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Introduction

Prime ideals in ring extensions have been studied extensively in recent years.
In particular, we wrote a series of papers in which we developed a method to
study prime ideals of (not necessarily finite) centred extensions (see bibliography).
It turns out that the method can be extended to study submodules of centred
bimodules over prime rings, and this has been done in [6]. The purpose of this
survey is to present some ideas and results of these papers. °

Let R be a ring and let M be an R-bimodule. We say that M is a centred
bimodule over R if there exists a generating set of R-centralizing elements; i.e,
there exists X = (z;)ien C M such that M is generated over R by the set X and
az; = z;a, for every a € R, i € 2. A ring extension S D R is said to be a centred
extension of R if S is a centred bimodule over R.

There are many natural examples of centred bimodules and centred extensions.
Namely, a group or even a semigroup ring RG. In particular, a polynomial ring
in any set of, either commuting or non-commuting, indeterminates. Also a matrix
ring over R, and a tensor product S = R®), I, where L is a field and R and K
are L-algebras. These are all examples of centred extensions of a ring R, and, of
course, they are centred bimodules over R. On the other hand, any module M
over a commutative ring R is a centred bimodule, and if S is an algebra over R,
then S@®xM is a centred bimodule over S. Finally, a ring of infinite matrizes
over R provided that every matrix has a finite number of non-zero entries is also
a centred bimodule over R.

In this survey we give the main results of the first two sections of [6]. Then we
present several applications of these results. Some are applications to the theory
of bimodules, some others to the study of prime ideals of centred extensions and
questions on radicals. Thus we take a look to the main results in several papers

1The research of the author is partially supported by a grant given by Conselho Nacional de
Desenvolvimento Cientifico e Tecnolégico (CNPq), Brazil
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on the subject. We refer the reader to the original papers for proofs. However,
since [6] has been finished we obtained some new results which are not published
yet. So we include here some of them, and in this case we include also a short
proof. At the end we introduce some open questions.

Throughout this paper R is a prime ring and M is a centred bimodule over R
with X = (z;)ien as a set of R-centralizing generators, unless otherwise stated.
Submodule of M means sub-bimodule. Also, an ideal I of R is always a two-sided
ideal, and this is denoted by I <1 R. The notations C and D mean strict inclusions.

1 Closed Submodules

Assume that N C P are submodules of M. We define the closure of N in P
by
[N]p = [N] = {z € P : there exists0 # H <1 R such thatzH C N}.

We will omit the subscript P when there is no possibility of misunderstanding.

It is clear that the closure [N]p of N in P is a submodule of M with N C
[N]p C P. A submodule N of P is said to be closed in P if [N]p = N.

One of the crucial points of this method is to have a good characterization of
[N]. It is necessary to consider first the free case.

Assume that L is free over R with the centralizing basis E = (€;)ien. Any
z € L can be uniquely written as a finite sum z = )", a;e;, where a; € R. The
e-coefficient of z is denoted by z(e); i.e., for z given above z(¢;) = a;, 1 € Q. The
support of z is defined as usual by supp(z) = {e € E : z(e) # 0}.

Let N be a submodule of L. A non-zero element z € N is said to be of minimal
support in N if for every y € N with supp(y) C supp(z) we have y = 0. We denote
by m(N) the set of all the elements of minimal support in N. Now we are ready
to give the very useful notion of minimality in the free case. The minimality of N
is defined by Min(N) = {supp(z) : z € m(N)}.

Before considering the general case we need a lemma. The proof is straight-
forward.

LEMMA 1.1 Let M and M' be two centred bimodules and $: M — M’ an
epimorphism of R-bimodules. If N' C P’ are submodules of M', N = ¢=1(N'),
and P = ¢~1(P’), we have [N]p = ¢=([N']p:). In particular, N is closed in P
if and only if N' is closed in P'.

Under the situation of Lemma 1.1 we know that there exists a one-to-one
correspondence between the set of all the submodules of M which are contained in
P' and the set of all the submodules of M which contains Ker¢ and are contained
in P. The lemma shows that this correspondence preserves closed submodules.
This fact allows us to give a definition of Min(N) in the general case.

Let M be a centred bimoduleover R with X = (z;);eq as a set of R-centralizing
generators. Take a free centred bimodule L over R with a centralizing basis
E = (ei)ien. We fix L and the basis E. Consider the canonical epimorphisms
m: L — M given by m(e;) = =z;, for every i € 2. Now, given a submodule N of
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M we define the E-minimality of N as being Min(7~!(N)). We call it simply
minimality of N, since L and E are fixed.

