Matrix Algebras with Transpose or Symplectic Involution and their *-Polynomial Identities ${ }^{1}$

Angela Valenti

Abstract

We look at the theory of *-polynomial identities of the algebra of $n \times n$ matrices over a field. The representation theory of the hyperoctahedral group and of the general linear group are applied for a quantitative study of the theory in characteristic zero. We examine the problem of determining $*$-polynomial identities of minimal degree for symplectic and transpose involution and new *-polynomial identities of degree $2 n-1$ are constructed.

Key words: matrices, involution, polynomial identities.

Contents

1 Generalities 333
$2 S_{n}$ and $G L$-cocharacters 335
3 *-Polynomial identities of minimal degree 337
4 Transpose Involution 339
5 Symplectic Involution 343

1 Generalities

Let F be a field of characteristic different from $2, X=\left\{x_{1}, x_{2}, \ldots\right\}$ a countable set of unknowns and $F\{X, *\}=F\left\{x_{1}, x_{1}^{*}, x_{2}, x_{2}^{*}, \ldots\right\}$ the free algebra with involution * over F. If R is an F-algebra with involution $*$, we shall consider only involutions such that $(\alpha a)^{*}=\alpha a^{*}$ for all $\alpha \in F, a \in R$. Recall that a polynomial $0 \neq f\left(x_{1}, x_{1}^{*}, \ldots, x_{m}, x_{m}^{*}\right)$ in $F\{X, *\}$ is a *-polynomial identity (*-PI) for R if $f\left(r_{1}, r_{1}^{*}, \ldots, r_{m}, r_{m}^{*}\right)=0$ for all $r_{1}, \ldots, r_{m} \in R$.

If one wants to study the $*$-PI's of an algebra R as a whole, then the right concept is that of $*-T$-ideal i. e., an ideal of the free algebra $F\{X, *\}$ invariant under all endomorphisms of $F\{X, *\}$ that commute with the involution *.

The connection between $*-T$-ideals and *-PI's is the following: if R is an F algebra with involution,

$$
T(R, *)=\left\{f\left(x_{1}, x_{1}^{*}, \ldots, x_{m}, x_{m}^{*}\right) \in F\{X, *\} \mid f\left(x_{1}, x_{1}^{*}, \ldots, x_{m}, x_{m}^{*}\right)\right.
$$

[^0]
is a *-PI for $R\}$

is a $*-T$-ideal of $F\{X, *\}$. Moreover, if J is a $*-T$-ideal, $T(F\{X, *\} / J)=J$, so every $*$ - T-ideal of the free algebra is of this type.

Let now $R=M_{n}(F), n \geq 2$, be the algebra of $n \times n$ matrices over F. $\operatorname{In} M_{n}(F)$ one can define several involutions; two of them play a very important role in the study of the $*$-PI's of $M_{n}(F)$: the transpose involution, denoted $*=t$, and the canonical symplectic involution, denoted $*=s$.

Recall that s is defined only in case $n=2 m$ is even and it is given by the rule: if $A \in M_{n}(F)$, let $A=\left(\begin{array}{cc}B & C \\ D & E\end{array}\right)$ where $B, C, D, E \in M_{m}(F)$ and set

$$
A^{s}=\left(\begin{array}{cc}
E^{t} & -C^{t} \\
-D^{t} & B^{t}
\end{array}\right),
$$

where t is the usual transpose.
Let us write $\left(M_{n}(F), *\right)$ for the ring of $n \times n$ matrices with the involution *. The importance of the above two involutions is given in the following ([17, Theorem 3.1.62])

Theorem 1.1 Let F be an infinite field. If $*$ is an involution in $M_{n}(F)$, then either $T\left(\left(M_{n}(F), *\right)\right)=T\left(\left(M_{n}(F), t\right)\right)$ or $T\left(\left(M_{n}(F), *\right)\right)=T\left(\left(M_{n}(F), s\right)\right)$.

Let us now give few examples of $*$-PI's for $M_{n}(F)$, for small values of n. They can all be checked by direct computation. Clearly every polynomial identity for $M_{n}(F)$ is a *-polynomial identity for $M_{n}(F)$. Let $S_{m}\left(x_{1}, \ldots, x_{m}\right)$ denote the standard polynomial of degree m.

Examples

1. $x_{1}-x_{1}^{*} \in T\left(\left(M_{1}(F), t\right)\right.$.
2. $\left[x_{1}-x_{1}^{*}, x_{2}-x_{2}^{*}\right] \in T\left(\left(M_{2}(F), t\right)\right.$.
3. $\left[x_{1}+x_{1}^{*}, x_{2}\right] \in T\left(\left(M_{2}(F), s\right)\right.$.
4. $\left[S_{3}\left(x_{1}-x_{1}^{*}, x_{2}-x_{2}^{*}, x_{3}-x_{3}^{*}\right), x_{4}\right] \in T\left(\left(M_{3}(F), t\right)\right.$.
5. $\left[\left[x_{1}+x_{1}^{*}, x_{2}-x_{2}^{*}\right]^{2}, x_{3}\right] \in T\left(\left(M_{4}(F), s\right)\right.$.
6. $S_{6}\left(x_{1}-x_{1}^{*}, \ldots, x_{6}-x_{6}^{*}\right) \in T\left(\left(M_{4}(F), t\right)\right.$.

