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1. A brief survey of the dimension subgroup problem

Let A(G) denote the augmentation ideal of the integral group ring ZG. For
each n > 1, the n-th dimension subgroup GN(1+A(G)")(= Dn(G)) is easily seen
to contain the n-th lower central subgroup v,(G) of G. The dimension subgroup
problem refers to finding the structure of the n-th dimension quotient D,(G)/
7:(G), and the dimension subgroup conjecture refers to the statement that the
dimension quotients D, (G)/¥n(G) are trivial for all groups G and all n > 2, or
equivalently, D,,(G) = n(G) for all groups G and all integers n > 2. The equality
D3(G) = v2(G) follows from the fact that if g ¢ v2(G) then g—1 ¢ A(G)%. When
G is the free group F of rank m > 2 then D,(F) = yn(F) for all n, is the well-
known Magnus-Griin-Witt theorem proved in the thirties. This is also known as
the fundamental theorem of free group rings. The origin of the dimension subgroup
conjecture can be traced back to Griin ( 1936 ) who attributes it to Magnus.

If the dimension subgroup conjecture is false then it is already false for some
finite p—group G ( Higman & Reese, see Passi ( 1968 ) ) who also proved that
D3(G) = v3(G) for all finite p—groups G. While D4(G) = 74(G) for all finite
p—groups G, p odd ( Passi 1968 ), there exists a finite 2-group G such that
D4(G) # va(G)( Rips 1972 ), so the dimension subgroup conjecture is false for
n = 4. The structure of the dimension quotient D4(G)/v4(G) was resolved by
Tahara ( 1977 ). Other general results for finite p—groups are:

(1) Dn(G) = 1:(G), n < p ( Moran 1970 );
(i) Da(G) = 1a(G), n < p+1 ( Siorgren 1979 );

(i) 3 e¢(n) ( p divides ¢(n) implies p < n—2 ) such that the exponent of D,(G)/
7n(G) divides ¢(n) ( Sjorgren 1979, Hartley 1982, Cliff-Hartley 1985, Gupta
1985 ).

If G is a finitly generated metabelian group then there exists ng = no(G/G’)
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such that D,(G) = .(G) for all n > ny ( Gupta, Hales and Passi 1984 ).

If G is a metabelian p—group, p odd, then D, (G) = 9, (G) for all n < p+ 2
( Gupta and Tahara 1985 ).

D, (G)/vn(G) has exponent dividing a large power of 2, and it follows that
for metabelian p—groups G, p odd, D, (G) = v, (G) for all n ( N. Gupta 1989 ).

For each n > 4, there exists a metabelian 2-groups G, such that D,(G) #
9n(G) ( N. Gupta 1989; cf. Rips 1972, n =4 ).

Some isolated results of interest.

1. ( Gupta-Srivastava 1990 ) For each m > 1, there exists a group G such that
D4m(G) is not contained in Y3m+1(G);

2. ( Gupta-Kuzmin 1992 ) D,(G)/vn(G) is abelian for all n and all G;

3. ( Gupta - Kuz’'min 1995 ) D,(G)/¥.(G) is not, in general, central in G/v,(G).
In fact, for any integer s there exists a group G and an integer n such that D, (G)/
¥n(G) is not contained in the s—th upper central subgroup of G/¥,(G).

2. Couter-examples to the dimension subgroup conjecture

As mentioned earlier, for each n > 4, there exists a metabelian 2-group G,
such that D,(G) # .(G) ( N. Gupta 1990 ). Here we present without tecnical
details a construction based on an idea from Hurley - Sehgal ( 1991 ) which has
some additional consequences.

Construction of G = G, , (p,g > 1 fixed ).
Define

Gp,q =<, a, b, ¢, ; Y2p44+1(G) >
subject to the following additional relations (i) - (iv):

(i) Commutators with entry patterns:

W {rr} @{abe) B)faaal) @{bbb); (5){coec)
©) {abr}; (D{acr); @) {ber) 9 {aab) (10){aac)
(11) {a,b,6}; (12){b,b,c}; (13){a,c,c}; (14) {b,c,c}; (15){2,..., )

(z occurs 2p + ¢ — 2 times ).
Define. [ a,(m)z,a]=[a,z,...,2,a] ( = repeats m times )

(ii) Commutators of the form:
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(16) [ a,(m)z,a,...]; (17) [b,(m)z,b,...]; (18) [¢,(m)z,c,...].
(iii) The following commutators:

