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The Complexity of Computing Medians of Relations 1 

Yoshiko Wakabayashi 

Abstract : Let N be a finite set and n be the set of all 
binary relations on N. Consider R endowed with a metric 
d, the symmetric difference distance. For a given m-tuple 
n = (R1' ... ,Rm) E nm, a relation R· E n that min­

imize~ the function I:~ 1 d (Rk , R) is called a median rela­
tion of n. In the social sciences, in qualitative data analysis 
and in multicriteria decision making, problems occur in which 
the m-tuple n represents collected data (preferences, simi­
larities, games) and the objective is that of finding a median 
relation of n with some special feature (representing for ex­
ample, consensus of preferences, clustering of similar objects, 
ranking of teams, etc.). In this paper we analyse the compu­
tational complexity of all such problems in which the median 
is required to satisfy one or more of the properties: reflexitiv­
ity, symmetry, antisymmetry, transitivity and completeness. 
We prove that whenever transitivity is required (except when 
symmetry and completeness are also simultaneously required) 
then the corresponding median problem is NP-hard. In some 
cases we prove that they remain NP-hard even when the pro­
file n consists of one or two relations. We mention some ap­
plications and strategies that can be used to solve the median 
problems considered here. 

Key words: Relations, clustering, complexity, median, 
order, transitivity 

1. INTRODUCTION 

In the social choice theory a classical problem that has been largely investigated 
and whose origin traces back to the late eighteenth century is the problem of 
aggregating individual preferences (linear orders) into a social preference (a linear 
order). The notion of consensus of preferences plays an important role in the 
social sciences, a reason why many efforts have been made to find realistic models 
to express it (cf. Leclerc [1988a], Day [1988]). 

The first mathematical approaches on problems of aggregation of preferences 
are credited to Borda in 1770 and Condorcet in 1785, both concerned with the 
design of election procedures. Young [1990] discusses the model proposed by these 
two major figures of that time , gives some historical accounts and explains the 
Condorcet's theory of voting (see also Young and Levenglick [1~78]) . 

The notion of median relation - a relation minimizing a "remoteness" function 
defined in terms of the symmetric difference distance- was introduced by Ke­
meny [1959], who investigated a method to aggregate individual preferences into 
a collective preference. His method, although being of metric nature, is in fact 
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equivalent to the Condorcet's majority rule, according to which the winning collec­
tive preference should be the one supported by the largest number of votes (Young 
[1990], Barbut [1967], Fishburn [1977], Michaud [1987]). In cluster analysis a sim­
ilar approach was proposed by Regnier [1965], then Mirkin [1974]' for solving the 
problem of aggregating equivalence relations into an equivalence relation (see also 
Zahn [1964]). 

The fact that the symmetric difference distance has been used in problems 
occurring in many different contexts is not a pure coincidence. Axiomatics sup­
porting its use has been investigated in several cases, cf. Kemeny [1959], Monjardet 
[1978], Barthelemy [1979] and Barthelemy and Monjardet [1981]. However, the 
median approach, as any consensus procedure, has some defects as pointed out by 
Fishburn [1977], Leclerc [1988a], and Barthelemy and Monjardet [1988]. This last 
reference gives also an overview of the developments on the algorithmic approaches 
and extensions of the notion of median in other structures. The results concern­
ing its algebraic definition that generalizes to any distributive lattice (cf. Barbut 
[1961], Monjardet [1980]), as well as more recent results on median semilattices, 
resp. (semi)modular (semi)lattices can be found in Monjardet [1987, 1988], resp. 
Barthelemy (1981] and Leclerc [1988b]. For a unified treatment of this subject the 
reader should refer to Barthelemy, Flament and Monjardet [1982]; Barthelemy, 
Leclerc and Monjardet [1986]; Barthelemy and Monjardet [1988J and Barthelemy 
(1988] . 

In this paper we analyse the computational complexity of a class of problems 
of finding medians with prescribed properties. This class includes those classical 
problems such as aggregation of preferences and clustering. 

The material is organized as follows. In Section 2 we give the definitions and 
notation to be used and present the problems to be investigated. In Section 3 the 
main results on the computational complexity of these problems are presented, and 
in Section 4 we discuss special cases concerning restricted domains. In Section 5 
we mention some applications and known strategies to solve median problems. 

2. DEFINITIONS AND NOTATION 

Let N be a finite set with n objects and let n denote the set of all (binary) 
relations on N. Consider n endowed with a metric d, the symmetric difference 
distance, defined as 

d(R,8) := IR ~ 81 := IR U 81 - IR n 81 for all R,8 E n. 

A profile of relations in n, or a profile in nm, is an m-tuple II = (R1 , ... ,Rm) 
where Rk E n for k = 1, ... ,m. Given a profile II = (R1 , ••. ,Rm) in nm, a 
relation R* E n that minimizes the function 

m 

D(II, R) := L d(Rk' R) 
k=l 

is called a median relation of II. 
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In this general form the problem of finding a median of a given profile is trivial 
and not interesting. However, if we require the median to satisfy certain properties 
the resulting problem becomes interesting and has nice applications. So, according 
to the desired properties of R* we obtain different problems, and here we consider 
all those arising when the properties are chosen from the set 

lP' := {Reflexive, Symmetric, Antisymmetric, Transitive, Total}. 

Let us recall some definitions. A relation R E R is reflexive (REF) if (i, i) E R for 
all i E N; R is symmetric (SYM) if (i,j) E R implies (j,i) E R for all i,j EN; R 
is antisymmetric (ASY) if (i, j) E Rand (j, i) E R imply i = j for all i,j E N; R 
is transitive (TRA) if (i,j) E Rand (j,k) E R imply (i,k) E R for all i,j,k E N; 
R is total (TOT) if (i,j) E R or (j,i) E R for all i,j E N,i =I- j. 

To simplify notation we use the abbreviated form of the name of the property 
(given in parentheses) to denote also the set of all relations having this property. 
Thus, for example, TRA denotes the set of all transitive relations in R. Some 
relations having more than one of the properties in lP' are known by special names, 
not always standard in the literature. Here we adopt the following notation and 
terminology: 

C denotes the set of all complete preorders, i.e. C = TRA n TOT. 
T denotes the set of all tournaments, i.e. T = ASY n TOT. 
e denotes the set of all linear orders, i.e. e = ASY n TRA n TOT. 
o denotes the set of all partial orders, i.e. 0 = ASY n TRA. 
E denotes the set of all equivalence relations, i.e. E = REF n SYM n TRA. 

For a subset MeR the median problem relative to M, denoted by MP(R, M), 
is defined as follows. 

Median Problem relative to M - MP(R, M) 

Instance: Profile II = (Rl' ... ,Rm) of m relations in R. 

Objective: Find a relation R* E M such that D(lI, R*) = minREM D(lI, R). 

