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Matrix Algebras with Transpose or Symplectic
Involution and their *-Polynomial Identities !

Angela Valenti

Abstract: We look at the theory of *-polynomial identi-
ties of the algebra of 1 X N matrices over a field. The represen-
tation theory of the hyperoctahedral group and of the general
linear group are applied for a quantitative study of the theory
in characteristic zero. We examine the problem of determin-
ing *-polynomial identities of minimal degree for symplectic
and transpose involution and new #*-polynomial identities of
degree 2n — 1 are constructed.
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1 Generalities

Let F be a field of characteristic different from 2, X = {z;,z3,...} a countable
set of unknowns and F{X,*} = F{zy, 2z}, z2,23,...} the free algebra with invo-
lution * over F'. If R is an F-algebra with involution %, we shall consider only
involutions such that (aa)* = aa* for all @ € F,a € R. Recall that a polynomial
0 # f(z1,2},...,Zm,z},) in F{X,*} is a *-polynomial identity (*-PI) for R if
f(ri,7},...,rm,rim)=0forallry,...,rm € R.

If one wants to study the *-PI’s of an algebra R as a whole, then the right
concept is that of *-T-ideal i. e., an ideal of the free algebra F'{X,*} invariant
under all endomorphisms of F{X,*} that commute with the involution .

The connection between *-T-ideals and *-PI’s is the following: if R is an F-
algebra with involution,

T(R)*) = {f(xllxil"'lxm’m:n) € F{X}*} I f(xllx;t"':xmsz:n)
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is a * =PI for R}

is a *-T-ideal of F{X,*}. Moreover, if J is a *-T-ideal, T(F{X,*}/J) = J, so
every *-T-ideal of the free algebra is of this type.

Let now R = M, (F),n > 2, be the algebra of n X n matrices over F. In M, (F)
one can define several involutions; two of them play a very important role in the
study of the *-PI's of M,,(F): the transpose involution, denoted # = ¢, and the
canonical symplectic involution, denoted * = s.

Recall that s is defined only in case n = 2m is even and it is given by the rule:

if A € Ma(F), let A= (g g) where B, C, D, E € Mm(F) and set

3 Et —C
A = (—-Dt Bt ) ;
where 1 is the usual transpose.

Let us write (M, (F),*) for the ring of n x n matrices with the involution
*. The importance of the above two involutions is given in the following ([17,
Theorem 3.1.62])

Theorem 1.1 Let F' be an infinite field. If * is an involution in M,(F), then
either T((Mp(F),*)) = T((Mn(F),1)) or T((Mn(F),*)) = T(Mp(F),s)).

Let us now give few examples of #-PI’s for M,,(F), for small values of n. They
can all be checked by direct computation. Clearly every polynomial identity for
M, (F) is a *-polynomial identity for M,(F). Let Sp(z1,...,2m) denote the
standard polynomial of degree m.

Examples

z, —z] € T((My(F),t).

. [z1 — 21, 23 — 23] € T((M2(F), ).

. 21+ 21, 22] € T((M2(F), s).

. [Sa(z1 — =%, 22 — 23, 23 — 23), z4] € T((M3(F),1).
. [[z1 + =1, z2 — 23], 23] € T((Ma(F), s).

. Se(z1 —2%,...,26 — zg) € T((M4(F),1).

e

= - ]

The #-PI’s of (M3(F'), %), *= s or t, of minimal degree are well known; more-
over, in characteristic zero, Levcenko in [10] exhibited a basis for the *-T-ideals
T(M3(F),s) and T(M3(F),t). The result is the following

Theorem 1.2 Let charF = 0.
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1. The *-polynomaials
(&==")(y—-9") 2,
[z—2"y-¥],
(21 + 21, 22 + z3][23 + 23, 24 + 23] + [22 + 23, 23 + z3][21 + 27, 24 + 2]),
+[za + 23, 21 + 2] [z2 + 23, 24 + 7]),
[z—2z*y+y*,z2—2"t+t"]—d(z—2*)(z - 2")[t+ 1",y + ¥*]
are a set of generators for the x-T-ideal T(My(F),t).

2. The %-polynomial
[z + 2", 4]

generates the x-T-ideal T(Ma(F'),s).