Now we are ready to give a description of [N]p directly in the general case.
We have

THEOREM 1.2 Let M be a cenired bimodule over R and N C P submod-
ules of M. Then [N]p is the largest submodule K of P which contains N and
satisfies Min(K) = Min(N). Also, [N] is closed and, moreover, it is the smallest
closed submodule of P which contains N. In particular, [N] is the unique closed
submodule of P which conlains N and satisfies Min([N]) = Min(N).

The proof of the theorem has two different parts. First we have to prove the
free case. This has been done in [6] (Lemma 1.1 and Theorem 1.2). The proof of
the general case in just canonical, and for this reason is not included here. We
point out that this proof is also not contained in [6]. In that paper we follow a
different approach for the general case, and so the description we give here is just
Remark 1.15 of [6].

Using Theorem 1.2 we can obtain some interesting consequences. First, we
can define [N] in a dual way. In fact, we can use the condition Hz C N instead of
the condition zH C N. Then we can proof a similar result as Theorem 1.2. Since
the notion of minimality does not depend on left or right side, it follows that the
two definitions coincide. So we have the following

COROLLARY 1.3 For submodules N C P of M we have

[N]p = {z € P : there exists 0 # H <4 Rsuch that Hzx C N} =

{z € P : there are ideals A # 0and B # 0of Rwith AzB C N}.

An element £ € M is said to be a torsion element if there exists an ideal H
of R with zH = 0. Thus the torsion elements of M are just the elements of
the submodule [0]as of M. A submodule P of M is said to be torsion-free (resp.
torsion), if [0]p = 0 (resp. [0]p = P). It is clear that if N C P, then N is closed
in P if and only if the factor module P/N is torsion-free.

On the other hand, recall that a right R-module A is said to be prime if for
z € A and r € R we have that zRr = 0 implies either = 0 or Ar = 0 [3]. The
submodule B of A is prime in A if the factor module A/B is a prime module.
According to this definition for N C P C M, N is prime in P if and only if for
z € P and 0 # r € R we have that z Rr C N implies that either z € N or Pr C N.

There is a close relation between the closed submodules we are studying in our
papers and the prime submodules. We was not aware of this relation when we
write [6]. So we use this opportunity to give the following.
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PROPOSITION 1.4 Assume that N C P are submodules of M. Then N
is closed in P if and only if N is a prime submodule of P and the factor module
P/N 1is not a torsion module.

Proof. If N is closed in P, then the factor module P/N is torsion-free, so it is
not torsion. Also,if z € P,0# r € R, and zRr C N, then zRrR C N and since
RrR is a non-zero ideal of R we have z € [N] = N. Thus N is prime in P.

Conversely, assume that P/N is not torsion and N is prime in P. If zH C N,
forz € Pand 0 # H< R, takeany 0 # a € H. We have zRa C N. It follows that
either z € N or Pa C N. The argument shows that either z € N or PH C N.
The proof is complete because the last possibility gives a contradiction.

We point out that if S D R is a centred extension of a prime ring R, the case
we studied in several papers, and I is an R-disjoint ideal S, then the factor ring
S/1 is never torsion because the identity element of S is not a torsion elemént in
the factor ring. So the lattice of closed ideals is just the lattice of R-disjoint ideals
which are prime R-submodules of S.

If every generator z; of M, i € §2, is a torsion element, then M is a torsion
bimodule. Thus [0]p = P, for every submodule P of M. It follows that P is the
unique closed submodule of P. So the lattice of closed submodules of P is trivial
in this case. Thus it is natural to assume that there exist generators of M which
are not torsion elements. It is easy to see that any such a generator is an element
of M which is free over R.

Hereafter, we assume that M is not a torsion bimodule. Consequently, by
Zorn’s lemma there exists a subset E of X which is a maximal R-independent
subset of X. Denote by L the (free) submodule of M which has E as a centralizing
basis. There is a nice relation between M and L.

LEMMA 1.5 For every & € M there ezists a non-zero ideal H of R such that
zH C L.

Let N C P be submodules of M. We say that N is dense in P if [N]p = P.
Equivalently, the factor module P/N is a torsion module. Lemma 1.5 says that
for every centred bimodule M over R there exists a dense submodule L which is
free over R. We will refer to it as a free dense submodule of M.

