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General Perturbation of the Exponential Dichotomy 
for Evolution Equations 1 

Hugo Leiva 

Abstract: In this paper we prove that the exponential 
dichotomy for evolution equations in Banach spaces is not 
destroyed, if we perturb the equation by "small" unbounded 
linear operator. This is done by employing skew-product semi­
flow technique and a perturbation principle from linear opera­
tor Theory. Finally, we apply these results a partial parabolic 
equation. 
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1 Introd uction 

Many authors have been studying the existence and roughness(perturbation) of 
the exponential dichotomy (ED) for infinite dimensional evolution equations. For 
example, for partial differential equations one can find the work done by D. Henry 
[11], Kolesov [13] and X.-B. Lin [18]. In the case offunctional differential equations 
we can see the work done by J. Hale [10], X.-B. Lin -[17], and M. Lizana [19]. 

Roughly speaking these authors have studies the existence and ~'oughness of 
the exponential dichotomy for the following abstract linear evolution equation in 
a Banach space Z 

z' = (A + B(t))z, t > 0, (1.1) 

where t -+ B(t) : IR -+ L(Z) is bounded, continuous in the strong operator 
topology of L(Z) and A is the infinitesimal generator of a Co -semigroup. For the 
existence of the exponential dichotomy we only have to put some gap condition 
on the spectrum of A and assume that B(t) is small in the uniform topology of 
L(Z), see for example Chow-Leiva [2], Rau [23] and Sacker-Sell [24]. 

The question of perturbation (roughness) for the exponential dichotomy can 
be formulated as follow: If the equation (1.1) has ED, then for which class of 
linear operators P on Z the equation 

z' = (A + P)z + B(t)z, t > 0, (1.2) 

has ED? In this general setting, it is well known that: if P is a bounded lin­
ear operator, which is small enough in the uniform topology of L( Z), then the 
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equation (1.2) has ED. But,if P is unbounded this results is not true in general. 
Nevertheless, for some particular partial differential equations we can allow P to 
be unbounded. 

All these problems can be treated in unifield setting of a linear Skew-Product 
Semiflow (LSPS), see for example Sacker-Sell [24], Latushkin -Stepin [14], [15], 
Latushkin, Smith and Randolph [16] and Chow-Leiva [1], [2] [3]. In [2] we give a 
necessary and sufficient conditions for the existence of exponential dichotomy for 
skew-product semiflow. Also, we prove that the ED for LSPS is not destroyed by 
small perturbation (roughness). But, the question of roughness for the' equation 
(1.1) with unbounded perturbation P remains the same. In this paper we shall 
answer this quation for the more general class of unbounded operator P. That 
is to say, we will study the existence and roughness of the ED dichotomy for the 
following family of evolution equations in a Banach space Z . 

z' = (A + P)z + B(e . t)z, t > 0, e E e, P E peA). (1.2)p 

Where the state z E Z, A is the infinitesimal generator of a Co-semigroup 
{T(t : A) h2:o , e is a compact Housdorff topological space which is invariantly 
connected under a flow aCe, t) = e . t, B(e) is a bounded linear operator in Z and 
P is an unbounded linear operator in Z which belong to the set peA) given in 
section 3. One of the goal in this work, is to prove the following statement: 

If for some Po E peA) the equation (1.2)po has ED according to Definition 
2.2, then there exists a neighborhood N(Po) of Po such that for all P E N(Po) 
the equation (1.2)p has ED. 

2 Notations and Preliminaries 

In this section we shall present some definitions, notations and results about Linear 
linear skew-product semiflow in infinite dimensional Banach spaces. 

2.1 Linear Skew-Product Semiflow (LSPS) 

We begin with the notion of LSPS on the trivial Banach bundle £ = X x e where 
X is a fixed Banach space (the state space) and e is a compact Hausdorff space. 

Definition 2.1 Suppose that aCe, t) = e· t is a flow on e, i.e., the mapping 
(e, t) -+ e· t is continuous, e· 0 = e and e· (s + t) = (e· s) . t , for all s, t E IR. 

