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Synchronization, stability and normal hyperbolicity 

Shui-Nee Chow and Weishi Liu 

Abstract: Synchronization is studied in the framework of 
invariant manifold theory. Normal hyperbolicity and its per­
sistence are applied to give general results on synchronization 
and its stability. Simple numerics illustrate the importance of 
the stability issue. 

1 Introduction 

Synchronization phenomena of oscillators and coupled oscillators have been 
studied by physicists, engineers and mathematicians [AVR][ACH][ARJ[Hl-3][PCl] 
[PC2][CI] [HCP] [COl][C02][R][RT][RVl-2] etc.. While this brings many inter­
esting questions to mathematicians, it has also been applied to many areas such 
as communications, signal processing, etc .. 

This phenomenon was studied for coupled oscillators by many authors. It was 
observed that, even individual oscillators may be chaotic, the coupled oscillators 
could exhibit synchronization, that is, the corresponding coordinates of the sys­
tem approach each other as time evolves. The phenomenon often results from the 
diffusive coupling, but more likely with the interactions of the dissipation of the 
system. For systems possessing strong partial dissipations, master-slave synchro­
nization and synchronization from partial coupling are expected (see [ACH][Hl-
3][PCl)). Pecora and Carroll observed that for a class of chaotic systems, it can be 
decomposed into two subsystems: a drive (master) and a stable response (slave) 
subsystem. The latter one synchronizes when coupled with a common driven 
signal. 

Concerning the phenomena of synchronization, two basic questions are par­
ticularly interested and important. The first one is: given a coupled chaotic 
system or a chaotic system, when the system possesses synchronization or self­
synchronization. For coupled identical systems, the diagonal of the system is in­
variant. Synchronization is equivalent to the attracting property of the diagon~l, 
which in turn is determined by the Lyapunov exponents normal to the diagonal. 
More precisely, if all the Lyapunovexponents normal to the diagonal are negative, 
then the coupled oscillators are synchronized . 

For master-slave synchronization the question is more delicate. The appearing 
of master-slave synchronization depends on the product structure of the system. 
For some product structure it may happen that no coordinate is synchronizing co­
ordinate, while for other product structure some coordinates may be synchronized 
coordinates. Hence, instead of asking simply that if the system has synchronizing 
coordinates, one should ask, from global dynamical point of view, that if. there ex­
ists product structure such that the system is synchronized with some coordinates 
as synchronizing coordinates. We like to bring the attention on the following ob-
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servation . Due to the dependence of the synchronization on the product structure, 
the dynamic of the system does not play the whole role for the synchronization. 
For example, in the Lorenz equation with chaotic. attractor, there are one neg­
ative, one zero and one positive Lyapunov exponents. Nevertheless, the Lorenz 
equation still possesses two types of master-slave synchronization' (see [TWBD. 
Hence, for master-slave synchronization, one of the goals is to relate the dynamic 
properties to the existence of a product structure which produces master-slave 
synchronization. 

Another question which is more important arises from the following consider­
ation . In practice, for example the implementation of a system by designing cir­
cuits, various perturbations are unavoidable. This naturally addresses the question 
about the stability or robustness of the synchronization. While many literatures 
appear on the synchronizations, it seems to us that the stability property has 
not been paid much attention. After setting the problem' in the framework of 
dynamical systems, we study this aspect based on 'the invariant manifold theory 
(see Theorem 2) . It turns out that the stability depends not only on the normal 
Lyapunovexponents, but alSo on the generalized Lyapunovexponents (see Defi­
nition 3) which measure the comparison of the normal Lyapunov exponents and 
the parallel ones along trajectories in the attractor. Application to fully coupled 
systerp.s is discussed, in particular on the strength of the coupling in Section 3. 
This issue is also important in numerical simulation. Some numerics are carried 
along this direction to support our idea. The formulation also allows general forms 
of dissipa:tive coupling. 

Master-slave synchronization and partial coupling are two widely used meth­
ods to detect strong partial dissipative property of a system. Relation between 
those two was discussed here (see Th.3 and also [HI-3D, by using two different 
applications. 