2 S, and GL-cocharacters

Methods of representation theory of the hyperoctahedral group and of the general
linear group have been introduced in [4] and [5] to study T'(R,*) in general. We
will now sketch these methods.

Let H, be the hyperoctahedral group of degree n. If C; = {1,%} is the
multiplicative group of order 2 and S, is the symmetric group of degree n, then
H, is the wreath product C3 wr S, and we write

H, ={(a1,...,an;0) | a; € C3,0 € S, }
with multiplication defined by
(a1,...,80;0) (b1, ..., 00;7) = (a1bo-1(1y, - . ., nbo-1(n); TT).

We say that a *-polynomial f(z1,27,..., z,, z},) is multilinear if in every mono-
mial of f, z; or z},i=1,...,n, appears exactly once. Then

Va(*) = Spanp{zg,, - 1:3("“) | (a1,...,an;0) € Hp}

is the space of multilinear *-polynomials in z,271,...,zn, z},.
This space is strictly related to the group algebra of H,; in fact the map

Va(¥) — FH,

given by

a_— a_—
Z a(“i”)ra‘(rl)“” - ._—,;o‘('“)‘tﬂ) — Z ¥(a;0)(@1,- - -, n; )
(aj0)EH, (a;0)EHA
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is an F- linear isomorphism of V,,(%) onto F H,,. This map clearly induces a struc-
ture of S;-module on V;(*). Let T be a %-T-ideal of F{X,*}. Then, under the
above identification, T, = T'N V,,(*) becomes a left ideal of F H,,.

Suppose char F' = 0. Then every *-T-ideal is determined by its multilinear
polynomials, hence to study T it is enough to study {7 }n>1.

Actually it is more convenient to study the sequence of left H,-modules
{Va(*)/Tn}n>1. Let us denote by x, (T, *) the Hp-character of V;,()/T, and let
us call {xn(T)}n>1 the sequence of Hy-cocharacters of T. Since every character
Xn(T) is a sum of irreducible H,-characters, the problem of determining x.(T) is
reduced to that of computing the multiplicities of each irreducible H,-character
in such decomposition.

In characteristic zero it is known that there exists a one-to-one correspondence
between non-equivalent irreducible representations of H, and pairs of partition
(A, ) where A is a partition of k, p is a partition of n — k and £ = 0,...,n. We
write briefly | A | + | # |= n. So, let us denote by x,, the irreducible H,-character
assoclated to the pair (A, p).

If T is a #-T-ideal of #-PI’s of the algebra R, then we write x,(T) = xn(R,*)
and we have

Xn(Ro¥) = Y mauxam
[Al+|ul=n

where m, , is the multiplicity of x» , in the given decomposition.
IfA=(A1,...,Ar), A1 2 A2 > ... > A > 0is a partition of n, we call r = h(A)
the height of A (h()) is the height of the corresponding Young diagram). We have

Theorem 2.1 ([{, Theorem 6.2]) Let r = ﬂ%ﬂ and u = E.(%—_l_l‘ Then

Xn(Mi(F),t) = )" mauxau
[A[+|s|=n
h(A)<r
h(u)<u

and

Xn(My(F),8) = D mauxau
[Al+|pl=n
h(A)<u
h(u)<r

We now turn to a description of the finite-dimensional polynomial representa-
tions of GL(n) x GL(n). This is intimately connected to partition of n — k£ and
k=0,...,n. We write briefly | [1,2,... define s; = z; + 7 and k; = z; — z];
then, since charF' # 2, F{X,+} = F{s1, k1, s2, k2, ...} has a natural multigrading
obtained by counting the degrees in the symmetric variables s; and in the skew
variables k;. For a fixed n, let U and V be n-dimensional vector spaces over F

with bases {s1, -+, sn} and {k1,..., k,} respectively. Let

W=UsV)®---@UeV)=(UaV)®".
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W can be identified with the space of homogeneous #-polynomials of degree n
in the variables z; and z}. The group GL(U) x GL(V) = GL(n) x GL(n) acts
naturally on the space U & V and we extend this action diagonally to an action
on W.

