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Matrix Algebras with Transpose or Symplectic 
Involution and their *-Polynomial Identities 1 

Angela Valenti 

Abstract: We look at the theory of *-polynomial identi
ties of the algebra of n X n matrices over a field. The represen
tation theory of the hyperoctahedral group and of the general 
linear group are applied for a quantitative study of the theory 
in characteristic zero. We examine the problem of determin
ing *-polynomial identities of minimal degree for symplectic 
and transpose involution and new *-polynomial identities of 
degree 2n - 1 are constructed. 
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Let F be a field of characteristic different from 2, X = {Xl, X2 , .. . } a countable 
set of unknowns and F{X, *} = F{X1 , xi, X2, xi, . .. } the free algebra with invo
lution * over F . If R is an F-algebra with involution *, we shall consider only 
involutions such that (aa)* = aa* for all a E F, a E R . Recall that a polynomial 
O;;/; f(X1,xi, .. . , xm,x:'n) in F{X,*} is a *-polynomial identity (*-PI) for R if 
f(r1,ri , .. . , rm,r:'n) = 0 for all r1, .. . ,rm E R. 

If one wants to study the *-PI's of an algebra R as a whole, then the right 
concept is that of *-T-ideal i. e., an ideal of the free algebra F{X, *} invariant 
under all endomorphisms of F{X, *} that commute with the involution *. 

The connection between *-T-ideals and *-PI's is the following : if R is an F
algebra with involution, 
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IS a * - PI for R} 

is a *-T-ideal of F{X, *}. Moreover, if J is a *-T-ideal , T(F{X, *}/ J) = J, so 
every *-T-ideal of the free algebra is of this type. 

Let now R = Mn (F), n ~ 2, be the algebra of n x n matrices over F. In Mn (F) 
one can define several involutions; two of them playa very important role in the 
study of the *-PI's of Mn(F) : the transpose involution , denoted * = t, and the 
canonical symplectic involution, denoted * = s . 

Recall that s is defined only in case n = 2m is even and it is given by the rule: 

if A E Mn (F) , let A = (~ ~) where B , C, D, E E Mm(F) and set 

A'= 

where t is the usual transpose. 

Let us write (Mn (F), *) for the ring of n x n matrices with the involution 
*. The importance of the above two involutions is given in the following ([17, 
Theorem 3.1.62]) 

Theorem 1.1 Let F be an infinite field. If * is an involution in Mn(F) , then 
eith er T((Mn(F), *)) = T((Mn(F), t)) or T((Mn(F) , *)) = T((Mn(F) , s)). 

Let us now give few examples of *-PI's for Mn(F), for small values of n . They 
can all be checked by direct computation . Clearly every polynomial identity for 
Mn(F) is a *-polynomial identity for Mn(F). Let Sm(Xl, ... , xm) denote the 
standard polynomial of degree m . 

Examples 

1. Xl - xi E T((Ml(F),t) . 

2. [Xl - xi, X2 - x:j] E T((M2(F), t) . 

3. [Xl + xi, X2] E T((M2(F), s). 

4. [S3(Xl - xi, X2 - x:j, X3 - xj), X4] E T((M3(F) , t) . 

5. [[Xl + xi, X2 - x:jF, X3] E T((M4(F), s). 

6. S6(xl-xi, ... ,x6-x;;) ET((M4(F),t). 

The *-PI's of (M2(F), *), *= s or t, of minimal degree are well known; more
over, in characteristic zero, Levcenko in [10] exhibited a basis for the *-T-ideals 
T(M2(F), s) and T(M2(F), t). The result is the following 

Theore m 1.2 Let charF = O. 
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1. The *-polynomials 
[(x - x*)(y - y*), z], 

[x - x*, y - y*], 

[Xl + x~, x2 + X;J[X3 + x;, x4 + x:] + [X2 + x;, X3 + X;][Xl + X~, X4 + x:], 

+[X3 + x;, Xl + xiJ[X2 + x;, X4 + x:], 

[x - x*,y+ y*,z - z*,t + t*] - 4(x - x*)(z - z*)[t+t*,y+y*] 

are a set of generators for the *-T-ideal T(M2(F), t). 

2. The *-polynomial 
[X+X*,y] 

generates the *-T-ideal T(M2(F), s). 

2 Sn and G L-cocharacters 

Methods of representation theory of the hyperoctahedral group and of the general 
linear group have been introduced in [4] and [5] to study T( R, *) in general. We 
will now sketch these methods. 

