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Matrix Algebras with Transpose or Symplectic 
Involution and their *-Polynomial Identities 1 

Angela Valenti 

Abstract: We look at the theory of *-polynomial identi­
ties of the algebra of n X n matrices over a field. The represen­
tation theory of the hyperoctahedral group and of the general 
linear group are applied for a quantitative study of the theory 
in characteristic zero. We examine the problem of determin­
ing *-polynomial identities of minimal degree for symplectic 
and transpose involution and new *-polynomial identities of 
degree 2n - 1 are constructed. 
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Let F be a field of characteristic different from 2, X = {Xl, X2 , .. . } a countable 
set of unknowns and F{X, *} = F{X1 , xi, X2, xi, . .. } the free algebra with invo­
lution * over F . If R is an F-algebra with involution *, we shall consider only 
involutions such that (aa)* = aa* for all a E F, a E R . Recall that a polynomial 
O;;/; f(X1,xi, .. . , xm,x:'n) in F{X,*} is a *-polynomial identity (*-PI) for R if 
f(r1,ri , .. . , rm,r:'n) = 0 for all r1, .. . ,rm E R. 

If one wants to study the *-PI's of an algebra R as a whole, then the right 
concept is that of *-T-ideal i. e., an ideal of the free algebra F{X, *} invariant 
under all endomorphisms of F{X, *} that commute with the involution *. 

The connection between *-T-ideals and *-PI's is the following : if R is an F­
algebra with involution, 
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IS a * - PI for R} 

is a *-T-ideal of F{X, *}. Moreover, if J is a *-T-ideal , T(F{X, *}/ J) = J, so 
every *-T-ideal of the free algebra is of this type. 

Let now R = Mn (F), n ~ 2, be the algebra of n x n matrices over F. In Mn (F) 
one can define several involutions; two of them playa very important role in the 
study of the *-PI's of Mn(F) : the transpose involution , denoted * = t, and the 
canonical symplectic involution, denoted * = s . 

Recall that s is defined only in case n = 2m is even and it is given by the rule: 

if A E Mn (F) , let A = (~ ~) where B , C, D, E E Mm(F) and set 

A'= 

where t is the usual transpose. 

Let us write (Mn (F), *) for the ring of n x n matrices with the involution 
*. The importance of the above two involutions is given in the following ([17, 
Theorem 3.1.62]) 

Theorem 1.1 Let F be an infinite field. If * is an involution in Mn(F) , then 
eith er T((Mn(F), *)) = T((Mn(F), t)) or T((Mn(F) , *)) = T((Mn(F) , s)). 

Let us now give few examples of *-PI's for Mn(F), for small values of n . They 
can all be checked by direct computation . Clearly every polynomial identity for 
Mn(F) is a *-polynomial identity for Mn(F). Let Sm(Xl, ... , xm) denote the 
standard polynomial of degree m . 

Examples 

1. Xl - xi E T((Ml(F),t) . 

2. [Xl - xi, X2 - x:j] E T((M2(F), t) . 

3. [Xl + xi, X2] E T((M2(F), s). 

4. [S3(Xl - xi, X2 - x:j, X3 - xj), X4] E T((M3(F) , t) . 

5. [[Xl + xi, X2 - x:jF, X3] E T((M4(F), s). 

6. S6(xl-xi, ... ,x6-x;;) ET((M4(F),t). 

The *-PI's of (M2(F), *), *= s or t, of minimal degree are well known; more­
over, in characteristic zero, Levcenko in [10] exhibited a basis for the *-T-ideals 
T(M2(F), s) and T(M2(F), t). The result is the following 

Theore m 1.2 Let charF = O. 
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1. The *-polynomials 
[(x - x*)(y - y*), z], 

[x - x*, y - y*], 

[Xl + x~, x2 + X;J[X3 + x;, x4 + x:] + [X2 + x;, X3 + X;][Xl + X~, X4 + x:], 

+[X3 + x;, Xl + xiJ[X2 + x;, X4 + x:], 

[x - x*,y+ y*,z - z*,t + t*] - 4(x - x*)(z - z*)[t+t*,y+y*] 

are a set of generators for the *-T-ideal T(M2(F), t). 

2. The *-polynomial 
[X+X*,y] 

generates the *-T-ideal T(M2(F), s). 

2 Sn and G L-cocharacters 

Methods of representation theory of the hyperoctahedral group and of the general 
linear group have been introduced in [4] and [5] to study T( R, *) in general. We 
will now sketch these methods. 