We expect the reader to be familiar with the basic concepts of graph theory and 
complexity theory. If not, the definitions not given here can be found in Bondy 
and Murty [1976], resp. Garey and Johnson [1979J. We present only the concepts 
we need to establish out notation. 

A graph G with node set V and edge set E is denoted by G = [V, EJ . A 
digraph (or directed graph) D with node set N and arc set A is denoted by 
D = (N, A). A graph G = [V, E], resp. digraph D = (N, A), is called complete if 
E = {{u,v}: u,v E V,u =I- v}, resp. A = {(u,v) : u,v E N,u =I- v}. If D = (N,A) 
is a digraph with A = N x N then D is called I-complete (i.e . complete with all 
loops). For a digraph D = (N, A), we call the arcs in (N x N) \ A missing arcs 
(analogously, missing edges in case of a graph). A digraph is called acyclic if it 
does not contain any directed cycle. A clique of a graph is a complete subgraph 
of G. It needs not be maximal, as is sometimes assumed in the literature. A set 
of edges A in a graph G = [V, E] is called a clique partitioning of G if there is a 
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partition V1 , ... ,Vk of V such that the subgraph induced by each Vi, 1 :::; i :::; k, 
is a clique in G and A is the union of all edges in G with both endnodes in the 
same set of the partition. In this case, if for 1 :::; i :::; k the clique induced by Vi 
is denoted by Q;, then we say that C(A) := {Ql,'" ,Qd is the clique set defined 
by A. 

3. COMPUTATIONAL COMPLEXITY 

We assume here that an instance of the median problem MP(R., M) consisting 
of a profile II = (R1 , • .• ,Rm) is given by an (n2 , m)-matrix A = (aek), where the 
rows correspond to the pairs e E N x N, the columns correspond to the relations 
R 1 , ... ,Rm , and ae,k = 1 if e E Rk; ae,k = 0 if e t/. Rk, k = 1, ... ,m. That is, 
each column k of A corresponds to the characteristic vector of the relation Rk. 
Clearly the size of such an instance is O(n2m). 

It is well-known that the median problems we are considering can be formu­
lated as 0/1 linear programs or optimization problems on weighted digraphs (see 
Grotschel and Wakabayashi [1988]). In fact, it is not difficult to prove that 

where 

(3.1) 

(3.2) 

D(II,R) = LWijT"ij + LCt;j, 

(i,j) (i,j) 

Ctij := I{k : (i,j) E Rdl, 
Wij := m - 2Ctij and 

T" = (T" ij) is the characteristic vector of R. 

Thus, each given instance of MP(R., M) can be formulated as the 0/1 linear 
program: 

minimize L Wij T" ij 

(3.3) (i,j) 

subject to: T" = (T"ij) is the characteristic vector of some relation REM. 

If the coefficients Wij are interpreted as being weights associated with the arcs 
(i,j) of an l-complete digraph Dn on the node set N, then the problem becomes 
that of finding a minimum weighted sub digraph D' = (N, R) of D n , where R E 
M. For example, if M = £ the corresponding digraph problem is a special 
case of the weighted feedback arc set problem or linear ordering problem, and if 
M = [; we obtain the so-called clique partitioning problem (see Reinelt [1985), 
Grotschel, Junger and Reinelt [1985], Barthelemy, Guenoche and Hudry [1988], 
resp. Wakabayashi [1986) and Grotschel and Wakabayashi [1988)). 

From the above reduction one obtains immediately the following result (exclud­
ing some trivial non-interesting cases). 
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Proposition 3.4. If M E {SYM, ASY, TOT, ASY n TOT} then the median 
problem MP(R, M) is polynomially solvable. 

We can also make use of the given reduction, in a more specialized way, to 
show that MP(R, M) is NP-hard for other subsets M. Namely, we first note 
that the obtained digraph optimization problems are special in the sense that all 
of its weights Wij are integers having the same parity. Furthermore, we observe 
that whenever we have such an i-complete weighted digraph Dn = (N, An) with 
m := maxeEAn lWei we can construct a profile II = (R l , ... ,Rm) in Rm such that 
each (i,j) E N x N belongs to precisely aij relations, where aij = (m - wij)!2 
(see (3.1) and 3.2). In other words, these special digraph optimization problems 
are also reducible to MP(R, M). 

In what follows we state more formally the results concerning the above re­
duction. Before, we introduce some notation. For each set MeR we define a 
digraph optimization problem relative to M as follows. 

Digraph Optimization Problem - DOP(n,M,m) 

Instance: i-complete digraph Dn = (N, An); weights We E Z for each e E An, 
all having the same parity and with maxe IWe I = m. 

Objective: Find an arc set A* C An such that A* EM and w(A*) := "EeEA* We 

is minimum. 

The reason to introduce these problems is justified by the following result. 

Theorem 3.5. Let MeR. IfDOP(n,M,m) is NP-hard and m is bounded by 
a polynomial in n, then MP(R, M) is NP-hard. 

Proof. Let Dn = (N, An), wand m be given as an instance I of DOP(n, M, m). 
The corresponding instance I' of MP(R, M) is constructed as follows. For each 
pair (i,j) E An we determine the number aij := (m - wij)!2 and set 

Rk := {(i,j) EN x N: aij 2: k}, for k = 1, . .. ,m, 

obtaining this way the profile II = (Rl , ... ,Rm). In other words, we let (i,j) 
belong to the first aij relations R l , .. . ,ROt;j. 

The construction of the profile II can be done in O(n2 m) time. Thus, when m 
is bounded by a polynomial in n this construction is polynomial in the size of I. 
The proof that an optimum solution of the instance I' gives an optimum solution 
of I is straightforward and will be omitted. 0 

To prove the NP-hardness of some problems, we consider the corresponding 
decision version of DOP(n, M, m) that will be denoted by DDP(n, M, m). 

For technical reasons it will be convenient to consider a slight variation of 
the transitive relation, denoted by TRA *, defined as follows: if (i,j) E Rand 
(j,k) E R then (i,k) E R for all i,j,k E N, i:j:. j:j:. k:j:. i. With this definition 
we can refer to the property TRA * on complete digraphs (instead of i-complete 
digraphs). For that, we define the corresponding digraph optimization (resp. 
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decision) problem DOP* (resp. DDP*), defined analogously as DOP (resp. DDP), 
except that the instance consists of a (loopless) complete digraph. 

The next lemma shows that if we can prove an NP-completeness result for 
DDp· with respect to TRA *, then we can derive an analogous result for DDP 
with respect to TRA (including or not the property REF). More precisely, the 
following holds. 

Lemma 3.6. Let M* = S n TRA * for some relation S on N, and let 

ME {SnTRA, SnTRAnREF}. 

If DDP*(n, M*, m) is NP-complete then DDP(n, M, m) is NP-complete. 

