The Congruence Subgroup Theorem and Units of Symmetric Group Rings ${ }^{1}$

G. Leal

Abstract

We work an example that illustrate the strong connection between K-Theory and Group Rings.

Key words: Units of Group Rings, The Congruence subgroup Theorem.

Let K be an algebraic number field and \mathcal{O} its ring of integer. Let \wp be an ideal of \mathcal{O}; we denote by π the natural homomorphism

$$
S L_{n}(\mathcal{O}) \longrightarrow S L_{n}(\mathcal{O} / \wp)
$$

The kernel of π, is called the principal \wp-congruence subgroup of $S L_{n}(\mathcal{O})$ and shall be denoted by Γ_{p}. The subgroups of $S L_{n}(\mathcal{O})$ that contains some Γ_{p} are called conguence subgroups and are of finite index in $S L_{n}(\mathcal{O})$. The converse of this trivial fact is the well known Congruence Subgroup Problem:

Is every subgroup of finite index in $S L_{n}(\mathcal{O})$ a congruence subgroup?
In general the answer is negative. but in most cases what actually occurs can be precisely described.

In the case where $n=2$, J.-P. Serre in 1970 [11] and L.N. Vaserštein in 1972 [12] presented a solution in the case where the group of units of \mathcal{O} has infinite order.

Here our concern is the case $n \geq 3$, how it was solved and its relations with the group of units of the integral group rings of finite groups, in particular the symmetric group $S_{k}, k \in \operatorname{IN}$.

In 1965 H. Bass, M. Lazard and J.-P. Serre [1] and J. Mennicke [5] gave a positive solution for the conguence subgroup problem when $\mathcal{O}=\mathbb{Z}$. Finaly, in 1968 H. Bass, J. Milnor and J.-P. Serre [2] presented a complete solution. We extract from this article an outline of the proof.

Let $E_{i j}$ be the matrix with 1 in the $i j$ position and zero elsewhere. Let E_{\emptyset} be the normal closure of $\mathcal{E}_{\mathfrak{p}}=<I+\wp E_{i j} \subset S L_{n}(\mathcal{O})|i \neq j\rangle$. We call these generators of $\mathcal{E}_{\mathfrak{p}}$ elementary matrices. Then:

1. Every subgroup of finite index contains some element of $E_{\mathfrak{p}}$, and $E_{\mathfrak{p}}$ itself has finite index in $S L_{n}(\mathcal{O})$. From the fact that $\mathcal{E}_{\mathfrak{p}} \supseteq E_{\mathfrak{p}^{2}}$, it follows that $\mathcal{E}_{\mathfrak{p}}$ is also of finite index in $S L_{n}(\mathcal{O})$.
2. $E_{\mathfrak{p}}$ is a congruence subgroup if and only if $E_{\mathfrak{p}}=\Gamma_{\mathfrak{p}}$.
3. $\Gamma_{\mathfrak{p}}$ is generated by $E_{\mathfrak{p}}$ together with the matrices of the form $\left(\begin{array}{cc}\alpha & 0 \\ 0 & I_{n-2}\end{array}\right)$ in Γ_{p} with $\alpha \in S L_{2}(\mathcal{O})$.
[^0]Define $C_{p}=\frac{\Gamma_{p}}{E_{p}}$. From 1. and 2. we see that C_{p} is finite and that an affirmative answer to the congruence subgroup problem is equivalent to the vanishing of C_{\wp} for all ideals \wp of \mathcal{O}.

Let κ be the natural projection $\Gamma_{p} \rightarrow C_{p}$, then every element of C_{p} is of the form $\kappa\left(\alpha+I_{n-2}\right)$ and, modulo elementary matrices, this element depends only on the first row (a, b) of α. Denoting this image by $\left[\begin{array}{l}b \\ a\end{array}\right]$, we have a surjetive function

$$
[]: W_{q} \longrightarrow C_{p}
$$

where $W_{p}=\{(a, b) \mid(a, b) \equiv(1,0) \bmod \wp ; a \mathcal{O}+b \mathcal{O}=\mathcal{O}\}$.
It was discovered by Mennicke in the above article that this function has the following two properties:

M1. $\left[\begin{array}{l}0 \\ 1\end{array}\right]=1 ;\left[\begin{array}{c}b+t a \\ a\end{array}\right]=\left[\begin{array}{l}b \\ a\end{array}\right]$ for all $t \in \wp ;$ and $\left[\begin{array}{c}b \\ a+t b\end{array}\right]=\left[\begin{array}{l}b \\ a\end{array}\right]$ for all $t \in \mathcal{O}$.

