc-to-one correspondence between the 
following: 

(i) The set of all the submodules of L which arc closed submodules of Po . 
(ii) The set of all the submodules of L' which are Q-closed submodules of P . 
(iii) The set of all the C -subspaces of Pv. 
Moreover, this correspondence associates the closed submodule N of Po with 

the Q-closed submodule N* of P and the subspace 1< of Pv if N* n L = Nand 
N* = Q1< np. 

The proof of this theorem is really hard, and to obtain it is necessary to prove 
several lemmas. One of these lemmas shows that for submodules N ~ 1< of L, N 
is closed in 1< if and only if N = QMc(N) n 1< . 

Now we are in position to define the canonical torsion-free extension . Let 
M be a centred bimodule over R with X = (x;);en as a set of R-centralizing 
generators. When L is free with E as a centralizing basis, the canonical torsion~free 
extension of L is defined as L" = Lien EflQei . In general, take a free R-bimodule 
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L with the centralizing basis E, as above, and an epimorphism 7r: L - M given by 
7r(ei) = Xi. By Lemma 1.1 the submodule J = 7r- 1([0]M) is a closed submodule 
of L and so there exists a closed submodule J* of L* such that 1* n L = I, 
by Theorem 2.2. Put M* = L* /1* and denote by rfJ : L* - M* the canonical 
projection. Thus M* is a centred bimodule over Q with (rfJ( Ci »iEO as a generating 
set of centralizing elements and rfJ is a Q-bimodule homomorphism. Also, since 
rfJ- 1(0) = 1* is closed we have that M* is torsion-free as a Q-module. We can easily 
see that j(Xi) = rfJ(ei), i E n, induces a well-defined R-bimodule homomorphism 
j:M-M*. 

DEFINITION 2.3 The pair (M*, j) is said to be the canonical torsion-free 
extension of M. 

Let P be a right R-module. We say that P is torsion-free if the following 
condition holds: X E P and xJ = 0, for a dense right ideal J of R, imply x = o. 
It is not hard to see that this definition agrees with the one given in Section 
1 for centred bimodules. The canonical torsion-free extension has the following 
universal property. 

PROPOSITION 2.4 Under the above assumptions, M* is a centr~d bimod­
ule over Q which is torsion-free as a right R-module and j: M - M* is an R­
bimodule homomorphism. Moreover, for every right Q-module P which is torsion­
free as right R-module and every homomorphism of right R-modules f: M - P 
there exists a unique homomorphism of right Q-modules r: M* - P such that 

r oj = f · 

By Proposition 2.4 it is clear that the canonical extension (M*, j) of M is 
unique up to isomorphism. Some other facts which are convenient to remark are 
the following. The bimodule M* is a torsion-free centred bimodule over Q with 
(j(Xi»iEO as a set of Q-centralizing generators. Also, f{ crj = [O]M . So we may 
consider M ~ M* if and only if M is torsion-free over R. 

Now we can give one of the main results of this paper . 

THEOREM 2.5 For every centred bimodule Mover R, the canonical torsion­
free extension M* of M is free over Q. Moreover, if L is a free dense submodule 
of M with the basis E, then M* = L* is free over Q with the centralizing basis 
(j(e»eEE . 

The above theorem says, loosely speaking, that every torsion-free centred bi­
module over a prime ring R is always free when considered as a Q-bimodule . 

As we said above, M* is a free bimodule which is uniquely determined by M . 
Note that V is the set of all x E M* such that rx = xr, for every r E R. Then V 
is also uniquely determined by M . 
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Now we can give the corresponding of Theorem 2.2 for the general case. We 
denote again by L a free dense submodule of M. 

THEOREM 2.6 Let M be a centred bimodule over R, (M*, j) the canonical 
torsion-free extension of M, and P a submodule of M*. Then there is a one-to-one 
correspondence between the following: 

(i) Th e set of all the submodules of M which are closed in j-I(P). 

(ii) The set of all the submodules of M* which are closed in P . 