Let Hn be the hyperoctahedral group of degree n . If C2 = {I, *} is the 
multiplicative group of order 2 and Sn is the symmetric group of degree n, then 
Hn is the wreath product C~ wr Sn and we write 

Hn = {(al"'" an; 0-) I ai E C2 , 0- E Sn} 

with multiplication defined by 

We say that a *-polynomial f( Xl, xi, ... , x n , x~) is multilinear if in every mono
mial of f, Xi or xi, i = 1, .. . , n, appears exactly once. Then 

is the space of multilinear *-polynomials in Xl, xi, ... , xn , x~. 

This space is strictly related to the group algebra of H n; in fact the map 

given by 

L (¥(a;u)X:(;)'(l) ... x:(~;(n)-+ L (¥(a;u)(al, ... ,an;o-) 

(a;u)EHn (a;u)EHn 
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is an F- linear isomorphism of Vn( *) onto F Hn. This map clearly induces a struc
ture of Sn-module on Vn (*). Let T be a *-T-ideal of F{X,*}. Then , under the 
above identification, Tn = Tn Vn (*) becomes a left ideal of F H n. 

Suppose char F = O. Then every *-T-ideal is determined by its multilinear 
polynomials, hence to study T it is enough to study {Tn }n> 1. 

Actually it is more convenient to study the sequence of left Hn-modules 
{Vn(*)/Tn}n>l. Let us denote by Xn(T, *) the Hn-character of Vn(*)/Tn and let 
us call {Xn('T)}n>l the sequence of Hn-cocharacters of T. Since every character 
Xn(T) is a sum of irreducible Hn-characters, the problem of determining Xn(T) is 
reduced to that of computing the multiplicities of each irreducible Hn-character 
in such decomposition. 

In characteristic zero it is known that there exists a one-to-one correspondence 
between non-equivalent irreducible representations of Hn and pairs of partition 
(A , I1-) where A is a partition of k , J-l is a partition of n - k and k = 0, ... , n. We 
write briefly 1 A 1 + 1 J-l 1= n. So, let us denote by X>',!-, the irreducible Hn-character 
associated to the pair (A, J-l). 

IfT is a *-T-ideal of *-PI's of the algebra R, then we write Xn(T) = Xn(R,*) 
and we have 

Xn(R, *) = L m>. ,!-,X>. ,!-, 
I>'I+I!-'I=n 

where m>. ,!-, is the multiplicity of X>',!-, in the given decomposition. 
If A = (AI, ... , Ar), Al ~ A2 ~ . . . ~ An > 0 is a partition of n, we call r = h(A) 

the height of A (h(A) is the height of the corresponding Young diagram) . We have 

Theorem 2.1 ([4, Theorem 6.2J) Let r = k(\+l) and u = k(\-l). Then 

and 

Xn(Mk(F), t) = L m>.,!-,X>. ,!-, 
I>'I+I!-'I=n 
h(>')~r 
h(!-,)~u 

Xn(Mk(F), s) = L m>' ,!-'X>',/J" 
I>'I+I!-'I=n 
h(>')~u 
h(!-,)~r 

We now turn to a description of the finite-dimensional polynomial representa
tions of G L( n) x G L( n). This is intimately connected to partition of n - k and 
k = 0, .. . , n. We write briefly 1 11,2, ... define Si = Xi + xi and k i = Xi - xi; 
then, since char F =P 2, F{X, *} = F{ Sl, k1' S2, k2' . . . } has a natural multigrading 
obtained by counting the degrees in the symmetric variables Si and in the skew 
variables ki . For a fixed n, let U and V be n-dimensional vector spaces over F 
with bases {S1 ' ... , sn} and {kl ' . .. ,kn} respectively. Let 
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W can be identified with the space of homogeneous *-polynomials of degree n 
in the variables Xi and xi- The group GL(U) x GL(V) == GL(n) x GL(n) acts 
naturally on the space U EB V and we extend this action diagonally to an action 
on W. 

The representation theory of G L(U) x G L(V) acting on W is well known: there 
exists a one-to-one correspondence between irreducible non-equivalent polynomial 
representations of GL(U) x GL(V) and pairs of partitions (>',J-l) where>. is a 
partition of k, J-l is a partition of n - k and k = 0, ... , n. So, let us denote by 'Ij;>',J.I 
the irreducible character of GL(U) x GL(V) associated to the pair (>',J-l). Also, 
if M is a GL(U) x GL(V)-module , let us write 'Ij;(M) for the character of M. 