M2. If $\left(a, b_{1}\right),\left(a, b_{2}\right) \in W_{p}$, then $\left[\begin{array}{c}b_{1} b_{2} \\ a\end{array}\right]=\left[\begin{array}{c}b_{1} \\ a\end{array}\right]\left[\begin{array}{c}b_{2} \\ a\end{array}\right]$.
We call a function from W_{p} to a group satisfying M1 and M2 a Mennicke Symbol.

The first main step was to prove that C_{p} has a presentation with generators W_{p} and relations M1 and M2, so C_{p} depends only on the ring \mathcal{O} and the ideal \wp. The solution of the conguence subgroup problem is as follows.

Theorem:

- If K is not totaly imaginary then $C_{p}=\{1\}$.
- If K is totaly imaginary then $C_{p} \cong \mu_{r}$, where μ_{r} is the group of the r-roots of units of K and r is a number that depends on the ideal \wp.

In a serie of papers, J. Ritter and S.K. Sehgal [6, 7, 8, 9, 10] used this Theorem to produce a finite set of generator for a subgroup of finite index in $\mathcal{U Z Z} G$, the group of units of the integral group ring of a group G, for several classes of groups.

Subsequently E. Jespers and G. Leal [3] gave a generalization that we now will apply to the special case of permutations groups.

Let S_{k} be the symmetric group on k elements and assume $k \geq 5$.
Let $\left\{e_{i} \mid i=1,2, \ldots m\right\}$ be the set of central primitive idempotents of $\mathbb{Q} S_{k}$. Then

$$
\mathbb{Q} S_{k}=\oplus_{i=1}^{m} \mathbb{Q} S_{k} e_{i} \cong \oplus_{i=1}^{m} M_{n_{i}}(\mathbb{Q})
$$

and we have the following situation.

Note that as $\mathbb{Z} S_{k}$ and $\oplus_{i=1}^{m} M_{n_{i}}(\mathbb{Z})$ are orders in $\mathbb{Q} S_{k} \cong \oplus_{i=1}^{m} M_{n_{i}}(\mathbb{Q})$ and $G L_{1}(\mathbb{Z})=\{ \pm 1\}$, all subgroups in the diagram are of finite index.

Assume $e_{1}+e_{2}=\widehat{A_{k}}=\frac{1}{\left|A_{k}\right|} \sum_{a \in A_{k}} a$. Then, we have that $\mathbb{Q} S_{k} e_{1} \cong \mathbb{Q} S_{k} e_{2} \cong \mathbb{Q}$ and all other simple components of $\mathbb{Q} S_{k}$ are isomorphic to $M_{n}(\mathbb{Q})$ with $n \geq 3$.

Now if A_{i} is a subgroup of finite index of $\mathcal{U}\left(\mathbb{Z} S_{k} e_{i}\right)$, then $\times_{i=1}^{m} A_{i}$ is of finite index in $\mathcal{U}\left(\times_{i=1}^{m} \mathbb{Z} S_{k} e_{i}\right)$, therefore also in $\times_{i=1}^{m} G L_{n_{i}}(\mathbb{Z})$.

Recall that for each index $i \geq 3$, we have that $n_{i} \geq 3$ and that for $i=1,2$ the group $\mathcal{U}\left(Z S_{k} e_{i}\right)$, is finite.

Now, let a be a transposition in S_{k}. Define:

$$
E=\left\{1+(1+a) S_{k}(1-a), 1+(1-a) S_{k}(1+a)\right\} \subset \mathcal{U} \not Z S_{k} .
$$

Note that since $(1+(1+a) x(1-a)) \cdot(1+(1+a) y(1-a))=1+(1+a)(x+y)(1-a)$ with $x, y \in S_{k}$, we have that $\left.\left\{1+(1+a) \not \mathbb{Z} S_{k}(1-a), 1+(1-a) \not \subset S_{k}(1+a)\right\} \subset<E\right\rangle$.