2 Definitions and results 

2.1 Consider the following system 

x' 

y' 

!(x, y) 
g(x, y) (1) 

where x E Rn, y E Rm. Suppose that the system is dissipative (see [HI-3D, then 
there exists a global attractor A . Let .1f1 : Rm+n -+ Rn, 71"2 : Rm+n -+ Rn be the 
projections form Rm+n onto Rn and Rm. 

Many systems have a natural decomposition as (1), for example systems ob­
tained by coupling identical oscillators. Even though the systems may be compli­
cated, certain degree of coherence may exhibit. Among others, synchronization is 
one of the most studied lately. Here we give a formulation closely related to the 
invariant manifold theory and apply results there to the study of synchronization. 
The following definition is motivated by [AVRJrH2]. 
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Definition 1. The system (1) is synchronized for 'y with respect to x, if there 
exists Cl map H : R" ~ R m such that the graph of H, denoted graph(H), is 
invariant and globally attracting. 

In this case, for any (xo, Yo) E Rm +" one has 

Ily(tj xo, Yo) - H(x(tj Xo, Yo)) II ~ 0, t ~ OOj 

In particular, if (xo, Yo) E A, then Yo = H(xo) and y(tj Xo, Yo) = H(x(tj Xo, Yo)) 
for any t E Rl . 

In the case m = n, (1) is called mutually synchronized if H is invertible. 
For systems with D = {(x, y) : x = y} invariant, for example, in coupled 

identical systems or any system symmetric with respect to D, the synchronization 
occurs for H = I . 

In many applications the local synchronization is interested, that is, instead 
ofrequiring global attraction of graph( H), one asks for locally attracting. In this 
case, we will say the system is locally synchronized. 

In [PCl][TWB] etc., a master-slave or self synchronization phenomenon was 
introduced. System (1) is said to have master-salve synchronization with x as syn­
chronizing coordinate if for any solution (xo(t), Yo(t)) of (1), the solution Y(tj Yo) 
of 

y' = g(xo(t), Y) 

converges to yo(t) for any initial condition Yo, that is, IY(tj Yo) - Yo(t)l ~ 0, as 
t ~oo. 

In terms of skew-product flow, this can be treated as a special case of the syn­
chronization in Definition 1. To see this, consider the skew-product flow induced 
by (1): 

x' f(x,y) 

y' = g(x, y) (2) 
y' = g(x, Y) 

«x,y),Y) E (R" x Rm) x Rm . 
If system (1) has master-slave synchronization with x as synchronizing co­

ordinate, then Do: := {(x, y, Y) : y = Y} is attracting and hence A C Do: for 
(2) . Choose H: R" x Rm ~ Rm, (x, y) ~ y, then Do: = graph(H), and for 
(xo, Yo, Yo) E A, Yo = Yo, and 

H(x(tj (xo, Yo), Yo), y(tj (xo, Yo), Yo)) = Y(t; (xo, Yo), Yo). 

By Definition 1 the system (2) is synchronized for Y with respect to (x, y) . 
Definition 2. Suppose (1) is locally synchronized with map H . The synchro­
nization is Cl stable if for any (; > 0, there exists 15 > ° such that for any i, g, 
Ii - fle ' < 15 and Ig - gle' < 15, the system . 

x' i(x, y) 
y' = g(x, y) 
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is locally synchronized with map iI and IiI - Hle1 < (.. 
2.2 Very often in the investigation of synchronization, system has a natural invari­
ant submanifold. The synchronization and its stability relate to the attraction and 
the persistence of this manifold. The invariant manifold theory naturally comes 
into play an important role. Before introducing the results, we recall some ele­
ments of the invariant manifold theory for the purpose of this topic. 