If T is a *-T-ideal , then Tn W is the space of homogeneous *-polynomials of 
degree n in TnF{Xl, xi, ... xn, x~} and Tn W is a GL(U) x GL(V)-module. The 
GL(U) x GL(V) structure of T;;W and the Hn structure of Vn(*)/Tn are related 
by the following result ([5, Theorem 3]) 

Theorem 2.2 LetT be a*-T-idealofF{X,*} and 'lj;n(T, *) theGL(U)xGL(V)
character of T::rW . If 

and 

then m>.,J.I = m~,J.I . 

'lj;n(T, *) = L m>.,J.I'Ij;>. ,J.I 
1>'1+1J.lI=n 

Xn(T, *) = L m~ , J.lX>.'J.I 
1>'1+1J.lI=n 

A quantitative study ofT((M2(F), t)) and T((M2(F), s)) in characteristic zero 
was done by Drensky and Giambruno in [2]. They obtained among other things 
the exact values of the multiplicities in the cocharacter sequence of the *-PI's for 
the 2 x 2 matrices with symplectic or transpose involution . 

3 *-Polynomial identities of minimal degree 

In this section we want to discuss the following 

Problem 3.1 Find *-polynomial identities of minimal degree satisfied by Mn(F). 

The standard polynomial 

Sm(Xl, ... , xm) = L (sgnu)xu(l) ·· · Xu(m) 
uESm 

plays a very important role in PI-theory. 
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Let T(Mn(F)) denote the T-ideal of ordinary identities (without involution) 
satisfied by Mn(F). The Amitsur-Levitzki theorem shows that 

is a properly descending chain of T-ideals whose intersection is zero and also gives 
the least degree of a polynomial satisfied by Mn (F). 

Theorem 3.2 (Amitsur-Levitzki)([17, Theoreml.4.1J) S2n(Xl, ... , X2n) is a poly
nomial identity for Mn (F) of minimal degree and any other multilinear polynomial 
identity of Mn(F) of degree 2n is a scalar multiple of S2n' 

The original proof of Theorem 3.2 was a clever induction using matrix units 
but subsequently there have been several different proofs given by Kostant [11], 
based on the cohomology of Mn (C) as a Lie algebra, by Swan [19], using graph 
theory, by Razmyslov [14] and Rosset [15] based on the Cayley-Hamilton Theorem. 

The *-PI's of Mn(F) of minimal degree do not seem to be well understood. 
In fact , the smallest possible degree of a *-PI for arbitrary n is not known. An 
easy argument shows that such degree must be at least n . The best lower bound 
is found in the following ([6, Theorem 1]) 

Theorem 3 .3 If f is a *-PI for (Mn(F), *) and n > 2, then deg(J) ~ n + l. 

It follows that, if f is a *-PI for (Mn (F), *) of minimal degree and n > 2 then 

2n ~ degf > n. 

By recalling that F {X, *} = F {SI, k l , S2, k2, .. . } then equivalently one can 
consider only polynomials in symmetric and skew variables. 

About positive results , in [11] Kostant proved that if n is even then 
S2n-2(k j , . . . , k2n - 2) is a *-PI for (Mn(F), t). Rowen in [16] extended this result 
to arbitrary n and later in [18] he also proved that S2n-2(SI, ... , S2n-2) is a *-PI 
for (Mn(F), s) . 

No *-PI's of degree lower than 2n - 2 are known for arbitrary n. Moreover, 
2n - 2 is not minimalfor all n. In fact, for instance, if * = s, then [x 1 + xi, X2 + x;] 
is a *-PI of minimal degree for (M2(F),s), and since [SI,s2]2, [sj , k2]2, when 
evaluated in (M4(F), s), take values in the center (see [3, pag 203]), it follows that 
(M4(F), s) has *-PI's of degree 5. Moreover if * = t, Racine constructed *-PI's of 
degree 5 for M4(F). 

Definition 3.4 For m, r ~ 0 define Wi = { ~: if i = 1, ... , m 
ifi=m+l, ... ,m+r 

Wm,r = Spanp{wu(I)" ,wu(m+r) I u E Sm+r} 

and let 

be the space of multilinear polynomials in m symmetric variables and r skew vari
ables. 
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The problem of determining the *-PI's of minimal degree can be reformulated 
in the following two problems 

Problem 3.5 For m = 0,1, ... , n, find the least r such that 

and exhibit a basis of this space. 