Proof. Let Dn = (N, An), w, m and k be an arbitrary instance ofDDP*(n, M*, m). 
The corresponding instance of DDP(n, M, m), defined by D~, w', m, k' is con­
structed as follows: D~ = (N, A~) is the I-complete digraph obtained from Dn by 
adding to it all the missing loops, the weights w~ are defined as: 

and 

{
if 

w~ := ~e if 

-1 if 

e E An, 

e fj. An and m is even, 

e fj. An and m is odd, 

I {k if m is even, 
k:= k _ n if m is odd. 

We claim that Dn has an arc set B such that B E M* and w(B) ~ k if and 
only if D~ has an arc set B' with B' E M and w' (B') ::; k'. 

In fact, given BeAn take B' := B U {(i,i) : i EN}; and conversely, given 
B' C A~ take B := B' \ {( i, i) : i E N}. This proves the claim and establishes the 
NP-completeness of DDP(n, M, m). 0 

For the proof of the next theorem we need the fact that the following problem 
is NP-complete (see Karp [1972]). 

Acyclic Subdigraph Problem (ASP) 

Instance: Digraph D = (N, A) without loops; positive integer k ::; INI. 
Question: Is there a subset B ~ A with IBI :::: k such that H = (N, B) is acyclic? 

The next lemma (easy to be proved by induction) will be useful in theorem 3.8. 

Lemma 3.7. If H = (N, B) is an acyclic digraph then there exists a graph H' = 
(N, B') containing H, such that B' EASY n TRA n TOT. 

In the subsequent NP-completeness proofs we shall omit the straightforward 
verification that the considered problems are in the class NP. 
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Theorem 3.8. Let 

M' = ASY n TRA * and Mil = ASY n TRA * n TOT. 

Then DDP*(n,M',m) is NP-complete for mE {2,3}, and DDP*(n,M",m) zs 
NP-complete for mE {1, 2}. 

Proof. [Transformation from the Acyclic Sub digraph Problem (ASP)] 
(i) Assume first that m E {2,3} and let M E {M' , M"}. 
Suppose that D = (N, A) and k are given as an instance of ASP.Then the corre­
sponding instance of DDP*(n, M, m), defined by Dn , W, m and k', is obtained as 
follows: Dn = (N, An) is the complete digraph obt ained from D by adding to it 
all the missing arcs which are not loops; the weights We for e E An are defined as 

{ 
-m if e E A, 

We:= -em - 2) otherwise; 

and 

k' := -2k - (;) (m - 2). 

We shall prove that D has an acyclic subdigraph H = (N, B) with IBI 2: k if 
and only if Dn has a subdigraph H' = (N, B') with B' EM and weB') ~ k'. 

a) Let H = (N, B) be an acyclic sub digraph in D with IBI 2: k. Since H is 
also a subdigraph of D n , then by Lemma (3.7) there exists in Dn a sub digraph 
H' = (N, B') containing H such that B' E Mil. Moreover, 

weB') = weB) + weB' \ B) 

~ IBI(-m) - ((;) -IBI)(m - 2) ~ k'. 

b) Let H' = (N, B') be a subdigraph in Dn such that B' E M and weB') ~ k'. 
Since H is acyclic, by Lemma (3 .7) there exists in Dn a subdigraph H" = (N, B") 
containing H' with B" E Mil. Note that B" has at least k arcs with weight -m. 
Otherwise, if B" has 1 arcs with weight -m, I ~ k - 1, then 

weB') 2: w(B") = l( -m) - ((;) -t) (m - 2) > k'. 

Thus, if we take B := {e E B" : We = -m}, clearly H = (N, B) is an acyclic 
subdigraph of D with IBI 2: k. 

(ii) If m = 1 then the above proof also holds for M = M". 

Since ASP is NP-complete and the given transformation is polynomial, the 
result follows. 0 
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We want to prove in the sequel that DDP*(n,M, 1) for M = SYM n TRA* is 
NP-complete. For that, we introduce the next problem which we prove later (see 
Theorem 3.13) to be NP-complete. 

Restricted Clique Partitioning Problem - RCCP 

Instance: Complete graph Kn = [V, E], weights We E {-I, 0,1} for each e E E, 
integer k. 

Question: Is there a clique partitioning ACE such that w(A) ~ k? (That is, is 
there a partition of the node set Vn such that the sum of the weights 
of all edges with both endnodes in the same set of the partition is less 
or equal to k?) 

Theorem 3.9. Let 
M = SYMnTRA*. 

Then DDP*(n,M , 1) is NP-complete. 

Proof. [Thansformation from RCPP] Note that it suffices to prove for m = 1. 
Let Kn = [Vn , En], wand k be an arbitrary instance of RCPP and assume that 
Vn = {I, 2, . .. , n}. The corresponding instance of DDP*(M, 1) defined by Dn, 
w' and k', is constructed as follows: Dn = (N, An) is a complete digraph with 
node set N = Vn , the weights w~ for e E An are defined as 

and k' := 2k. 

, {I if(wij=l)or(wij=Oandi<j), 

Wij:= -1 if (Wij = -1) or (Wij = 0 and i > j); 

It is immediate that, if Kn = [Vn, En] has a clique partitioning A with w(A) ~ k, 
then B := {ij,ji : {i,j} E A}, is an arc set in Dn such that B E M and 
w'(B) = 2w(A). Conversely, if Dn has an arc set B E M with w'(B) ~ k', then 
it is easy to see that the set A := {{i,j} : ij E B} is a clique partitioning of Kn 
with 2w(A) = w'(B). Since RCPP is NP-complete (by Theorem 3.13), and the 
given transformation is polynomial, the result follows. 0 

It remains to analyse two more cases. Namely, when M E {TRA *, TRA * n 
TOT}. This is done in the next two theorems. 

Theorem 3.10. Let 
M = TRA* nTOT. 

Then the problem DDP*(p, M, m), where m is bounded by a polynomial in p, zs 
NP-complete. 

Proof. By Theorem 3.8, the problem Q:= DDP*(n, M*, 2) with M* = ASY n 
TRA * nTOT is NP-complete. We want to prove that Q is polynomially reducible 
to Q := DDP*(p,M,m), where m ~ p4. Let Dn = (N,An), wand k be given as 



The Complexity of Computing Medians of Relations 331 

an instance of Q. Note that, we may assume that k < n 2 , otherwise Q is trivially 
solvable. Suppose N = {I, 2, ... , n}, n 2: 2. The corresponding instance of Q 
defined by Dp, wand k is constructed as follows; Dp = (N, A) is the complete 
digraph of order p = 2n with node set N ;= {iI, i2 ; i EN}. To define the weights 
We for e E A we let 

and set 

where 

R;= U Rij where R ij ;= {(il,jl),(jl,i2)} 
l:'Si<j:'Sn 

0 if e = (i 2 , id, i E N 

L if e = (il , i2), i EN 

W e = Wij if e = (il,jI), e E R 

Wji if e = (h,i2), e E R 

M otherwise, 

M;= 4n2 and L;= 2n4. 

