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Units in Integral Group Rings - A Survey 1 

Stanley O. J uriaans 

Abstract: This is a short survey on units in integral 
group rings. It covers partially work done after 1992. 

Key words: group rings, torsion units, conjectures. 

1 Introduction 

Let G be a group and denote by U1ZG the group of units of augmentation one 
of the integral group ring ZG. Given an element u E U1ZG we set T(k)(u) = 

L u(g) and u(g) = L u(h). 
O(g)=k h-g 

We recall some important conjectures of A. A. Bovdi and H. J. Zassenhaus. 

BCl: Let G be a group and u E U1ZG an element of order pfl, P a prime. Then 
(pi ) (pn) 

T (u)=O,ifi:pnandT (u)=l. 
(k) 

BC: Let G be a group and u E U1ZG an element of order n. Then T (u) = 0, 
(n ) 

ifk:pn,andT (u)=l. 

ZCl: Let G be a finite group and u E U1ZG a torsion unit. Then u is conjugate 
in<J2G to an element of G . 

ZC3: Let G be a finite group and U < UIZG a finite subgroup. Then U is 
rationally conj.ugate to a subgroup of G . 

BC1 is the original statement of Bovdi's conjecture. These conjectures and 
others are the inspiration for much of the work that is currently being done in 
the theory of group rings . The text in [11] and [21] are good references for the 
interested reader. This survey covers partially work done after 1992 and originated 
in a talk given at a meeting held in August 1995. 

We thank the University of Alberta, where this paper was written, for its warm 
hospitality. 

2 The Conjectures of Bovdi 

In this section we give an account of what is known ofBC and BCl. The interested 
reader can see [2], [5], [7] and [8] for detailed proofs. We begin with some results 
which are useful to produce an induction argument . 
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Lemma 2.1 Let G be a finite group and H <l G a subgroup of G. Let 'I/; : ZG ~ 
Z( G / H) be the natural projection and let u E U1 ZG be such that (o( u), I H I) = 1. If 
f3 = '1/;( u) then T(k)( u) = T(k) (f3) for every positive integer k such that (k, I H I) = 1 
and T(k)(u) = 0 if(k, IHI) =I 1. 

Proof: Suppose that (k, IHI) = 1. Set: 

8 {g E G : o( 'I/;(g)) = k} 

81 {9E8:0(g»k} 

Note that if 9 EGis such that (o(g),IHI) = 1 then o(g) = o('I/;(g)) . Also if 
(o(g),IHI) =I 1 then 11.(g) = 0 by [21, Lemma 38.11]. Hen~e, u(g) = 0 for all 
9 E 8 1 . Since 8 1 is a normal subset of G we have that L u(g) = o. Using these 

gES, 
facts we have: 

L u(g) = L u(g) = L u(g) + L u(g) 
o(.p(g»=k gES o(g)=k gES, 

L u(g) = T(k)(u) 
o(g)=k 

The second part follows by [21, Lemma 38.11] and the fact that G(k), the set 
of elements of order k, is a normal subset of G . 0 

Lemma 2.2 Let p be a prime rational integer and G a finite group. Suppose that 
G contains a unique subgroup H of order p . Let u E U1ZG be such that o( u) = pn . 
Then, with the notation of Lemma 2.1, we have that T(pi+l)(U) = T(pi)(f3) for 
j;::: 1 and T(Pl)(U) E {O , I} . 
In particular if BC1 holds for G/ H then BC1 holds for G . 

Proof: Let 9 E G be an element of order ~+1 . If j = 0 then this follows from a 
well-known theorem of D.S. Bermans. So, suppose that j > o. Then gP' E H, by 
the uniqueness of H. Hence o('I/;(g)) = ~. Also if o('I/;(g)) = ~ then ~ E H \ {I} . 
Hence o(g) = ~+1 . Using these facts we have that 

o(.p(g»=pi o(g)=pi+1 

The second statement is a consequence of the first part and Lemma 2.1. 0 

Theorem 2.3 Let G be a finite solvable group and u E U1ZG an element of order 
pn. SUPl'ose that G contains an abelian Sylow p-subgroup. Then T(P')(u) E {O, I}. 
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Lemma 2.4 Let G be a noetherian group containing a normal torsion-free sub­
group H. If u E U1 ZG is a torsion element then, with the notation of Lemma 
2.1, we have that T(k)(u) = T(k)({3) . In particular BCI holds for G if it holds for 
G/H. 