The *-PI's of $\left(M_{2}(F), *\right), *=\mathrm{s}$ or t , of minimal degree are well known; moreover, in characteristic zero, Levcenko in [10] exhibited a basis for the $*-T$-ideals $T\left(M_{2}(F), s\right)$ and $T\left(M_{2}(F), t\right)$. The result is the following

Theorem 1.2 Let char $F=0$.

1. The *-polynomials

$$
\begin{gathered}
{\left[\left(x-x^{*}\right)\left(y-y^{*}\right), z\right],} \\
{\left[x-x^{*}, y-y^{*}\right],} \\
{\left[x_{1}+x_{1}^{*}, x_{2}+x_{2}^{*}\right]\left[x_{3}+x_{3}^{*}, x_{4}+x_{4}^{*}\right]+\left[x_{2}+x_{2}^{*}, x_{3}+x_{3}^{*}\right]\left[x_{1}+x_{1}^{*}, x_{4}+x_{4}^{*}\right],} \\
+\left[x_{3}+x_{3}^{*}, x_{1}+x_{1}^{*}\right]\left[x_{2}+x_{2}^{*}, x_{4}+x_{4}^{*}\right], \\
{\left[x-x^{*}, y+y^{*}, z-z^{*}, t+t^{*}\right]-4\left(x-x^{*}\right)\left(z-z^{*}\right)\left[t+t^{*}, y+y^{*}\right]}
\end{gathered}
$$

are a set of generators for the $*-T$-ideal $T\left(M_{2}(F), t\right)$.
2. The *-polynomial

$$
\left[x+x^{*}, y\right]
$$

generates the $*-T$-ideal $T\left(M_{2}(F), s\right)$.

$2 S_{n}$ and $G L$-cocharacters

Methods of representation theory of the hyperoctahedral group and of the general linear group have been introduced in [4] and [5] to study $T(R, *)$ in general. We will now sketch these methods.

Let H_{n} be the hyperoctahedral group of degree n . If $C_{2}=\{1, *\}$ is the multiplicative group of order 2 and S_{n} is the symmetric group of degree n, then H_{n} is the wreath product C_{2}^{n} wr S_{n} and we write

$$
H_{n}=\left\{\left(a_{1}, \ldots, a_{n} ; \sigma\right) \mid a_{i} \in C_{2}, \sigma \in S_{n}\right\}
$$

with multiplication defined by

$$
\left(a_{1}, \ldots, a_{n} ; \sigma\right)\left(b_{1}, \ldots, b_{n} ; \tau\right)=\left(a_{1} b_{\sigma^{-1}(1)}, \ldots, a_{n} b_{\sigma^{-1}(n)} ; \sigma \tau\right) .
$$

We say that a $*$-polynomial $f\left(x_{1}, x_{1}^{*}, \ldots, x_{n}, x_{n}^{*}\right)$ is multilinear if in every monomial of f, x_{i} or $x_{i}^{*}, i=1, \ldots, n$, appears exactly once. Then

$$
V_{n}(*)=\operatorname{Span}_{F}\left\{x_{\sigma(1)}^{a_{1}} \cdots x_{\sigma(n)}^{a_{n}} \mid\left(a_{1}, \ldots, a_{n} ; \sigma\right) \in H_{n}\right\}
$$

is the space of multilinear $*$-polynomials in $x_{1}, x_{1}^{*}, \ldots, x_{n}, x_{n}^{*}$.
This space is strictly related to the group algebra of H_{n}; in fact the map

$$
V_{n}(*) \rightarrow F H_{n}
$$

given by

$$
\sum_{(a ; \sigma) \in H_{n}} \alpha_{(a ; \sigma)} x_{\sigma(1)}^{a_{\sigma}-1(1)} \cdots x_{\sigma(n)}^{a_{\sigma-1}(n)} \rightarrow \sum_{(a ; \sigma) \in H_{n}} \alpha_{(a ; \sigma)}\left(a_{1}, \ldots, a_{n} ; \sigma\right)
$$

is an F - linear isomorphism of $V_{n}(*)$ onto $F H_{n}$. This map clearly induces a structure of S_{n}-module on $V_{n}(*)$. Let T be a $*$ - T-ideal of $F\{X, *\}$. Then, under the above identification, $T_{n}=T \cap V_{n}(*)$ becomes a left ideal of $F H_{n}$.

Suppose char $F=0$. Then every $*-T$-ideal is determined by its multilinear polynomials, hence to study T it is enough to study $\left\{T_{n}\right\}_{n \geq 1}$.

Actually it is more convenient to study the sequence of left H_{n}-modules $\left\{V_{n}(*) / T_{n}\right\}_{n \geq 1}$. Let us denote by $\chi_{n}(T, *)$ the H_{n}-character of $V_{n}(*) / T_{n}$ and let us call $\left\{\chi_{n}(T)\right\}_{n \geq 1}$ the sequence of H_{n}-cocharacters of T. Since every character $\chi_{n}(T)$ is a sum of irreducible H_{n}-characters, the problem of determining $\chi_{n}(T)$ is reduced to that of computing the multiplicities of each irreducible H_{n}-character in such decomposition.

In characteristic zero it is known that there exists a one-to-one correspondence between non-equivalent irreducible representations of H_{n} and pairs of partition (λ, μ) where λ is a partition of k, μ is a partition of $n-k$ and $k=0, \ldots, n$. We write briefly $|\lambda|+|\mu|=n$. So, let us denote by $\chi_{\lambda, \mu}$ the irreducible H_{n}-character associated to the pair (λ, μ).