Suppose, for system (1), there exists an invariant manifold M = graph(H), 
where H : Rn -t Rm. Consider the linearization along M 

z' = A(z(t; zo))z (3) 

where z(t; zo) is the solution of (1) with z(O; zo) = Zo E M and A(z) = J J(z) is 
the Jacobian matrix of J at z. Let 4>(t; zo) be the fundamental matrix solution 
of (3). Assume that there exists an invariant splitting with respect to 4>(t; zo), 
that is, TzRm+n = TzM EB Nz for z E M, and 4>(t; zo)TzoM = Tz(t;zo)M and 
4>(t; zo)Nzo = Nz(t~o) for all t E RI. Denote 4>c(t; zo) and 4>,(t; zo) the restrictions 
of4>(t;zo) on TzoM and Nzo , respectively. 
Definition 3. The generalized Lyapunov exponents for Zo E M are defined as 

O'(zo) = lim sup! In 114>. (t; zo) II, 
t-+oo t 

and 
() . Inm(4)c(t;zo)) 

f3 Zo =hmsup 1 II (. )11' t-+oo n 4>. t, Zo 

where, for a linear operator L, m(L) := min{ILxl; Ixl = 1, x E D(L)}. 
The generalized Lyapunov exponents were introduced for the study of normally 

hyperbolic invariant manifolds (see [HPS][F][He]) and center manifold theory for 
invariant manifolds (see [CLY)). 

Note that the generalized Lyapunov exponents for Zo E M is completely deter­
mined by those in A . The Uniformity Lemma in [F] states that 0' and f3 achieve 
their maximums on A. 

The results we have are 

Theorem 1 Consider system (l). Suppose that graph(H) is invariant. If O'(zo) < 
o for Zo E graph(H), then graph(H) is attracting, and hence (1) is locally syn­
chronized. 

Theorem 2 Suppose that graph(H) is locally synchronized. The synchronization 
is C l stable if and only if O'(zo) < 0 and f3(zo) < 1 for Zo E graph(H). 

These results are consequences of well-known theorems in the invariant mani-
fold theory regarding persistence of invariant manifolds, see for example, [HPS][CY)[He] 
for the first one, and [M][F] for the second. The latter is particularly important 
in applications due to the requirement on the stability of real designs. 
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3 Synchronization of fully coupled systems' 

In this part , the theorems are applied for the study of synchronization offully 
coupled systems, in particular for the stability property. Let 

x' = f(x) (4) 

x E Rn , be a dissipative process and A be the attractor. Denote AM, Am the 
maximal and the minimal Lyapunov exponents over A. 

Consider the coupled system 

x' = f(x)+A(x-y) 
y' f(y) + B(y - x) (5) 

The diagonal D = {(x, y) : x = y} is invariant under (5), and the coupled system 
is synchronized if D is attracting. 

Make the change of variables, 

y-x y+x 
u= --, v= --, 

2 2 

the equation is then written as 

u' 
1 
2[f(v + u) - f(v - u) + 2(A + B)u] 

v' = 
1 
2[f(v + u) + f(v - u) + 2(B - A)u]. 

Now the synchronization is equivalent to that {u = O} is attracting. 
Linearizing (6) along {u = O}, say along (O,vo(t», 

u' 

v' = 

[Jf(vo(t» + (A + B)]u 
(B - A)u + J f( Vo (t»v 

and noticing that vo(t) is a solution of (4). 

(6) 

(7) 

For symmetric coupling, that is, A=B, (7) has a natural invariant splitting 
Rn (u) $ Rn (v). Now {u = O} is locally attracting if 

u' = [J f(vo(t» + 2A]u (8) 

has zero as an exponentially stable. solution. 
In the case A= -kI, if (HI) : k > AM , then the Lyapunov exponents of 

(8) are less than zero, by Theorem 1, {u = O} is attracting and the coupled 
system is locally synchronized. ~ut, to insure the stability of the synchronization, 
by Theorem 3, one needs k > AM and -k + AM < Am, that is, (H2) : k > 
max{AM , AM - Am}. 