Observe that lWei is even and lWei::; p4. for every e E .4.. 
The parameter k is defined as 

k ;= k + eM, where 

Wij 

io~j 
Wji 

M 
i 1 ~ - _w~ - ~ jl 

"'- ..... ~M /_"11\ 
1\ i............ Jf/ 1\ 

i < j lVi' Y 
I I " " .. I \ 

• 0 \ 1 L / -< ,,10 \ IL 
\ 1 / ..... " \ I 

/ ..... " 
i2 i.. - - M - :: ~ 12 

--};[--

Figure 1 

We shall prove that Dn = (N, An) has a subdigraph H = (N, B) with B E M* 
and weB) ::; k if and only Dp = (N,.4.) has a subdigraph H = (N, B) with B E M 
and weB) ::; k. 

It is clear that M, Land k were chosen conveniently so that the above claim 
can be shown to hold. Before we give the proof, let us explain the idea behind the 
choice of the values for M, Land k. Note that for each pair i, j, 1 ::; i < j ::; n, 
the arcs (i,j) and (j,i) in Dn correspond to the arcs h,jI) and (h,i 2 ) in Dp, 
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respectively, and that the assigned weights agree correspondingly. See Figure l. 
Given a sub digraph ii = (N, E) in i\ with E E M and w(E) ~ k, we want 
to construct a sub digraph H = (N, B) in Dn with B E M* and w(B) ~ k. 
So we want ii to have exactly one of the arcs (i 1 , iI), (jl, i2) for each pair i, j, 
1 ~ i < j ~ n (so that the corresponding arcs in Dn can be set into B) . Thus we 
choose L conveniently (according to k) so that both of (i1,iI) and (jl,i2) cannot 
be in any transitive sub digraph ii with w(E) ~ k. This can be accomplished by 
choosing L so that whenever both of these arcs are chosen to be in a transitive 
subdigraph ii = (N,E), then the choice of (i1 ,i2 ) forced by the transitivity gives 
that w(E) > k. The values for k and M are so chosen that ii must be a subdigraph 
consisting of : 

i) all arcs with weight OJ 
ii) exactly one of the arcs (il,jd, (jl,i2) for each pair i, j, 1 ~ i < j ~ nj 

iii) exactly C := e;) - n - G) arcs with weight M. 

a) Given a sub digraph H = (N, B) in Dn with B E M* and w(B) ~ k, construct 
ii = (N, E) by setting: 

....." -- .- .-

B := Bl U B2 U B 3 , 

where 

El := {(i1,iI), (i1,h), (i2,jd, (i2,h): 1 ~ i < j ~ n a~d (i,j) E B}, 
E2 := {(jl,i1), (jl,i2), (j2,it}, (j2 ,i2) : 1 ~ i < j ~ nand (j,i) E B}, 
E3 := {(i2 ,i1 ): i EN}. 

Notice that lEI = (22n) and E E TOT. For each pair e = (i,j), 1 ~ i,j ~ n, i ¥ j, 
let Se be the following basic subdigraph: 

Figure 2 

Clearly, ii = (N, E) is the union of all basic sub digraphs Se each corresponding 
to an arc e E B. By inspection, it is easy to see that these sub digraphs Be are 
transitive. Thus it remains to be proved that if e := (ir,js) and f := (js,lt), 
with r, s, t E {1,2}, are arcs of E not in the same basic subdigraph, then 9 := 

(in It) E E. Notice that when i = j or j = I then e and f are in a same basic 
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subdigraph. Furthermore, B has no arcs such as e and f where i = l. Therefore 
we may assume that i, j, i are pairwise distinct. 

Since e:= (ir,js) E B, then 

if [ i < j then e E Bl and (i,j) E B, 

L i > j then e E B2 and (i, j) E B. 

Similarly, f := Us, it) E B implies that 

zf _ . {j < i then f E Bl and (j, l) E B, 

j > l then f E B2 and (j, i) E B . 

Thus, (Sj) E Band (j,l'l. E B . Since B_ E TRA*, (i,l) E B. If i < i 
~en g E B l , otherwise g E B z. Hence, g E B . This completes the proof that 
BE TRA*. 

Now let us prove that weB) ::; k. Notice that B l , B2 and B3 are pairwise 

disjoint, R n B3 = 0 and IR n BI = IR n (Bl U B2) I = ~ = G) · 
Thus, 

weB) = weB n R) + w((Bl U B2) \ R) + W(B3) 
= weB) + (IBI -IB31-IB n RI)M 

= weB) + (C;) -n - (;)) M ::; k + CM k . 

b) Let iI = (N, B) be a sub digraph of Dp with B E M and weB) ::; k. Then the 
following holds: 

(bd B does not contain an arc e with We = L. 

Suppose 13 contains such an arc e. Then 

Since :L lWei ::;2n2 , itfollowsthatw(B) 26n4 -4n3 -2n2 . On the other hand, 
e EA R 

k = k + CM < n Z + ( 3n (~-1) )4n2 = 6n4 - 6n3 + n Z and therefore, weB) > k, a 
contradiction. 

(bz) B contains all arcs e with We = O. 

This follows immediately from (bt} and the fact that B E TOT. 

(b3 ) For every pair (i,j), 1 ::; i < j ::; n, IB n Rijl ::; 1. 
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Suppose there is a pair (i,j) such that B contains both of (il,h) and (jl,i2). 
Since B E TRA*, this implies that (i},i2) E B; but as w(i I ,i2) = L, this contra­
dicts (bI ). 

(b4 ) B contains exactly C arcs with weight M. 

Suppose B has more than C arcs with weight M. Thus 

weB) ~ (C + l)M - L lWei> k, 
eEAn 

a contradiction. So, B can have at most C arcs with weight M. On the other 
hand, since IBI ~ (2;) and B contains n arcs with weight 0 (by (b2», at most G) 
arcs of R (by (b3 » and no arcs with weight L (by (bI», then B must contain at 
least e;) - n - G) =: C arcs with weight M. Thus B contains exactly C arcs 
with weight M. 

(b5 ) For every pair (i,j), 1::; i < j::; n, IBnRijl = l. 

Since e2n ) ::; IBI = n+C+IBnRI, it follows that IBnRI ~ e;) -n-C = (;). 

If for some pair (i,j), 1 ::; i < j ::; n, IB n Rijl < 1 then by (b3 ) IB n RI < (;), a 
contradiction. Thus, the statement is proved. 

(b6 ) B has no double arcs. 

Immediate from (bd, (b4 ) and (b5 ). 

(b7 ) w(B n R) ::; k. 