The representation theory of GL(U)x GL(V) acting on W is well known: there
exists a one-to-one correspondence between irreducible non-equivalent polynomial
representations of GL(U) x GL(V) and pairs of partitions (A, n) where A is a
partition of k, p is a partition of n —k and k = 0,...,n. So, let us denote by ¥, ,
the irreducible character of GL(U) x GL(V) associated to the pair (A, u). Also,
if M is a GL(U) x GL(V)-module, let us write (M) for the character of M.

If T is a #-T-ideal, then T'N W is the space of homogeneous *-polynomials of
degree n in TNF{z;,z},... zn, 25} and TNWis a GL(U) x GL(V)-module. The
GL(U) x GL(V) structure of 7o and the H, structure of V;,(*)/T} are related
by the following result ([5, Theorem 3])

Theorem 2.2 Let T be a x-T-ideal of F{X,*} and v, (T, ) the GL(U)x GL(V)-
character of T%VW‘ If
Ya(T,¥) = D mautau

[Al+|ul=n

and
Xn(T#) = D mhuxau
[Al4+|pl=n

then my , = m), @

A quantitative study of T'((Mz(F'),t)) and T'((M2(F'), s)) in characteristic zero
was done by Drensky and Giambruno in [2]. They obtained among other things
the exact values of the multiplicities in the cocharacter sequence of the *-PI’s for
the 2 x 2 matrices with symplectic or transpose involution.

3 *-Polynomial identities of minimal degree
In this section we want to discuss the following
Problem 3.1 Find x-polynomial identities of minimal degree satisfied by M, (F').

The standard polynomial

Sm(215. 0y 2m) = Z (8gn0)z5(1) - To(m)
CES,,

plays a very important role in PI-theory.
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Let T'(M,(F)) denote the T-ideal of ordinary identities (without involution)
satisfied by M,,(F). The Amitsur-Levitzki theorem shows that

T(My(F)) D T(Ma(F)) D T(Ms(F)) D ---

is a properly descending chain of T-ideals whose intersection is zero and also gives
the least degree of a polynomial satisfied by M, (F).

Theorem 3.2 (Amitsur-Levitzki)([17, Theoreml1.4.1]) San(21,...,%2,) 15 a poly-
nomial identity for M,,(F) of minimal degree and any other multilinear polynomial
wdentity of M (F') of degree 2n is a scalar multiple of S,,.

The original proof of Theorem 3.2 was a clever induction using matrix units
but subsequently there have been several different proofs given by Kostant [11],
based on the cohomology of M,(C) as a Lie algebra, by Swan [19], using graph
theory, by Razmyslov [14] and Rosset [15] based on the Cayley-Hamilton Theorem.

The *-PI's of My, (F') of minimal degree do not seem to be well understood.
In fact, the smallest possible degree of a *-PI for arbitrary n is not known. An
easy argument shows that such degree must be at least n. The best lower bound
is found in the following ([6, Theorem 1])

Theorem 3.3 If f is a %-PI for (M, (F),*) and n > 2, then deg(f) > n+ 1.
It follows that, if f is a %-PI for (M, (F'), #) of minimal degree and n > 2 then
2n > degf > n.

By recalling that F{X,x} = F{si, ki1, s2,kz,...} then equivalently one can
consider only polynomials in symmetric and skew variables.

About positive results, in [11] Kostant proved that if n is even then
Son—a(ky, ..., kan—2) is a *-PI for (M,,(F'),t). Rowen in [16] extended this result
to arbitrary n and later in [18] he also proved that Sa,_2(s1,..., S2n—2) is a *-PI
for (M, (F), s).

No *-PI's of degree lower than 2n — 2 are known for arbitrary n. Moreover,
2n—2 is not minimal for all n. In fact, for instance, if ¥+ = s, then [z + 2], 22+ 23]
is a *-PI of minimal degree for (M2(F),s), and since [s1, s2)?, [s1,k2]%, when
evaluated in (M4(F'), s), take values in the center (see [3, pag 203]), it follows that
(M4(F), s) has #-PIs of degree 5. Moreover if + = t, Racine constructed %-PI’s of
degree 5 for M4(F).

s ifi=1,...,m

Definition 3.4 For m,r > 0 define w; = { e 8= modl s iip and let

Wm_,- = Spﬂ-ﬂF{wo(l) *r Wo(mr) | geE Sm+"‘}

be the space of multilinear polynomials in m symmetric variables and r skew vari-
ables.