Let Hn be the hyperoctahedral group of degree n . If C2 = {I, *} is the 
multiplicative group of order 2 and Sn is the symmetric group of degree n, then 
Hn is the wreath product C~ wr Sn and we write 

Hn = {(al"'" an; 0-) I ai E C2 , 0- E Sn} 

with multiplication defined by 

We say that a *-polynomial f( Xl, xi, ... , x n , x~) is multilinear if in every mono­
mial of f, Xi or xi, i = 1, .. . , n, appears exactly once. Then 

is the space of multilinear *-polynomials in Xl, xi, ... , xn , x~. 

This space is strictly related to the group algebra of H n; in fact the map 

given by 

L (¥(a;u)X:(;)'(l) ... x:(~;(n)-+ L (¥(a;u)(al, ... ,an;o-) 

(a;u)EHn (a;u)EHn 
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is an F- linear isomorphism of Vn( *) onto F Hn. This map clearly induces a struc­
ture of Sn-module on Vn (*). Let T be a *-T-ideal of F{X,*}. Then , under the 
above identification, Tn = Tn Vn (*) becomes a left ideal of F H n. 

Suppose char F = O. Then every *-T-ideal is determined by its multilinear 
polynomials, hence to study T it is enough to study {Tn }n> 1. 

Actually it is more convenient to study the sequence of left Hn-modules 
{Vn(*)/Tn}n>l. Let us denote by Xn(T, *) the Hn-character of Vn(*)/Tn and let 
us call {Xn('T)}n>l the sequence of Hn-cocharacters of T. Since every character 
Xn(T) is a sum of irreducible Hn-characters, the problem of determining Xn(T) is 
reduced to that of computing the multiplicities of each irreducible Hn-character 
in such decomposition. 

In characteristic zero it is known that there exists a one-to-one correspondence 
between non-equivalent irreducible representations of Hn and pairs of partition 
(A , I1-) where A is a partition of k , J-l is a partition of n - k and k = 0, ... , n. We 
write briefly 1 A 1 + 1 J-l 1= n. So, let us denote by X>',!-, the irreducible Hn-character 
associated to the pair (A, J-l). 

IfT is a *-T-ideal of *-PI's of the algebra R, then we write Xn(T) = Xn(R,*) 
and we have 

Xn(R, *) = L m>. ,!-,X>. ,!-, 
I>'I+I!-'I=n 

where m>. ,!-, is the multiplicity of X>',!-, in the given decomposition. 
If A = (AI, ... , Ar), Al ~ A2 ~ . . . ~ An > 0 is a partition of n, we call r = h(A) 

the height of A (h(A) is the height of the corresponding Young diagram) . We have 

Theorem 2.1 ([4, Theorem 6.2J) Let r = k(\+l) and u = k(\-l). Then 

and 

Xn(Mk(F), t) = L m>.,!-,X>. ,!-, 
I>'I+I!-'I=n 
h(>')~r 
h(!-,)~u 

Xn(Mk(F), s) = L m>' ,!-'X>',/J" 
I>'I+I!-'I=n 
h(>')~u 
h(!-,)~r 

We now turn to a description of the finite-dimensional polynomial representa­
tions of G L( n) x G L( n). This is intimately connected to partition of n - k and 
k = 0, .. . , n. We write briefly 1 11,2, ... define Si = Xi + xi and k i = Xi - xi; 
then, since char F =P 2, F{X, *} = F{ Sl, k1' S2, k2' . . . } has a natural multigrading 
obtained by counting the degrees in the symmetric variables Si and in the skew 
variables ki . For a fixed n, let U and V be n-dimensional vector spaces over F 
with bases {S1 ' ... , sn} and {kl ' . .. ,kn} respectively. Let 
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W can be identified with the space of homogeneous *-polynomials of degree n 
in the variables Xi and xi- The group GL(U) x GL(V) == GL(n) x GL(n) acts 
naturally on the space U EB V and we extend this action diagonally to an action 
on W. 

The representation theory of G L(U) x G L(V) acting on W is well known: there 
exists a one-to-one correspondence between irreducible non-equivalent polynomial 
representations of GL(U) x GL(V) and pairs of partitions (>',J-l) where>. is a 
partition of k, J-l is a partition of n - k and k = 0, ... , n. So, let us denote by 'Ij;>',J.I 
the irreducible character of GL(U) x GL(V) associated to the pair (>',J-l). Also, 
if M is a GL(U) x GL(V)-module , let us write 'Ij;(M) for the character of M. 