Clearly, weB) = w(B n R) + CM. Thus, w(B n R) ::; k - CM = k . 

But (il,h) E B n Rand (hjI) E B imply (iI,jt} E B. Thus, (iI,jt} E B. 
Analogously, analysing the cases j < land j > 1 we conclude that (it, ld E E. 

Since E E TRA* , then (i1,h) E Band (it,ld E E imply that (il,ll) E B. 
Thus, if i < 1 then (il,ld E B n R, and therefore (i,l) E B. Suppose i > l. By 
(b6 ) (il,ll) E B implies (It,i l ) (j. B. By (b5 ), if 1 < i and (ll,id (j. B n R then 
(i l , l2) E B n R. But then, (i,l) E B and therefore B E TRA *. 

Since the given transformation is polynomial, it follows that Q is NP-complete. 0 

A construction similar to the one presented in the proof of Theorem 3.10 leads 
to the following result . 

Theorem 3.11. Let 
M = TRA*. 

Then the problem DDP*(p, M, m), where m is bounded by a polynomial in p, is 
NP-complete. 

Proof. Let Q := DDP*(n, M*, 2) with M* = ASY n TRA * n TOT be the NP­
complete problem considered in Theorem 3.8. Our aim is to prove that Q is 
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polynomially transformable to Q := DDP*(p, M, m), where m ~ p6. For that, let 
us assume that Dn = (N, An), wand k, k < n 2 , are given as an instance of Q, 
and let us construct the corresponding instance of Q. 

Let i\ = (N, A) be the complete digraph of order p = 2n 'with node set 
N := {i l , i2 : i E N}. To define the weights tve , set 

R:= U R ij , 
l$i<j$n 

R:= U Rij , 
l$i<j$n 

Let M be the smallest even integer such that 

M> k+ 2n2, 

and set 

M* := ( (~) + 1) M , 

L:= M + (~) (M* + M) . 

Now define We for each e E A, as follows: 

-M* if e = (i2, it}, i E N 

L if e = (i l ,i2), i E N 

Wij - M* ife=(il,jt},eER 
We = 

Wji - M* if e = (it,i2), e E R 

M if e E R 

0 otherwise. 

Observe that lWei is even and lWei ~ p6 for every e EA. 

Wij 

iO::=:0j 
i < j 

Wji 

Figure 3 

Let 
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k:=k+(~)M-(G)+n)M* . 
We claim that Dn = (N, An) has a subdigraph H = (N, B) with B E M* and 

weB) ~ k iff Dp = (N,A) has a subdigraph H = (N,B) with 13 E TRA* and 

weB) ~ k. 

a) Given H = (N, B) in Dn with B E M* and weB) ~ k, let H = (N, B) be the 
subdigraph of Dp defined by : 

- ...., ---- ---
B := Bl U B2 U B3 , 

where 

BI:={(il,h),(il,h),(i2,h),(i2,h): l~i<j~nand(i,j)EB}, 

132 := {(jI,i l ),(jl,i2 ),(h,it},(h,i2 ): 1 ~ i < j ~ nand (j,i) E B} , 
B3 :={(i2,il ): l~i~n}. 

Then 
weB) = weB n R) + weB \ R) 

= weB n R) + w(BI U 132 \ R) + w(B3) 

= weB) - (;)M* + (;)M - nM* 

= weB) - ( (;) + n) M* + (;) M 

~ k - ( (;) + n) M* + (;) M ~ k. 

Using the fact that B E M* it is not difficult to prove that 13 E TRA *. Indeed, 
the proof is analogous to the one present for Theorem 3.10, and therefore it will 
be omitted. 

b) Let H_ = (N, B) be a subdigraph of Dp with 13 E TRA * and weB) ~ k. 
Based on H we want to construct a transitive tournament H = (N, B) in Dn with 
weB) ~ k. For that, we first observe that H has the following properties: 

(b l ) 13 does not contain an arc e with We = L. 

Suppose B contains such an arc e. Then 

weB) ~ L - nM* - L Iwel- n(n - l)M* 
eEA 

~ M + (;) (M* + M) - nM* - 2n2 - n(n - l)M* 

> k - (;)M* - nM* + (;)M = k, 
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a contradiction. 

(b2) For every pair (i,j), 1 ~ i < j ~ n, IB n Rijl = 1. 

Suppose there is a pair (i, j) such that IB n Rij I = 2. In this case, since 

B E TRA *, it follows that (il' i2) E B, contradicting (bt} . Thus, IB n Rij I ~ 1 
for every pair (i , j) , 1 ~ i < j ~ n. Now suppose there is a pair (i,j) such that 
IBnR;jl = O. Then 

Using the fact that I:e EAn IWe I ~ 2n2 and making some substitutions we get 

w(B) > k . Since this contradicts our assumption, we conclude that (b2) holds. 

(b3 ) For every i , 1 ~ i ~ n, (i2' ir) E B. 
Suppose for some i, 1 ~ i ~ n , (i2 ' ir) f/. B. Then 

weB) ~ -en -l)M* - L Iwel- (;)M* . 
e EAn 

2 ((~) + 1) M - nM* - 2n2 - (~) M* 

> (~)M+k- ((~) +n)M*=k, 

a contradiction. 

(b4 ) For every pair (i ,j), 1 ~ i , j ~ n, IB n Rij l = 1. 
By (b2), for every pair (i,j), 1 ~ i < j ~ n, exactly one of the arcs (il , jr) 

or (jl,i2) is in B. If (il,jr) E B, since (i2,ir) E B, it follows that (i2,jt} E B. 
Analogously, if (jl ,i2 ) E B then (jl,i1 ) E B. Thus, IB n Rijl 2 1. Now suppose 
there is a pair (i,j) , 1 ~ i < j ~ n, such that IB n Rijl > 1. This implies that B 
has more than (;) arcs with weight M and therefore 

w(B) 2 ((~) + 1) M - L Iwel- (~)M* - nM* 
eEAn 

> (~) M + k - ( (~) + n) M* = k , 

a contradiction. So, we have proved that (b4 ) holds. 

(b5 ) weB nR) ~ k - G)M* . 
This follows from the fact that w(BnR) = w(B) +nM* - G) M and w(B) ~ k . 
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Now let H = (N, B) be the subdigraph of Dn with 

B:={(i,j):(il,h)EBnR, l:Si<j:Sn} U 

{(j, i) : (jl, i2) E B n R, 1:S i < j :s n} . 

