Matrix Algebras with Transpose or Symplectic Involution and their *-Polynomial Identities ¹

Angela Valenti

Abstract: We look at the theory of *-polynomial identities of the algebra of $n \times n$ matrices over a field. The representation theory of the hyperoctahedral group and of the general linear group are applied for a quantitative study of the theory in characteristic zero. We examine the problem of determining *-polynomial identities of minimal degree for symplectic and transpose involution and new *-polynomial identities of degree 2n - 1 are constructed.

Key words: matrices, involution, polynomial identities.

Contents

1	Generalities	333
2	S_n and GL -cocharacters	335
3	*-Polynomial identities of minimal degree	337
4	Transpose Involution	339
5	Symplectic Involution	343

1 Generalities

Let F be a field of characteristic different from 2, $X = \{x_1, x_2, ...\}$ a countable set of unknowns and $F\{X, *\} = F\{x_1, x_1^*, x_2, x_2^*, ...\}$ the free algebra with involution * over F. If R is an F-algebra with involution *, we shall consider only involutions such that $(\alpha a)^* = \alpha a^*$ for all $\alpha \in F, a \in R$. Recall that a polynomial $0 \neq f(x_1, x_1^*, ..., x_m, x_m^*)$ in $F\{X, *\}$ is a *-polynomial identity (*-PI) for R if $f(r_1, r_1^*, ..., r_m, r_m^*) = 0$ for all $r_1, ..., r_m \in R$.

If one wants to study the *-PI's of an algebra R as a whole, then the right concept is that of *-T-ideal i. e., an ideal of the free algebra $F\{X, *\}$ invariant under all endomorphisms of $F\{X, *\}$ that commute with the involution *.

The connection between *-T-ideals and *-PI's is the following: if R is an F-algebra with involution,

 $T(R,*) = \{f(x_1, x_1^*, \dots, x_m, x_m^*) \in F\{X,*\} \mid f(x_1, x_1^*, \dots, x_m, x_m^*)\}$

¹Research partially supported by MURST of Italy and FAPESP of Brazil. AMS Classification: 16R50, 15A24.

is a
$$* - PI$$
 for R

is a *-T-ideal of $F\{X,*\}$. Moreover, if J is a *-T-ideal, $T(F\{X,*\}/J) = J$, so every *-T-ideal of the free algebra is of this type.

Let now $R = M_n(F)$, $n \ge 2$, be the algebra of $n \times n$ matrices over F. In $M_n(F)$ one can define several involutions; two of them play a very important role in the study of the *-PI's of $M_n(F)$: the transpose involution, denoted * = t, and the canonical symplectic involution, denoted * = s.

Recall that s is defined only in case n = 2m is even and it is given by the rule: if $A \in M_n(F)$, let $A = \begin{pmatrix} B & C \\ D & E \end{pmatrix}$ where $B, C, D, E \in M_m(F)$ and set $A^s = \begin{pmatrix} E^t & -C^t \\ -D^t & B^t \end{pmatrix}$,

where t is the usual transpose.

Let us write $(M_n(F), *)$ for the ring of $n \times n$ matrices with the involution *. The importance of the above two involutions is given in the following ([17, Theorem 3.1.62])

Theorem 1.1 Let F be an infinite field. If * is an involution in $M_n(F)$, then either $T((M_n(F), *)) = T((M_n(F), t))$ or $T((M_n(F), *)) = T((M_n(F), s))$.

Let us now give few examples of *-PI's for $M_n(F)$, for small values of n. They can all be checked by direct computation. Clearly every polynomial identity for $M_n(F)$ is a *-polynomial identity for $M_n(F)$. Let $S_m(x_1, \ldots, x_m)$ denote the standard polynomial of degree m.

Examples

- 1. $x_1 x_1^* \in T((M_1(F), t))$.
- 2. $[x_1 x_1^*, x_2 x_2^*] \in T((M_2(F), t)).$
- 3. $[x_1 + x_1^*, x_2] \in T((M_2(F), s))$.
- 4. $[S_3(x_1 x_1^*, x_2 x_2^*, x_3 x_3^*), x_4] \in T((M_3(F), t)).$
- 5. $[[x_1 + x_1^*, x_2 x_2^*]^2, x_3] \in T((M_4(F), s)).$
- 6. $S_6(x_1 x_1^*, \ldots, x_6 x_6^*) \in T((M_4(F), t)).$

The *-PI's of $(M_2(F), *)$, *= s or t, of minimal degree are well known; moreover, in characteristic zero, Levcenko in [10] exhibited a basis for the *-T-ideals $T(M_2(F), s)$ and $T(M_2(F), t)$. The result is the following

Theorem 1.2 Let charF = 0.