To illustrate the importance of the results , we consider the · coupled Lorenz 
equation. For the choices of the parameters u = 10, r = 28 and b = 2.667, in 
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the Lorenz equation, it is known (see [LHMMHHTHHHTZ], etc.) the attractor is 
chaotic: there is a Lyapunovexponent closed to 0.912, one to 0 and one to -14.577 
(this is obtained by using the numerical algorithm in [NY]). 

First we consider the weakly coupled Lorenz system with k = I, which satisfies 
(HI) but not (H2), 

I Xl U(YI - Xl} - k(Xl - X2) 

y~ rXl - Yl - XIZI - k(Yl - Y2} 
ZI 1 = XIYl - bZl - k(Zl - Z2) 

X' 2 U(Y2 - X2) - k(X2 - xt}2 
I 

Y2 = rX2 - Y2 - X2 Z2 - k(Y2 - yt} 
ZI 2 = X2Y2 - bZ2 - k(Z2 - zt}. 

The fourth-order Runge-Kutta numerical integration of the trajectory with initial 
condition (1 , 2,3,4,5,6) up to 17000 iterations is plotted. The differences of X2 -
Xl, Y2 - Yl and Z2 - Zl approach zero rapidly (see Fig. 1.1-1.3) . This agrees with 
the theoretical prediction that this weakly coupled system is locally synchronized. 
Now we add a small perturbation to obtain the perturbed weakly coupled Lorenz 
system 

X~ U(YI - xd - k(Xl - X2) + O.OIXl - 0.02z1 

y~ rXl - Yl - XIZI - k(Yl - Y2) - 0.01X IZ3 

z~ XIYl - bZl - k(Zl - Z2) 

x~ U(Y2 - X2) - k(X2 - xt} - 0.03Z1X2 

y~ rX2 - Y2 - X2 Z2 - k(Y2 - yt} 

z~ = X2Y2 - bZ2 - k(Z2 - zt}. 

Applying the same numerical integration for the same initial condition (1,2,3,4,5,6). 
The differences of X2 - Xl, Y2 - Yl and Z2 - Zl exhibit a chaotic behavior and the 
magnitudes are rather large (see Fig. 2.1-2.3) . This is because that without (H2), 
the persistence of D is not guarante ed under small perturbations. 

Consider now a strong coupling which satisfies (H2), say k = 15, with the 
same perturbation and apply the numerical scheme for the same initial condition, 
one sees that although the differences are rather chaotic, their magnitudes are 
very small (see Fig. 3.1-3.3), which reflects a slight perturbation of the diagonal. 
Nevertheless, the diagonal is persistent and hence the synchronization is stable 
for this stronger coupling. 

4 Master-slave synchronization and partially cou"; 
pled system 

4.1 The master-slave synchronization reflects strong partial dissipation in a sys-
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tern . It is realized by decomposing the system into two subsystems and driving 
one by the other. Intuitively, this can also be realized by coupling two identical 
systems only along the driven subsystem. The following result gives a relation 
between those two. 

Theorem 3 Suppose 

%' = 1(%, y) 
y' = g(%,y) (9) 

has the master-slave synchronization with y as synchronizing coordinates, then the 
partially coupled systems 

%~ = 1(%l,yd 

~ = g(%l' yI) - k(Yl - Y2) 
%' 2 = 1(%2 , Y2) (10) , 
Y2 = g(%2' Y2) - k(Y2 - yd, 

and 

, 
%1 = 1(%1, yI) 

~ = g(%l' Y1) + kY2 

%~ = 1(%2, Y2) (11) 

Ya = g(%2' Y2) + kY1, 

are both synchronized lor k large. 

Proof. Here we provide the proof for the first coupling system. To show this, we 
make the change of variables 

%2 - %1 %2 + %1 Y2 - Y1 Y2 + Y1 
ul = 2 ' U2 = 2 ,VI = 2 ' v2 = 2 

Under the new variables (UI' VI, U2, V2), (10) becomes 

U' 
1 

v~ = 

U' 2 

v' 2 

1 1 
"2/(u2 + UI, V2 + vI) - "2 / (u2 - Ul. V2 - vI) 

1 1 
"2 g(U2 + UI, V2 + vI) - "29(U2 - Ul. V2 - vI) - 2kv1 

1 1 
"2/(u2 + UI , V2 + vI) + "2 / (u2 - Ul. V2 - vI) 

1 1 
"2 9(U2 + Ul. V2 + vI) + "29(U2 - Ul. V2 - vI). 