(iii) The set of all the C-subspaces ofCMc(P n L) . 

Moreover, the correspondence associates the closed submodule N of j-l (P) 
with the closed submodule N* of P and the subspace I< ofCMc(pnL) if j-I(N-) = 
Nand N* =QI< n P. 

We point out that the proof of Theorem 2.6 follows directly, via L, from 
Theorems 1.6 and 2.2. 

3 Applications 

Throughout this section we will consider several applic'ations of the results of 
the former ones. 

3.1 Non-singular Submodules 

Recall that the singular submodule Z(P)" of a right R-module P is detmed as 
the set of all the elements x E P such that the right annihilator rex) of x in R 
is an essential right ideal of R. The submodule P is said to be non-singular if 
Z(P) = O. We say that a submodule N of P is non-singular in P if Z(P/N) = 0 
([12], pp. 30-36). 

When M is a bimodule over Rand P is a sub module of M, we consider P as 
a right R-module. So Z(P) is the right singular submodule of P and is , in fact, 
a sub-bimodule of M. We will say simply singular submodule and non-singular , 
omitting right . Also, rex) denotes the right annihilator of x in R. 

For a ring R, the singular ideal of R is the ideal Z(R), which is the singular 
submodule of R when considered as right R-module. We say that R is non-singular 
if Z(R) = O. 

It is easy to see that if P is a submodule of a centred bimodule M and N is 
a non-singular submodule of P, then N is closed in P . The purpose of the first 
part of this section is to consider the converse of this fact. We have 

LEMMA 3.1 Assume that R is a prime non-singular ring and N ~ Pare 
submodules of M. Then Z(P/N) = [Nlp/N. 
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Lemma 3.1 shows that when R is a prime non-singular ring, then the singular 
submodule of a submodule of M can be determined using closed submodules. The 
following is clear . 

COROLLARY 3.2 Assume that R is a prime non-singular ring and N ~ P 
are submodules of M. Then N is closed in P if and only if N is non-singular in 
P. In particular, P is torsion-free if and only ifP is non-singular. 

The main result concerning non-singular rings and submodules is the following 
([6], Theorem 4.6) 

THEOREM 3.3 Let M be a centred bimodule over the prime ring Rand P a 
submodule of M which, is not a torsion submodule. Then the following conditions 
are equivalent: 

(i) R is a non-singular ring. 

(ii) Z(PI[O]p) = O. 
(iii) Every closed submodule of P is non-singular in P . 

(iv) Z(PIN) = [N]pIN, for every submodule N of P . 

3.2 Strongly Closed Submodules 

Now we turn our attention to strongly prime rings and strongly closed sub­
modules. Recall that a ring R is said to be (right) strongly prime if every non-zero 
ideal I of R contains an insulator; i.e., there exists a finite set F ~ I such that 
Fa = 0, a E R, implies a = O. An ideal P of R is said to be (right) strongly prime 
if RIP is a strongly prime ring. 

Let P be a submodule of a centred bimodule M. A submodule N of P is said 
to be (right) strongly closed in P iffor any submodule [{ of M with N C [( ~ P 
there exists a finite set F ~ J{ such that Fa ~ N, a E R, implies a = O. The 
submodule P is said t9 be strongly closed if the ideal (0) is strongly closed in P . 
Every strongly closed submodule of P is closed in P. Moreover , it is not hard to 
prove that any such a submodule is also non-singular in P. 

Denote by s(PIN) the smallest strongly closed submodule of PIN (it is easy 
to see that there exists such a submodule). Corresponding to the results of the 
first part of this section we can obtain the following. 

LEMMA 3.4 Assume that R is a strongly prime ring. Then for submodules 
N ~ P of M we have s(PIN) = [N]pIN. 

COROLLARY 3 .5 Assume that R is a strongly prime ring and N .~ Pare 
submodules of M. Then N is strongly closed in P if and only if N is closed in P . 
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The second main result of this section can be proved using Corollary 3.5 ([6], 
Theorem 4.13). 