We claim that B E M* and w(B) :s k. Note that IBI = IB n RI = G)· FUrther­
more, w(B) = w(B n R) + (;)M*. Thus, by (b5 ) it follows that w(B) :s k. The 
definition of B and fact (b2 ) yield immediately that BE ASYnTOT. So it remains 
to be shown that B E TRA*. Let (i,j) and (j,l) be arcs of B , i =f:. j =f:. l =f:. i . 
If i < j and (i , j) E B then (i1,jd E B n R. Ifi > j and (i,j) E B then 
(iI, h) E E n R. In the latter case, since (j2, jd E E and E E TRA *, it fol­
lows that (i 1 ,jd E E. From an analogous analysis of cases j < land j > l, we 
conclude that (jl , ld E E. Thus, (il,jl) E E and (h,ll) E B, and therefore 
(il,ld E B . Ifi < l, then UI,ll) E BnR, and hence (i,l) E B. Suppose l < i. 
Then (i1,h) E B n R, and therefore by (b4 ) it follows that (lz,id (j. B. In this 
case, (ll,i l ) (j. B; otherwise (l2,ld E Band (ll,i 1 ) E B would imply (l2,i 1 ) E B, 
a contradiction. But if (It,i1) (j. B, by (b2) we conclude that (il,lz) E B. Thus 
(i, l) E B, and this proves that B E TRA *. 

Clearly, the transformation of Q to Q is polynomial and therefore Q is NP­
complete. 0 

The next result follows from theorems 3.8- 3.11 together with Lemma 3.6 and 
Theorem 3.5. 

Theorem 3.12. Let 

M' E {TRA, ASY n TRA, SYM n TRA, TRA n TOT, ASY n TRA n TOT}. 

Then MP (R, M) is NP-hard for M E {M', M' n REF}. 0 

We can summarize the computational complexity results we have proved as 
follows . 

a) The median problem MP(R, M) is easy whenever M results from any com­
bination of the properties REF, SYM, ASY and TOT. [Proposition 3.4.] 

b) Transitivity makes the median problem difficult. More precisely, if one of 
the properties required for M is TRA then the median problem MP(R, M) 
is NP-hardexcept for the trivial combination TRAnSYMnTOT. The most 
interesting cases are included here: partial orders (TRAnASY), linear orders 
(TRA n ASY n TOT) , complete preorders (TRA n TOT) and equivalences 
REF n TRA n SYM. [Theorem 3.12.] 

c) The property REF may be included or not, without changing the complexity 
status of the median problem. [Theorem 3.12.] 

d) In some cases the median problem MP(R, M) is NP-hard even when the 
profile II consists of 1 or 2 relations. This is the case when M is a linear 
order and M is a partial order. [Theorem 3.8.] 
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To close this section we present the NP-completeness proof of the Restricted 
Clique Partitioning Problem, needed to prove Theorem 3.9. We shall base our 
proof on the transformation from the Simple Max-Cut Problem (SMCP), known 
to be NP-complete (Garey, Johnson and Stockmeyer [1976]). In this problem the 
instance consists of a graph G = [V, EJ, and a positive integer k . The objective is 
to decide whether G has a cut of size at least k. 

Theorem 3.13. The Restricted Clique Partitioning Problem is NP-complete. 

Proof. [Transformation from the Simple Max-Cut Problem (SMCP) ] Let G = 
(V, EJ and k be given as an instance of SMCP, and assume that IVI = n. Let 
G' = [V', E'J be a complete graph of order 3n obtained from G by adding to it 
2n more nodes and completing it with all the missing edges, which are not loops. 
Assume that V' = V U Xu Y, where IXI = WI = n . Assign weights We to each 
edge e E E' by setting 

and let 

1 if e E E U (X : Y) , 

-1 if e E (V : X U Y) , 

o otherwise ; 

k' := lEI - k - n 2 . 

We claim that G has a cut C with ICI :::: k iff G' has a clique partitioning A with 
w(A) :S k' . 

a) Assume that C = E(VI : V\ Vd is a cut in G with ICI :::: k, and let V2 := V\ VI. 
Then the edge set A := E' (VI U X) U E' (V2 U Y) is a clique partitioning of G' with 

wA) = w(E'(Vi U X)) + w(E'(V2 U Y)) 

= -I(VI : X)I-I(V2 : Y)I + IE \ CI 
= _n2 + lEI - ICI :S _n2 + lEI - k k' . 

b) Assume that G' has a clique partitioning A with w(A) :S k'. We want to prove 
that G has a cut C with ICI :::: k. Let us assume for the moment that the following 
holds: 
Claim 1: G' has a clique partitioning A' with w(A') :S k' and C(A') = {QI, Q2}' 
where QI and Q2 are such that VQI = X U VI and VQ2 = Y U V2 for some 
nonempty subsets VI and V2 of V . 

Note that, in this case, w(A') = w(EQd+w(EQ2) = _n2+ IE(Vi)I+IE(V2)i = 
_n2 + IEI-IE(VI : V2 )I, and since w(A') :S k' = _n2 + IEI- k, it follows that 
IE(Vi : V2) I :::: k, and therefore C := E(VI : V2) defines the desired cut C in G. 

Thus, in order to complete the proof it remains to be shown that Claim 1 holds. 
Before that, for notational convenience, let us give names to the different types of 
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cliques we shall consider. According to its intersection with the sets V, X, Y, a 
clique H = [V H, EH] may be of one of the following types (see Figure 4) : 

x 

Figure 4 

Type 1 : 
(X, V)-intersecting (if V H n X =P 0, V H n V =P 0 and V H n Y = 0) or 
(Y, V)-intersecting (if V H n Y =P 0, V H n V =P 0 and V H n X = 0) . 

Type 2 : 
(X, Y, V)-intersecting (if V H n X =P 0, V H n Y =P 0 and V H n V =P 0) . 

Type 3 : 
V -included (if 0 =P V H ~ V) . 

Type 4 : 
X-included (if 0 =P VH ~ X) or Y-included (if 0 =P VH ~ Y) . 

Type 5 : 
(X, Y)-intersecting (if V H n X =P 0, V H n Y =P 0 and V H n V = 0) . 

Note that according to the given definitions the desired clique partitioning A' 
of Claim 1 must be such that C(A') = {Ql,Q2}, where Ql and Q2 are both of 
Type 1. 

For simplicity, we say that a clique partitioning Al is better than a clique par­
titioning Az if either w(Ad < w(A2 ) , or w(Ad = w(Az) and IC(Adl < IC(Az)l. 

Since each clique partitioning A is bijectively associated with the clique set 
C(A), when we refer to a clique partitioning B obtained from A by replacing some 
of the cliques in C(A) with others, we are in fact defining how C(B) is constructed 
and therefore defining in this way the arc set B. 

Now consider the following Claim 2 to be used in the proof of Claim l. 
Claim 2: Let Q be a clique partitioning of G' and assume that Ql, ... , QI, I ~ 2, 
are cliques in C(Q) all of which are (W, V)-intersecting, where W = X or W = Y. 