1. The *-polynomials

$$\begin{split} [(x-x^*)(y-y^*),z], \\ [x-x^*,y-y^*], \\ [x_1+x_1^*,x_2+x_2^*][x_3+x_3^*,x_4+x_4^*] + [x_2+x_2^*,x_3+x_3^*][x_1+x_1^*,x_4+x_4^*], \\ + [x_3+x_3^*,x_1+x_1^*][x_2+x_2^*,x_4+x_4^*], \\ [x-x^*,y+y^*,z-z^*,t+t^*] - 4(x-x^*)(z-z^*)[t+t^*,y+y^*] \\ are a set of generators for the *-T-ideal T(M_2(F),t). \end{split}$$

2. The *-polynomial

 $[x + x^*, y]$

generates the *-T-ideal $T(M_2(F), s)$.

2 S_n and *GL*-cocharacters

Methods of representation theory of the hyperoctahedral group and of the general linear group have been introduced in [4] and [5] to study T(R, *) in general. We will now sketch these methods.

Let H_n be the hyperoctahedral group of degree n. If $C_2 = \{1, *\}$ is the multiplicative group of order 2 and S_n is the symmetric group of degree n, then H_n is the wreath product C_2^n wr S_n and we write

$$H_n = \{(a_1, \ldots, a_n; \sigma) \mid a_i \in C_2, \sigma \in S_n\}$$

with multiplication defined by

$$(a_1,\ldots,a_n;\sigma)(b_1,\ldots,b_n;\tau)=(a_1b_{\sigma^{-1}(1)},\ldots,a_nb_{\sigma^{-1}(n)};\sigma\tau).$$

We say that a *-polynomial $f(x_1, x_1^*, \ldots, x_n, x_n^*)$ is multilinear if in every monomial of f, x_i or x_i^* , $i = 1, \ldots, n$, appears exactly once. Then

$$V_n(*) = \operatorname{Span}_F \{ x_{\sigma(1)}^{a_1} \cdots x_{\sigma(n)}^{a_n} \mid (a_1, \dots, a_n; \sigma) \in H_n \}$$

is the space of multilinear *-polynomials in $x_1, x_1^*, \ldots, x_n, x_n^*$.

This space is strictly related to the group algebra of H_n ; in fact the map

$$V_n(*) \to FH_n$$

given by

$$\sum_{(a;\sigma)\in H_n} \alpha_{(a;\sigma)} x_{\sigma(1)}^{a_{\sigma^{-1}(1)}} \cdots x_{\sigma(n)}^{a_{\sigma^{-1}(n)}} \to \sum_{(a;\sigma)\in H_n} \alpha_{(a;\sigma)}(a_1,\ldots,a_n;\sigma)$$

is an F-linear isomorphism of $V_n(*)$ onto FH_n . This map clearly induces a structure of S_n -module on $V_n(*)$. Let T be a *-T-ideal of $F\{X,*\}$. Then, under the above identification, $T_n = T \cap V_n(*)$ becomes a left ideal of FH_n .

Suppose char F = 0. Then every *-*T*-ideal is determined by its multilinear polynomials, hence to study *T* it is enough to study $\{T_n\}_{n>1}$.

Actually it is more convenient to study the sequence of left H_n -modules $\{V_n(*)/T_n\}_{n\geq 1}$. Let us denote by $\chi_n(T,*)$ the H_n -character of $V_n(*)/T_n$ and let us call $\{\chi_n(T)\}_{n\geq 1}$ the sequence of H_n -cocharacters of T. Since every character $\chi_n(T)$ is a sum of irreducible H_n -characters, the problem of determining $\chi_n(T)$ is reduced to that of computing the multiplicities of each irreducible H_n -character in such decomposition.

In characteristic zero it is known that there exists a one-to-one correspondence between non-equivalent irreducible representations of H_n and pairs of partition (λ, μ) where λ is a partition of k, μ is a partition of n - k and k = 0, ..., n. We write briefly $|\lambda| + |\mu| = n$. So, let us denote by $\chi_{\lambda,\mu}$ the irreducible H_n -character associated to the pair (λ, μ) .

If T is a *-T-ideal of *-PI's of the algebra R, then we write $\chi_n(T) = \chi_n(R, *)$ and we have

$$\chi_n(R,*) = \sum_{|\lambda|+|\mu|=n} m_{\lambda,\mu} \chi_{\lambda,\mu}$$

where $m_{\lambda,\mu}$ is the multiplicity of $\chi_{\lambda,\mu}$ in the given decomposition.