THEOREM 3.6 Let M be a centred bimodule over a prime ring Rand P a 
submodule of M. Then the following conditions are equivalent: 

(i) R is strongly prime. 
(ii) [O]p is a strongly closed submodule of P . 
(iii) Every closed submodule of P is strongly closed in P . 
(iv) s(P/N) = [N]p/N, for every submodule N of P . 

3.3 The Torsion-Free Rank of a Submodule 

Now we study the torsion-free rank of a submodule. Let N be a submodule 
of a centred bimodule M over a prime ring R. The torsion-free rank of N is 
defined as the length of the longest possible direct sum of non-zero torsion-free 
sub-bimodules of N, if such a bound exists, or infinite in the contrary case. We 
denote the torsion-free rank of N by rank(N) ([17], Definition 1..5). 

We CaI1 give an equivalent definition of rank(N) using the results of the former 
section. As a consequence this notion becomes more tractable, and we are able to 
prove results on the torsion-free rank using well-known properties of vector spaces. 

The following is a key result . 

LEMMA 3.7 Let N be a submodule of M . Then we have rank(N) 
rank([N]) = rank([N]/[O]), where [N]/[O] is a submodule of M/[O]M' 

The above lemma shows that to compute rank(N) we may always assume that 
M is torsion free and N is closed in M. Denote again by (M*, j) the canonical 
torsion-free extension of M and by V the corresponding C-vector space. We have 

THEOREM 3.8 Let N be a closed submodule of M, N* the closed submodule 
of M* with j-l(N*) = N, and l< = N* n V . Then rank(N) = dime (I{) , 
where dirnc(l<) denotes the dimension of f{ as a C-vector space. In particular, 
rank(N) = rank(N*). 

Theorem 3.8 has several applications. As an example we give here one result 
which was proved in ([6], Corollary 3.5) and other which is new . 

COROLLARY 3.9 Assume that N ~ Pare submodules of a centred bimodule 
M. Then rank(P) = rank(N) + rank(P/N). 

Now we consider rank of submodules of a tensor product. Assume that MJ 
and M2 are centred bimodules with centralizing generators(xi)iEO and (Yj)j E~' 
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respectively. It is easy to see that M 1 @R M2 is a centred bimodule over R with 
centralizing generators (Xi @ Yj )i,j' Assume that Nl and N2 are submodules of 
Ml and M2, respectively. 

THEOREM 3.10 rank(N1 @R N2) = ranfc(Nt)rank(N2), where Nl and N2 
are as abo,Ve. 

Sketch of the proof. First we have to show that the canonical torsion-free 
extension of M 1 @R M2 is equal to Mi @Q Mi, where (Mi, it) and (Mi, h) are 
the canonical torsion-free extensions of Ml and M2, respectively. To see this we 
check that (Mi@QM;, it @h) satisfies the universal property given in Proposition 
2.4. . 

Next, if Ll and L2 are free dense submodules of Ml and M2, respectively, 
then Li = Mi and L2 = Mi. Hence Li @Q L2 = Mi ®Q Mi. From this easily 
follows that L1 @R L2 can be considered as a free dense submodule of Ml ®R M2. 
Since Nt = (Ni n Li)*, where Nt means the extension of the submodule Ni of 
Mi, 1 = 1,2, 'we can reduce the problem to the free case. 

It remains only to prove that if ](i = Nt n Vi and ]( = (Nl ®R N2)* n V , 
then ]( = ](1 @C ](2, where Viand V denotes the C-spaces associated with Mi, 
i = 1,2, and M 1 @R M 2 , respectively. Clearly we have that K 1 @c K2 ~ K. 
Assume that K is strictly largest than ](1 @C K 2 . Then there exists some element 
v E ]( which is C-independent of the elements of a basis of K 1 @c K 2 . Also there 
exists a non-zero ideal H of R such that vH ~ Nl ® N2. It is now easy to obtain 
a contradiction. 