If T is a $*$-T-ideal of $*$-PI's of the algebra R, then we write $\chi_{n}(T)=\chi_{n}(R, *)$ and we have

$$
\chi_{n}(R, *)=\sum_{|\lambda|+|\mu|=n} m_{\lambda, \mu} \chi_{\lambda, \mu}
$$

where $m_{\lambda, \mu}$ is the multiplicity of $\chi_{\lambda, \mu}$ in the given decomposition.
If $\lambda=\left(\lambda_{1}, \ldots, \lambda_{r}\right), \lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{n}>0$ is a partition of n , we call $r=h(\lambda)$ the height of $\lambda(h(\lambda)$ is the height of the corresponding Young diagram). We have

Theorem 2.1 ([4, Theorem 6.2]) Let $r=\frac{k(k+1)}{2}$ and $u=\frac{k(k-1)}{2}$. Then

$$
\chi_{n}\left(M_{k}(F), t\right)=\sum_{\substack{|\lambda|+|\mu|=n \\ h(\lambda) \leq r \\ h(\mu) \leq u}} m_{\lambda, \mu} \chi_{\lambda, \mu}
$$

and

$$
\chi_{n}\left(M_{k}(F), s\right)=\sum_{\substack{|\lambda|+|\mu|=n \\ h(\lambda) \leq u \\ h(\mu) \leq r}} m_{\lambda, \mu} \chi_{\lambda, \mu} .
$$

We now turn to a description of the finite-dimensional polynomial representations of $G L(n) \times G L(n)$. This is intimately connected to partition of $n-k$ and $k=0, \ldots, n$. We write briefly $\mid l 1,2, \ldots$ define $s_{i}=x_{i}+x_{i}^{*}$ and $k_{i}=x_{i}-x_{i}^{*}$; then, since char $F \neq 2, F\{X, *\}=F\left\{s_{1}, k_{1}, s_{2}, k_{2}, \ldots\right\}$ has a natural multigrading obtained by counting the degrees in the symmetric variables s_{i} and in the skew variables k_{i}. For a fixed n, let U and V be n-dimensional vector spaces over F with bases $\left\{s_{1}, \cdots, s_{n}\right\}$ and $\left\{k_{1}, \ldots, k_{n}\right\}$ respectively. Let

$$
W=(U \oplus V) \otimes \cdots \otimes(U \oplus V)=(U \oplus V)^{\otimes n} .
$$

W can be identified with the space of homogeneous *-polynomials of degree n in the variables x_{i} and x_{i}^{*}. The group $G L(U) \times G L(V) \equiv G L(n) \times G L(n)$ acts naturally on the space $U \oplus V$ and we extend this action diagonally to an action on W.

The representation theory of $G L(U) \times G L(V)$ acting on W is well known: there exists a one-to-one correspondence between irreducible non-equivalent polynomial representations of $G L(U) \times G L(V)$ and pairs of partitions (λ, μ) where λ is a partition of k, μ is a partition of $n-k$ and $k=0, \ldots, n$. So, let us denote by $\psi_{\lambda, \mu}$ the irreducible character of $G L(U) \times G L(V)$ associated to the pair (λ, μ). Also, if M is a $G L(U) \times G L(V)$-module, let us write $\psi(M)$ for the character of M .

If T is a $*-T$-ideal, then $T \cap W$ is the space of homogeneous $*$-polynomials of degree n in $T \cap F\left\{x_{1}, x_{1}^{*}, \ldots x_{n}, x_{n}^{*}\right\}$ and $T \cap W$ is a $G L(U) \times G L(V)$-module. The $G L(U) \times G L(V)$ structure of $\frac{W}{T \cap W}$ and the H_{n} structure of $V_{n}(*) / T_{n}$ are related by the following result ([5, Theorem 3])

Theorem 2.2 Let T be a $*-T$-ideal of $F\{X, *\}$ and $\psi_{n}(T, *)$ the $G L(U) \times G L(V)$ character of $\frac{W}{T \cap W}$. If

$$
\psi_{n}(T, *)=\sum_{|\lambda|+|\mu|=n} m_{\lambda, \mu} \psi_{\lambda, \mu}
$$

and

$$
\chi_{n}(T, *)=\sum_{|\lambda|+|\mu|=n} m_{\lambda, \mu}^{\prime} \chi_{\lambda, \mu}
$$

then $m_{\lambda, \mu}=m_{\lambda, \mu}^{\prime}$.

A quantitative study of $T\left(\left(M_{2}(F), t\right)\right)$ and $T\left(\left(M_{2}(F), s\right)\right)$ in characteristic zero was done by Drensky and Giambruno in [2]. They obtained among other things the exact values of the multiplicities in the cocharacter sequence of the $*$-PI's for the 2×2 matrices with symplectic or transpose involution.

3 *-Polynomial identities of minimal degree

In this section we want to discuss the following
Problem 3.1 Find *-polynomial identities of minimal degree satisfied by $M_{n}(F)$.
The standard polynomial

$$
S_{m}\left(x_{1}, \ldots, x_{m}\right)=\sum_{\sigma \in S_{m}}(\operatorname{sgn} \sigma) x_{\sigma(1)} \cdots x_{\sigma(m)}
$$

plays a very important role in PI-theory.

Let $T\left(M_{n}(F)\right)$ denote the T-ideal of ordinary identities (without involution) satisfied by $M_{n}(F)$. The Amitsur-Levitzki theorem shows that

$$
T\left(M_{1}(F)\right) \supset T\left(M_{2}(F)\right) \supset T\left(M_{3}(F)\right) \supset \cdots
$$

is a properly descending chain of T-ideals whose intersection is zero and also gives the least degree of a polynomial satisfied by $M_{n}(F)$.