Problem 3.6 For r = 0,1 , ... , n, find the least m such that 

and exhibit a basis of this space. 

4 Transpose Involution 

If * = t it is easy to show that S2n(Sl, .. . , S2n) is a *-PI for (Mn(F), t) of minimal 
degree among *-PI's in symmetric variables. 

It was shown in [12] by Ma and Racine that in general *-PI's of minimal degree 
need not resemble standard polynomials. In fact , they constructed a multilinear 
polynomial hn (Sl , ... , S2n) such that any other homogeneous *-PI in symmetric 
variables of degree 2n is a consequence of hn (n # 3) for large characteristic of 
the field. 

Let Woo, 1 = Um> 1 W m, 1· In [7] it was constructed a polynomial in Woo , 1 n 
T((Mn(F), t)) of degree 2n - 1 of minimal degree among all *-PI's in one skew 
variable and the remaining symmetric variables; moreover it was shown that any 
other multilinear *-PI in Woo, 1 nT((Mn(F), t)) of degree 2n-1 is a scalar multiple 
of this polynomial. 

Definition 4.1 Let r ~ 2 and write y = X r ; if 1 :s j :s r define 

pSj)( Xl, . .. , Xr -1; y) = L (sgnlT )X,,(l) . .. X"(j -l)YX,,(j) ... X,,(r-1) 

"ESr-l 

and, if [a] denotes the integral part of the real number a, define 

[ !:.:}! 1 
Pr(X1, ... , Xr -1; y) = L (_1)i+1 pPi-1)(X1, ... , Xr -1 ; y) . 

• =1 
Notice that if r == 3 (mod 4), then we can also write, for r = 4m - 1, 

P4m-1(X1, . .. , X4m-2; y) 
m-1 m 

_ '" p(4.+!)( . ) '" p(4.-1)( . ) - L..J 4m-1 X1, ···, X4m-2,Y - L..J 4m-1 X1, ··· ,X4m-2,Y· 
.=0 .=1 

The result is the following 
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Theorem 4.2 

1. P2n-l(SI, ... , S2n-2; k2n-d is a *-PI for (Mn(F), t). 

2. If f(sl,' .. , S2n-2, k2n-d is a multilinear *-PI for (Mn(F), t) then f = o:P2n - 1 

for some 0: E F. 

3. If f(kl' S2, ... ,SI) is H-PI for (Mn(F), t) such that degk, (I) = 1 then deg(l) ~ 
2n -1. 

The proof of this theorem is based on a technique of Razmyslov [14] used to 
give a proof of the Amitsur-Leviztki theorem and in the following remarks 

Remark 4.3 If A is a symmetric n x n matrix under the symplectic involution, 
then n = 2m and A satisfies a polynomial of degree m 

() m m-l + m-2 + ( l)m p x = x - li-I X 1i-2X - . . . - li-m 

such that p( x)2 is the characteristic polynomial of A. 

In case char F = 0, it is possible to derive formulas, analogous to Newton's 
formulas, which allow to write the coefficients li-i as polynomials in 
tr(A), tr(A2), ... , tr(Am) with rational coefficients; they are given inductively by 
the formulas 

li-o = 1, 2ili-i = I)-I)j- lli-i-jtr(Aj) 
j=1 

(see [17, pag 150]). 

Remark 4.4 Let A be a commutative ring. If UI , . . . , U21 E Mn(A) then 
trS21(U1, ... , U21) = o. 

This . can be proved by noticing that if WI, W2 are two monomials in the Ui's 
which are cyclic permutations of one another, then on one side tr(wI) = tr(w2) 
and on the other side WI and W2 have opposite signs in S21(UI , ... , U2I). 

Let us denote by M;t(F) and M;:(F) the spaces of symmetric and skew ele
ments of (Mn(F), *) respectively. 

Proof of Theorem 4.2 We shall sketch the proof of the first and second part of 
the theorem. 

Since P2n -I has coefficients ± 1, it is enough to prove the theorem in case 
char F = O. Suppose first that n = 2m is even . In this case if C E M;:(F) is 
invertible, then the map <p : A -- C- 1 AtC defines an involution of symplectic 
type on Mn(F). If B E Mn(F), B = _Bt then BC under this involution is a 
symmetric element. Thus, by Remark 4.3, BC satisfies a polynomial of degree m; 
let 
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where the PiS are polynomial expressions with rational coefficients in tr(BC) , 
tr(BC)2, ... , tr(Bc)m . 