We point out that more results on submodules of tensor products of centred 
bimodules over a prime ring will be contained in a forthcoming paper that I have 
in preparation. 

3.4 The Goldie Dimension of a Submodule 

LetP be a right R-module. The Goldie dimension of P is defined as the lenght 
of the longest possible direct sum of non-zero submodules of P if such a bound 
exists, or infinite in the contrary case ([1], Chap. 1). 

We consider here a submodule N of a centred bimodule M and denote by 
Gdim(N) the Goldie dimension of N as a sub-bimodule of M; i.e, considering 
direct sums of non-zero sub-bimodules of M. There is a nice relation between the 
Goldie dimension and the torsion-free rank of a submodule. First we have the 
following 

PROPOSITION 3.11 Let N be a submodule of M and L a free dense sub­
module of M. Then the sum (N n L) + [OlN is a direct sum and an essential 
submodule of N. 
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Proof. If x E N n L n [O]N, then there exists a non-zero ideal H of R such 
that xH = 0, and since x E L we get x = O. So the sum is a direct sum. Assume 
that P is a submodule of N and x E P. Then there exists 0 i:- H <J R such 
that xH S; N n L. Hence P has non-zero intersection with N n L in case that 
xH f: 0 and has non-zero intersection with [O]N in case that xH = O. The proof 
is complete. 

The following evident corollary is well-known using some other notions of tor­
sion submodules. It shows that the Goldie dimension of a submodule is deter­
mined by the Goldie dimension of a torsion submodule and the torsion-free rank 
of a submodule, which is the dimension of a vector space. 

COROLLARY 3.12 Under the same assumptions of Proposition 3.11 we 
have Gdim(N) = rank(N n L) + Gdim([O]N)' 

3.5 Prime Ideals in Centred Extensiolls 

A ring extension S :2 R is said to be a centred extension if S is a centred 
bimodule over R; i.e., it has a generating set X of R-centralizing elements. An 
ideal I of S is said to be R-disjoint if In R = O. 

Assume that R is a prime ring. Then the closure of an R-disjoint ideal of S is 
defined as in Section 1, and we can easily see that it is also an R-disjoint ideal. 
So all the results of the former sections can be applied to study closed ideals in S . 
It turns out that every R-disjoint prime ideal of S is closed and so, in particular, 
our results can be applied to study prime ideals of centred extensions. Actually 
this study was our first purpose. 

We studied R-disjoint prime ideals of free centred extensions in [5]. Then we 
considered the general case in ([6], Sections 5-8). When S' is a centred extension of 
R, the canonical torsion-free extension S· of S is a ring which is a centred extension 
of Q, the canonical map j is a ring homomorphism, and the corresponding vector 
space V is an algebra over C. In this case everything goes smoothly and we have 

THEOREM 3.13 The correspondence of Theorem 2.5 is a one-to-one corre- . 
spondence between the following: 

(i) The set of all the R-disjoint prime ideals of S. 
(ii) The set of all the Q-disjoint prime ideals of S· . 
(iii) The set of all the prime ideals of v. 

This theorem is very useful to study special types of prime ideals and radical 
questions. Many results were obtained in [5] and [6] as applications ofthe theorem. 
As an example, we give the following. 
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THEOREM 3.14 Assume that R is a strongly prime (resp . non-singular 
prime) ring, 5 is a centred extension of R, and P is an R-disjoint prime ideal 
of 5. Then P is also strongly prime (resp. non-singular) provide.d one of the 
following conditions is fulfilled: 

(i) P is maximal among the R-disjoint ideals of S . 
(ii) The generating set X is a commuting subset of 5. 

The reader is refered to [5] and [6] for more results of this type. In particular, 
we point out that in the latest paper we also obtained results for prime ideals of 
intermediate extensions; i.e., rings T with R ~ T ~ S. 

3.6 Semisimplicity of Free Centred Extensions 

An interesting application of the results in 3.5 is a theorem which reduces the 
question of whether a free centred extension is (J acobson) semisimple to algebras 
over fields. This theorem was proved in [7] and states the following. 