Proof: Let 9 E G be an element of finite order. We set 9 = 'I/;(g) and G = '1/;( G). 
Then , since H is torsion free, 0(9) = o(g) . Hence we have that 'I/;-l(G(k)) = 
G(k) U {g E G : o(g) = 00,0(9) = k}. Now S = {g E G : o(g) = 00,0(9) = k} is 
a normal subset of G and hence it is a disjoint union of conjugacy classes. So, by 
[21 , 47.5]' L: u(g) = 0 and thus T(k)({3) = T(k)(u). 0 

gES 

Corollary 2.5 Let :F be a family of finite groups satisfying Be (or Bel). Let 
G be a polycyclic-by-finite group and suppose that G has a normal torsion free 
subgroup H such that G/ H is in:F. Then Be (or Bel) holds for G. 

If :F is the family of nilpotent groups then BC holds for G. This is because ZC3 
is true for finite nilpotent groups [23] . Note that G itself needs not be nilpotent . 
In fact , this is a large family of groups including that of nilpotent groups (see also 
[1]). The Lemma also gives us an inductive argument . 

Theorem 2.6 Be (or Bel) holds for polYCYclic-by-finite groups if and only if it 
holds for finite groups. 

Proof: By [17, Theorem 10.2.5] G has a normal torsion free subgroup of finite 
index. Hence the result follows. 0 

The Theorem shows that, at least for polycyclic-by-finite groups, if one wants 
to find new families of groups which satisfy BC (or BC1) one must look for new 
families of finite groups which satisfy these conjectures. See also [9] for a weaker 
version of ZC1. 

The following result is easy to prove. 

Lemma 2.7 Let H be an abelian Sylow p-subgroup of a finite solvable group G . 
Then one of the following holds: 

i) H <l G 
ii) Opl(G) =/; 1. 

Theorem 2.8 Let G be a finite nilpotent-by-nilpotent group. Then Bel holds for 
G. In particular Bel holds for finite supersoluble and finite metabelian groups. 

Sketch of the Proof: This follows by induction on IGI , Lemma 2.1 and [21, 
41.12] . 0 

As a consequence we have the following result. 
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Theorem 2.9 Let G be a polycyclic-by-finite group. If G is nilpotent-by-nilpotent 
then Bel holds for G. In particular Bel holds for supersoluble groups. 

Using the above results we can prove BCl for other families of groups. 

Theorem 2.10 Bel holds for the following groups: 

1. Frobenius Groups. 

2. So lvable groups whose Sylow subgroups are abelian or generalized quaternion 
groups. 

3. Groups whose order is not divisible by the fourth power of any prime. 

For BC we have: 

Theorem 2.11 Be holds for metabelian groups. 

We finish this section mentioning a result which settles another conjecture of 
Bovdi. 

Theorem 2.12 Let n = exp(Gj Z(G)) be finite, where Z(G) denotes the center 
of G. If u E U1 ZG is a torsion unit and m is the smallest positive integer such 
that urn E G, then m divides n. 

3 The Conjectures of Zassenhaus 

These conjectures have been established for various kinds of groups, although they 
remain open in general. The most far reaching result is due to A. Weiss which 
shows that ZC3 is true for finite nilpotent groups. ZCl was proved for metacyclic 
groups G = (a) XI (x), with a,x of coprime order, by C. Polcino Milies, J. Ritter 
and S. K. Sehgal. A. Valenti has shown ZC3 for groups of the form G = (a) XI X 
with X abelian and the orders of a and X are relatively prime. It is interesting 
to know that K. W. Roggenkamp and L. Scott found a counterexample (in fact 
a whole family) to ZC3 and later L. Klinger found another counterexample. ZCl 
has also been established for some isolated groups. For example N. Fernandes 
proved it for 8 4 , I. S. Luthar and P. Trama for S5 and I. S. Luthar and I. B. S. 
Passi for A5 (see references). 