Theorem 3.2 (Amitsur-Levitzki)([17, Theorem1.4.1]) $S_{2 n}\left(x_{1}, \ldots, x_{2 n}\right)$ is a polynomial identity for $M_{n}(F)$ of minimal degree and any other multilinear polynomial identity of $M_{n}(F)$ of degree $2 n$ is a scalar multiple of $S_{2 n}$.

The original proof of Theorem 3.2 was a clever induction using matrix units but subsequently there have been several different proofs given by Kostant [11], based on the cohomology of $M_{n}(C)$ as a Lie algebra, by Swan [19], using graph theory, by Razmyslov [14] and Rosset [15] based on the Cayley-Hamilton Theorem.

The *-PI's of $M_{n}(F)$ of minimal degree do not seem to be well understood. In fact, the smallest possible degree of a $*$-PI for arbitrary n is not known. An easy argument shows that such degree must be at least n. The best lower bound is found in the following ($[6$, Theorem 1])

Theorem 3.3 If f is a $*-P I$ for $\left(M_{n}(F), *\right)$ and $n>2$, then $\operatorname{deg}(f) \geq n+1$.
It follows that, if f is a $*-\mathrm{PI}$ for $\left(M_{n}(F), *\right)$ of minimal degree and $n>2$ then

$$
2 n \geq \operatorname{deg} f>n .
$$

By recalling that $F\{X, *\}=F\left\{s_{1}, k_{1}, s_{2}, k_{2}, \ldots\right\}$ then equivalently one can consider only polynomials in symmetric and skew variables.

About positive results, in [11] Kostant proved that if n is even then
$S_{2 n-2}\left(k_{1}, \ldots, k_{2 n-2}\right)$ is a $*$-PI for ($\left.M_{n}(F), t\right)$. Rowen in [16] extended this result to arbitrary n and later in [18] he also proved that $S_{2 n-2}\left(s_{1}, \ldots, s_{2 n-2}\right)$ is a $*$-PI for $\left(M_{n}(F), s\right)$.

No *-PI's of degree lower than $2 n-2$ are known for arbitrary n. Moreover, $2 n-2$ is not minimal for all n . In fact, for instance, if $*=s$, then $\left[x_{1}+x_{1}^{*}, x_{2}+x_{2}^{*}\right]$ is a $*$-PI of minimal degree for $\left(M_{2}(F), s\right)$, and since $\left[s_{1}, s_{2}\right]^{2},\left[s_{1}, k_{2}\right]^{2}$, when evaluated in $\left(M_{4}(F), s\right)$, take values in the center (see [3, pag 203]), it follows that $\left(M_{4}(F), s\right)$ has $*$-PI's of degree 5 . Moreover if $*=t$, Racine constructed $*$-PI's of degree 5 for $M_{4}(F)$.
Definition 3.4 For $m, r \geq 0$ define $w_{i}=\left\{\begin{array}{ll}s_{i} & \text { if } i=1, \ldots, m \\ k_{i} & \text { if } i=m+1, \ldots, m+r\end{array}\right.$ and let

$$
W_{m, r}=\operatorname{Span}_{F}\left\{w_{\sigma(1)} \cdots w_{\sigma(m+r)} \mid \sigma \in S_{m+r}\right\}
$$

be the space of multilinear polynomials in m symmetric variables and r skew variables.

The problem of determining the *-PI's of minimal degree can be reformulated in the following two problems
Problem 3.5 For $m=0,1, \ldots, n$, find the least r such that

$$
W_{m, r} \cap T\left(\left(M_{n}(F), *\right)\right) \neq 0
$$

and exhibit a basis of this space.
Problem 3.6 For $r=0,1, \ldots, n$, find the least m such that

$$
W_{m, r} \cap T\left(\left(M_{n}(F), *\right)\right) \neq 0
$$

and exhibit a basis of this space.

4 Transpose Involution

If $*=t$ it is easy to show that $S_{2 n}\left(s_{1}, \ldots, s_{2 n}\right)$ is a $*$-PI for $\left(M_{n}(F), t\right)$ of minimal degree among *-PI's in symmetric variables.

It was shown in [12] by Ma and Racine that in general *-PI's of minimal degree need not resemble standard polynomials. In fact, they constructed a multilinear polynomial $f_{2 n}\left(s_{1}, \ldots, s_{2 n}\right)$ such that any other homogeneous $*$-PI in symmetric variables of degree $2 n$ is a consequence of $f_{2 n}(n \neq 3)$ for large characteristic of the field.

Let $W_{\infty, 1}=\bigcup_{m \geq 1} W_{m, 1}$. In [7] it was constructed a polynomial in $W_{\infty, 1} \cap$ $T\left(\left(M_{n}(F), t\right)\right)$ of degree $2 n-1$ of minimal degree among all $*$-PI's in one skew variable and the remaining symmetric variables; moreover it was shown that any other multilinear *-PI in $W_{\infty, 1} \cap T\left(\left(M_{n}(F), t\right)\right)$ of degree $2 n-1$ is a scalar multiple of this polynomial.