If $\lambda = (\lambda_1, \dots, \lambda_r)$, $\lambda_1 \ge \lambda_2 \ge \dots \ge \lambda_n > 0$ is a partition of n, we call $r = h(\lambda)$ the height of λ $(h(\lambda)$ is the height of the corresponding Young diagram). We have

Theorem 2.1 ([4, Theorem 6.2]) Let $r = \frac{k(k+1)}{2}$ and $u = \frac{k(k-1)}{2}$. Then $\chi_n(M_k(F), t) = \sum_{k=1}^{\infty} m_{\lambda,\mu} \chi_{\lambda,\mu}$

$$\chi_n(M_k(F), t) = \sum_{\substack{|\lambda| + |\mu| = n \\ h(\lambda) \le r \\ h(\mu) \le u}} m_{\lambda, \mu} \chi_{\lambda, \mu}$$

$$\chi_n(M_k(F), s) = \sum_{\substack{|\lambda| + |\mu| = n \\ h(\lambda) \le u \\ h(\mu) \le r}} m_{\lambda, \mu} \chi_{\lambda, \mu}.$$

We now turn to a description of the finite-dimensional polynomial representations of $GL(n) \times GL(n)$. This is intimately connected to partition of n - k and $k = 0, \ldots, n$. We write briefly $| l1, 2, \ldots$ define $s_i = x_i + x_i^*$ and $k_i = x_i - x_i^*$; then, since $charF \neq 2$, $F\{X, *\} = F\{s_1, k_1, s_2, k_2, \ldots\}$ has a natural multigrading obtained by counting the degrees in the symmetric variables s_i and in the skew variables k_i . For a fixed n, let U and V be n-dimensional vector spaces over Fwith bases $\{s_1, \ldots, s_n\}$ and $\{k_1, \ldots, k_n\}$ respectively. Let

$$W = (U \oplus V) \otimes \cdots \otimes (U \oplus V) = (U \oplus V)^{\otimes n}.$$

336

W can be identified with the space of homogeneous *-polynomials of degree n in the variables x_i and x_i^* . The group $GL(U) \times GL(V) \equiv GL(n) \times GL(n)$ acts naturally on the space $U \oplus V$ and we extend this action diagonally to an action on W.

The representation theory of $GL(U) \times GL(V)$ acting on W is well known: there exists a one-to-one correspondence between irreducible non-equivalent polynomial representations of $GL(U) \times GL(V)$ and pairs of partitions (λ, μ) where λ is a partition of k, μ is a partition of n - k and $k = 0, \ldots, n$. So, let us denote by $\psi_{\lambda,\mu}$ the irreducible character of $GL(U) \times GL(V)$ associated to the pair (λ, μ) . Also, if M is a $GL(U) \times GL(V)$ -module, let us write $\psi(M)$ for the character of M.

If T is a *-T-ideal, then $T \cap W$ is the space of homogeneous *-polynomials of degree n in $T \cap F\{x_1, x_1^*, \ldots, x_n, x_n^*\}$ and $T \cap W$ is a $GL(U) \times GL(V)$ -module. The $GL(U) \times GL(V)$ structure of $\frac{W}{T \cap W}$ and the H_n structure of $V_n(*)/T_n$ are related by the following result ([5, Theorem 3])

Theorem 2.2 Let T be a *-T-ideal of $F\{X,*\}$ and $\psi_n(T,*)$ the $GL(U) \times GL(V)$ character of $\frac{W}{T \cap W}$ If

$$\psi_n(T,*) = \sum_{|\lambda|+|\mu|=n} m_{\lambda,\mu} \psi_{\lambda,\mu}$$

and

$$\chi_n(T,*) = \sum_{|\lambda|+|\mu|=n} m'_{\lambda,\mu} \chi_{\lambda,\mu}$$

then $m_{\lambda,\mu} = m'_{\lambda,\mu}$.

A quantitative study of $T((M_2(F), t))$ and $T((M_2(F), s))$ in characteristic zero was done by Drensky and Giambruno in [2]. They obtained among other things the exact values of the multiplicities in the cocharacter sequence of the *-PI's for the 2 × 2 matrices with symplectic or transpose involution.

3 *-Polynomial identities of minimal degree

In this section we want to discuss the following

Problem 3.1 Find *-polynomial identities of minimal degree satisfied by $M_n(F)$.

The standard polynomial

$$S_m(x_1,\ldots,x_m) = \sum_{\sigma \in S_m} (sgn\sigma) x_{\sigma(1)} \cdots x_{\sigma(m)}$$

plays a very important role in PI-theory.