If T is a *-T-ideal , then Tn W is the space of homogeneous *-polynomials of 
degree n in TnF{Xl, xi, ... xn, x~} and Tn W is a GL(U) x GL(V)-module. The 
GL(U) x GL(V) structure of T;;W and the Hn structure of Vn(*)/Tn are related 
by the following result ([5, Theorem 3]) 

Theorem 2.2 LetT be a*-T-idealofF{X,*} and 'lj;n(T, *) theGL(U)xGL(V)­
character of T::rW . If 

and 

then m>.,J.I = m~,J.I . 

'lj;n(T, *) = L m>.,J.I'Ij;>. ,J.I 
1>'1+1J.lI=n 

Xn(T, *) = L m~ , J.lX>.'J.I 
1>'1+1J.lI=n 

A quantitative study ofT((M2(F), t)) and T((M2(F), s)) in characteristic zero 
was done by Drensky and Giambruno in [2]. They obtained among other things 
the exact values of the multiplicities in the cocharacter sequence of the *-PI's for 
the 2 x 2 matrices with symplectic or transpose involution . 

3 *-Polynomial identities of minimal degree 

In this section we want to discuss the following 

Problem 3.1 Find *-polynomial identities of minimal degree satisfied by Mn(F). 

The standard polynomial 

Sm(Xl, ... , xm) = L (sgnu)xu(l) ·· · Xu(m) 
uESm 

plays a very important role in PI-theory. 
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Let T(Mn(F)) denote the T-ideal of ordinary identities (without involution) 
satisfied by Mn(F). The Amitsur-Levitzki theorem shows that 

is a properly descending chain of T-ideals whose intersection is zero and also gives 
the least degree of a polynomial satisfied by Mn (F). 

Theorem 3.2 (Amitsur-Levitzki)([17, Theoreml.4.1J) S2n(Xl, ... , X2n) is a poly­
nomial identity for Mn (F) of minimal degree and any other multilinear polynomial 
identity of Mn(F) of degree 2n is a scalar multiple of S2n' 

The original proof of Theorem 3.2 was a clever induction using matrix units 
but subsequently there have been several different proofs given by Kostant [11], 
based on the cohomology of Mn (C) as a Lie algebra, by Swan [19], using graph 
theory, by Razmyslov [14] and Rosset [15] based on the Cayley-Hamilton Theorem. 

The *-PI's of Mn(F) of minimal degree do not seem to be well understood. 
In fact , the smallest possible degree of a *-PI for arbitrary n is not known. An 
easy argument shows that such degree must be at least n . The best lower bound 
is found in the following ([6, Theorem 1]) 

Theorem 3 .3 If f is a *-PI for (Mn(F), *) and n > 2, then deg(J) ~ n + l. 

It follows that, if f is a *-PI for (Mn (F), *) of minimal degree and n > 2 then 

2n ~ degf > n. 

By recalling that F {X, *} = F {SI, k l , S2, k2, .. . } then equivalently one can 
consider only polynomials in symmetric and skew variables. 

About positive results , in [11] Kostant proved that if n is even then 
S2n-2(k j , . . . , k2n - 2) is a *-PI for (Mn(F), t). Rowen in [16] extended this result 
to arbitrary n and later in [18] he also proved that S2n-2(SI, ... , S2n-2) is a *-PI 
for (Mn(F), s) . 

No *-PI's of degree lower than 2n - 2 are known for arbitrary n. Moreover, 
2n - 2 is not minimalfor all n. In fact, for instance, if * = s, then [x 1 + xi, X2 + x;] 
is a *-PI of minimal degree for (M2(F),s), and since [SI,s2]2, [sj , k2]2, when 
evaluated in (M4(F), s), take values in the center (see [3, pag 203]), it follows that 
(M4(F), s) has *-PI's of degree 5. Moreover if * = t, Racine constructed *-PI's of 
degree 5 for M4(F). 

Definition 3.4 For m, r ~ 0 define Wi = { ~: if i = 1, ... , m 
ifi=m+l, ... ,m+r 

Wm,r = Spanp{wu(I)" ,wu(m+r) I u E Sm+r} 

and let 

be the space of multilinear polynomials in m symmetric variables and r skew vari­
ables. 
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The problem of determining the *-PI's of minimal degree can be reformulated 
in the following two problems 

Problem 3.5 For m = 0,1, ... , n, find the least r such that 

and exhibit a basis of this space. 