We have the following

THEOREM 1.6 Assume that K C P are submodules of M such that K
is dense in P. Then there is a one-to-one correspondence belween the set of
all the closed submodules of P and the sel of all the closed submodules of K.
Moreover, this correspondence associales the closed submodule N of P with the
closed submodule I of K if NN K = I (equivalently N = [I]p).
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The above theorem is very interesting for several reasons. One of these is
because when applied to a free dense submodule L of M reduces the study of
closed submodules to the free case. This reduction can also be done using Lemma
1.1, as we have already seen. However the last way is much more convenient, since
we are having a free module contained in M. Thus the reduction works inside the
given bimodule M, while in the first case we have to define a new free bimodule
such that M is a factor module of it. We have

COROLLARY 1.7 Assume that P is a submodule of M and L is a free
dense submodule of M. Then there is a one-lo-one correspondence via coniraction
between the set of all the closed submodules of P and the set of all the closed
submodules of PN L. In particular, there is a one-lo-one correspondence belween
the set of all the closed submodules of M and the set of all the closed submodules
of L.

Using this corollary we can give a new characterization of [N]p in terms of
another notion of minimality. In fact, we define the minimality of N as the
minimality of N N L as a submodule of the free module L. Then we can prove a
theorem corresponding to Theorem 1.2 using this new concept of minimality. In
[6] we follow this approach.

We want to explain why we change the presentation of the subject in this
paper comparing with [6]. First, we wanted to make more evident the new ap-
proach. Second, there is also a natural advantage using this way. We can give the
characterization of the closure of an ideal just from the begining. With the other
approach we have to develop a lot of machinery before we are in position to give
this characterization, as we can see in [6].

2 Enlarging and Contracting Closed
Submodules

Let @ be either the maximal (complete) or the Martindale right quotient ring
of R ([18], Chap. IX; [13], Section 4.3; [16]). The extended centroid of R is the
center of @}, and we denote it here by C'. Recall the following basic properties.

LEMMA 2.1 (i) RC Q.

(i1) If J is a dense right ideal (resp. non-zero ideal) of R and f:J — R is a
homomorphism of right R-modules, then there exists ¢ € Q such that f(r) = qr,
forallr e J.

(iii) For any qi,...,qn in Q there ezisls a dense right ideal (resp. non-zero
ideal) J of R such that ;J C R, fori=1,...,n.

(iv) If ¢J = 0 for some q € Q and dense right ideal (resp. non-zero ideal) J
of R, then ¢ = 0.
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(v) Q is also a prime ring and C is a field.
(vi) ¢ € C if and only if there exists a non-zero ideal I of R and an R-bimodule
homomorphism f:I — R such that f(r) = qr, for everyr € I.

The purpose of this section is to extend the bimodule M to a @Q-bimodule M*
and then to contract M* to a vector space V over . We show that there exists
a one-to-one correspondence between the closed submodules of M, M*, and the
subspaces of V. First we have to consider the free case.

Let L be a free centred bimodule with the centralizing basis E = (&;)ieq-
Denote by L* the free Q-bimodule ;. ®Qe;, where E is a centralizing basis of
L*. Put V =}, Ce;, a vector space over C with the same basis E.

Assume that N is a submodule of L and I' = {e;,...,en} € Min(N). Take
any e € I, say e = e;, and consider the non-zero ideal H of R defined as the set
of all @ € R such that there exists z = ae; + azes + ... + anen, € N. Then such
an z is unique and the map f;: H — R defined by f;(a) = a; is a (well-defined)
R-bimodule map, where a; = a. Hence there exist ¢; € C with ¢;a = a;, for
i = 1,..,n, where ¢; = 1. We write mr,. = e; + coez + ... + cnen. We can
easily see that the element mp . is the unique element of V such that for every
element z € N with supp(z) = T' we have z = mp .z(e) = z(e)mr,.. Moreover,
supp(mr,.) =T and mp.(e) = 1.

Denote by M¢(N) the set of all the elements mp . constructed above, where
I'e Min(N) and e € I'. So M¢c(N) C V and for every m € Mc(N) there exists
a non-zero ideal H of R with mH = Hm C N.

Now, given a @Q-submodule P of L* denote by P, = PN L and by Py =
CM¢(Pp), the subspace of V generated by M¢(FP).

THEOREM 2.2 Let L be a free cenlred bimodule over R and suppose that
P is a submodule of L*. Then there is a one-to-one correspondence between the
following:

(i) The set of all the submodules of L which are closed submodules of Py.