Let $T(M_n(F))$ denote the T-ideal of ordinary identities (without involution) satisfied by $M_n(F)$. The Amitsur-Levitzki theorem shows that

$$T(M_1(F)) \supset T(M_2(F)) \supset T(M_3(F)) \supset \cdots$$

is a properly descending chain of T-ideals whose intersection is zero and also gives the least degree of a polynomial satisfied by $M_n(F)$.

Theorem 3.2 (Amitsur-Levitzki)([17, Theorem 1.4.1]) $S_{2n}(x_1, \ldots, x_{2n})$ is a polynomial identity for $M_n(F)$ of minimal degree and any other multilinear polynomial identity of $M_n(F)$ of degree 2n is a scalar multiple of S_{2n} .

The original proof of Theorem 3.2 was a clever induction using matrix units but subsequently there have been several different proofs given by Kostant [11], based on the cohomology of $M_n(C)$ as a Lie algebra, by Swan [19], using graph theory, by Razmyslov [14] and Rosset [15] based on the Cayley-Hamilton Theorem.

The *-PI's of $M_n(F)$ of minimal degree do not seem to be well understood. In fact, the smallest possible degree of a *-PI for arbitrary n is not known. An easy argument shows that such degree must be at least n. The best lower bound is found in the following ([6, Theorem 1])

Theorem 3.3 If f is a *-PI for $(M_n(F), *)$ and n > 2, then $deg(f) \ge n + 1$.

It follows that, if f is a *-PI for $(M_n(F), *)$ of minimal degree and n > 2 then

 $2n \ge degf > n$.

By recalling that $F\{X, *\} = F\{s_1, k_1, s_2, k_2, \ldots\}$ then equivalently one can consider only polynomials in symmetric and skew variables.

About positive results, in [11] Kostant proved that if n is even then

 $S_{2n-2}(k_1,\ldots,k_{2n-2})$ is a *-PI for $(M_n(F),t)$. Rowen in [16] extended this result to arbitrary *n* and later in [18] he also proved that $S_{2n-2}(s_1,\ldots,s_{2n-2})$ is a *-PI for $(M_n(F),s)$.

No *-PI's of degree lower than 2n-2 are known for arbitrary n. Moreover, 2n-2 is not minimal for all n. In fact, for instance, if * = s, then $[x_1 + x_1^*, x_2 + x_2^*]$ is a *-PI of minimal degree for $(M_2(F), s)$, and since $[s_1, s_2]^2$, $[s_1, k_2]^2$, when evaluated in $(M_4(F), s)$, take values in the center (see [3, pag 203]), it follows that $(M_4(F), s)$ has *-PI's of degree 5. Moreover if * = t, Racine constructed *-PI's of degree 5 for $M_4(F)$.

Definition 3.4 For $m, r \ge 0$ define $w_i = \begin{cases} s_i & \text{if } i = 1, \dots, m \\ k_i & \text{if } i = m+1, \dots, m+r \end{cases}$ and let

$$W_{m,r} = Span_F\{w_{\sigma(1)}\cdots w_{\sigma(m+r)} \mid \sigma \in S_{m+r}\}$$

be the space of multilinear polynomials in m symmetric variables and r skew variables.

The problem of determining the *-PI's of minimal degree can be reformulated in the following two problems

Problem 3.5 For m = 0, 1, ..., n, find the least r such that

 $W_{m,r} \cap T((M_n(F), *)) \neq 0$

and exhibit a basis of this space.

Problem 3.6 For r = 0, 1, ..., n, find the least m such that

 $W_{m,r} \cap T((M_n(F),*)) \neq 0$

and exhibit a basis of this space.

4 Transpose Involution

If * = t it is easy to show that $S_{2n}(s_1, \ldots, s_{2n})$ is a *-PI for $(M_n(F), t)$ of minimal degree among *-PI's in symmetric variables.

It was shown in [12] by Ma and Racine that in general *-PI's of minimal degree need not resemble standard polynomials. In fact, they constructed a multilinear polynomial $f_{2n}(s_1, \ldots, s_{2n})$ such that any other homogeneous *-PI in symmetric variables of degree 2n is a consequence of f_{2n} $(n \neq 3)$ for large characteristic of the field.

Let $W_{\infty,1} = \bigcup_{m \ge 1} W_{m,1}$. In [7] it was constructed a polynomial in $W_{\infty,1} \cap T((M_n(F), t))$ of degree 2n - 1 of minimal degree among all *-PI's in one skew variable and the remaining symmetric variables; moreover it was shown that any other multilinear *-PI in $W_{\infty,1} \cap T((M_n(F), t))$ of degree 2n - 1 is a scalar multiple of this polynomial.