(12) 

Note that (10) is synchronized, if the plane D = {U1 = VI = O} is attracting (it is 
invariant already) under (12). 



146 Shui-Nee Chow and Weishi Liu 

Now linearizing (12) along UI = VI = 0, that is, for any solution (u~(t), v~(t), 
ug(t), vg(t)) of (12) with u~(t) = v~(t) = 0, consider 

x' = A(t)X 

o 
o 

iz(ug(t), vg(t)) 
gz(ug(t), vg(t)) 

Equation (13) has an invariant splitting: DEB N, where 

N = {(UI' VI, U2, V2) : u2 = v2 = OJ. 
SO D is locally attracting, if 

u' 

v' 

iz(ug(t), vg(t))u + iy(ug(t), vg(t))v 
gz(ug(t), vg(t))u + (9y(ug(t), vg(t)) - 2k)v 

(13) 

(14) 

has zero as a stable solution. Note that (ug(t), v~(t)) is a solution of (9), so if (9) 
has y as synchronizing coordinate, (14) is synchronized for large k. • 

4.2 In what follows we apply Theorem 3 to two systems. 
Example 1. Consider the Lorenz equation [L] 

x' u(y-x) 

y' rx - y - xz 

z' xy-bz. 

where u, r, b are positive. 

(15) 

There are two mathematical models for Lorenz attractor: the geometric Lorenz 
attractor [GW] and Lorenz-type attractor [ABS]. Some work were carried out for 
the existence of those two types of attractors [Ry)[ACL)[AP]. For those models, the 
at tractors have a two dimensional cross section and on the cross section there are 
stable foliations from which . master-slave synchronization could be derived. But 
for the system (15), it is not known if the attractor is 'close' to the above models. 
It is first observed by Pecora and Carroll [PCl] that the system does possess 
master-slave synchronization with x (resp. y) as synchronized coordinate. This 
relys on a numerical computation of the Lyapunov exponents. Here we provide 
an analytic justification using Theorems 1 and 2. 
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In order for y being a synchronizing coordinate we consider the following 

x' = O'(y - x) 
y' = rx - y - xz 

z' = xy- bz (16) 

x' 1 = O'(y - xt} 

z~ = xlY - bz1· 

The linearization in the directions normal to D is 

= -O'XI 

= yXl - bz1. 

This can be solved explicitly by the variation of constant formula. In fact, 

and 

Hence, 

Ixt{t; xt{O), Zl (0))1 ~ e-<1t IX1 (0) I, Izt{t; Xl (0), Zl (0)) I 
~ e-btl~l(O)1 + CIXl(O)lle-<1t _ e-btl. 

Both Xl (t) and Zl (t) approach zero exponentially at the rate not slower than e-4t 

for the standard choices of the parameters 0', r, and b. So y is a synchronizing coor­
dinate for (16). If the Lyapunovexponents in the directions of D are greater than 
-4, then the master-slave synchronization with y as the synchronizing coordinate 
is stable. 

Similarly, for X being a synchronizing coordinate, we need look at 

y~ -Y2 - %%2 

z~ xY2 - bz2. 

Numerical computation indicates that both the Lyapunov exponents are nega­
tive (see [C02]). The following approach we provided is special for this particular 
example, see also [H2]. 

Let u = y~ + z~. Then 

u'(t) = -2y~ - 2bz~ < -2(y~ + z~) = -2u, 

hence, u(t; u(O)) ~ e- 2t u(0) which implies that Y2(t) and Z2(t) approach zero not 
slower than e- t . So X is a synchronizing coordinate for (16). 
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Again , if the Lyapunovexponents in the directions of D are greater than -1, 
then the master-slave synchronization with x as the synchronizing 'coordinate is 
stable. 