(ii) The set of all the submodules of L* which are Q-closed submodules of P.

(iii) The set of all the C-subspaces of Py.

Moreover, this correspondence associates the closed submodule N of Py with
the Q-closed submodule N* of P and the subspace K of Py if N*NL = N and
N*=QKnNnP.

The proof of this theorem is really hard, and to obtain it is necessary to prove
several lemmas. One of these lemmas shows that for submodules N C K of L, N
is closed in K if and only if N = QMc(N)N K.

Now we are in position to define the canonical torsion-free extension. Let
M be a centred bimodule over R with X = (z;)ieq as a set of R-centralizing
generators. When L is free with E as a centralizing basis, the canonical torsion-free
extension of L is defined as L* = ;. ®Qe;. In general, take a free R-bimodule
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L with the centralizing basis E, as above, and an epimorphism 7: L — M given by
m(e;) = z;. By Lemma 1.1 the submodule I = #=1([0]5) is a closed submodule
of L and so there exists a closed submodule I* of L* such that I*N L = I,
by Theorem 2.2. Put M* = L*/I* and denote by ¢: L* — M* the canonical
projection. Thus M* is a centred bimodule over Q with (¢(e;))ien as a generating
set of centralizing elements and ¢ is a @-bimodule homomorphism. Also, since
¢~1(0) = I* is closed we have that M* is torsion-free as a Q-module. We can easily
see that j(z;) = #(e;i), i € Q, induces a well-defined R-bimodule homomorphism
M — M*,

DEFINITION 2.3 The pair (M*, j) is said to be the canonical torsion-free
extension of M.

Let P be a right R-module. We say that P is torsion-free if the following
condition holds: z € P and zJ = 0, for a dense right ideal J of R, imply = 0.
It is not hard to see that this definition agrees with the one given in Section
1 for centred bimodules. The canonical torsion-free extension has the following
universal property.

PROPOSITION 2.4 Under the above assumptions , M* is a centred bimod-
ule over Q which is torsion-free as a right R-module and j: M — M* is an R-
bimodule homomorphism. Moreover, for every right Q-module P which is torsion-
free as right R-module and every homomorphism of right R-modules f: M — P
there exists a uniqgue homomorphism of right Q-modules f*: M* — P such that

froj= /.

By Proposition 2.4 it is clear that the canonical extension (M*,j) of M is
unique up to isomorphism. Some other facts which are convenient to remark are
the following. The bimodule M* is a torsion-free centred bimodule over @) with
(4(zi))ien as a set of Q-centralizing generators. Also, Kerj = [0]p. So we may
consider M C M* if and only if M is torsion-free over K.

Now we can give one of the main results of this paper.

THEOREM 2.5 For every centred bimodule M over R, the canonical torsion-
free extension M* of M 1is free over Q. Moreover, if L is a free dense submodule
of M with the basis E, then M* = L* is free over QQ with the centralizing basis

(7(e))eeE-

The above theorem says, loosely speaking, that every torsion-free centred bi-
module over a prime ring R is always free when considered as a @-bimodule.

As we said above, M* is a free bimodule which is uniquely determined by M.
Note that V is the set of all z € M* such that rz = zr, for every r € R. Then V
is also uniquely determined by M.
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Now we can give the corresponding of Theorem 2.2 for the general case. We
denote again by L a free dense submodule of M.

THEOREM 2.6 Let M be a centred bimodule over R, (M*,j) the canonical
torsion-free extension of M, and P a submodule of M*. Then there is a one-lo-one
correspondence between the following:

(i) The set of all the submodules of M which are closed in j=1(P).

(ii) The set of all the submodules of M* which are closed in P.

(iii) The set of all the C-subspaces of CMc(P N L).

Moreover, the correspandence associates the closed submodule N of j='(P)
with the closed submodule N* of P and the subspace K of CMc(PNL) if j='(N*) =
N and N*=QKnP.

We point out that the proof of Theorem 2.6 follows directly, via L, from
Theorems 1.6 and 2.2.

3 Applications

Throughout this section we will consider several applications of the results of
the former ones.

3.1 Non-singular Submodules

Recall that the singular submodule Z(P) of a right R-module P is dehned as
the set of all the elements z € P such that the right annihilator r(z) of z in R
is an essential right ideal of R. The submodule P is said to be non-singular if
Z(P) = 0. We say that a submodule N of P is non-singular in P if Z(P/N) =0
([12], pp. 30-36). . _

When M is a bimodule over R and P is a submodule of M, we consider P as
a right R-module. So Z(P) is the right singular submodule of P and is, in fact,
a sub-bimodule of M. We will say simply singular submodule and non-singular,
omitting right. Also, r(z) denotes the right annihilator of z in R.