One might think that proving ZCl or ZC3 for just one specific group is not 
particularly interesting but, as we shall see shortly, this is indeed very important . 
In fact some results of the previous section depend on these particular ones. 
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In this section we concentrate mostly on a p-subgroup version of ZC3. The 
interested reader should consult [3], [4] and [7] for detailed proofs. 

p-ZC3: If H < U1 ZG is of prime power order then H is rationally conjugate to 
a subgroup of G i. e. there exists a unit a E ~G such that a- 1 HaC G . 

In particular , if p-ZC3 is true for a group G , then any Sylow subgroup of U1 ZG 
is rationally conjugate to a subgroup of G . Conjugation of those Sylow subgroups 
of U1ZG which can be embedded into a group basis was investigated in [10], [11]. 
We begin with some reduction results . 

Let N be a normal subgroup of G , and let G = GIN , IJF : ZG -+ Z(GIN) be 
the natural map , ; set 9 = lJF(g) for g E G . 

Theorem 3.1 Let H be a finite subgroup of U1ZG such that (IHI , IN!) = 1 and 
Go be a subgroup ofG with (IGol , IN!) = 1. Then H is rationally conjugate to Go 
if and only iflJF(H) is conjugate to IJF(Go) in~G. 

Sketch of the Proof: We only have to prove the converse . Let H = IJF(H) 
and Go = IJF(Go). Let r- 1 Hr = Go for some r E ~G, a E Hand 13 be as 
above. We see that hOt = r- 1 f3r is, up to conjugacy, the unique element of G with 
jj(hOt) f- o. From [21, Lemma 38.11] it follows that (o(hOt), IN!) = 1 and the Schur­
Zassenhaus Theorem shows that we can choose gOt E G such that hOt = lJF(gOt) and 
(o(gOt), IN!) = 1. Then it follows from [21 , Lemma 38.11] and [3, Lemma 2.1] 
that , up to conjugacy, gOt is the unique element of G with &(gOt) f- O. Since 
(IGol , IN!) = 1, the restriction of IJF to Go gives an isomorphism between Go and 
Go . Denote by IJF 1 the inverse of this isomorphism and define a homomorphism 
¢ : H -+ Go by setting ¢(a) = 1JF 1 (r- 1f3r) . Since (o(¢(a)) , IN!) = 1, [3, Lemma 

2.1] implies that a(¢(a))" = jj(IJF¢(a)) = jj(hOt) f- 0 and ¢(a) is conjugate to gOt. 
It follows by [21 , Lemma 41.4] that H is rationally conjugate to Go . 0 

Remark: We have proved that if H < U1 ZG and (IHI , IN!) = 1 then IJF is 
injective on H . 

Corollary 3.2 Let N be a normal subgroup of G and H be a finite subgroup in 
1+.6(G, N) . Ifp is a prime which divides IHI thenp divides INI. In particular, 
if N is a Hall subgroup of G then IHI divides INI . 

Proof: We already know that IHI is a divisor of IGI. Suppose that there exists a 
rational prime p that divides IHI and does not divide INI. Let a E H be a unit 
of order p. By the Remark a is not mapped to 1 in Z( GIN) , a contradiction. 0 

Theorem 3.3 Let G = N XI X , where the orders of N and X are relatively prime. 
Then any finite subgroup H of U1 ZG such that (IHI , IN!) = 1 is rationally con­
jugate to a subgroup of U1ZX. 
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Sketch of the Proof: For a E H we write a = vw with v E U(l + 6.(G, N)) 
and w E U1ZX. By [3, Lemma 2.5] the isomorphism a = vw E H 1-+ W satisfies 
the hypothesis of [3, Lemma 2.6]. Hence H is conjugate to Ho in~G, where Ho 
is the image of H in U1ZX. 0 

Proposition 3.4 Let P be an abelian Sylow p-subgroup of a solvable group G. If 
H is a finite p-subgroup of U1ZG then H is rationally conjugate to a subgroup of 
G. 