(19) [a,(p)z ]; (20) [b,(p)z]; (21) [c,(p)z]; (22) [ (g)z ]

Note that the relation (1) to (22) imply that the only surviving central commu-
tators are:

[r(g—1z,a,(p—Dz,a,(p— 1)z ] (= [rg,ap,a])
[7'1(9_1}316:(13_1)2'6:(?_1)3]{: [rr}tbl’!bp])
[r(g—=1)z,c,(p—1)z,c,(p— 1)z ] (= [rwcpscp])
where
ar=[a,(k—=1)z ], bp =[b,(k—1)z],
Ck:[(.‘,(k—l)x], T:,:[?‘,(k—l):l‘:]‘

(iv) Final relations for Gy 4 :

(23) a,,“ = ["qv'f'p]‘l [ 7q,¢p ]Bi (24) bpls = [ 7y, ap]_4[7'9="p1
(25) "':}J'4 = [ Tg,dp ]_2 [ ?‘q,bp ]“1; (26) [rq:aP!aP ] - [ rqvbplbp ]2;
(27) [7q,bp,0p 1 =[7g,¢p,¢p J*

The construction is complete.

{ Note: (26), (27) imply that G, ; has cyclic centre }.

Summary of important relations of G, ; :

(1) ap®® = [rg, bp]*[ 7, ¢p i bpls =[rq,ap ]_4[%)%]1%4 = [rvr“p]“z{”'wbp]_li

(i) [ap,bp]'® = [rq,ap,ap )%, [bp,cp]* = [rg,ap,ap]% [ag,cp]* =[rg,ap,05]%
(iii) by'%c,% = d(a)*%, d(a) € sgp{ [r,a], [r,b], [re]};

ap15¢, =32 = d(8)'°, d(b) € sgp{ [r,al, [,b], [r,c] b

a,%4b,%% = d(c)*, d(c) € sgp{ [r,a], [b], [r,c] };

[e-g. 39‘128"?32 =[rg,bp -]_8 [ Tg,Cp ]4 [”'wﬂp ]_16 [ Tq: bp ]_8
= [t IF [Pt ]™ [Fpde]™" [han]™
= [ #8018 0™ [Pabp I [Pt I

=([rg ap,ap ]_6 [7g,bp 17 Tq, Ap il )16 ]
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(iv) g=[ap, by e | @p, Cp ]6‘I [ b5, cp Pi= [, ap,0p P24y

(v) ¢?=1.

Consider the group G (= Gp,) and let
9=[ap, by 1"**[ ap, ¢ 1 [ b, ¢, I
Then
(i) g ¢ v3p+1(G), and the expansion of g — 1 gives _
(i) =1 € (72p(G)=1)*+(712p(G)=1)(1(G) =1 )*+(%(G)~1)*(12(G)-1) <
ZG(G—1)%.

We thus have proved that for each m > 1, there exists a group G such that D4, (G)
is not contained in yam+1(G).

3. Lie dimension and restricted Lie dimension subgroups

Consider the group G + G, , as constructed in the previous section. Then
the group element

9=[0pbp ' [ap,cp I [bp, cp ]**

has the property that g ¢ y2p+441(G), and the expansion of g — 1 gives

9= 1€ (1p+4(G) = 1)* + (1p+4(G) = 1)(7%(G) — 1)*+
+ (1(G) = 1)2(1p44(G) = 1) + (1,(G) — 1)*

S Apig® + ApighAp® + Ap?Apyq + Ap?, (*¥)
where A; = ZG(7:(G) — 1).

Define Lie powers A(") as follows: A1) = A,
A = ZG(A™, A) = Idealzg{ (u,v);ue AM™,ve A}

where (u,v) = uv — vu.

Let D) (G) =GN(1+ A™)(G)) denotes the n-th Lie dimension subgroup.
Using A;A; < AG+i=1) ( cf. Passi - Sehgal 1975 ) gives

Apig® +hpighp® + A Apsg + Ap? < ALPF=1) 4 ABphe=2) . AUp=3)
< AP+ §f 9 < g < 2p— 4.
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As a corollary we deduce the following result,

Theorem ( Hurley - Sehgal 1991 ). For each n > 9 there exists a group G (= G,)
such that D,)(G) # 1 (G).