For a ring R, the singular ideal of R is the ideal Z(R), which is the singular
submodule of R when considered as right R-module. Wesay that R is non-singular
if Z(R) = 0.

It is easy to see that if P is a submodule of a centred bimodule M and N is
a non-singular submodule of P, then N is closed in P. The purpose of the first
part of this section is to consider the converse of this fact. We have

LEMMA 3.1 Assume that R is a prime non-singular ring and N C P are
submodules of M. Then Z(P/N) = [N]p/N.
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Lemma 3.1 shows that when R is a prime non-singular ring, then the singular
submodule of a submodule of M can be determined using closed submodules. The
following is clear.

COROLLARY 3.2 Assume that R is a prime non-singular ring and N C P
are submodules of M. Then N is closed in P if and only if N is non-singular in
P. In particular, P is lorsion-free if and only if P is non-singular.

The main result concerning non-singular rings and submodules is the following
([6], Theorem 4.6)

THEOREM 3.3 Let M be a centred bimodule over the prime ring R and P a
submodule of M which is not a torsion submodule. Then the following conditions
are equivalent:

(i) R is a non-singular ring.

(i) Z(P/[0]p) = 0.

(iii) Every closed submodule of P is non-singular in P.

(iv) Z(P/N) = [N]p/N, for every submodule N of P.

3.2 Strongly Closed Submodules

Now we turn our attention to strongly prime rings and strongly closed sub-
modules. Recall that a ring R is said to be (right) strongly prime if every non-zero
ideal I of R contains an insulator; i.e., there exists a finite set F' C I such that
Fa=0,aé€ R,impliesa = 0. An ideal P of R is said to be (right) strongly prime
if R/P is a strongly prime ring.

Let P be a submodule of a centred bimodule M. A submodule N of P is said
to be (right) strongly closed in P if for any submodule K of M with NC K C P
there exists a finite set ' C K such that Fa C N, a € R, implies a = 0. The
submodule P is said to be strongly closed if the ideal (0) is strongly closed in P.
Every strongly closed submodule of P is closed in P. Moreover, it is not hard to
prove that any such a submodule is also non-singular in P.

Denote by s(P/N) the smallest strongly closed submodule of P/N (it is easy

to see that there exists such a submodule). Corresponding to the results of the
first part of this section we can obtain the following.

LEMMA 3.4 Assume that R is a strongly prime ring. Then for submodules
N C P of M we have s(P/N)=[N]p/N.

COROLLARY 3.5 Assume that R is a strongly prime ring and N.C P are
submodules of M. Then N 1is strongly closed in P if and only iof N is closed in P.
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The second main result of this section can be proved using Corollary 3.5 ([6],
Theorem 4.13).

THEOREM 3.6 Let M be a centred bimodule over a prime ring R and P a
submodule of M. Then the following conditions are equivalent:

(i) R is strongly prime.

(i) [0)p is a strongly closed submodule of P.

(iii) Every closed submodule of P is strongly closed in P.

(iv) s(P/N) = [N]p/N, for every submodule N of P.

3.3 The Torsion-Free Rank of a Submodule

Now we study the torsion-free rank of a submodule. Let N be a submodule
of a centred bimodule M over a prime ring R. The torsion-free rank of N is
defined as the length of the longest possible direct sum of non-zero torsion-free
sub-bimodules of N, if such a bound exists, or infinite in the contrary case. We
denote the torsion-free rank of N by rank(N) ([17], Definition 1.5).

We can give an equivalent definition of rank(N) using the results of the former
section. As a consequence this notion becomes more tractable, and we are able to
prove results on the torsion-free rank using well-known properties of vector spaces.

The following is a key result.

LEMMA 3.7 Let N be a submodule of M. Then we have rank(N) =
rank([N]) = rank([N]/[0]), where [N]/[0] is a submodule of M/[0] .

The above lemma shows that to compute rank(N) we may always assume that
M is torsion free and N is closed in M. Denote again by (M*, j) the canonical
torsion-free extension of M and by V' the corresponding C-vector space. We have

THEOREM 3.8 Let N be a closed submodule of M, N* the closed submodule
of M* with j='(N*) = N, and K = N*NV. Then rank(N) = dime(K),
where dimc(K) denotes the dimension of K as a C-vector space. In particular,
rank(N) = rank(N*).