Definition 4.1 Let $r \geq 2$ and write $y=x_{r}$; if $1 \leq j \leq r$ define

$$
P_{r}^{(j)}\left(x_{1}, \ldots, x_{r-1} ; y\right)=\sum_{\sigma \in S_{r-1}}(\operatorname{sgn} \sigma) x_{\sigma(1)} \cdots x_{\sigma(j-1)} y x_{\sigma(j)} \cdots x_{\sigma(r-1)}
$$

and, if $[\alpha]$ denotes the integral part of the real number α, define

$$
P_{r}\left(x_{1}, \ldots, x_{r-1} ; y\right)=\sum_{i=1}^{\left[\frac{r+1}{2}\right]}(-1)^{i+1} P_{r}^{(2 i-1)}\left(x_{1}, \ldots, x_{r-1} ; y\right) .
$$

Notice that if $r \equiv 3(\bmod 4)$, then we can also write, for $r=4 m-1$,

$$
\begin{aligned}
& P_{4 m-1}\left(x_{1}, \ldots, x_{4 m-2} ; y\right) \\
& \quad=\sum_{i=0}^{m-1} P_{4 m-1}^{(4 i+1)}\left(x_{1}, \ldots, x_{4 m-2} ; y\right)-\sum_{i=1}^{m} P_{4 m-1}^{(4 i-1)}\left(x_{1}, \ldots, x_{4 m-2} ; y\right) .
\end{aligned}
$$

The result is the following

Theorem 4.2

1. $P_{2 n-1}\left(s_{1}, \ldots, s_{2 n-2} ; k_{2 n-1}\right)$ is a $*-P I$ for $\left(M_{n}(F), t\right)$.
2. If $f\left(s_{1}, \ldots, s_{2 n-2}, k_{2 n-1}\right)$ is a multilinear $*-P I$ for $\left(M_{n}(F), t\right)$ then $f=\alpha P_{2 n-1}$ for some $\alpha \in F$.
3. If $f\left(k_{1}, s_{2}, \ldots, s_{l}\right)$ is $a *$-PI for $\left(M_{n}(F), t\right)$ such that $\operatorname{deg}_{k_{1}}(f)=1$ then $\operatorname{deg}(f) \geq$ $2 n-1$.

The proof of this theorem is based on a technique of Razmyslov [14] used to give a proof of the Amitsur-Leviztki theorem and in the following remarks

Remark 4.3 If A is a symmetric $n \times n$ matrix under the symplectic involution, then $n=2 m$ and A satisfies a polynomial of degree m

$$
p(x)=x^{m}-\mu_{1} x^{m-1}+\mu_{2} x^{m-2}-\ldots+(-1)^{m} \mu_{m}
$$

such that $p(x)^{2}$ is the characteristic polynomial of A.
In case char $F=0$, it is possible to derive formulas, analogous to Newton's formulas, which allow to write the coefficients μ_{i} as polynomials in $\operatorname{tr}(A), \operatorname{tr}\left(A^{2}\right), \ldots, \operatorname{tr}\left(A^{m}\right)$ with rational coefficients; they are given inductively by the formulas

$$
\mu_{0}=1, \quad 2 i \mu_{i}=\sum_{j=1}^{i}(-1)^{j-1} \mu_{i-j} \operatorname{tr}\left(A^{j}\right)
$$

(see [17, pag 150]).
Remark 4.4 Let A be a commutative ring. If $U_{1}, \ldots, U_{2 l} \in M_{n}(A)$ then $\operatorname{tr} S_{2 l}\left(U_{1}, \ldots, U_{2 l}\right)=0$.

This can be proved by noticing that if w_{1}, w_{2} are two monomials in the U_{i} 's which are cyclic permutations of one another, then on one side $\operatorname{tr}\left(w_{1}\right)=\operatorname{tr}\left(w_{2}\right)$ and on the other side w_{1} and w_{2} have opposite signs in $S_{2 l}\left(U_{1}, \ldots, U_{2 l}\right)$.

Let us denote by $M_{n}^{+}(F)$ and $M_{n}^{-}(F)$ the spaces of symmetric and skew elements of ($M_{n}(F), *$) respectively.

Proof of Theorem 4.2 We shall sketch the proof of the first and second part of the theorem.

Since $P_{2 n-1}$ has coefficients ± 1, it is enough to prove the theorem in case char $F=0$. Suppose first that $n=2 m$ is even. In this case if $C \in M_{n}^{-}(F)$ is invertible, then the map $\phi: A \rightarrow C^{-1} A^{t} C$ defines an involution of symplectic type on $M_{n}(F)$. If $B \in M_{n}(F), B=-B^{t}$ then $B C$ under this involution is a symmetric element. Thus, by Remark 4.3, $B C$ satisfies a polynomial of degree m; let

$$
(B C)^{m}-\mu_{1}(B C)^{m-1}+\cdots+(-1)^{m} \mu_{m}=0
$$

where the $\mu_{i} \mathrm{~s}$ are polynomial expressions with rational coefficients in $\operatorname{tr}(B C)$, $\operatorname{tr}(B C)^{2}, \ldots, \operatorname{tr}(B C)^{m}$.