THEOREM 3.15 Let R be a semisimple ring and S = R[E] a free centred 
extension of R. Assume that C[E] is semisimple for every field C which is the 
extended centroid of a primitive factor of R. Then S is also semisimple . 

This theorem has been extended in [11] to several other radicals, as we see 
now. 

3.7 Radicals of Centred Extensions 

Since the most popular radicals are intersections of prime ideals, is not sur­
prising that we can obtain information concerning radicals of centred extensions 
from the information on radicals of algebras over C. This idea has been used in 
[11] to study first radicals of centred extensions and then to apply the results to 
tensor products of algebras over commutative rings . 

In particular we proved, for example, that if s denotes the strongly prime 
radical we have 

THEOREM 3.16 Assume that R is a strongly prime ring and 5 is a torsion­
free centred extension of R. Then 8(5) = Q8(V) n 5. 

Actually, in [11] we also obtained the corresponding of Theorem 3.16 for several 
other radicals, namely, the prime, locally nilpotent, nil, singular, Jacobson, and 
Brown-McCoy radicals. We proved also a theorem corresponding to Theorem 3.15 
for all these radicals. 
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3.8 Prime Ideals and Radicals of Tensor Products 

The most part of [11] was devoted to apply the results on prime ideals of 
centred extensions to study prime ideals and radicals of tensor products. If A and 
B are algebras over a commutative ring F; then A ®F B is a centred bimodule 
over A (and B). So the former results can be applied. 

If I is an ideals of A ®F B we put IA = {a E A : a ® 1 EJ} and IB = {b E B : 
1 ® bE I}. The ideal I is said to be A-B-d~sjoint if IA = IB = O. 

In the next theorem we assume that A and B are prime algebras over a com­
mutative ring F. We denote by Q(A) and Q(B) the Martindale right ring of 
quotients of A and B and by C(A) and C(B) its extended centroids, respectively. 
Also, ifJ: A ® B -+ Q(A) ® Q(B) denotes the canonical map, and tensor products 
are always over F . 

THEOREM 3.17 Let A and B be prime algebras over a commutative ring 
F. Then there is a one-to-one correspondence between the following : 

(i) The set of all the A-B -disjoint prime ideals of A 0 B . 

(ii) The set of all the Q(A)-Q(B)-disjoint prime ideals of Q(A) 0 Q(B). 

(iii) The set of all the prime ideals of C(A) ® C(B). 

Moreover, this correspondence associates a prime ideal P of A ® B with a prime 
idealsP· ofQ(A)®Q(B) andaprimeidealPo ofC(A) ® C(B) ifP=ifJ-l(p*) 
and p. = Po(Q(A) ® Q(B)). 

We obtained also a characterization for C(A) ® C(B) to be a domain and to 
be a field. Finally, we proved results of the following type. 

THEOREM 3.18 Let P be an A-B-disjoint prime ideal of A 1;9 B. Then P 
is strongly prime (resp. non-singular, locally nilpotent semisimple) if and only if 
A and B are strongly prime (resp. non-singular, locally nilpotent semisimple) . 

Using -the above results we can study prime ideals of tensor products which 
are not necessarily disjoint. 

COROLLARY 3.19 Assume that A and B are algebras over a commutative 
ring F and P is a prime ideal of A ® B. Then P is strongly prime (resp . non­
singular, locally nilpotent semisimple) if and only if PA and PB are strongly prime 
(resp. non-singular, locally nilpotent semisimple). 

We refer the reader to [11] for many other results of the above type. 

3.9 Prime Ideals in Polynomial Rings 
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To finish the section we consider polynomial rings. Actually, the case of a 
polynomial ring R[x] in one indeterminate x over a prime ring R was the first 
considered by me [4], and this paper gave rise to the series of papers that I wrote 
on the subject . However, the case of polynomial rings in n-indeterminates was 
considered only recently, and the paper is not published yet [9]. There is another 
paper devoted to prime and maximal ideals [8] which deserves to be quoted. Fi­
nally, we point out that the method have also been used to study prime ideals in 
skew polynomial rings (see [2], [10], [14]). 