Theorem 3.8 has several applications. As an example we give here one result
which was proved in ([6], Corollary 3.5) and other which is new.

COROLLARY 3.9 Assume that N C P are submodules of a cenired bimodule
M. Then rank(P) = rank(N) + rank(P/N).

Now we consider rank of submodules of a tensor product. Assume that M,
and M, are centred bimodules with centralizing generators (z;)ien and (y;j)jea,
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respectively. It is easy to see that M} @ g M3 is a centred bimodule over R with
centralizing generators (z; ® yj)i j. Assume that N; and N; are submodules of
M; and M, respectively.

THEOREM 3.10 rank(N; ®g Nz) = rank(N;)rank(N3), where N; and N,
are as above.

Sketch of the proof. First we have to show that the canonical torsion-free
extension of M} ®g M, is equal to My ®qg M3, where (M7, j;) and (M3, j;) are
the canonical torsion-free extensions of M; and M5, respectively. To see this we
check that (M] ®q M3, j1®j2) satisfies the universal property given in Proposition
24.

Next, if Ly and L, are free dense submodules of M, and M3, respectively,
then LT = M{ and Lj = MJ. Hence L] ®q L3 = M| ®qg M3. From this easily
follows that Ly ®g L2 can be considered as a free dense submodule of M; &g M.
Since N} = (N; N L;)*, where N means the extension of the submodule N; of
M;, 1 = 1,2, we can reduce the problem to the free case.

It remains only to prove that if K; = N NV; and K = (N} ®r N2)* NV,
then K = K; ®¢ K3, where V; and V denotes the C-spaces associated with M;,
i = 1,2, and M; ®gr M,, respectively. Clearly we have that Ky ®¢c K, C K.
Assume that K is strictly largest than K; ®¢ K3. Then there exists some element
v € K which is C-independent of the elements of a basis of K| ©¢ K. Also there
exists a non-zero ideal H of R such that vH C N, @ N,. It is now easy to obtain
a contradiction.

We point out that more results on submodules of tensor products of centred
bimodules over a prime ring will be contained in a forthcoming paper that | have
in preparation.

3.4 The Goldie Dimension of a Submodule

Let P be aright R-module. The Goldie dimension of P is defined as the lenght
of the longest possible direct sum of non-zero submodules of P if such a bound
exists, or infinite in the contrary case ([1], Chap. 1).

We consider here a submodule N of a centred bimodule M and denote by
Gdim(N) the Goldie dimension of N as a sub-bimodule of M; i.e, considering
direct sums of non-zero sub-bimodules of M. There is a nice relation between the
Goldie dimension and the torsion-free rank of a submodule. First we have the
following

PROPOSITION 3.11 Let N be a submodule of M and L a free dense sub-
module of M. Then the sum (N N L)+ [0)n is a direct sum and an essential
submodule of N.
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Proof. If z € NN L N[0]yx, then there exists a non-zero ideal H of R such
that 2/ = 0, and since z € L we get £ = 0. So the sum is a direct sum. Assume
that P is a submodule of N and z € P. Then there exists 0 # H < R such
that zH C NN L. Hence P has non-zero intersection with N N L in case that
zH # 0 and has non-zero intersection with [0]y in case that zH = 0. The proof
is complete.

The following evident corollary is well-known using some other notions of tor-
sion submodules. It shows that the Goldie dimension of a submodule is deter-
mined by the Goldie dimension of a torsion submodule and the torsion-free rank
of a submodule, which is the dimension of a vector space.

COROLLARY 3.12 Under the same assumptions of Proposilion 3.11 we
have Gdim(N) = rank(N N L) + Gdim([0]n).

3.5 Prime Ideals in Centred Extensions

A ring extension S D R is said to be a centred extension if S is a centred
bimodule over R; i.e., it has a generating set X of R-centralizing elements. An
ideal I of S is said to be R-disjoint if TN R = 0.

Assume that R is a prime ring. Then the closure of an R-disjoint ideal of S is
defined as in Section 1, and we can easily see that it is also an R-disjoint ideal.
So all the results of the former sections can be applied to study closed ideals in S
It turns out that every R-disjoint prime ideal of S is closed and so, in particular,
our results can be applied to study prime ideals of centred extensions. Actually
this study was our first purpose.