Matrix Algebras with Transpose 339

The problem of determining the #-PI’s of minimal degree can be reformulated
in the following two problems

Problem 3.5 For m =0,1,...,n, find the least r such that
W r NT((Ma(F),*)) #0

and ezhibit a basis of this space.

Problem 3.6 For r=0,1,...,n, find the least m such that
W, NT((Mn(F), %)) #0

and exhibit a basis of this space.

4 Transpose Involution

If ¥ =t it is easy to show that Sz,(s1,..., s2n) is a %-PI for (M,,(F'),t) of minimal
degree among *-PI’s in symmetric variables.

It was shown in [12] by Ma and Racine that in general #-PI’s of minimal degree
need not resemble standard polynomials. In fact, they constructed a multilinear
polynomial fo,(sy,...,s2,) such that any other homogeneous *-PI in symmetric
variables of degree 2n is a consequence of fz, (n # 3) for large characteristic of
the field.

Let Weo1 = U,>q Wm,1- In [7] it was constructed a polynomial in We,; N
T((Mn(F),t)) of degree 2n — 1 of minimal degree among all #-PI’s in one skew
variable and the remaining symmetric variables; moreover it was shown that any
other multilinear *-PIin Woo 1 NT((Mn(F'),t)) of degree 2n—1 is a scalar multiple
of this polynomial.

Definition 4.1 Let r > 2 and write y = z,; if 1 < j < r define

PO (21, ,oroi;0) = D (59n0)To(1) - Ta(i-1)¥Ta(5) " ** To(r—1)
FES,—1

and, if [a] denotes the integral part of the real number «, define
(=)
P,-(xl, vy x"—l;y) = Z: (—1)‘+1P,.(2‘_1)(21’ cey Tr—1; y)'

i=1
Notice that if » = 3 (mod 4), then we can also write, for 7 = 4m — 1,

P4m—l(zl: cooy Tam-2; y)
m=1 m
4i41 ;i —
- Z PG (21, ., Tam-219) — ZP}:,:_P(:;I, oy Tam—-2;Y)-
1=0 i=1

The result is the following
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Theorem 4.2
1. PEn—l(slx <oy S2n-2; kzn—l) s a *-PIfOT (MR(F)!t)'

2. If f(s1,...,82n—2,kan_1) is a multilinear %-PI for (M,(F),t) then f = aPyn_,
for some a € F.

3. If f(k1,s2,...,81) ts a*-PI for (Mn(F),t) such that degx,(f) = 1 then deg(f) >
2n—1.

The proof of this theorem is based on a technique of Razmyslov [14] used to
give a proof of the Amitsur-Leviztki theorem and in the following remarks

Remark 4.3 If A 1s a symmetric n x n matriz under the symplectic involution,
then n = 2m and A satisfies a polynomial of degree m

p(z) = 2™ — ™+ ™2 — 4+ (=1) " pm
such that p(z)? is the characteristic polynomial of A.

In case char F' = 0, it is possible to derive formulas, analogous to Newton’s
formulas, which allow to write the coefficients y; as polynomials in
tr(A),tr(A?%),...,tr(A™) with rational coefficients; they are given inductively by
the formulas

po =1, 2ip; = Z(—l]’._lﬂi-—jt"(fij)
=1

(see [17, pag 150]).

Remark 4.4 Let A be a commutative ring. If Uy, ..., Uy € M, (A) then
trSu(Uy,...,Un) = 0.

This can be proved by noticing that if w;,ws are two monomials in the U;’s
which are cyclic permutations of one another, then on one side tr(w;) = tr(ws)
and on the other side w; and w; have opposite signs in Sy (U, ..., Usy).

Let us denote by M} (F) and M (F) the spaces of symmetric and skew ele-
ments of (M, (F'), ) respectively.

Proof of Theorem 4.2 We shall sketch the proof of the first and second part of
the theorem.

Since Ps,_; has coefficients £1, it is enough to prove the theorem in case
char F' = 0. Suppose first that n = 2m is even. In this case if C € M (F) is
invertible, then the map ¢ : A — C~!A'C defines an involution of symplectic
type on M,(F). If B € M,(F), B = —B" then BC under this involution is a
symmetric element. Thus, by Remark 4.3, BC satisfies a polynomial of degree m;
let

(BC)™ = ma(BCY™™ 4 -+ 4+ (=1)™ pm = 0
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where the ;s are polynomial expressions with rational coefficients in tr(BC),
tr(BC)?,...,tr(BC)™.