1 1 
Let Q: := L IVQi n WI and {3 := L IVQi n VI. If Q: ~ {3, then the clique 

~1 ~1 

partitioning Q' obtained from Q by replacing the cliques Ql, ... , QI with the 
clique G'[VQl U ... U VQt] is such that w(Q') < w(Q). 
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The proof of Claim 2 will be omitted as it can be obtained without any difficulty 
by induction on t. (For t 2:: 3 prove that there exist two cliques Qi and Qj, 
1 ::; i < j ::; 1, such that I(VQi u VQj) n WI 2:: I(VQi U VQj) n VI.) 

Proof of Claim 1 

Let -"! be the set of the clique partitionings A of G' with w(A) ::; k' and such 
that C(A) contains the smallest number possible p of cliques of Type 2. Clearly, 
A =I- 0 and p 2:: O. Our aim is to prove first that p = 0, and then show the existence 
of the desired clique partitioning A' . 

Let us start by assuming that p 2:: 1. Now let A be a best clique partitioning in 
A, and let HI , . .. ,H p be the cliques of Type 2 contained in C (A). 

For 1 ::; i ::; p let 

Xi := VHi n X, Xi := lXii , 
Yi := VHi nY, Yi := IYiI , 

Vi := VHi n v, Vi:= IViI . 

Suppose C(A) contains a clique Hi, 1 ::; i ::; p, such that Vi S Xi. Then we 
can split Hi into a clique of Type 1, G'[Xi U Vi], and a clique of Type 4, G'[Yi], 
obtaining this way a clique partitioning A with w(A) S w(A) and with C(A) 
containing p - 1 cliques ot Type 2. Since this contradicts the choice of A, we 
conclude that Vi > Xi for i = 1, ... ,po By symmetry, we also conclude that 
Vi > Yi for i = 1, . .. ,po 

It is immediate that C(A) contains no (X, Y)-intersecting cliques. Otherwise, 
a better clique partitioning could be obtained from A by replacing each (X, Y)­
intersecting clique with 2 cliques, one being X -included and the other Y -included. 

It is also easy to see that C(A) contains no X-included and no Y-included 
cliques. For, if H were an X-included clique in C(A) then by replacing the clique 
HI with the clique HI UH we could obtain a better clique partitioning in A (since 
VI > yd . By symmetry, the same holds with respect to Y-included cliques. 

p p p , 

Since E Xi < E Vi S n = IXI and E Yi < IYI, then C(A) must contain 
i=1 i =1 i=1 

(X, V)-intersecting cliques, say ii}, ... ,iih, h 2:: 1, and (Y, V)-intersecting cliques, 

say Ql,'" ,Qq, q 2:: 1. 
h _ h _ 

Let a:= U (V Hi n X) and (3:= U (V Hi n V). 
i=1 i= 1 

Since a 2:: (3, if h 2:: 2 then by Claim 2 the cliques iiI, ... ,iih can be replaced 
h _ 

with the clique U Hi yielding this way a better clique partitioning in A . By 
i=1 

symmetry, if q 2:: 2 then a better clique partitioning can also be obtained. Thus, 
we conclude that h = 1 and q = 1, and for simplicity we let H := iiI and Q := Ql' 

If C(A) contains V -included cliques, say Hf, ... ,HI, I 2:: 1, then it is easy to 
see that these cliques can be combined with the clique H giving this way a better 
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I 

clique partitioning. It suffices to note that IV H n XI > IV H n VI + I U V Hil· 
i=l 

Thus, we conclude that C(A) = {HI' ... ,Hp} U {H,Q}. 
Let Hx:= VHnX, hx:= IHxl; Hv:= VHnV, hv:= IHvl; Qy:= vQnY, 

qy := IQyl; Qv := VQ n V, qV := IQvl· Note that hx > hv and qy > qv· 
Let us now focus our attention on the cliques H, Q and HI· 

y 

(a) (b) 

Figure 5 

Suppose VI :S hv + Yl· 

In this case, let A be the clique partitioning obtained from A by splitting C l 

into the new cliques G' [V H U Xl) and G' [V Q U Yl U Vd, and preserving the (old) 
cliques H2 , . .. ,Hp (see Figure 5.a). Thus, C(A) contains p - 1 cliques of Type 
2 and w(A) = w(A) - xlhv - XIYl + XlVI - YlqV - Vlqy + IE(Vi : Qv)1 :S 
w(A) - xl(hv + YI - VI) - Ylqv - Vl(qy - qv). 

Since hv + YI - VI ~ 0 and qy - qv > 0 we conclude that w(A) < w(A) :S k' , 
and therefore we have a contradiction to the choice of A. 

Assume now that VI > h v + YI . 

In this case, let A be the clique partitioning obtained from A by performing 
a splitting of C l , symmetric to the previous one. That is, A consists of the new 
cliques G'[V HUXI UVI ) and G'[VQUYI ), and the cliques H 2 , ... ,Hp (see Figure 
5.b). Thus C(A) contains p - 1 cliques of Type 2 and 

w(A.) :S w(A) - YIqV - XIYI + YIVI - xlhv - vlhx + vIhv 

= w(A) - YIqV + Yl(Vl - Xl) + hV(VI - xt} - vlhx 

= w(A) - YlqV + (YI + hV)(VI - xd - vlhx . 

Since YI + hv < VI and VI > Xl, it follows that 
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Now using the fact that hx = n - (Xl + ... xp) = (hv + qv + VI + .. . vp) - (Xl + 
... xp) > VI - Xl, we obtain that w(A) < w(A), again a contradiction to the choice 
of A. 

This completes the proof that p = o. 
Now let us assume that AI is a best clique partitioning in A and that C(A') 

contains no cliques of Type 2. It is immediate that C(A') must contain at least a 
clique of Type 1; otherwise we would have w(A') ~ 0 and therefore w(A') > k', 
a contradiction. Let QI be a clique of Type 1 contained in C(A'), and assume 
without loss of generality that QI is (X, V)-intersecting. 

Clearly, C(A') contains no (X, Y)-intersecting cliques. It is also immediate that 
C(A') contains no X -included cliques, since they could all be combined with QI 
giving this way a better clique partitioning. 

If the clique set C(A') contains other (X, V)-intersecting cliques different from 
QI, say HI,··· ,Hh, then by Claim 2, if we set QI := QI U HI U ... U Hh, then 
we obtain a better clique partitioning. Thus, we conclude that C(A') contains a 
unique (X, V)-intersecting. 

If C(A') contains a V-included clique, say H, then (since n = IVQI n XI > 
IVQI nVI) we can set QI := QI uH and obtain a better clique partitioning.If C(A') 
contains no (Y, V)-intersecting cliques, then it consists of the clique QI = GI [XUVJ 
and some Y-included cliques, and therefore w(A') = _n2 + lEI> k', a contra­
diction. Thus, let Q2 be a (Y, V)-intersecting clique in C(A'). If C(A') contains 
Y-included cliques and/or other (Y, V)-intersecting cliques, by performing analo­
gous transformations to the ones we defined with respect to QI, we can construct 
a better clique partitioning. Hence, we conclude that Q2 is the unique (Y, V)­
intersecting clique in C(A') and therefore, C(A') = {QI , Q2} with QI and Q2 both 
of Type l. 