A semi flow 7r on £ = X x e is said to be Linear Skew-Product Semiflow 
(LSPS), if it can be written as follows 

7r(X, e, t) = (~(e, t)x, e· t), t ~ 0, 

where ~(e, t) E L(X) has the following ,properties: 

(1) ~(e, 0) = I, the identity operator on X, for all e E e 
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(2) limt-+o+ <P(O, t)x = x, uniformly in O. This means that for every x E X and 
every f > 0 there is a 0 = o(x, f) > 0 such that II<P(O, t)x - xII :$ f , for all 0 E e 
and 0:$ t:$ O. 

(3) <P(O, t) is a bounded linear operator from X into X tnat satisfies the cocycle 
identity: 

<P(O, t + s) = <P(O · t, s)<P(O, t) 0 E e, 0:$ s, t. 

(4) for all t ~ 0 the mapping from £ into X given by 

(x,O) - <P(O, t)x 

is continuous. 

(2.3) 

The properties (2) and (3) imply that for each (x, 0) E £ the solution operator 
t - <P(O, t)x is right continuous for t ~ O. In fact: 

II<P(O, t + h)x - <P(O, t)xll = II[<P(O . t, h) - I]<P(O, t)xll 

which goes to 0 as h goes to 0+ . 

2.2 Exponential Dichotomy (ED) 

A mapping P : £ - £ is said to be a projector if P is continuous and has the form 
P(x,O) = (P(O)x,O), where P(8) is a bounded linear projection on the fiber 
£(0). 

For any projector P we define the range and null space by 

R = R(P) = {(x,O) E £ : P(O)x = x}, N = N(P) = {(x, 0) E E : P(O)x = O} 

The continuity of P implies that the fibers R(O) andN(O) vary continuously in O. 
This also means that P(O) varies continuously in the strong topology of L(X). 

A projector P on £ is said to be invariant if it satisfies the following property 

P(O . t)<P(O, t) = <P(O, t)P(O) t ~ 0, 0 E e (2.4) 

Definition 2.2 We shall say that a linear skew-product semiflow 1r on £ has an 
exponential dichotomy(ED) over e , if there are constants k ~ 1, /3 > 0 and 
invariant projector P such that for all 0 E e we have the following: 

(1) <P(O, t) : N(P(O» - N(P(O· t», t ~ 0 is an isomorphism with inverse: 

<P(O· t, -t) : N(P(O· t» - N(P(O»), t ~ 0 

(2) 1I<P(8,t)P(0)11:$ ke-{3t, t ~ 0 

(3) 1I<P(O,t)(I - P(O)II :$ ke{3t, t:$ O. 

From N(P(O») = R(I - P(O) and the Open Mapping Theorem we have that 
<P(O, t)(I - P(O)) is a well defined linear and bounded operator for t :$ o. 
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The following Theorem says that the ED of the LSPS is not destroyed by small 
perturbation, it can be found in Chow-Leiva [2]. Also, for the case of linear skew­
product fiow(LSPF) there is a nice proof of this Theorem given by Latushkin, 
Montgomery-Smith and Randolph in [16] using evolutonary groups. 

Theorem 2.1 Suppose 7r = (<1>,0") is a LSPS on E which has a ED (with exponent 
/3 and constant M). If 

L = sup{II<1>(O, t)lI: 0 ~ t ~ 1, ° E e} 

and Me-{3 < e-{31, Ml > M, then there exists f = f(/3,/3l,M,Ml,L) > 0 such 
that any linear skew-product semiftow 1r = (\11,0") on E satisfying 

sup{II<1>(O, t) - \11(0, t)lI: 0 ~ t ~ 1, ° E e} ~ f 

has ED with exponent /31 and constant MI. 