Now, by a Zariski density argument it follows that we may take B, C arbitrary
elements in M, (F)~ under the transpose involution; also, if we multilinearize the
above relation we get

> Bo1)Cr(1)Bo2)Cr(2) - - Bo(m)Crim) + @ = 0 (1)
o, TESm

where By,C4,...,Bmn,Cn € M7 (F) and @ is a linear combination of products of
the form Ba(‘-,]C.,(.-,)‘-ABU(;,)C,(,»,) ywithl1 <y <ig<...<y<m,l<m
with coefficients polynomials in traces of the form

tr(Bo(;,)Cr(js) * *  Bo(5,)Cr(in))-

Take Ay, ...Azn—2 € M;Y(F) and B € M7 (F); then [A;, Aj] = AiA; —Aj A; €
M (F) and we make in (1) the substitutions

Bl =B, C1= [A'l,Az],
By = [As, A4, C; = [4s, Ag),

Bm = [A2n-5,A2n-4], Cm = [A2n_3, A2n_2].

We obtain from (1) a new equation and we write the left hand side as
f(Ay, ..., Asn—2, B), a polynomial with traces.
Now in (1) make the substitutions

B, = [A;, Ag), Ci =B,
BE - [A3!A4]: CE = [A5I AG]:

Bm = [Aan—5, Aan—4], Cm = [A2n-3, A2n-2];

we obtain a new equation and let g(Ay,..., Asn_2, B) be the resulting left hand
side.

Let f and 7 be the skewsymmetrizations of f and g respectively with respect
to the variables A;,..., As,_o; it follows that

0 = f(A1,...,Aom_2,B)—7(Ai,..., Asn_2,B)
971 B (A Aan=13.8)
+ a linear combination of terms with 7.
Thus, in order to complete the proof of the theorem in case n is even, it is enough

to prove that all the coefficients of the remaining terms (which involve traces) are
Zero.
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Notice that, the traces in which B does not appear in f and g are of the form
tr(S2;i (Ai,, - .., Ai,;)) and this is zero by Remark 4.4. Also, one checks that in
f —7 the traces involving B vanish too. This proves the theorem in case n is even.

In case n is odd, embed M,(F) in the upper left corner of M,4,(F) with
induced transpose involution and write

Pz(n+1)—1(31 yoeerS2n; Kong1)
= Pan-1(51,-- -, 52n-2; kan41)S2n—152n + h(S1,. .., 52n, k2n41)
where no monomial of h(sy,..., S2n, kan+1) ends with sz, _1s2,. Now take jp €
{1,...,n}. Then e€jont1 + €ntljos €nting1 € MF(F) and let

Ay,...,Agpn_o € MF(F), B € M7 (F). Since n + 1 is even, by the first part
of the proof, Pyny1)-1(51,- -, 52n; k2n41) is a *-PI for (Mp41(F),t); thus

0 = Pyns1)-1(41,---,A2n-2,€jon+1 + €nt1jor Entin+l; Blentinsr
= Pn-1(A1,...,Azn-2; B)(€jon+1 + €nt1jo)ent1nsl
+ h(A1,..., A20-2,8jon41 + Entljor entintls B)ensintl

= Pu_1(A1,...,A2n-2; B)ejont1.

Since jy is arbitrary in {1,...,n}, we get Pyp_1(Ay,..., A2n—2; B) = 0 for all
Ay, ...,A2pn_2 € M}(F)and B € M7 (F) and we are done.