[proof. Choose n = 2p+¢+1 with2 < ¢ < 2p—4. Thenp>3and g > 2son > 9]

Define restricted Lie powers Al"] as follows: Alll = A,
AM = Idealzg{ (91,...,9n); 9 €G }, n>2.
Define the restricted Lie dimension subgroups by

Dpy(G) = G (1+ AR(G)).
Using A;A; < AF+i=21 ( ¢f Gupta-Levin 1983 ) gives

A Rogals® b Ae Apgy - Ap® € APHI=3). . \Gre=t). o A(49-6)
< APrHetD) jr3 <0< op— 7.

As a corollary we deduce the following result,

Theorem ( Hurley - Sehgal 1991 ). For each n > 14 there exists a group
G (= Gp) such that D, (G) # 1. (G).
proof. [ Choose n =2p+q¢+1,3<¢<2p—7.Thenp>5andg>3son>14].

An imbrovement ( Gupta - Srivastava 1991 ): Given n > 9, there exists a
group G satisfying D(n)(G) # Dia)(G).

The study of Lie dimension subgroups was stimulated by Sandling ( 1972 )
who proved, among others things, that

Dny(G) = 1 (G) forn <6

whereas Hurley - Sehgal ( 1991 ) proved that there exists, for each n > 9, a group
G such that D(,)(G) # vn(G). This leaves the problem open for n = 7 and 8.
However, we have

Theorem ( Gupta - Tahara 1993 ). Dn)(G) = 72 (G) for n < 8 and Dpn)(G) =
Tn(G) for n < 8.

This completely resolves the Lie dimension subgroup conjecture and the re-
stricted Lie dimension subgroup conjecture.

.4. A solution of the dimension subgroup problem
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It has now become possible to describe structure of the n—th dimension quo-
tient D, (G)/vn(G) of an arbitrary finitely generated group G. From the struc-
ture one deduces that the dimension quotients have exponent dividing 2. Thus,
whereas it known that there exists 2-groups G with non-trivial dimension quo-
tients for n > 4, for p—groups G with p odd, D,,(G) coincides with v,(G) for all
n, so the dimension subgroup conjecture holds for p—groups, p odd.

Using a free representation (1 - R — F — G — 1) of the group G, the
dimension quotients D, (G)/vn(G) translate to the quotients

FO®+r+£f")/R 7.(F),

where f= ZF(F —1) (= A(F)) and r= ZF(R-1) (= ZFA(R)) are the
fundamental ideals of ZF. A filteration through the derived series of F/R then
reduces the problem to solving, for each k > 0, 2% < n, the k-th partial dimension
congruence:

(%) wp —1 = 0 modulo £5) p¥) 4 p(k) *) 4 p(k+1) 4 glkin)

in the free group ring ZF*), where F*®) =< z; 4, ..., Zk,m(k) > is a certain finitely
generated free group contained in the k—th derived group 8;(F), admitting the
free presentation of & (F/yn(F)), %) = ZF®E)(F®) _ 1), ) = zpE)(RE) -
1)(R*) = RN F®*)) and :

£ = idealz poo {(zx,i0) = 1) - - - (Zk,iq) — 1),

g22, Wt Zp )+ +WE 2k i) 2 1

The solution of the congruence (*) comprises of a specific element gx €
[F®), F(F)] together with elements 7, € RN [F®), F(*)] and hy € FM) <
[FC), F(E)] N 4, (F) such that with wey; = re~ hr " gr~'wy, the problem shifts
to solving the next partial dimension congruence:

(%) wes1 — 1 =0 modulo fF+Y) p(k+1) 4 p(k+1) gfk+1) 4 ((k42) 4 g(k+1n)

Since, for sufficiently large t (e.g. 2'*! > n ), giy1 = reg41 = hegr = 1, it follows
that w = gohoro - ..gthirt = go...9¢ ( mod R v, (F)) is the required solution of
the dimension congruence: w — 1 = 0 modulo r + f*. We prove, in addition, that
the g;’s commute and g? = 1 for all i.