Definition 4.1 Let $r \ge 2$ and write $y = x_r$; if $1 \le j \le r$ define

$$P_r^{(j)}(x_1,\ldots,x_{r-1};y)=\sum_{\sigma\in S_{r-1}}(sgn\sigma)x_{\sigma(1)}\cdots x_{\sigma(j-1)}yx_{\sigma(j)}\cdots x_{\sigma(r-1)}$$

and, if $[\alpha]$ denotes the integral part of the real number α , define

$$P_r(x_1,\ldots,x_{r-1};y) = \sum_{i=1}^{\left[\frac{r+1}{2}\right]} (-1)^{i+1} P_r^{(2i-1)}(x_1,\ldots,x_{r-1};y).$$

Notice that if $r \equiv 3 \pmod{4}$, then we can also write, for r = 4m - 1,

$$P_{4m-1}(x_1,\ldots,x_{4m-2};y) = \sum_{i=0}^{m-1} P_{4m-1}^{(4i+1)}(x_1,\ldots,x_{4m-2};y) - \sum_{i=1}^m P_{4m-1}^{(4i-1)}(x_1,\ldots,x_{4m-2};y).$$

The result is the following

Theorem 4.2

- 1. $P_{2n-1}(s_1, \ldots, s_{2n-2}; k_{2n-1})$ is a *-PI for $(M_n(F), t)$.
- 2. If $f(s_1, \ldots, s_{2n-2}, k_{2n-1})$ is a multilinear *-PI for $(M_n(F), t)$ then $f = \alpha P_{2n-1}$ for some $\alpha \in F$.
- 3. If $f(k_1, s_2, \ldots, s_l)$ is a *-PI for $(M_n(F), t)$ such that $deg_{k_1}(f) = 1$ then $deg(f) \ge 2n-1$.

The proof of this theorem is based on a technique of Razmyslov [14] used to give a proof of the Amitsur-Leviztki theorem and in the following remarks

Remark 4.3 If A is a symmetric $n \times n$ matrix under the symplectic involution, then n = 2m and A satisfies a polynomial of degree m

$$p(x) = x^m - \mu_1 x^{m-1} + \mu_2 x^{m-2} - \ldots + (-1)^m \mu_m$$

such that $p(x)^2$ is the characteristic polynomial of A.

In case char F = 0, it is possible to derive formulas, analogous to Newton's formulas, which allow to write the coefficients μ_i as polynomials in $tr(A), tr(A^2), \ldots, tr(A^m)$ with rational coefficients; they are given inductively by the formulas

$$\mu_0 = 1, \ 2i\mu_i = \sum_{j=1}^{i} (-1)^{j-1} \mu_{i-j} tr(A^j)$$

(see [17, pag 150]).

Remark 4.4 Let A be a commutative ring. If $U_1, \ldots, U_{2l} \in M_n(A)$ then $trS_{2l}(U_1, \ldots, U_{2l}) = 0$.

This can be proved by noticing that if w_1, w_2 are two monomials in the U_i 's which are cyclic permutations of one another, then on one side $tr(w_1) = tr(w_2)$ and on the other side w_1 and w_2 have opposite signs in $S_{2l}(U_1, \ldots, U_{2l})$.

Let us denote by $M_n^+(F)$ and $M_n^-(F)$ the spaces of symmetric and skew elements of $(M_n(F), *)$ respectively.

Proof of Theorem 4.2 We shall sketch the proof of the first and second part of the theorem.

Since P_{2n-1} has coefficients ± 1 , it is enough to prove the theorem in case char F = 0. Suppose first that n = 2m is even. In this case if $C \in M_n^-(F)$ is invertible, then the map $\phi : A \to C^{-1}A^tC$ defines an involution of symplectic type on $M_n(F)$. If $B \in M_n(F)$, $B = -B^t$ then BC under this involution is a symmetric element. Thus, by Remark 4.3, BC satisfies a polynomial of degree m; let

$$(BC)^m - \mu_1(BC)^{m-1} + \dots + (-1)^m \mu_m = 0$$

340

where the μ_i s are polynomial expressions with rational coefficients in tr(BC), $tr(BC)^2, \ldots, tr(BC)^m$.