3 Perturbation Principle 

The results presented in this section follow from a combination of Theorem 19 
in [9] pg. 31 and the chapter XIII of [12]. It -is well known that, if A is the 
infinitesimal generator of a Co- semigroup {T(t; A)h>o in the Banach space Z 
and P is a bounded linear operator in Z (P E L( Z)), then A + P is the infinitesimal 
generator of a Co-semigroup {T(t; A + P) h~o which is given by the following 
formula 

T(t; A + P)z = T(t; A)z + lot T(t - s; A)PT(s; A + P)zds, z E Z. (3.5) 

Now, we shall see that: if P is an unbounded linear operator which is not too 
irregular relative to A, then A + P is the infinitesimal generator of a Co-semigroup 
{T(t; A + P) h~o, but, the formula 3.5 is not true in general. 

We shall denote by V( S) the domain of an operator S in a Banach space W, 
L(W) the space of bouded and linear operator defined on Wand O"(S) the spec­
trum of the linear operator S. With these notation in mind, we will consider the 
following class of unbounded linear operators: If A is the infinitesimal generator of 
a Co-semigroup {T(t; A)h>o we denote 1'(A) the class of closed linear operators 
P satisfying the conditions 

(I) V(A) ~ V(P), 

(II) for each t > 0, there exists a constant h(t) ~ 0 such that 

IIPT(t, A)zll ~ h(t)lIzll, Vz E V(A), 

(III) the integral fol h( t )dt exists. 
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The following Theroem can be found in [9). pg 631. 
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Theorem 3.1 Let A be the infinitesimal generator of a Cosemigroup {T(t; A) h~o 
in Z. If P E peA), then A + P defined on 'D(A + P) = V(A) is the infinitesimal 
generator of a Co-semigroup {T(t; A + P)h~o. Furthermore, 

00 

T(t; A + P)z = L Sn(t), t ~ 0, (3.6) 
o 

where 

So(t) = T(t; A) and Sn(t)z = 1t T(t - S; A)PSn_ 1(s)zds, n 2: 1, z E Z, 

and the sene ' (3.6) is absolutely convergent in the uniform norm of L(Z), uni­
formly with respect t in each finite interval. For each nand z the function Sn(t)z 
is continuous for t 2: o. 
The following facts can be found in [9). 

(a) Ut>o T(t; A)z ~ V(P), 

(b) the mapping z ~ PT(t; A)z, z E V(A), has a unique extension to a bounded 
operator defined in on Z. In order to simplify the notation, we will call this 
extension PT(t). 

(c) ?T(t)z is continuous in t > 0 at each z E Z. If Wo = limt_oo log IIT(t)lI/t, 
then 

1. log IIPT(t) II 
1m sup :5 wOo 
t-oo t 

(d) if R(A) > Wo, then 

JYR(A; A)z = 100 
e->.t PT(t)zdt, z E Z; 

where R(A;A) = (A - A1)-l. 

(e) If W > Wo, then there exists Mw < 00 such that 

IIT(t)1I :5 Mwewt , and IIPT(t)lI:5 Mwewt , t 2: O. 

(f) for all f3 > 0 

1/3 IIPT(t)lIdt < 00 . 

(g) If 'Y = JoOO e-wt IIPT(t) Iidt < 1, then 

IISn(t)1I :5 Mwewt'Yn , n 2: o. 
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Proposition 3.1 Let A be the infinitesimal generator of a Co-sernigroup {T(t ; A) h>o 
of type woo Define the function -

and for a fixed w > Wo the function 

Then C A (Pl! P2 ) and d A (P}, P2 ) are equivalent metrics on P (A) . i. e., there exist -
constants MA and rnA such that 

Remark 3.2 If Pi - P2 is bounded, then 

Theorem 3.2 The function P e P(A) -+ T(t;A+P) e L(Z) is continuous. i.e. , 

lim IIT(t; A + P) - T(t; A + Po) II = 0, 
dA(P,PO)-O 

uniformly with respect to t in each interval of the form [0, .al, .a > O. 
Furthermore. If CA(P, Po) < 1, then there exists a constant M = M(Po) such 

that 

I ( . ( . ) CA(P,PO) wt 
ITt,A+P)-Tt,A+Po II~ l_CA(p, po)Me , t~O. 