Thus, we have proved that Claim 1 holds , and therefore we have completed the 
proof of the theorem. 0 

4 . THE CASE OF RESTRICTED DOMAINS 

In the preceding section we have proved the NP-hardness of MP(R, M) for 
certain subsets MeR. One may now ask whether the following special cases 
of these problems have also the same complexity: instead of R (an unrestricted 
domain of the relations in the profile II), we may have the information that the 
given relations are endowed with some properties from P. In this case, instead of 
R , we have a subset M' C R and we are lead to the problem MP(M', M) defined 
analogously. In other words, when we consider that the domain is R, this means 
that we have no information about the properties of the input relations, and when 
we specify a subset M' C R this means that the input relations are known to be 
in M' (they belong to a restricted domain). 

We have shown that in some cases the problem MP(M', M) is NP-hard even 
when the profile II consists of a fixed number m of relations. Let us denote by 
MP(M',M,m) this latter problem. 

When M' = M = C (the given relations are linear orders and the objective 
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relation is also a linear order), Orlin (1981) (in an unpublished manuscript) and 
Bartholdi, Tovey and Trick (1988) proved that MP(£, £) is NP-hard. Note that 
this implies that the more general problem MP(R, £) is NP-hard, but not that 
MP(R, £,1) is NP-hard - the result we have shown. 

Let us turn now to the case of equivalence relations. Krivanek and Moravek 
(1986) proved that MP(SYM,£,I) is NP-hard. This result yields as a corollary 
the fact that MP(R, £,1) is NP-hard (Theorem 3.9). Furthermore, from it one 
can also derive that MP(£, £) is NP-hard. The reduction given by Krivanek and 
Moravek is from a problem on hierarchical-tree clustering, whose NP-completeness 
proof is very laborious. For the sake of completeness of the class of results covered 
in this paper we have included our weaker result. We should observe however, 
that in this case rather than the NP-hardness of MP(R,£, 1), the interest lies 
more on the Theorem 3.13 from which the result could be derived. 

There remains a number of open problems concerning the computational com­
plexity status of MP(M', M , m) for some combinations of M and M'. We recall 
that the problems we know to be NP-hard are MP(R,£,I), MP(R,O,2) and 
MP(SYM,£,I). It would be interesting to establish the complexity of the prob­
lems MP(T, £,m) and MP(£,£,m) for small m. 

5. ApPLICATIONS AND STRATEGIES TO SOLVE SOME MEDIAN PROBLEMS 

In qualitative data analysis, social choice theory, and paired comparison meth­
ods there are many problems that can be modelled as median problems. In these 
contexts, the data arise from the measurement of a number of characteristics (or 
attributes) associated with each object of a given set and the objective is that of 
finding a linear order, or a partial order or a clustering of the objects that 'best 
represents' the given data. 

For example, the data may arise by collecting the preferences of m voters with 
respect to a set of objects (candidates, teams) and the objective is to find a 
ranking of the objects that best represents the given preferences. Note that the 
preferences of the m voters may be seen as m relations (eventually linear orders) 
on the object set, and the ranking of the objects may be seen as a linear order 
that best represents the given relations. So here we have the median problem 
MP(R, M) , where M is a linear order. This is the problem of aggregation of 
preferences we have mentioned in the introductory section. 

Instead of preferences the relations may indicate dominances (or hierarchies) on 
the object set. These applications occur in behavioral sciences in the study of the 
dominance relationship in a group of animals (see Marcotorchino and Michaud 
[1979]). Applications in marketing are mentioned by Slater (1961) and Reinelt 
[1985], on the design of publicity campaign for products based on voting upon 
different types of advertisements. 

When the relations represent similarities (that can be deduced by considering 
the attributes of the objects), and the aim is that of finding a best partition of the 
object set into 'homogeneous' disjoint classes (or clusters), we have the so-called 
clustering problem. In this case, we are given a set of m relations (each relation 
indicating the similarities of the objects with respect to one attribute) and we 
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are looking for an equivalence relation. Thus here we have the median problem 
MP(R, M), where M is an equivalence relation. 

Clustering problems occur in many areas: zoology, botanies, sociology, politics 
and economics. A number of real problems that were modelled as clustering prob­
lems coming from these different areas can be found in Grotschel and Wakabayashi 
[1989]. 

As we have mentioned, the median problems that we have considered can be 
reduced to optimization problems on weighted digraphs. Some of these digraph 
problems have been largely investigated, in special, the linear ordering problem 
and the clique partitioning problem. The latter solves the problem of finding a 
median that is an equivalence relation. 

Thus, the strategies that have been developed to solve these problems can be 
used to solve the corresponding median problem. These strategies go from simple 
heuristics to sophisticated branch-and-cut algorithms. 

For the linear ordering problem, Reinelt [1985] developed a branch-and-cut al­
gorithm and reported very good computational results obtained by solving a num­
ber of problems in economics, in special triangulation problems for input-output 
tables (see also Grotschel, Junger and Reinelt [1984a, 1984bJ). This algorithm 
combines the cutting plane approach and branch-and-bound techniques. Marco­
tor chino and Michaud [1979] developed heuristics and reported computations on 
some ranking problems. Other problems that are equivalent to the linear ordering 
problem are the acyclic subdigraph problem (Junger [1985]) and the permutation 
problem (Young [1978]). Exact methods were developed by de Cani (1972), Kaas 
[1981)' Tushaus [1983], and others. 

For the clique partitioning problem, Wakabayashi [1986] developed a branch­
and-cut algorithm (see also Grotschel and Wakabayashi [1988] for the compu­
tational results on the performance of the proposed algorithm). Results on the 
polyhedral investigations of the clique partitioning polytope that were used to de­
velop this algorithm can be found in Grotschel and Wakabayashi [1990a, 1990b]. 
Among the heuristic methods that were proposed for the clustering problem we 
mention Marcotorchino and Michaud [1981)' and Schader [1981]. Exact methods 
were developed by Tushaus (1983); Schader and Tushaus (1985) also proposed an 
approach that combines heuristics with a subgradient method. 

Polyhedral results for the partial order polytope were obtained by Muller [1996]; 
Gurgel [1992] investigated the facial structure of the complete preorder polytope 
(see also Gurgel and Wakabayashi [1993]). These results can be used in the design 
of a cutting plane based algorithm to solve the partial ordering problem and the 
complete preorder problem. Exact methods for these problems were investigated 
by Tushaus [1981, 1983]. 
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