We studied R-disjoint prime ideals of free centred extensions in [5]. Then we
considered the general case in ([6], Sections 5-8). When S is a centred extension of
R, the canonical torsion-free extension S* of S is a ring which is a centred extension
of @, the canonical map j is a ring homomorphism, and the corresponding vector
space V is an algebra over C. In this case everything goes smoothly and we have

THEOREM 3.13 The correspondence of Theorem 2.5 is a one-lo-one corre-
spondence between the following:

(i) The set of all the R-disjoint prime ideals of S.

(ii) The set of all the Q-disjoint prime ideals of S*.

(iii) The set of all the prime ideals of V.

This theorem is very useful to study special types of prime ideals and radical
questions. Many results were obtained in [5] and [6] as applications of the theorem.
As an example, we give the following.
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THEOREM 3.14 Assume that R is a sirongly prime (resp. non-singular
prime) ring, S is a cenired extension of R, and P is an R-disjoinl prime ideal
of S. Then P is also strongly prime (resp. non-singular) provided one of the
following conditions is fulfilled:

(1) P is mazimal among the R-disjoint ideals of S.

(ii) The generating set X is a commuting subsel of S.

The reader is refered to [5] and [6] for more results of this type. In particular,
we point out that in the latest paper we also obtained results for prime ideals of
intermediate extensions; i.e., rings T with RC T C S.

3.6 Semisimplicity of Free Centred Extensions

An interesting application of the results in 3.5 is a theorem which reduces the
question of whether a free centred extension is (Jacobson) semisimple to algebras
over fields. This theorem was proved in [7] and states the following.

THEOREM 3.15 Let R be a semisimple ring and S = R[E] a free centred
eztension of R. Assume that C[E] is semisimple for every field C' which 1s the
exiended centroid of a primitive factor of R. Then S is also semisimple.

This theorem has been extended in [11] to several other radicals, as we see
now.

3.7 Radicals of Centred Extensions

Since the most popular radicals are intersections of prime ideals, is not sur-
prising that we can obtain information concerning radicals of centred extensions
from the information on radicals of algebras over C'. This idea has been used in
[11] to study first radicals of centred extensions and then to apply the results to
tensor products of algebras over commutative rings.

In particular we proved, for example, that if s denotes the strongly prime
radical we have

THEOREM 3.16 Assume that R is a strongly prime ring and S is a torsion-
free centred extension of R. Then s(S) = Qs(V)NS.

Actually, in [11] we also obtained the corresponding of Theorem 3.16 for several
other radicals, namely, the prime, locally nilpotent, nil, singular, Jacobson, and
Brown-McCoy radicals. We proved alsoa theorem corresponding to Theorem 3.15
for all these radicals.
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3.8 Prime Ideals and Radicals of Tensor Products

The most part of [11] was devoted to apply the results on prime ideals of
centred extensions to study prime ideals and radicals of tensor products. If A and
B are algebras over a commutative ring F, then A @ B is a centred bimodule
over A (and B). So the former results can be applied.

If I is an ideals of A@r Bweput [y ={a€ A:a®1€l}and Ip={b€E B :
1®b € I'}. The ideal I is said to be A-B-disjoint if J4 = Ig = 0.

In the next theorem we assume that A and B are prime algebras over a com-
mutative ring F. We denote by Q(A) and Q(B) the Martindale right ring of
quotients of A and B and by C(A) and C(B) its extended centroids, respectively.
Also, ¢: A® B — Q(A) ® Q(B) denotes the canonical map, and tensor products
are always over F.

THEOREM 3.17 Let A and B be prime algebras over a commutative ring
F. Then there is a one-to-one correspondence between the following:

(i) The set of all the A-B-disjoint prime ideals of A % B.

(i) The set of all the Q(A)-Q(B)-disjoint prime ideals of Q(A) w0 Q(B).

(i) The set of all the prime ideals of C(A) ® C(B).

Moreover, this correspondence associales a prime ideal P of A® B with a prime
ideals P* of Q(A) ® Q(B) and a prime ideal Py of C(A)® C(B) if P = ¢~ }(P*)
and P* = Po(Q(A) ® Q(B)).

We obtained also a characterization for C(A4) ® C(B) to be a domain and to
be a field. Finally, we proved results of the following type.

THEOREM 3.18 Let P be an A-B-disjoint prime ideal of A® B. Then P
is strongly prime (resp. non-singular, locally nilpotent semisimple) if and only if
A and B are strongly prime (resp. non-singular, locally nilpotent semisimple).

Using ‘the above results we can study prime ideals of tensor products which
are not necessarily disjoint.