Problem 3.6 For r = 0,1 , ... , n, find the least m such that 

and exhibit a basis of this space. 

4 Transpose Involution 

If * = t it is easy to show that S2n(Sl, .. . , S2n) is a *-PI for (Mn(F), t) of minimal 
degree among *-PI's in symmetric variables. 

It was shown in [12] by Ma and Racine that in general *-PI's of minimal degree 
need not resemble standard polynomials. In fact , they constructed a multilinear 
polynomial hn (Sl , ... , S2n) such that any other homogeneous *-PI in symmetric 
variables of degree 2n is a consequence of hn (n # 3) for large characteristic of 
the field. 

Let Woo, 1 = Um> 1 W m, 1· In [7] it was constructed a polynomial in Woo , 1 n 
T((Mn(F), t)) of degree 2n - 1 of minimal degree among all *-PI's in one skew 
variable and the remaining symmetric variables; moreover it was shown that any 
other multilinear *-PI in Woo, 1 nT((Mn(F), t)) of degree 2n-1 is a scalar multiple 
of this polynomial. 

Definition 4.1 Let r ~ 2 and write y = X r ; if 1 :s j :s r define 

pSj)( Xl, . .. , Xr -1; y) = L (sgnlT )X,,(l) . .. X"(j -l)YX,,(j) ... X,,(r-1) 

"ESr-l 

and, if [a] denotes the integral part of the real number a, define 

[ !:.:}! 1 
Pr(X1, ... , Xr -1; y) = L (_1)i+1 pPi-1)(X1, ... , Xr -1 ; y) . 

• =1 
Notice that if r == 3 (mod 4), then we can also write, for r = 4m - 1, 

P4m-1(X1, . .. , X4m-2; y) 
m-1 m 

_ '" p(4.+!)( . ) '" p(4.-1)( . ) - L..J 4m-1 X1, ···, X4m-2,Y - L..J 4m-1 X1, ··· ,X4m-2,Y· 
.=0 .=1 

The result is the following 
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Theorem 4.2 

1. P2n-l(SI, ... , S2n-2; k2n-d is a *-PI for (Mn(F), t). 

2. If f(sl,' .. , S2n-2, k2n-d is a multilinear *-PI for (Mn(F), t) then f = o:P2n - 1 

for some 0: E F. 

3. If f(kl' S2, ... ,SI) is H-PI for (Mn(F), t) such that degk, (I) = 1 then deg(l) ~ 
2n -1. 

The proof of this theorem is based on a technique of Razmyslov [14] used to 
give a proof of the Amitsur-Leviztki theorem and in the following remarks 

Remark 4.3 If A is a symmetric n x n matrix under the symplectic involution, 
then n = 2m and A satisfies a polynomial of degree m 

() m m-l + m-2 + ( l)m p x = x - li-I X 1i-2X - . . . - li-m 

such that p( x)2 is the characteristic polynomial of A. 

In case char F = 0, it is possible to derive formulas, analogous to Newton's 
formulas, which allow to write the coefficients li-i as polynomials in 
tr(A), tr(A2), ... , tr(Am) with rational coefficients; they are given inductively by 
the formulas 

li-o = 1, 2ili-i = I)-I)j- lli-i-jtr(Aj) 
j=1 

(see [17, pag 150]). 

Remark 4.4 Let A be a commutative ring. If UI , . . . , U21 E Mn(A) then 
trS21(U1, ... , U21) = o. 

This . can be proved by noticing that if WI, W2 are two monomials in the Ui's 
which are cyclic permutations of one another, then on one side tr(wI) = tr(w2) 
and on the other side WI and W2 have opposite signs in S21(UI , ... , U2I). 

Let us denote by M;t(F) and M;:(F) the spaces of symmetric and skew ele­
ments of (Mn(F), *) respectively. 

Proof of Theorem 4.2 We shall sketch the proof of the first and second part of 
the theorem. 

Since P2n -I has coefficients ± 1, it is enough to prove the theorem in case 
char F = O. Suppose first that n = 2m is even . In this case if C E M;:(F) is 
invertible, then the map <p : A -- C- 1 AtC defines an involution of symplectic 
type on Mn(F). If B E Mn(F), B = _Bt then BC under this involution is a 
symmetric element. Thus, by Remark 4.3, BC satisfies a polynomial of degree m; 
let 
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where the PiS are polynomial expressions with rational coefficients in tr(BC) , 
tr(BC)2, ... , tr(Bc)m . 