Proof: By [21, Theorem 41.12] we may assume that P is not normal in G. It 
follows from Lemma 2.7 that N = Opl(G) # 1. Since the factor group GIN 
satisfies our hypothesis we can use Theorem 3.1 and induction to conclude that 
H is rationally conjugate to a subgroup of G. 0 

Theorem 3.5 ZC3 holds for 8 4 and for the Binary Octahedral Group. 

Theorem 3.6 Let G be a nilpotent-by-nilpotent group. Then p-ZC3 holds for G. 
In particular p-ZC3 holds for finite metabelian and supersolub/e groups. 

Proof: Let U be a p-subgroup of U1ZG and H be a normal nilpotent subgroup 
of G so that GI H is nilpotent. If H is not a p-group, then G possesses a normal 
p'-subgroup N. It follows from Theorem 3.1 and induction on the order of G 
that U is conjugate in ~G to a subgroup of G . If H is a p-group, then the Sylow 
p-subgroup of G is normal and [21, Lemma 41.12] implies that U is rationally 
conjugate to a subgroup of G. 0 

Theorem 3.7 Let G be a solvable group such that Sylow subgroups of G are either 
abelian or generalized quaternion. Then G satisfies p-ZC3. 

Sketch of the Proof: Let U be a finite p-subgroup of U1ZG. In view of 
Proposition 3.4 we may assume that p = 2 and the Sylow 2-subgroups of G are 
generalized quaternion . If the Fitting subgroup F of G is not a 2-group , then G 
contains a non-trivial normal subgroup N of odd order. Since the factor group 
GIN satisfies the assumption of the theorem we use Theorem 3.1 and induction 
on IGI . 

Let F be a 2-group. One can argue that G can be supposed to be isomor­
phic to the Binary Octahedral Group. Hence Theorem 3.5 gives us the final 
~cl~~. 0 

We can now prove the following result. 

Theorem 3.8 p-ZC3 holds for the following groups : 

1. Soluble Frobenius groups. 



Units in Integral Group Rings - A Survey 289 

2. Groups whose order is not divisible by the fourth power of any prime. 

Sketch of the Proof: Let G be a finite soluble Frobenius group. By [20, 10.5.6] 
G = NXJ X where N is nilpotent" (INI, IX!) = 1 and the Sylow p-subgroups of X 
are either abelian or generalized quaternion. The result follows now easily. 

Suppose now that IGI is not divisible by the fourth power of any prime. If 
F = Fit(G) is not of prime power order we apply induction and Theorem 3.1. If 
it is of prime power order then one can show that G must be isomorphic to S4 
and hence Theorem 3.5 gives us the final conclusion. 0 

We want to mention that the case in which G is a non-soluble Frobenius group 
is considered in [4]. In that paper ZC3 is also proved for S5, SL(2, 5) and A 5. 
Finally we point out that p-ZC3 implies a positive solution of [21, Problem 32]. 
Note that Corollary 3.2 already gives a partial solution. 

Proposition 3.9 Let N be a normal subgroup of a group G which satisfies p-ZC3. 
ffU is a finite subgroup of U(I+.6.(G,N)) then lUI divides INI . 

Proof: Let Up be a Sylow p-subgroup of U. By p-ZC3, Up is rationally conjugate 
to a subgroup Np of G . Going down modulo N we see that Np C N. Hence IUpl 
divides IN!, and consequently lUI divides INI . 0 

REFERENCES 

[1] Bovdi, A., Marciniak, Z., Sehgal, S. K., Torsion Units in Infinite Group Rings, 

J. Number Theory 47 (1994), 284-299. 

[2] Dokuchaev; M. A., Torsion units in integral group ring of nilpotent metabelian 

groups, Commun. Algebra 20(2) (1992),423-435 . 