Now, by a Zariski density argument it follows that we may take B, C arbitrary elements in $M_{n}(F)^{-}$under the transpose involution; also, if we multilinearize the above relation we get

$$
\begin{equation*}
\sum_{\sigma, \tau \in S_{m}} B_{\sigma(1)} C_{\tau(1)} B_{\sigma(2)} C_{\tau(2)} \cdots B_{\sigma(m)} C_{\tau(m)}+Q=0 \tag{1}
\end{equation*}
$$

where $B_{1}, C_{1}, \ldots, B_{m}, C_{m} \in M_{n}^{-}(F)$ and Q is a linear combination of products of the form $B_{\sigma\left(i_{1}\right)} C_{\tau\left(i_{1}\right)} \cdots B_{\sigma\left(i_{1}\right)} C_{\tau\left(i_{1}\right)}$, with $1 \leq i_{1}<i_{2}<\ldots<i_{l} \leq m, l<m$ with coefficients polynomials in traces of the form

$$
\operatorname{tr}\left(B_{\sigma\left(j_{1}\right)} C_{\tau\left(j_{1}\right)} \cdots B_{\sigma\left(j_{r}\right)} C_{\tau\left(j_{r}\right)}\right)
$$

Take $A_{1}, \ldots A_{2 n-2} \in M_{n}^{+}(F)$ and $B \in M_{n}^{-}(F) ;$ then $\left[A_{i}, A_{j}\right]=A_{i} A_{j}-A_{j} A_{i} \in$ $M_{n}^{-}(F)$ and we make in (1) the substitutions

$$
\begin{aligned}
B_{1} & =B, & C_{1} & =\left[A_{1}, A_{2}\right], \\
B_{2} & =\left[A_{3}, A_{4}\right], & C_{2} & =\left[A_{5}, A_{6}\right], \\
\vdots & & \vdots & \\
B_{m} & =\left[A_{2 n-5}, A_{2 n-4}\right], & C_{m} & =\left[A_{2 n-3}, A_{2 n-2}\right] .
\end{aligned}
$$

We obtain from (1) a new equation and we write the left hand side as $f\left(A_{1}, \ldots, A_{2 n-2}, B\right)$, a polynomial with traces.

Now in (1) make the substitutions

$$
\begin{array}{rlrl}
B_{1} & =\left[A_{1}, A_{2}\right], & C_{1} & =B, \\
B_{2} & =\left[A_{3}, A_{4}\right], & C_{2} & =\left[A_{5}, A_{6}\right], \\
\vdots & & \vdots & \\
B_{m} & =\left[A_{2 n-5}, A_{2 n-4}\right], & C_{m}=\left[A_{2 n-3}, A_{2 n-2}\right] ;
\end{array}
$$

we obtain a new equation and let $g\left(A_{1}, \ldots, A_{2 n-2}, B\right)$ be the resulting left hand side.

Let \bar{f} and \bar{g} be the skewsymmetrizations of f and g respectively with respect to the variables $A_{1}, \ldots, A_{2 n-2}$; it follows that

$$
\begin{aligned}
0 & =\bar{f}\left(A_{1}, \ldots, A_{2 n-2}, B\right)-\bar{g}\left(A_{1}, \ldots, A_{2 n-2}, B\right) \\
& =2^{m-1} P_{2 n-1}\left(A_{1}, \ldots, A_{2 n-1} ; B\right)
\end{aligned}
$$

$$
+ \text { a linear combination of terms with } t r .
$$

Thus, in order to complete the proof of the theorem in case n is even, it is enough to prove that all the coefficients of the remaining terms (which involve traces) are zero.

Notice that, the traces in which B does not appear in \bar{f} and \bar{g} are of the form $\operatorname{tr}\left(S_{2 j}\left(A_{i_{1}}, \ldots, A_{i_{2 j}}\right)\right)$ and this is zero by Remark 4.4. Also, one checks that in $\bar{f}-\bar{g}$ the traces involving B vanish too. This proves the theorem in case n is even.

In case n is odd, embed $M_{n}(F)$ in the upper left corner of $M_{n+1}(F)$ with induced transpose involution and write

$$
\begin{aligned}
P_{2(n+1)-1}\left(s_{1},\right. & \left.\ldots, s_{2 n} ; k_{2 n+1}\right) \\
& =P_{2 n-1}\left(s_{1}, \ldots, s_{2 n-2} ; k_{2 n+1}\right) s_{2 n-1} s_{2 n}+h\left(s_{1}, \ldots, s_{2 n}, k_{2 n+1}\right)
\end{aligned}
$$

where no monomial of $h\left(s_{1}, \ldots, s_{2 n}, k_{2 n+1}\right)$ ends with $s_{2 n-1} s_{2 n}$. Now take $j_{0} \in$ $\{1, \ldots, n\}$. Then $e_{j_{0} n+1}+e_{n+1 j_{0}}, e_{n+1 n+1} \in M_{n}^{+}(F)$ and let $A_{1}, \ldots, A_{2 n-2} \in M_{n}^{+}(F), B \in M_{n}^{-}(F)$. Since $n+1$ is even, by the first part of the proof, $P_{2(n+1)-1}\left(s_{1}, \ldots, s_{2 n} ; k_{2 n+1}\right)$ is a $*$-PI for $\left(M_{n+1}(F), t\right)$; thus

$$
\begin{aligned}
0= & P_{2(n+1)-1}\left(A_{1}, \ldots, A_{2 n-2}, e_{j_{0} n+1}+e_{n+1}, e_{n+1 n+1} ; B\right) e_{n+1 n+1} \\
= & P_{2 n-1}\left(A_{1}, \ldots, A_{2 n-2} ; B\right)\left(e_{j_{0} n+1}+e_{n+1} j_{0}\right) e_{n+1 n+1} \\
& \quad+h\left(A_{1}, \ldots, A_{2 n-2}, e_{j_{0} n+1}+e_{n+1 j_{0}}, e_{n+1 n+1}, B\right) e_{n+1 n+1} \\
= & P_{2 n-1}\left(A_{1}, \ldots, A_{2 n-2} ; B\right) e_{j_{0} n+1} .
\end{aligned}
$$

Since j_{0} is arbitrary in $\{1, \ldots, n\}$, we get $P_{2 n-1}\left(A_{1}, \ldots, A_{2 n-2} ; B\right)=0$ for all $A_{1}, \ldots, A_{2 n-2} \in M_{n}^{+}(F)$ and $B \in M_{n}^{-}(F)$ and we are done.