Now , by a Zariski density argument it follows that we may take B, C arbitrary 
elements in Mn(F)- under the transpose involution ; also, if we multilinearize the 
above relation we get 

L Bq(l)Cr(l) Bq(2)Cr(2)··· Bq(m)Cr(m) + Q :::: 0 (1) 
a,TESm 

where B l , C l , . .. , Bm, Cm E M;; (F) and Q is a linear combination of products of 
the form Bq(;,)Cr(;.)··· Bq(i,)Cr(;,) , with 1 ~ i l < i2 < ... < il ~ m, I < m 
with coefficients polynomials in traces of the form 

tr(Bq(jl)Cr(h) . .. Bq(jr)Cr(jr))· 

Take A l , .. . A 2n - 2 E M;;(F) and BE M;;(F); then [A; ,AjJ:::: A;Aj -AjA; E 
M;;(F) and we make in (1) the substitutions 

B l :::: B, 
B2 :::: [A3 , A4J, 

C l :::: [A l , A 2 ], 

C2 :::: [A5, As], 

We obtain from (1) a new equation and we write the left hand side as 
f(A l , . .. , A 2n - 2 , B) , a polynomial with traces. 

Now in (1) make the substitutions 

Bl :::: [A l , A2], 
B2 :::: [A 3 , A4], 

C l :::: B , 
C2 :::: [A5, As], 

we obtain a new equation and let g(A l , ... , A 2n - 2 , B) be the resulting left hand 
side. 

Let I and 9 be the skewsymmetrizations of f and g respectively with respect 
to the variables A l , ... , A 2n - 2; it follows that 

o I(A l , .. . , A 2n - 2, B) - g(A l , .. . , A 2n - 2, B) 

2m - l P2n-l(A l , .. . , A 2n - l ; B) 

+ a linear combination of terms with tr. 

Thus, in order to complete the proof of the theorem in case n is even, it is enough 
to prove that all the coefficients of the remaining terms (which involve traces) are 
zero. 
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Notice that, the traces in which B does not appear in 7 and 9 are of the form 
tr(S2j (A." . . . , A •• ,)) and this is zero by Remark 4.4. Also, one checks that in 
7 - 9 the traces involving B vanish too. This proves the theorem in case n is even. 

In case n is odd, embed Mn(F) in the upper left corner of Mn+1(F) with 
induced transpose involution and write 

P2(n+1)-1 (Sl , .. . , S2n; k2n+d 

= P2n - 1(Sl, . .. , S2n-2; k2n+ds2n-1 S2n + h(Sl, . .. , S2n, k2n+d 

where no monomial of h( Sl, . .. , S2n, k2n+1) ends with S2n-1 S2n. Now take jo E 
{l, . .. ,n} . Then ejonH + en+1jo, en+1n+1 E M;t(F) and let 
A1, . . . ,A2n - 2 E M;t(F), BE M;;(F) . Since n+ 1 is even, by the first part 
of the proof, P2(nH)-1(Sl, . .. , S2n ; k2n+d is a *-PI for (Mn+1 (F) , t) ; thus 

o P2(n+1)-1(A 1, .. . , A 2n - 2, ejon+l + en+1jo , en+1n+1 ; B)en+1 n+1 

P2n - 1 (AI, . .. , A 2n - 2; B)( ejo n+1 + en+1 jo )en+1 n+1 

+ h(A1, .. . , A 2n - 2, ejo n+1 + en+1 j o, en+1 n+1 , B)en+1 n+1 

P2n - 1(A 1, . . . , A 2n - 2; B)ejo n+1 · 

Since jo is arbitrary in {l , . . . , n} , we get P2n-1(A1 , . .. , A2n-2 ;B) = 0 for all 
AI , . . . , A 2n - 2 E M;t(F) and B E M; (F) and we are done. 