Now , by a Zariski density argument it follows that we may take B, C arbitrary 
elements in Mn(F)- under the transpose involution ; also, if we multilinearize the 
above relation we get 

L Bq(l)Cr(l) Bq(2)Cr(2)··· Bq(m)Cr(m) + Q :::: 0 (1) 
a,TESm 

where B l , C l , . .. , Bm, Cm E M;; (F) and Q is a linear combination of products of 
the form Bq(;,)Cr(;.)··· Bq(i,)Cr(;,) , with 1 ~ i l < i2 < ... < il ~ m, I < m 
with coefficients polynomials in traces of the form 

tr(Bq(jl)Cr(h) . .. Bq(jr)Cr(jr))· 

Take A l , .. . A 2n - 2 E M;;(F) and BE M;;(F); then [A; ,AjJ:::: A;Aj -AjA; E 
M;;(F) and we make in (1) the substitutions 

B l :::: B, 
B2 :::: [A3 , A4J, 

C l :::: [A l , A 2 ], 

C2 :::: [A5, As], 

We obtain from (1) a new equation and we write the left hand side as 
f(A l , . .. , A 2n - 2 , B) , a polynomial with traces. 

Now in (1) make the substitutions 

Bl :::: [A l , A2], 
B2 :::: [A 3 , A4], 

C l :::: B , 
C2 :::: [A5, As], 

we obtain a new equation and let g(A l , ... , A 2n - 2 , B) be the resulting left hand 
side. 

Let I and 9 be the skewsymmetrizations of f and g respectively with respect 
to the variables A l , ... , A 2n - 2; it follows that 

o I(A l , .. . , A 2n - 2, B) - g(A l , .. . , A 2n - 2, B) 

2m - l P2n-l(A l , .. . , A 2n - l ; B) 

+ a linear combination of terms with tr. 

Thus, in order to complete the proof of the theorem in case n is even, it is enough 
to prove that all the coefficients of the remaining terms (which involve traces) are 
zero. 
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Notice that, the traces in which B does not appear in 7 and 9 are of the form 
tr(S2j (A." . . . , A •• ,)) and this is zero by Remark 4.4. Also, one checks that in 
7 - 9 the traces involving B vanish too. This proves the theorem in case n is even. 

In case n is odd, embed Mn(F) in the upper left corner of Mn+1(F) with 
induced transpose involution and write 

P2(n+1)-1 (Sl , .. . , S2n; k2n+d 

= P2n - 1(Sl, . .. , S2n-2; k2n+ds2n-1 S2n + h(Sl, . .. , S2n, k2n+d 

where no monomial of h( Sl, . .. , S2n, k2n+1) ends with S2n-1 S2n. Now take jo E 
{l, . .. ,n} . Then ejonH + en+1jo, en+1n+1 E M;t(F) and let 
A1, . . . ,A2n - 2 E M;t(F), BE M;;(F) . Since n+ 1 is even, by the first part 
of the proof, P2(nH)-1(Sl, . .. , S2n ; k2n+d is a *-PI for (Mn+1 (F) , t) ; thus 

o P2(n+1)-1(A 1, .. . , A 2n - 2, ejon+l + en+1jo , en+1n+1 ; B)en+1 n+1 

P2n - 1 (AI, . .. , A 2n - 2; B)( ejo n+1 + en+1 jo )en+1 n+1 

+ h(A1, .. . , A 2n - 2, ejo n+1 + en+1 j o, en+1 n+1 , B)en+1 n+1 

P2n - 1(A 1, . . . , A 2n - 2; B)ejo n+1 · 

Since jo is arbitrary in {l , . . . , n} , we get P2n-1(A1 , . .. , A2n-2 ;B) = 0 for all 
AI , . . . , A 2n - 2 E M;t(F) and B E M; (F) and we are done. 