From Theorem 3, we can then conclude that the partially coupled systems 
along the variable Y 

x~ U(YI - xI) 

y~ rXI - YI - XIZI - k(YI - Y2) 

z~ XIYI - bZI 

x~ U(Y2 - X2) 

y~ rX2 - Y2 - X2 Z2 - k(Y2 - YI) 

z~ X2Y2 - bz2, 

and 

X~ U(YI - Xl) 

y~ rXI - YI - XIZI + kY2 

Z~ XIYl - bZ1 

X~ U(Y2 - X2) 

y~ rX2 - Y2 - X2 Z2 + kYl 

z~ X2Y2 - bz2, 

are synchronized for large k. Similarly, the systems coupled along the variable x 
are synchronized for large k . 
Example 2. Another example is the laser equation considered in [RT][R][H2] 

E' Tc-1[(G - o:)E + iwE 

G' Til(p - G - GIEI2), 

where E = £e i 4> is the complex electric field and G the gain of a single transverse 
and longitudinal mode class Blaser. Tc is the cavity round trip time, TJ the 
fluorescence time of the upper lasing level of the crystal, p the pump coefficients, 
0: the cavity loss coefficients, w the detuning of the laser from a common cavity 
mode. 

In terms of £ and tjJ, the equation is written as 

£' Tc-I(G - 0:)£ 

tjJ' = w 

G' TJ-1(p - G - G£2). 

Treating tjJ as time and rescaling, we can write (19) as 

£' = Tc-1(G - 0:)£ 

G' Til (p - G - G£2). 

(17) 
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The master-slave synchronization with C as the driven signal and G as the response 
one is obvious. Hence, by Theorem 3, 

C~ Tc-l(Gl - a)Cl + k(C2 - Ct} 

G~ Tjl(p - Gl - G1C?) 

C~ Tc- l (G2 - a)C2 + k(Cl - C2 ) 

G~ Tjl(p - G2 - G2ci), 

and 

C~ = Tc-l(Gl - a)Cl + kC2 

G~ Tjl(p - G l - G1C?) 

C~ Tc- l (G2 - a)C2 + kCl 

G~ Tjl(p - G2 - G2ci)' 
are synchronized for large k. 

The exact model of the coupling system of two lasers used in [RT] is 

E~ Tc-l[(Gl - at}E1 + kE2] + iwlEl 

G~ Tjl(pl - Gl - G11Ed2) 

E~ = Tc- l [(G2 - (2)E2 + kEd + iW2E2 

G~ Ti. l (P2 - G2 - G21E212) 

In the case of coupling of identical lasers one has, in terms of Cj and <Pj, 
j = 1,2, 

C~TC-l[(Gl - a)Cl + kCOS(<P2 - <pt}C2] 

<p~ Tc- l ksin(<p2 - <pt}C2C1l +w 
G~ = T,-l(p - Gl - G1C?) 

C~ Tc- l [(G2 - a)C2 + kCOS(<P2 - <pdCd 

<p~ Tc-lksin(<pl - <P2)C1C;1 +w 
G~ Tj1(p - G2 - G2ci). 

Set <P = <P2 - <PI, then 

<p' = -Tc-1ksin(<p)(C2Cll +C1C;1), (18) 

and clearly <P = 0 is a locally stable equilibrium of (20) for k > O. If we restrict 
<P E (- ~, ~), then the attractor lies in {<p = O} and on it one has 

G' 1 

TC- 1[(G1 - a)C1 + kC2] 

Tj1(p - G1 - G1Cn 

C~ Tc- 1 [(G2 - a)C2 + kC1] 

G~ = Tjl(p - G2 - G2ci)' 
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and for k large, the system is synchronized by Theorem 3. 
It is believable that the phenomena of synchronization are more general than 

the existence of stable foliation structure in chaotic systems. The study of the 
phenomena could lead more understanding toward the chaotic behavior. 
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