To prove the second part of the theorem, one proves by induction on n that if
f(s1,---,82n—2,k) is a *-PI for M, (F'),t) then

f(s1,...,82n-2,k)
n-2 o
= o Z (_1)‘+J[3issj]P2n—3(31)-'-:éh"'vgjs-”:s2n—2;k)
=1
'i{:j
+k‘h(31)"':32n—2)

for some o € F.
Now, an easy calculation shows that in general

Pan—1(s1,-- -, 52n-2; k)
2n-2 i
= Z (_1)‘+J [Sl‘lsj]'szl—:i(sl yrey §l') ] §J’: vy 8202, k)

5i=1
1<j

+ k- Szn-2(s1,...,52n-2)-
Thus, since P,,_1 and f are #-PI’s for (M, (F),t) also

f—aPan_y =k -(h(s1,--.,52n-2) — aSan_2(51,-..,52n-2))

vanishes in (Mn(F),1).
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Let K denote the subring gfﬂerated by the skew elements of M, (F'); then, since
n > 2, by [8, Theorem 2.1.10], K = M,,(F). It follows that for all Ay,..., Asn—2 €
M} (F),

Mn(F) i (h(Alr ‘e -!A2u—2) = aSZn—Z(All Y AZH—Z)) =0.
Therefore, being M,,(F') a prime ring,
h(si,...,S2n-2) — aSan_a(s1,...,52n-2)

must vanish in M,} (F). Since (M, (F'),t) satisfies no *-PI's in symmetric variables
of degree lower than 2n, it follows that h = aS;,_; and we are done. m]

Having solved problem 3.5 for the case W, i, it is natural to try to solve prob-
lem 3.5 for Wy, 2. There is no existence theorem proved in this case. Nevertheless
the following result holds ([7, Proposition 3])

Theorem 4.5 Let f(ky,k2,53,...,5:) be a %-PI for (Mp(F'),t), n > 2, such that
degi, (f) = degr,(f) = 1. Then deg(f) > 2n — 1.

5 Symplectic Involution

In this section we study the space of multilinear -PI's of (M,(F'),s). Let us
consider #-PI's of minimal degree for (M,(F),s) in symmetric variables. The
polynomials [s;, s3] and [[s1, $2)?%, s3] are *-PI’s of minimal degree for n = 2 and
n = 4 respectively. For n > 4 the best known lower bound is found in ([1, Theorem
2.4])

Theorem 5.1 [f char F' = 0, (M,(F),s) does not satisfy #-PI’s in symmetric
variables of degree n + 1 for any n > 4.

The proof is based on the following idea. If n = 2m, then every *-PI in sym-
metric variables for (M, (F), s) is an ordinary polynomial identity for the m x m
matrix algebra M,,(F"). The polynomial identities of M,,(F') of degree m + 1 have
been described by Leron [9]. It turns out that they all follow from the standard
identity Saom(z1,...,22m). Hence it suffices to show that no multilinear conse-
quence of degree n + 1 = 2m+ 1 of Sy;n(z1, ..., 22,m) vanishes on the symmetric
elements from (M, (F), s).

Inspired by this result is the following

Theorem 5.2 ([13, Theorem 3.1]) If char F = 0, (Mg(F),s) does not satisfy
*-PI’s in symmetric variables of degree 8.
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Let now consider *-PI’s in skew variables. What is the minimal possible degree
of such a polynomial identity ? For n = 2,4 the answer is as follows: [k? k,] is a
#-PI in skew variables for (M2(F'), s) of minimal degree; also, since [sy, k2]?, when
evaluated in (M4(F), s), takes values in the center (see [3, pag 203]), it follows that
[[k?, k2)?, k3] is a *-PI for (M4(F),s). It is also easy to see that this polynomial is
of minimal degree among #-PI’s in skew variables.

In the general case one could conjecture that if f is a #-PI for (M, (F),s)
in skew variables of minimal degree, then deg(f) = 2n — 1. In [7] the authors
constructed, for every n, a *-PI in skew variables of degree 2n — 1.

Definition 5.3 Let r > 2 and write y = z,. Define the polynomial

T‘l’(xl: . 'axi"—-l;y)

(5] =
= Y. POVt )48 Y B Nay, ... 0e050),
i=1 i=1
Notice that in T, the variable y never appears in the 4i position, i = 1,...,[r/4].

Using the technique of Theorem 4.2 one can prove (see [7]) the following
Theorem 5.4 Ty,_1(k1,...,k2n—2;kan—1) is a *-PI for (Mp(F),s).

Unfortunately we do not know if T5,_ is of minimal degree among *-PI’s for
(M, (F), s) in skew variables. The known best bound is stated in the following

Theorem 5.5 If f(k1,...,k;) s a *-PI for (Mp(F),s), n > 2, then deg(f) >
n+n/2.
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