Hence for each idempotent e_{i} it follows that

$$
\left.\left\{1+\alpha(1+a) \not \mathbb{Z} S_{k}(1-a) \cdot e_{i}, 1+\alpha(1-a) \not Z S_{k}(1+a) \cdot e_{i}\right\} \subset<E\right\rangle,
$$

where α is the denominator of $e_{i} \cdot\left(\frac{1+a}{2}\right) e_{i}$ and $\left(\frac{1-a}{2}\right) e_{i}$ are noncentral idempotents of $\mathbb{Q} S_{k} e_{i}, i \geq 3$. Then, up to conjugation, they are matrices of the form:

$$
\left[\begin{array}{ccc}
I & \mid & 0 \\
-- & -\mid- & -- \\
0 & \mid & 0
\end{array}\right]_{m \times m} \text { and }\left[\begin{array}{cc|c}
0 & \mid & 0 \\
-- & -\mid- & -- \\
0 & \mid & J
\end{array}\right]_{m \times m}
$$

where I is the $p \times p$-identity matrix, $p<m$ and J is the $m-p \times m-p$-identity.

The elementary matrices $e_{j l}$ belong to $\mathbb{Q} S_{k} e_{i}$, hence for some integer β, we have that $\beta e_{j l} \in \mathbb{Z} S_{k} e_{i}$. Therefore, if $j<p$ and $l>p$, we see that

$$
\left.4 \alpha \beta e_{j l}=1+\frac{1+a}{2} 4 \alpha \beta e_{j l} \frac{1-a}{2} \epsilon<E\right\rangle .
$$

With the help of the identity $\left[\gamma e_{i j}, \delta e_{j l}\right]=\gamma \delta e_{i l}$ we can see that $\langle E\rangle$ contains a congruence subgroup in each noncommutative simple component of $\oplus_{i=1}^{m} Z S_{k} e_{i}$ so it is of finite index in $\mathbb{Z} S_{k}$.

The connection between the Congruence Subgroup Theorem and group rings does not stop here, there are many others problems. We list some of them below:

1. What is the index of the subgroup $\langle E\rangle$, (see[4]).
2. Can this Theorem be proved for group rings?. How can one classify the conguence subgroups of a grup ring?.
3. In connection with the item 3 of our list of facts on elementary matrices, if H is a subgroup of G, is $\mathcal{U Z Z} G$ generated by $\mathcal{U Z} H$ together with E ?

References

[1] H. Bass, M. Lazard, J.-P. Serre,Sous-groupes d'indice fini dans $\operatorname{SL}(n, \mathbb{Z})$, Bull. Am. Math. Soc. 70 (1964), $385=392$.
[2] H. Bass, J. Milnor and J.P.-Serre, Solution of the congruence subgroup problem for $S L_{n}(n \geq 3)$ and $S_{p_{2 n}}(n \geq 2)$, Publ. Math. I.H.E.S. 33 (1967), 59-137.
[3] E. Jespers and G. Leal, Generators of large subgroups of the unit group of integral group rings, Manuscripta Mathematica, 78 (1993), 303-315.
[4] E. Jespers and G. Leal, Generators of large subgroups of the unit group of integral group rings $I I$, to appear
[5] J. Mennicke, Finite Factor Groups of the Unimodular Group, Ann. of Math. 81 (1965), 31 - 37.
[6] J. Ritter and S.K. Sehgal, Certain normal subgroups of units in group rings, J. Reine Angew. Math., 381 (1987), 214-220.
[7] J. Ritter and S.K. Sehgal, Construction of Units in Integral Group Rings of Finite Nilpotent Groups, Trans. Amer. Math. Soc., 324 (2)(1991), 603621.
[8] J. Ritter and S. K. Sehgal, Generators of Subgroups of $U(\mathbf{Z} G)$, Contemp. Math., 93 (1989), 331-347.
[9] J. Ritter and S.K. Sehgal, Construction of units in group rings of monomial and symmetric groups, J. Algebra 142 (1991), 511-526.
[10] J. Ritter and S.K. Sehgal, Units of group rings of solvable and Frobenius groups over large rings of cyclotomic integers, J. Algebra. to appear.
[11] J.-P. Serre, Le Problem des Groupes de Congruence pour $S L_{2}$, Ann. of Math. 92 (1970), 389-527.
[12] L.N. Vaserstein, On The Group $S L_{2}$ Over Dedekind Rings of Arithmetic Type, Math. USSR Sbornik, 18 (1972), 321-332.

G. Leal
Instituto de Matemática
Universidade Federal do Rio de Janeiro
Caixa Postal 68530
Rio de Janeiro
gleal@mat.dme.ufrj.br
BRASIL

[^0]: ${ }^{1}$ Research partially supported by CNPq (Brasil).
 AMS Classification: QA171, P374.