To prove the second part of the theorem, one proves by induction on n that if $f\left(s_{1}, \ldots, s_{2 n-2}, k\right)$ is a $*$-PI for $\left.M_{n}(F), t\right)$ then

$$
\begin{aligned}
& f\left(s_{1}, \ldots, s_{2 n-2}, k\right) \\
& =\alpha \sum_{\substack{i, j=1 \\
i<j}}^{2 n-2}(-1)^{i+j}\left[s_{i}, s_{j}\right] P_{2 n-3}\left(s_{1}, \ldots, \hat{s}_{i}, \ldots, \hat{s}_{j}, \ldots, s_{2 n-2} ; k\right) \\
& \quad+k \cdot h\left(s_{1}, \ldots, s_{2 n-2}\right)
\end{aligned}
$$

for some $\alpha \in F$.
Now, an easy calculation shows that in general

$$
\begin{aligned}
& P_{2 n-1}\left(s_{1}, \ldots, s_{2 n-2} ; k\right) \\
& =\sum_{\substack{i, j=1 \\
i<j}}^{2 n-2}(-1)^{i+j}\left[s_{i}, s_{j}\right] P_{2 n-3}\left(s_{1}, \ldots, \hat{s}_{i}, \ldots, \hat{s}_{j}, \ldots, s_{2 n-2} ; k\right) \\
& \quad+k \cdot S_{2 n-2}\left(s_{1}, \ldots, s_{2 n-2}\right) .
\end{aligned}
$$

Thus, since $P_{2 n-1}$ and f are $*$-PI's for $\left(M_{n}(F), t\right)$ also

$$
f-\alpha P_{2 n-1}=k \cdot\left(h\left(s_{1}, \ldots, s_{2 n-2}\right)-\alpha S_{2 n-2}\left(s_{1}, \ldots, s_{2 n-2}\right)\right)
$$

vanishes in $\left(M_{n}(F), t\right)$.

Let \bar{K} denote the subring generated by the skew elements of $M_{n}(F)$; then, since $n>2$, by [8, Theorem 2.1.10], $\bar{K}=M_{n}(F)$. It follows that for all $A_{1}, \ldots, A_{2 n-2} \in$ $M_{n}^{+}(F)$,

$$
M_{n}(F) \cdot\left(h\left(A_{1}, \ldots, A_{2 n-2}\right)-\alpha S_{2 n-2}\left(A_{1}, \ldots, A_{2 n-2}\right)\right)=0
$$

Therefore, being $M_{n}(F)$ a prime ring,

$$
h\left(s_{1}, \ldots, s_{2 n-2}\right)-\alpha S_{2 n-2}\left(s_{1}, \ldots, s_{2 n-2}\right)
$$

must vanish in $M_{n}^{+}(F)$. Since $\left(M_{n}(F), t\right)$ satisfies no $*$-PI's in symmetric variables of degree lower than $2 n$, it follows that $h=\alpha S_{2 n-2}$ and we are done.

Having solved problem 3.5 for the case $W_{m, 1}$, it is natural to try to solve problem 3.5 for $W_{m, 2}$. There is no existence theorem proved in this case. Nevertheless the following result holds ([7, Proposition 3])

Theorem 4.5 Let $f\left(k_{1}, k_{2}, s_{3}, \ldots, s_{r}\right)$ be a *-PI for $\left(M_{n}(F), t\right), n>2$, such that $\operatorname{deg}_{k_{1}}(f)=\operatorname{deg}_{k_{2}}(f)=1$. Then $\operatorname{deg}(f) \geq 2 n-1$.

5 Symplectic Involution

In this section we study the space of multilinear *-PI's of $\left(M_{n}(F), s\right)$. Let us consider *-PI's of minimal degree for $\left(M_{n}(F), s\right)$ in symmetric variables. The polynomials $\left[s_{1}, s_{2}\right.$] and $\left[\left[s_{1}, s_{2}\right]^{2}, s_{3}\right]$ are $*$-PI's of minimal degree for $n=2$ and $n=4$ respectively. For $n>4$ the best known lower bound is found in ($[1$, Theorem 2.4])

Theorem 5.1 If char $F=0,\left(M_{n}(F), s\right)$ does not satisfy $*$-PI's in symmetric variables of degree $n+1$ for any $n>4$.

The proof is based on the following idea. If $n=2 m$, then every $*$-PI in symmetric variables for $\left(M_{n}(F), s\right)$ is an ordinary polynomial identity for the $m \times m$ matrix algebra $M_{m}(F)$. The polynomial identities of $M_{n}(F)$ of degree $m+1$ have been described by Leron [9]. It turns out that they all follow from the standard identity $S_{2 m}\left(x_{1}, \ldots, x_{2 m}\right)$. Hence it suffices to show that no multilinear consequence of degree $n+1=2 m+1$ of $S_{2 m}\left(x_{1}, \ldots, x_{2 m}\right)$ vanishes on the symmetric elements from $\left(M_{n}(F), s\right)$.

Inspired by this result is the following
Theorem 5.2 ([13, Theorem 3.1]) If char $F=0,\left(M_{6}(F), s\right)$ does not satisfy *-PI's in symmetric variables of degree 8 .