The general results on closed and prime ideals are of course true for polynomial 
rings, but this case has some particularities that we should mention here. For 
example, we have 

THEOREM 3.20 Assume that R is a prime ring and R[x] is a polynomial 
ring over R in one indeterminate x. An R-disjoint ideal I of ~[x] is closed if and 
only if 1= Q[xJfo n R[x], for some monic polynomial fo E C[x]. 

Theorem 3.20 and some well-known results on polynomial rings immediately 
imply the following. 

COROLLARY 3.21 An R-disjoint ideal P of R[x] is prime if and only if 
P = Q[x]fo n R[x], for some monic irreducible polynomial fo E C[x). 

COROLLARY 3.22 Let R be a prime ring. Then there exists a one-ta-one 
correspondence between the following: 

(i) The set of all the R-disjoint prime ideals of R[x]. 
(ii) The set of all the Q-disjoint prime ideals of Q[x] . 
(iii) The set of all the irreducible polynomials of C[x] . 
Moreover, this correspondence associates the prime P of R[x] with the prime 

p. of Q[x] and the irreducible polynomial 10 of C[x] if P' n R[x] = P and P' = 
Q[x]/o. 

The results on R-disjoint prime ideals have been improved and extended ([8], 
[9]). In particular, in .[8] we got an intrinsic description of an R-disjoint prime 
ideal, namely, we can describe an R-disjoint prime ideal of R[x] as an ideal which 
is closed and determined in some sense by a, so called, completely irreducible 
polynomial of R[x]. 

Finally, in [9] we proved that any prime ideal P of a polynomial ring S' = 
R[Xl, .. . , x n ] is determined by its intersection with R plus n polynomials in SO, 
where R is here any (not necessarily prime) ring. These n polynomials determine a 
sequence which is called a (PnR)-completely irreducible sequence. The converse is 
also true, i.e, given a prime ideal Po of R and a Po-completely irreducible sequence 
of S, there exists a prime ideal P of S which is determined by this sequence. It 
turns out that there exists a one-to-one corresponcence between prime ideals of 
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5' and equivalence claSses of sequences of the type (Po, 11, ... , In), where Po is a 
prime ideals of Rand (11, ... , In) is a Po-completely irreducible sequence. We refer 
t,he reader to [8] and [9] for more details. -

4 Questions 

We finish the paper with some open questions. 

QUESTION 4.1 I do not know whether the results in Sections 1 and 2 can be 
extended to study prime ideals of more general types of extensions of prime rings 
as, for example, normalizing extensions, strongly normalizing extensions, crossed 
products, etc. Some results in this direction are in [15]. 

QUESTION 4.2 It should be very interesting to extend the method given in 
this paper to study closed submodules and ideals in the case when R is a semiprime 
ring. By doing this we would be able to describe some radicals of the extension 
using algebras over commutative rings . I am trying to do this, and have some 
results in the case when R is a semiprime noetherian ring. 

QUESTION 4.3 I think that probably Theorem :3 .15 can be extended to 
more general kind of extensions as, for example, skew group rings . 

QUESTION 4.4 A ring R is said to be a Jacobson ring if every prime ideal 
of R is an intersection of primitive ideals. If R is a J acobson ring, then the 
polynomial ring R[x] is a Jacobson ring [19]. It is clearly easier to prove the result 
when R is a field instead of any Jacobson ring. So it would be very convenient 
to have a theorem of the following type: if R is a Jacobson ring and C[ E] is a 
Jacobson ring for every field C which is the extended centroid of a prime factor 
of R, then R[E] is also a Jacobson ring. I was unable to prove such a result, 
even under some finiteness condition on the basis E as, for example, C[E) being 
a noetherian ring. 
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