4 Main Results 

From the foregoing section we have that (P(A), dA) is a metric space endow with 
the metric dA . Now, we are ready to study the following family of evolution _ 
equations. 

z' = (A + P)z + B(O . t)z , t > 0, 0 e e, P e (P(A), dA). (4.9)p 

where the mapping 0 e e -+ B(O)z is continuous in 0 for z e Z fixed. The 
equation (4 .9)p generates a linear linear skew-product semiflow trp = (CJ.>p,a) on 
z x e according to Definition 2.1 given by 

7rp(z,O,t) = (CJ.>p(O,t)z,O · t), oee, Pe(P(A),dA). (4.9) 
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Where iP p(B, t) is the evolution operator associated with the equation (4.9)p which 
is given by the formula 

iPp(B, t)z = T(t;A+P)z+ lot T(t-s;A+P)B(B·s)iPp(B,s)zds, z E Z. (4 .10) 

Theorem 4.1 If fo r some Po E (P(A), dA) the linear linear skew-product semi­
flow 7rpo generated by (4.9}po has exponential dichotomy over 8, then there exists 
a neighborhood N(Po) of Po such that for each P E N(Po) the LSPS trp generated 
by (4 .9}p has ED over 8 . 

Proof We shall apply Theorem 2.1. So, we need to prove that, there exists a 
neighborhood N(Po) of Po such that for each P E N(Po) we have the following 
estimate 

sup{lIiPp(B,t) - iPPo(B,t)lI: 0 ~ t ~ 1, BE 8} ~ € 

where € is given in Theorem 2.1. In fact, from Theorem 3.2 we have that 

Now, from formula (4.10) we get that 

iPp(B,t)-iPPo(B,t) = T(t;A+P)-T(t;A+Po) 

+ lot (T(t - s; A + P) - T(t - s; A + Po»8(B· s)iPPo(B, s)ds 

+ lot T(t - s; A + P)8(B· s)(iPp(B, s) - iPPo(B, s»ds 

So, 

IliPp(B , t) - iPPo(B ,t)1I < c5A(P,PO) Mewt 
1 - c5A(P, Po) 

+ t c5A(P, Po) M w(t-")RII'" (B )lld Jo 1- c5A(P,PO) e 'It'Po ,s s 

+ lot UT(t - s; A + P)IIRII(iPp(B,s) - iPPo(B, s»lIds. 

Where 118(B)1I ~ R for all B E 8. Clearly, if t E [0,1] then there are constants Ml 
and Nl such that 

IliPp(B , t) - iP Po (B , t)1I < Ml c5A(P, Po) 
1 - c5A(P, Po) 

+ N1lot II(iPp(B , s) - iPPo(B,s»llds, 0 ~ t ~ 1. 
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Now, applying Gronwall's inequality we get 

Therefore, by the continuity of 8A there exists a neighborhood N(Po) of Po such 
that for each PEN (Po) we have that 

sup{II<I>p(61,t) - <l> Po(61,t)lI: 0 $ t $1, 61 E e} $ e 

o 
Next, we shall consider a particular case of the family of equations (4.9)p . Let 

us study the family of equations 

z' = A>.z + B(61 . t)z, t ~ 0, e E e, A E A. (4.1O». 

Where A is a topological space, A>. is the infinitesimal generator of a Co-semigroup 
{T>.(t)h~o = {T(tj A>.)h~o and for all A, AO E A we have that A>. - A>.o E 
(P(A>.o)' dA.>.o)· 

Moreover, the mapping 

is continuous. Under the above conditions the equation (4.10)>. generates a linear 
skew-product semiftow 11">. = (<1>>.,0-) on Z x e given by 

1I">.(z,61,t) = (<I>>.(61,t)z,e·t), 61Ee, t$O. (4.11) 

Where <1>>.(61, t) is the evolution operator associated with the equation (4.1O». 
which is given by the formula 

<1>>.(61, t)z = T>.(t)z + lot T>.(t - s)B(61· s)<I>>.(61, s)zds, z E Z. (4.12) 

Corollary 4.1 If for some AO E A the LSPS 11">'0 genemted by (4.10)>'0 has ED 
over e, then there exists a neighborhood N (AO) of AO such that for each A E N (AO) 
the LSPS 11">. genemted by (4.10)>. has ED over e. 