Now, by a Zariski density argument it follows that we may take B, C arbitrary elements in $M_n(F)^-$ under the transpose involution; also, if we multilinearize the above relation we get

$$\sum_{\sigma,\tau\in S_m} B_{\sigma(1)}C_{\tau(1)}B_{\sigma(2)}C_{\tau(2)}\cdots B_{\sigma(m)}C_{\tau(m)} + Q = 0$$
(1)

where $B_1, C_1, \ldots, B_m, C_m \in M_n^-(F)$ and Q is a linear combination of products of the form $B_{\sigma(i_1)}C_{\tau(i_1)}\cdots B_{\sigma(i_l)}C_{\tau(i_l)}$, with $1 \leq i_1 < i_2 < \ldots < i_l \leq m$, l < m with coefficients polynomials in traces of the form

$$tr(B_{\sigma(j_1)}C_{\tau(j_1)}\cdots B_{\sigma(j_r)}C_{\tau(j_r)}).$$

Take $A_1, \ldots A_{2n-2} \in M_n^+(F)$ and $B \in M_n^-(F)$; then $[A_i, A_j] = A_i A_j - A_j A_i \in M_n^-(F)$ and we make in (1) the substitutions

$$B_{1} = B, \qquad C_{1} = [A_{1}, A_{2}], \\ B_{2} = [A_{3}, A_{4}], \qquad C_{2} = [A_{5}, A_{6}], \\ \vdots \qquad \vdots \\ B_{m} = [A_{2n-5}, A_{2n-4}], \qquad C_{m} = [A_{2n-3}, A_{2n-2}].$$

We obtain from (1) a new equation and we write the left hand side as $f(A_1, \ldots, A_{2n-2}, B)$, a polynomial with traces.

Now in (1) make the substitutions

$$B_{1} = [A_{1}, A_{2}], \qquad C_{1} = B, \\ B_{2} = [A_{3}, A_{4}], \qquad C_{2} = [A_{5}, A_{6}], \\ \vdots \qquad \vdots \\ B_{m} = [A_{2n-5}, A_{2n-4}], \qquad C_{m} = [A_{2n-3}, A_{2n-2}];$$

we obtain a new equation and let $g(A_1, \ldots, A_{2n-2}, B)$ be the resulting left hand side.

Let \overline{f} and \overline{g} be the skewsymmetrizations of f and g respectively with respect to the variables A_1, \ldots, A_{2n-2} ; it follows that

$$0 = \overline{f}(A_1, \dots, A_{2n-2}, B) - \overline{g}(A_1, \dots, A_{2n-2}, B)$$

= $2^{m-1}P_{2n-1}(A_1, \dots, A_{2n-1}; B)$
+ a linear combination of terms with tr .

Thus, in order to complete the proof of the theorem in case n is even, it is enough to prove that all the coefficients of the remaining terms (which involve traces) are zero.

Notice that, the traces in which B does not appear in \overline{f} and \overline{g} are of the form $tr(S_{2j}(A_{i_1},\ldots,A_{i_{2j}}))$ and this is zero by Remark 4.4. Also, one checks that in $\overline{f}-\overline{g}$ the traces involving B vanish too. This proves the theorem in case n is even.

In case n is odd, embed $M_n(F)$ in the upper left corner of $M_{n+1}(F)$ with induced transpose involution and write

$$P_{2(n+1)-1}(s_1, \dots, s_{2n}; k_{2n+1}) = P_{2n-1}(s_1, \dots, s_{2n-2}; k_{2n+1})s_{2n-1}s_{2n} + h(s_1, \dots, s_{2n}, k_{2n+1})$$

where no monomial of $h(s_1, \ldots, s_{2n}, k_{2n+1})$ ends with $s_{2n-1}s_{2n}$. Now take $j_0 \in \{1, \ldots, n\}$. Then $e_{j_0 n+1} + e_{n+1j_0}$, $e_{n+1n+1} \in M_n^+(F)$ and let $A_1, \ldots, A_{2n-2} \in M_n^+(F)$, $B \in M_n^-(F)$. Since n+1 is even, by the first part of the proof, $P_{2(n+1)-1}(s_1, \ldots, s_{2n}; k_{2n+1})$ is a *-PI for $(M_{n+1}(F), t)$; thus

$$0 = P_{2(n+1)-1}(A_1, \dots, A_{2n-2}, e_{j_0 n+1} + e_{n+1 j_0}, e_{n+1 n+1}; B)e_{n+1 n+1}$$

= $P_{2n-1}(A_1, \dots, A_{2n-2}; B)(e_{j_0 n+1} + e_{n+1 j_0})e_{n+1 n+1}$
+ $h(A_1, \dots, A_{2n-2}, e_{j_0 n+1} + e_{n+1 j_0}, e_{n+1 n+1}, B)e_{n+1 n+1}$
= $P_{2n-1}(A_1, \dots, A_{2n-2}; B)e_{j_0 n+1}.$

Since j_0 is arbitrary in $\{1, \ldots, n\}$, we get $P_{2n-1}(A_1, \ldots, A_{2n-2}; B) = 0$ for all $A_1, \ldots, A_{2n-2} \in M_n^+(F)$ and $B \in M_n^-(F)$ and we are done.