Let now consider *-PI's in skew variables. What is the minimal possible degree of such a polynomial identity ? For $n=2,4$ the answer is as follows: $\left[k_{1}^{2}, k_{2}\right]$ is a *-PI in skew variables for $\left(M_{2}(F), s\right)$ of minimal degree; also, since $\left[s_{1}, k_{2}\right]^{2}$, when evaluated in $\left(M_{4}(F), s\right)$, takes values in the center (see [3, pag 203]), it follows that $\left[\left[k_{1}^{2}, k_{2}\right]^{2}, k_{3}\right]$ is a $*$-PI for $\left(M_{4}(F), s\right)$. It is also easy to see that this polynomial is of minimal degree among *-PI's in skew variables.

In the general case one could conjecture that if f is a *-PI for $\left(M_{n}(F), s\right)$ in skew variables of minimal degree, then $\operatorname{deg}(f)=2 n-1$. In [7] the authors constructed, for every n, a *-PI in skew variables of degree $2 n-1$.

Definition 5.3 Let $r>2$ and write $y=x_{r}$. Define the polynomial

$$
\begin{aligned}
& T_{r}\left(x_{1}, \ldots, x_{r-1} ; y\right) \\
& \quad=\sum_{i=1}^{\left[\frac{r+1}{2}\right]} P_{r}^{(2 i-1)}\left(x_{1}, \ldots, x_{r-1} ; y\right)+2 \sum_{i=1}^{\left[\frac{r+3}{4}\right]} P_{r}^{(4 i-2)}\left(x_{1}, \ldots, x_{r-1} ; y\right)
\end{aligned}
$$

Notice that in T_{r} the variable y never appears in the $4 i$ position, $i=1, \ldots,[r / 4]$.
Using the technique of Theorem 4.2 one can prove (see [7]) the following
Theorem 5.4 $T_{2 n-1}\left(k_{1}, \ldots, k_{2 n-2} ; k_{2 n-1}\right)$ is $a *-P I$ for $\left(M_{n}(F), s\right)$.
Unfortunately we do not know if $T_{2 n-1}$ is of minimal degree among *-PI's for $\left(M_{n}(F), s\right)$ in skew variables. The known best bound is stated in the following

Theorem 5.5 If $f\left(k_{1}, \ldots, k_{r}\right)$ is a*-PI for $\left(M_{n}(F), s\right), n>2$, then $\operatorname{deg}(f)>$ $n+n / 2$.

References

[1] V. S. Drensky and A. Giambruno, On the *-polynomial identities of minimal degree for matrices with involution, Boll. Un. Mat. It. (7) 9-A (1995), 471-482.
[2] V. S. Drensky and A. Giambruno, Cocharacters, codimensions and Hilbert series of the polynomial identities for 2×2 matrices with involution, Canad. J. Math. 46 (1994), 718-733.
[3] A. Giambruno, Algebraic conditions on rings with involution, J. Algebra 50 (1978), 190-212.
[4] A. Giambruno and A. Regev, Wreath products and PI-algebras, J. Pure Applied Algebra 35 (1985), 133-149.
[5] A. Giambruno, $G L \times G L$ - representations and *-polynomial identities, Comm. Algebra 14 (1986), 787-796.
[6] A. Giambruno, On *-polynomial identities for $n \times n$ matrices, J. Algebra 133 (1990), 433-438.
[7] A. Giambruno and A. Valenti, On minimal *-identities of matrices, Linear and Multilinear Algebra, 39 (1995), 309-323.
[8] I. N. Herstein, Rings with Involution, U. of Chicago Press, Chicago, 1976.
[9] U. Leron, Multilinear identities of the matrix ring, Trans. Amer. Math. Soc. 183 (1973), 175-202.
[10] D. V.Levchenko, Finite basis of identities with involution for the second order matrix algebra, Serdica 8 (1982), 42-56 (Russian).
[11] B. Kostant, A theorem of Frobenius, a theorem of Amitsur-Levitzki and cohomology theory, Indiana J. Math. (and Mech.) 7 (1958), 237-264.
[12] Ma Wenxin and M. L. Racine, Minimal identities of symmetric matrices, Trans. Amer. Math. Soc. 320 (1990), 171-192.
[13] T. G. Rashkova, On the minimal degree of the *-polynomial Identities for the matrix algebra of order 6 with symplectic involution, Rend. Circ. Mat. Palermo (to appear).
[14] Y. P. Razmyslov, Trace identities of full matrix algebras over a field of characteristic zero, Math USSR Izv. 8 (1974), 727-760.
[15] S. Rosset, A new proof of the Amitsur-Levitski identity, Israel J. Math. 23 (1976), 187-188.
[16] L. H. Rowen, Standard polynomials in matrix algebras, Trans. Amer. Math. Soc. 190 (1974), 253-284.
[17] L. Rowen, "Polynomial Identities in Ring Theory", Academic Press, New York, 1980.
[18] L. H. Rowen, A simple proof of Kostant's theorem, and an analogue for the symplectic involution, Contemp. Math., vol. 13, Amer. Math. Soc., Providence, R. I., 1982, pp. 207-215.
[19] R. Swan, An application of graph theory to algebra, Proc. Amer. Math. Soc. 14 (1963) 367-373.

Angela Valenti

Dipartimento di Matematica
Università di Palermo
Via Archirafi 34
90123 Palermo
avalenti@ipamat.math.unipa.it
Italy

[^0]: ${ }^{1}$ Research partially supported by MURST of Italy and FAPESP of Brazil. AMS Classification: 16R50, 15A24.