To prove the second part of the theorem, one proves by induction on n that if 
f(sl , ... ,S2n-2,k) is a *-PI for Mn(F) , t) then 

f(sl , ... , S2n-2, k) 
2n-2 

Q" L (-1)i+j[Si,Sj]P2n _3 (Sl, ... ,Si, .. . ,Sj, . .. ,S2n_2;k) 
"j=l 
'<j 

for some Q" E F . 
Now, an easy calculation shows that in general 

P2n - 1(Sl, ... , S2n-2; k) 
2n-2 
L (-1)i+j [si,Sj]P2n _3(s1, . .. , si, . . . ,Sj, .. . , s2n_2;k) 

i,j=1 
i<j 

Thus , since P2n- 1 and fare *-PI's for (Mn(F) , t) also 

vanishes in (Mn(F), t). 
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Let J{ denote the sub ring generated by the skew elements of Mn(F); then, since 
n> 2, by [8, Theorem 2.1.10]' J{ = Mn(F). It follows that for all A 1 , .. . , A2n - 2 E 
M;t(F), 

Therefore, being Mn(F) a prime ring, 

must vanish in M;t(F). Since (Mn(F), i) satisfies no *-PI's in symmetric variables 
of degree lower than 2n, it follows that h = aS2n-2 and we are done. 0 

Having solved problem 3.5 for the case Wm ,l, it is natural to try to solve prob
lem 3.5 for Wm ,2. There is no existence theorem proved in this case. Nevertheless 
the following result holds ([7, Proposition 3]) 

Theorem 4.5 Lei f(k 1 , k2' S3, ... , sr) be a *-PI for (Mn(F), i), n> 2, such that 
degk 1 (J) = degk,(J) = 1. Then deg(J) ~ 2n - 1. 

5 Symplectic Involution 

In this section we study the space of multilinear *-PI's of (Mn(F), s). Let us 
consider *-PI's of minimal degree for (Mn(F), s) in symmetric variables. The 
polynomials [Sl' S2] and [[ Sl, s2F, S3] are *-PI's of minimal degree for n = 2 and 
n = 4 respectiveiy. For n > 4 the best known lower bound is found in ([1, Theorem 
2.4]) 

Theorem 5.1 If char F = 0, (Mn(F), s) does not satisfy *-PI's in symmetric 
variables of degree n + 1 for any n > 4. 

The proof is based on the following idea. If n = 2m, then every *-PI in sym
metric variables for (M n (F), s) is an ordinary polynomial identity for the m x m 
matrix algebra Mm (F). The polynomial identities of Mn (F) of degree m + 1 have 
been described by Leron [9] . It turns out that they all follow from the standard 
identity S2m(X1, ... , X2m). Hence it suffices to show that no multilinear conse
quence of degree n + 1 = 2m + 1 of S2m(X1, ... , X2m) vanishes on the symmetric 
elements from (Mn(F), s). 

Inspired by this result is the following 

Theorem 5.2 ([13, Theorem 3.1]) If char F 
*-PI's in symmetric variables of degree 8. 

0, (M6(F), s) does not satisfy 
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Let now consider *-PI's in skew variables. What is the minimal possible degree 
of such a polynomial identity? For n = 2,4 the answer is as follows: [kr, k2] is a 
*-PI in skew variables for (M2(F), s) of minimal degree; also, since [Sl , k2F, when 
evaluated in (M4(F), s), takes values in the center (see [3, pag 203]) , it follows that 
[[kr , k2]2, k3 ] is a *-PI for (M4(F) , s) . It is also easy to see that this polynomial is 
of minimal degree among *-PI's in skew variables. 

In the general case one could conjecture that if f is a *-PI for (Mn(F), s) 
in skew variables of minimal degree, then deg(J) = 2n - 1. In [7] the authors 
constructed , for every n, a *~PI in skew variables of degree 2n - 1. 

Definition 5.3 Let r > 2 and write y = X r . Define the polynomial 

Tr(X1 , .. . ,Xr-1 ;Y) 
[~l [~l 

L pPi-1)(X1, ... ,Xr_1;y)+2 L p~4i-2>(X1 , . . . ,Xr_1 ;Y)' 
i=l i=l 

Notice that in Tr the variable y never appears in the 4i position, i = 1, .. . , [r/4]' 
Using the technique of Theorem 4.2 one can prove (see [7]) the following 

Theorem 5.4 T2n - 1(k 1, . .. , k2n - 2; k2n - 1) is a *-PI for (Mn(F), s) . 

Unfortunately we do not know if T2n - 1 is of minimal degree among *-PI's for 
(Mn(F), s) in skew variables. The known best bound is stated in the following 

Theorem 5.5 If f(k 1, ... ,kr) is a *-PI for (Mn(F) , s), n > 2, then deg(J) > 
n + n/2 . 
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