To prove the second part of the theorem, one proves by induction on n that if 
f(sl , ... ,S2n-2,k) is a *-PI for Mn(F) , t) then 

f(sl , ... , S2n-2, k) 
2n-2 

Q" L (-1)i+j[Si,Sj]P2n _3 (Sl, ... ,Si, .. . ,Sj, . .. ,S2n_2;k) 
"j=l 
'<j 

for some Q" E F . 
Now, an easy calculation shows that in general 

P2n - 1(Sl, ... , S2n-2; k) 
2n-2 
L (-1)i+j [si,Sj]P2n _3(s1, . .. , si, . . . ,Sj, .. . , s2n_2;k) 

i,j=1 
i<j 

Thus , since P2n- 1 and fare *-PI's for (Mn(F) , t) also 

vanishes in (Mn(F), t). 
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Let J{ denote the sub ring generated by the skew elements of Mn(F); then, since 
n> 2, by [8, Theorem 2.1.10]' J{ = Mn(F). It follows that for all A 1 , .. . , A2n - 2 E 
M;t(F), 

Therefore, being Mn(F) a prime ring, 

must vanish in M;t(F). Since (Mn(F), i) satisfies no *-PI's in symmetric variables 
of degree lower than 2n, it follows that h = aS2n-2 and we are done. 0 

Having solved problem 3.5 for the case Wm ,l, it is natural to try to solve prob­
lem 3.5 for Wm ,2. There is no existence theorem proved in this case. Nevertheless 
the following result holds ([7, Proposition 3]) 

Theorem 4.5 Lei f(k 1 , k2' S3, ... , sr) be a *-PI for (Mn(F), i), n> 2, such that 
degk 1 (J) = degk,(J) = 1. Then deg(J) ~ 2n - 1. 

5 Symplectic Involution 

In this section we study the space of multilinear *-PI's of (Mn(F), s). Let us 
consider *-PI's of minimal degree for (Mn(F), s) in symmetric variables. The 
polynomials [Sl' S2] and [[ Sl, s2F, S3] are *-PI's of minimal degree for n = 2 and 
n = 4 respectiveiy. For n > 4 the best known lower bound is found in ([1, Theorem 
2.4]) 

Theorem 5.1 If char F = 0, (Mn(F), s) does not satisfy *-PI's in symmetric 
variables of degree n + 1 for any n > 4. 

The proof is based on the following idea. If n = 2m, then every *-PI in sym­
metric variables for (M n (F), s) is an ordinary polynomial identity for the m x m 
matrix algebra Mm (F). The polynomial identities of Mn (F) of degree m + 1 have 
been described by Leron [9] . It turns out that they all follow from the standard 
identity S2m(X1, ... , X2m). Hence it suffices to show that no multilinear conse­
quence of degree n + 1 = 2m + 1 of S2m(X1, ... , X2m) vanishes on the symmetric 
elements from (Mn(F), s). 

Inspired by this result is the following 

Theorem 5.2 ([13, Theorem 3.1]) If char F 
*-PI's in symmetric variables of degree 8. 

0, (M6(F), s) does not satisfy 
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Let now consider *-PI's in skew variables. What is the minimal possible degree 
of such a polynomial identity? For n = 2,4 the answer is as follows: [kr, k2] is a 
*-PI in skew variables for (M2(F), s) of minimal degree; also, since [Sl , k2F, when 
evaluated in (M4(F), s), takes values in the center (see [3, pag 203]) , it follows that 
[[kr , k2]2, k3 ] is a *-PI for (M4(F) , s) . It is also easy to see that this polynomial is 
of minimal degree among *-PI's in skew variables. 

In the general case one could conjecture that if f is a *-PI for (Mn(F), s) 
in skew variables of minimal degree, then deg(J) = 2n - 1. In [7] the authors 
constructed , for every n, a *~PI in skew variables of degree 2n - 1. 

Definition 5.3 Let r > 2 and write y = X r . Define the polynomial 

Tr(X1 , .. . ,Xr-1 ;Y) 
[~l [~l 

L pPi-1)(X1, ... ,Xr_1;y)+2 L p~4i-2>(X1 , . . . ,Xr_1 ;Y)' 
i=l i=l 

Notice that in Tr the variable y never appears in the 4i position, i = 1, .. . , [r/4]' 
Using the technique of Theorem 4.2 one can prove (see [7]) the following 

Theorem 5.4 T2n - 1(k 1, . .. , k2n - 2; k2n - 1) is a *-PI for (Mn(F), s) . 

Unfortunately we do not know if T2n - 1 is of minimal degree among *-PI's for 
(Mn(F), s) in skew variables. The known best bound is stated in the following 

Theorem 5.5 If f(k 1, ... ,kr) is a *-PI for (Mn(F) , s), n > 2, then deg(J) > 
n + n/2 . 
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