[3] Dokuchaev, M. A., Juriaans, S. 0 ., Finite Subgroups in Integral Group Rings, 
Canadian Journal of Math . (to appear). 

[4] Dokuchaev, M. A., Juriaans, S. 0., Polcino Milies, C., Integral Group Rings 
of Frobenius Groups and the Conjectures of H.J. Zassenhaus, (preprint) . 

[5] Dokuchaev, M. A., Sehgal, S. K., Torsion Units in Integral Group Rings of 

Solvable Groups, Commun. Algebra 22(12) (1994), 5005-5020. 

[6] Fernandes, N. A., Torsion Units in the Integral Group Ring of S4, Boletim da 

Soc. Bras. de Mat.18 (1) (1987), 1-10. 

[7] Juriaans, S. 0., Torsion units in integral group rings, Commun . Algebra 22 

(12) (1994), 4905-4913. 



290 Stanley O. Juriaans 

[8] Juriaans, S. 0., Torsion Units in Integral Group Rings II, Canadian Mathe­

matical Bulletin, Vol 38(3) (1995), 317-324. 

[9] Juriaans, S. 0., Trace Properties of Torsion Units in Integral Group Rings II, 
(preprint) . 

[10] Kimmerle, W ., Roggenkamp, K. W., Projective Limits of Group Rings, 

Journal of Pure and Applied Algebra 88 (1993), 119-142. 

[11] Kimmerle, W ., Roggenkamp, K. W ., (with contributions by Kimmerle, W . 

and Zimmerman, A.), Group Rings: Units and the Isomorphism Problem, 

1-152, DMV-Sem. 18, Birkhauser, Basel, 1992. 

[12] Klinger, L., Construction of a counterexample to a conjecture of Zassenhaus, 

Commun. Algebra 19 (1993), 2303-2330. 

[13] Lichtman, A. I., Sehgal, S. K., The elements of finite order in the group of 

units of group rings of free products of groups, Commun. Algebra 17 (1989), 

2223-2253. 

[14] Luthar, I. ·S ., Passi, I. B. S., Zassenhaus conjecture for A 5 , Proc. Indian 

Acad. Sci 99 (1) (1989), 1-5. 

[15] Luthar I. S. and Trama P., Zassenhaus Conjecture for 85 . (Preprint) . 

[16] Marciniak, Z., Ritter, J ., Sehgal , S. K., Weiss, A., Torsion units in integral 

group rings of some metabelian groups II, Journal of Number Theory 25 

(1987),340-352 . 

[17] Passman, D. S., The Algebraic Structure of Group Rings, Robert E. Krieger 

Publishing Company Malabar, Florida 1985. 

[18] Polcino Milies, C., Ritter, J ., Sehgal, S. K., On a conjecture of Zassenhaus 

on torsion units in integral group rings II , Proc. Amer. Math . Soc. 97 (2) 

(1986), 206-210 . 

[19] Polcino Milies, C., Sehgal, S. K., Torsion Units in integral group rings of 

metacyclic groups, J. Number Theory 19 (1984), 103-114. 

[20] Robinson, D. J . S., A course in the theory of groups, Springer-Verlag, New 

York, He~delberg, Berlin, 1980. 

[21] Sehgal, S. K., Units of Integral Group Rings, Longman's, Essex, 1993 . 



Units in Integral Group Rings - A Survey 291 

[22] Valenti, A., Torsion Units in Integral Group Rings, Proc. Amer. Math. 

Soc. 120(1) (1994), 1-4. 

[23] Weiss, A., Torsion units in integral group rings, J. Reine Angew. Math. 

415(1991),175-187. 

Stanley o. Juriaans 

Universidade de Sao Paulo 
Instituto de Matematica e Estatistica 

Caixa Postal 66281 
05389-970 - Sao Paulo S. P. 
ostanley@ime.usp.br 

Brasil 