To prove the second part of the theorem, one proves by induction on n that if $f(s_1, \ldots, s_{2n-2}, k)$ is a *-PI for $M_n(F), t$ then

$$f(s_1, \dots, s_{2n-2}, k) = \alpha \sum_{\substack{i,j=1\\i < j}}^{2n-2} (-1)^{i+j} [s_i, s_j] P_{2n-3}(s_1, \dots, \hat{s}_i, \dots, \hat{s}_j, \dots, s_{2n-2}; k) + k \cdot h(s_1, \dots, s_{2n-2})$$

for some $\alpha \in F$.

Now, an easy calculation shows that in general

$$P_{2n-1}(s_1, \dots, s_{2n-2}; k) = \sum_{\substack{i,j=1\\i < j}}^{2n-2} (-1)^{i+j} [s_i, s_j] P_{2n-3}(s_1, \dots, \hat{s}_i, \dots, \hat{s}_j, \dots, s_{2n-2}; k) + k \cdot S_{2n-2}(s_1, \dots, s_{2n-2}).$$

Thus, since P_{2n-1} and f are *-PI's for $(M_n(F), t)$ also

$$f - \alpha P_{2n-1} = k \cdot (h(s_1, \dots, s_{2n-2}) - \alpha S_{2n-2}(s_1, \dots, s_{2n-2}))$$

vanishes in $(M_n(F), t)$.

Let \overline{K} denote the subring generated by the skew elements of $M_n(F)$; then, since n > 2, by [8, Theorem 2.1.10], $\overline{K} = M_n(F)$. It follows that for all $A_1, \ldots, A_{2n-2} \in M_n^+(F)$,

$$M_n(F) \cdot (h(A_1, \ldots, A_{2n-2}) - \alpha S_{2n-2}(A_1, \ldots, A_{2n-2})) = 0.$$

Therefore, being $M_n(F)$ a prime ring,

$$h(s_1,\ldots,s_{2n-2}) - \alpha S_{2n-2}(s_1,\ldots,s_{2n-2})$$

must vanish in $M_n^+(F)$. Since $(M_n(F), t)$ satisfies no *-PI's in symmetric variables of degree lower than 2n, it follows that $h = \alpha S_{2n-2}$ and we are done.

Having solved problem 3.5 for the case $W_{m,1}$, it is natural to try to solve problem 3.5 for $W_{m,2}$. There is no existence theorem proved in this case. Nevertheless the following result holds ([7, Proposition 3])

Theorem 4.5 Let $f(k_1, k_2, s_3, ..., s_r)$ be a *-PI for $(M_n(F), t)$, n > 2, such that $deg_{k_1}(f) = deg_{k_2}(f) = 1$. Then $deg(f) \ge 2n - 1$.

5 Symplectic Involution

In this section we study the space of multilinear *-PI's of $(M_n(F), s)$. Let us consider *-PI's of minimal degree for $(M_n(F), s)$ in symmetric variables. The polynomials $[s_1, s_2]$ and $[[s_1, s_2]^2, s_3]$ are *-PI's of minimal degree for n = 2 and n = 4 respectively. For n > 4 the best known lower bound is found in ([1, Theorem 2.4])

Theorem 5.1 If char F = 0, $(M_n(F), s)$ does not satisfy *-PI's in symmetric variables of degree n + 1 for any n > 4.

The proof is based on the following idea. If n = 2m, then every *-PI in symmetric variables for $(M_n(F), s)$ is an ordinary polynomial identity for the $m \times m$ matrix algebra $M_m(F)$. The polynomial identities of $M_n(F)$ of degree m+1 have been described by Leron [9]. It turns out that they all follow from the standard identity $S_{2m}(x_1, \ldots, x_{2m})$. Hence it suffices to show that no multilinear consequence of degree n + 1 = 2m + 1 of $S_{2m}(x_1, \ldots, x_{2m})$ vanishes on the symmetric elements from $(M_n(F), s)$.

Inspired by this result is the following

Theorem 5.2 ([13, Theorem 3.1]) If char F = 0, $(M_6(F), s)$ does not satisfy *-PI's in symmetric variables of degree 8.

Let now consider *-PI's in skew variables. What is the minimal possible degree of such a polynomial identity? For n = 2, 4 the answer is as follows: $[k_1^2, k_2]$ is a *-PI in skew variables for $(M_2(F), s)$ of minimal degree; also, since $[s_1, k_2]^2$, when evaluated in $(M_4(F), s)$, takes values in the center (see [3, pag 203]), it follows that $[[k_1^2, k_2]^2, k_3]$ is a *-PI for $(M_4(F), s)$. It is also easy to see that this polynomial is of minimal degree among *-PI's in skew variables.