COROLLARY 3.19 Assume that A and B are algebras over a commutative
ring ' and P is a prime ideal of A® B. Then P is strongly prime (resp. non-
singular, locally nilpotent semisimple) if and only if P4 and Pg are strongly prime
(resp. non-singular, locally nilpotent semisimple).

We refer the reader to [11] for many other results of the above type.

3.9 Prime Ideals in Polynomial Rings
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To finish the section we consider polynomial rings. Actually, the case of a
polynomial ring R[z] in one indeterminate z over a prime ring R was the first
considered by me [4], and this paper gave rise to the series of papers that I wrote
on the subject. However, the case of polynomial rings in n-indeterminates was
considered only recently, and the paper is not published yet [9]. There is another
paper devoted to prime and maximal ideals [8] which deserves to be quoted. Fi-
nally, we point out that the method have also been used to study prime ideals in
skew polynomial rings (see [2], [10], [14]).

The general results on closed and prime ideals are of course true for polynomial
rings, but this case has some particularities that we should mention here. For
example, we have

THEOREM 3.20 Assume that R is a prime ring and R[z] is a polynomial
ring over R in one indeterminate x. An R-disjoint ideal I of R[z] is closed if and
only if I = Q[z]fo N R[z], for some monic polynomial f, € Clz].

Theorem 3.20 and some well-known results on polynomial rings immediately
imply the following.

COROLLARY 3.21 An R-disjoint ideal P of R[z] is prime if and only if
P = Q[z]fo N R[z], for some monic irreducible polynomial fu € C[z].

COROLLARY 3.22 Lel R be a prime ring. Then there exists a one-lo-one
correspondence between the following:

(i) The set of all the R-disjoinl prime ideals of R[z)].

(i1) The set of all the Q-disjoint prime ideals of Q[z].

(iii) The set of all the irreducible polynomials of C[z].

Moreover, this correspondence associates the prime P of R[z] with the prime
P* of Q[z] and the irreducible polynomial fo of Clz] if P* N R[z] = P and P* =
Qlz] fo.

The results on R-disjoint prime ideals have been improved and extended ([8],
[9]). In particular, in [8] we got an intrinsic description of an R-disjoint prime
ideal, namely, we can describe an R-disjoint prime ideal of R[z] as an ideal which
is closed and determined in some sense by a, so called, completely irreducible
polynomial of R[z].

Finally, in [9] we proved that any prime ideal P of a polynomial ring S =
Rz, ...,z,) is determined by its intersection with R plus n polynomials in S,
where R is here any (not necessarily prime) ring. These n polynomials determine a
sequence which is called a (PN R)-completely irreducible sequence. The converse is
also true, i.e, given a prime ideal Py of R and a Pp-completely irreducible sequence
of S, there exists a prime ideal P of S which is determined by this sequence. It
turns out that there exists a one-to-one corresponcence between prime ideals of
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S and equivalence classes of sequences of the type (Py, f1,..., fn), where Py is a
prime ideals of R and (fi, ..., fa) is a Po-completely irreducible sequence. We refer
the reader to [8] and [9] for more details.

4 Questions

We finish the paper with some open questions.

QUESTION 4.1 1 do not know whether the results in Sections | and 2 can be
extended to study prime ideals of more general types of extensions of prime rings
as, for example, normalizing extensions, strongly normalizing extensions, crossed
products, etc. Some results in this direction are in [15].

QUESTION 4.2 It should be very interesting to extend the method given in
this paper to study closed submodules and ideals in the case when R is a semiprime
ring. By doing this we would be able to describe some radicals of the extension
using algebras over commutative rings. I am trying to do this, and have some
results in the case when R is a semiprime noetherian ring.

QUESTION 4.3 I think that probably Theorem 3.15 can be extended to
more general kind of extensions as, for example, skew group rings.

QUESTION 4.4 A ring R is said to be a Jacobson ring if every prime ideal
of R is an intersection of primitive ideals. If R is a Jacobson ring, then the
polynomial ring R[z] is a Jacobson ring [19]. It is clearly easier to prove the result
when R is a field instead of any Jacobson ring. So it would be very convenient
to have a theorem of the following type: if R is a Jacobson ring and C[E] is a
Jacobson ring for every field C' which is the extended centroid of a prime factor
of R, then R[E] is also a Jacobson ring. | was unable to prove such a result,
even under some finiteness condition on the basis E as, for example, C'[E] being
a noetherian ring.
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