Reduction to the partial dimension congruences

Let n > 3 be an arbitrary but fixed positive integer. For each k¥ > 0 with
2% < n, consider the free group F(*¥) =< Tk,1,-. ., Tk,m(k) >, and define certain
ideals of the free group rings ZF®*) as follows:

O =f=2F(F-1), ‘O =r=ZFR-1),
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On) _en _ o _ _
fOm) = £ " = Z-span{ (3‘.(1)1: 1)---(3‘,“)1‘1 1)}, t>n,

are ideals of ZF = ZF(©) where without ambiguity (Ii(l)t‘ - 1) = (i) —
1) or (z;(1)-1 — 1); and for k > 1, define the corresponding ideals in ZF*) as

&) = ZP®E(F*) _ 1), 8) = ZF®)(RK) _ 1),

£51) = Z_span{ (zk +,—1)...(

- >
H()= zk,i(l)il N1 t23

Tk i(j) € {:I:;_-'I, o z,—,lm(,,)}, Z wt Tk i() >n and
1<j<t

(

[ We remind that, by definition, wt zj ;;) = s implies z, it € Y5 (F)\Ye41(F)]
e

2t T D= @i — 1) or @iy — 1)

Also define higher ideals,
a® =a=ZF(F' -1), a® = ZzFE([F® p()_1),
and r®* = ZFE)((R®) pO)) — 1),
Consider now the following series of subgroups of F(¥) :
D(n,x) = P(n,x9) > P(n,V) > ... > P(n,x®)) > ...

where
P(n,c®)) = F) 0 (1 4 p(®) 4 Em)y,

For each k > 0, consider the subgroup G(n,r(*¥)) of F(¥) defined by

G(n,x®) = FB 0 (1 4 xFIE) 4 flb)p(k) 4 p(k+1) 4 glbin)y
Then, clearly
P(n, x**D) < G(n,x®)) < P(n,x®),

Since u € r'*) implies that, modulo r(O)fk)  fE)p (k) 4 rk+1),

u= Y ni(rii—1) = ([ regm — 1) = r(k) — 1, r(k) € R®),

it follows that
P(n,r(k]) = R"G(n,r“‘)).

Define
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F&E = sgp{ [z $) =2

z
E,i(t) -

.y

+49-
k,i(1)-

ki) € {Th1s - Tempn}y #(1) > 8(2) ... (), D Wt zpi) >,
1< <t

to be the subgroup of F(¥) contained in the commutator subgroup [F(*), F(¥)] so
that
FEm) < 4 (F)YN[F®), pOI),

Finally, let us assume that we can identify, for each k& > 0, the quotient
G(n,x®))/FED) p(n, ((E+1)),

In other words, assume that for any k > 0, f € G(n,r*)) implies that
there exists gi41 € [F®), F®)), reyy € [RF), F(®)] and hyyy € F*™) such that
g;_il_lr;_:lh;ilf =1 mod P(n,r(¥+1),

We can then solve the dimension subgroup problem as follows:

Let w = wy € D(n,r) = P(n,r{%)). Then as above there exists r(0) € R(®)
such that r(O}"lwo € G(n,r("). Similarly, there exists g; € [F(O),F(O)], r, €
[R(), F()] and h; € FOm™) such that wy = g7 'hy ey r(0)" we € P(n,rM).
Repeating the argument, there exists g; € [F(1), F“}],rg € [RM, FM)] and hy €
F(7) such that

97 hytrytr(1) " wy = g7 Ay ey tr(1) "t AT e M r(0) " twg € P(n, ).
By iteration, for any ¢ > 1, we have
w = r(0)r1h1gy .. .r(t — 1)rihege modulo P(n,x(*+1)
which gives, for sufficiently value of £, the congruence

w = g;...9¢ modulo R y,(F),

which gives a complete solution to the dimension subgroup problem. It suffices
therefore to identify the partial dimension quotients.

In particular, the validity of the following theorem for all ¥ > 0 yields a
complete solution of the dimension subgroup problem.
Theorem (a) Let wi — 1 = 0 modulo r*+1) 4 ¥ then there exists hxy; €
F®*1) such that

hitywe — 1= 0 modulo r(k+1) 4 fk+1n);
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(b) Let wx—1 = 0 modulo r®)FF*) L (k) (k) k) L g (k) (k) (k1) lkim)
then there exist r¢4 € [R{"), F) F{"}] and hp4; € F(*:) such that

hitimrt1we — 1= 0 modulo r(¥+1) 4 fE+1n),

(c) Let wi — 1 = 0 modulo (¥ 4 fF)p(k) 4 p(k+1) 4 f5n) then there exist
g1 € [F®), FO), riyy € [R®, F®)), heyy € FE™), such that

Irtr1hetiTit1we — 1 = 0 modulo r(k+1) 4 flE+1m),

[ A proof of this theorem will be published elsewhere. ]
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