In the general case one could conjecture that if f is a *-PI for $(M_n(F), s)$ in skew variables of minimal degree, then deg(f) = 2n - 1. In [7] the authors constructed, for every n, a *-PI in skew variables of degree 2n - 1.

Definition 5.3 Let r > 2 and write $y = x_r$. Define the polynomial

$$T_r(x_1,\ldots,x_{r-1};y) = \sum_{i=1}^{\left[\frac{r+1}{2}\right]} P_r^{(2i-1)}(x_1,\ldots,x_{r-1};y) + 2\sum_{i=1}^{\left[\frac{r+3}{4}\right]} P_r^{(4i-2)}(x_1,\ldots,x_{r-1};y).$$

Notice that in T_r the variable y never appears in the 4*i* position, i = 1, ..., [r/4]. Using the technique of Theorem 4.2 one can prove (see [7]) the following

Theorem 5.4 $T_{2n-1}(k_1, \ldots, k_{2n-2}; k_{2n-1})$ is a *-PI for $(M_n(F), s)$.

Unfortunately we do not know if T_{2n-1} is of minimal degree among *-PI's for $(M_n(F), s)$ in skew variables. The known best bound is stated in the following

Theorem 5.5 If $f(k_1,...,k_r)$ is a *-PI for $(M_n(F),s)$, n > 2, then deg(f) > n + n/2.

References

- V. S. Drensky and A. Giambruno, On the *-polynomial identities of minimal degree for matrices with involution, Boll. Un. Mat. It. (7) 9-A (1995), 471-482.
- [2] V. S. Drensky and A. Giambruno, Cocharacters, codimensions and Hilbert series of the polynomial identities for 2 × 2 matrices with involution, Canad. J. Math. 46 (1994), 718-733.
- [3] A. Giambruno, Algebraic conditions on rings with involution, J. Algebra 50 (1978), 190-212.
- [4] A. Giambruno and A. Regev, Wreath products and PI-algebras, J. Pure Applied Algebra 35 (1985), 133-149.

- [5] A. Giambruno, $GL \times GL$ representations and *-polynomial identities, Comm. Algebra 14 (1986), 787-796.
- [6] A. Giambruno, On *-polynomial identities for n × n matrices, J. Algebra 133 (1990), 433-438.
- [7] A. Giambruno and A. Valenti, On minimal *-identities of matrices, Linear and Multilinear Algebra, 39 (1995), 309-323.
- [8] I. N. Herstein, Rings with Involution, U. of Chicago Press, Chicago, 1976.
- [9] U. Leron, Multilinear identities of the matrix ring, Trans. Amer. Math. Soc. 183 (1973), 175-202.
- [10] D. V.Levchenko, Finite basis of identities with involution for the second order matrix algebra, Serdica 8 (1982), 42-56 (Russian).
- [11] B. Kostant, A theorem of Frobenius, a theorem of Amitsur-Levitzki and cohomology theory, Indiana J. Math. (and Mech.) 7 (1958), 237-264.
- [12] Ma Wenxin and M. L. Racine, Minimal identities of symmetric matrices, Trans. Amer. Math. Soc. 320 (1990), 171-192.
- [13] T. G. Rashkova, On the minimal degree of the *-polynomial Identities for the matrix algebra of order 6 with symplectic involution, Rend. Circ. Mat. Palermo (to appear).
- [14] Y. P. Razmyslov, Trace identities of full matrix algebras over a field of characteristic zero, Math USSR Izv. 8 (1974), 727-760.
- [15] S. Rosset, A new proof of the Amitsur-Levitski identity, Israel J. Math. 23 (1976), 187-188.
- [16] L. H. Rowen, Standard polynomials in matrix algebras, Trans. Amer. Math. Soc. 190 (1974), 253-284.
- [17] L. Rowen, "Polynomial Identities in Ring Theory", Academic Press, New York, 1980.
- [18] L. H. Rowen, A simple proof of Kostant's theorem, and an analogue for the symplectic involution, Contemp. Math., vol. 13, Amer. Math. Soc., Providence, R. I., 1982, pp. 207-215.
- [19] R. Swan, An application of graph theory to algebra, Proc. Amer. Math. Soc. 14 (1963) 367-373.

Angela Valenti Dipartimento di Matematica Università di Palermo Via Archirafi 34 90123 Palermo avalenti@ipamat.math.unipa.it Italy