4.1 Example of Parabolic Equations 

Consider the following parabolic equation 

Ut = u"'''' + a(x)u", + b(61 . t, x)u, t > 0, 61 E e, 

with the initial conditions 

lim u(t, x) = uo(x), uniformly in x E JR. 
t-+O 

(4.13) 

(4.14) 
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Where a : JR -+ JR is uniformly continuous and bounded function, b(-, .) : ex JR -+ 

JR is a continuous and bounded function. Let Z = Cub(JR) the space of uniformly 
continuous and bounded functions with the sup-nom and consider the operator 
A = -fl.r whose domain V(A) consists of all u E Z such that U x and U xx belong to 

. Z . It is well known that A generates a Co-semigroup {T(t; A)h~o on Z. Moreover, 

a(A) C (-00,0) and IIT(t; A) II :::; 1, t? o. 

Furthermore, 

1 JOO 2 T(t; A)u(x) = c; e- s / 4tu(x + s)ds, u E Z, t > O. 
2v 7ft -00 

(4.15) 

Next , let Pa be the closed unbounded operator defined by: 

(a) the domain of Pa consits of all u E Z such that u has a continuous derivative 
in a neighborhood of each Xo for which a(xo) =1= 0 and a(x)u E Z. 

(b) for u E V(Pa) we put Pau(x) = a(x)ux. 

Now, we define the family of operators B(O) E L(Cub(JR)), ° E e as follow 

B(O)u(x) = b(O, x)u(x), 0 E e, x E JR. 

Therefore, the equation (4.13) can be written as follow 

u' = (A + Pa)u + B(O ·t)u, t > 0, 0 E e, a E Z. (4.15)a 

Also, we shall consider the unperturbed equation 

u' = Au + B(O· t)u, t > 0, 0 E e. (4.16) 

The equation (4.15)a will be well defined if we verify that Pa belong to (P(A),dA), 
which imply by Theorem 3.1 that A + Pa with domain V(A) generates a Co-
semigroup. In fact, clearly V(A) C V(Pa). If u E V(A) and t > 0, then 

IlPaT(t; A)ull < 

< 

d lIall sup I-d T(t; A)u(x)1 
xEJR x 

Iiall sup I~ JOO e-(€-x)2/4tu(~)d{1 
xEJR 4tV7rt -00 

Ilaliliuli sup 100 I~ _ xle-(€-x)2 /4td~ 
4tV7rt xEJR -00 

lIallllull roo ~e-e/4td~ 
2tV7rt Jo 
Ilalillull 

V7rt . 
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Hence, 
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IlPaT(tj A)ull ~ "!"u", u E V(A) . 
v1rt 

Therefore, Pa belong to (P(A), dA ). 

(4.17) 

Remark 4.1 We know that a(A) C (-00,0). If the funcion b(·, ·) is one of the 
following type, then the equation (4.13) has exponential dichotomy. 

(a) for any {3 < 0, b(O,x) = {3. 

(b) for a function b is independent of x and the dynamical spectrum of the ODE 
z' = b(O . t)z is [a, {3] with {3 < O. . 

(c) for any function b(O, x) such that Ib(O, x) - b(O)1 is small enough uniformly on 
x and b is given in (b). 

Proposition 4.1 If the equation (4.16) has ED overS, then there exists a neigh­
borhood N(O) C Cub(IR) of 0 such that for each a E N(O) the equation (4.15)a 
has ED over S. 

Proof We only need to prove that the mapping a E Cub(IR) --+ Pa E (P(A), dA ) 

is continuous at zero. In fact, from (4.17) we get that 

o 
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