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Abstract: The first part of this paper is a review of basic 
notions and results connected with Kolmogorov complexity 
theory. A few original results are presented in Sections 3 and 
4; they are not of a statistical nature. Emphasis is given to 
the so called universal prior. Though the prior itself is not a 
calculable measure, it has highly interesting properties from 
the Bayesian viewpoint . In the second part of the paper we 
discuss the principles that emerge from algorithmic complexity 
theory in the context of statistical prediction and estimation. 
It is argued that, as a rule, the principles are Bayesian in 
nature. 
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1 Introduction 

Even before the nineteen-sixties, when algorithmic complexity theory was born, it 
was felt that the formal definition of the randomness of a binary sequence should 
depend on some precisely defined measure of disorder in the sequence. For exam­
ple, von Mises' K ollektiv [71], a formal counterpart of a random infinite sequence, 
was defined to satisfy two requirements: (1) stability of relative frequences in any 
finite initial part of the sequence, and (2) stability of the relative frequencies in 
the algorithmically chosen finite part of the sequence. 

Von Mises was unable to give a rigorous definition of what he called an admis­
sible algorithm for choosing a subsequence. Wald (1937), and later Church (1940), 
made the notion of the K ollektiv mathematically precise. Ville (1939) proved that 
a K ollektiv (in the Wald sense) can be constructed so that the law of iterated 
logarithms fails. 

Using the ideas of von Mises, Kolmogorov and others proposed a definition of 
the randomness of an infinite binary sequence through the algorithmically defined 
measure of entropy. Consider a pair of sequences of length twenty obtained by 
independent flips of a fair coin: 

11111111111111111111 

and 
10101010101010101010. 

These examples seem to lack randomness. At the same time, the sequence 

01101110010010110100 

looks "random." We know that all three sequences have the same probability of 
~, but only the third one intuitively looks like an outcome the above experiment 
should produce. The first two sequences are easy to describe: "twenty ones" or 
"ten pairs of 10." The third one requires a longer description. 

Thus, the randomness of a sequence is intuitively connected to the difficulty 
of description, irregularity, and to some measure of disorder. 

A series of papers in the mid-sixties by Solomonoff (1964), Kolmogorov (1965) 
and Chaitin (1966) introduce a formal measure of the complexity of binary words. 
Their definition needs a formal counterpart of the notion of effectively calcu­
lable functions, such as Recursive functions , Thring machines, Post machines, 
A-calculable functions, normal algorithms, HG calculable functions, etc. 

The measure of the complexity of a finite binary word x was defined as the 
length of the shortes.t program (argument) which when input to a "universal com­
puter" prints x. The ultimate goal was to define the randomness of an infinite 
word w. The word w will be considered as random if the complexity of its initial 
parts is close to their length. 

Yet another algorithmic approach to definition of randomness of an infinite 
binary sequence was proposed by Martin-Lof (1966a and 1966b) in the form of 
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ML tests. In brief, an ML test is an effective function defined on the class of 
all infinite words. It "collects" all (algorithmically describable) regularities of 
the word it tests. If there are too many irregularities, the word is rejected as 
nonrandom by the test. A word is considered random (in Martin-LOf sense) if it 
passes any ML test. The mathematical apparatus behind ML tests is constructive 
measure theory. There are many connections between complexity theory and ML 
tests. We will make these notions precise in Section 4. 

The reader interested in the theory of ML tests may see [46], [47], and [14]. 
By chosing different classes of functions (machines) it is possible to define a 

variety of complexity measures. Namely, any class of partial recursive functions , 
for which a calculable numeration exists, can serve as a basis for defining an 
algorithmic complexity measure. 

In addition to the Kolmogorov measure of complexity, we will define and list 
the basic properties of the Schnorr (monotone) complexity measure, introduced 
in [58]. The Schnorr measure has two nice properties. First, an infinite word is 
random (in ML sense) if and only if the Schnorr complexity of its initial fragments 
of length n is equal, up to a constant, to n. Second, the Schnorr complexity is 
connected with the universal prior on the space of all infinite binary words. 

Our goal is to introduce the reader to the problems of complexity theory, 
as well as to point out the deep connection between complexity theory and the 
Bayesian paradigm. 

In Section 2 we give the necessary notation and prerequisites. Some original 
results on properties of Kolmogorov and Schnorr complexities are given in Section 
3. Section 4 introduces the universal prior and discusses some of its properties. 
Some Bayesian applications of the universal prior and, in general, of Ockham's 
razor are given in Section 5. The paper contains an extensive bibliography on the 
subject . . 

2 Notation and Prerequisites 

The following notation will be used. 

• A - a finite alphabet. Without loss of generality it may be taken as {O, I}. 

• x = XIX2 . . . Xn - a word of the length n in the alphabet A. 

• A - the empty word 

• Xn_ the set of all words of the length n. 

• X = UnX n - the set of all finite words. 

• IAI- the cardinal number of the set A . 

• One-to-one correspondence between words in X and integers {O, 1, . . . , n, . .. } 
can be defined as x = XIX2 ... Xn -> 2n -1 + L:~=1 Xi2n-i. For example, the 
word 010110 corresponds to the integer 85. 
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• C(x} - the length of a word x. 

• x = XIXIX2X2 . .. x nx n01 - a code of a word x so that it can be decoded 
from concatenated words. For example, words x and y can be coded as one 
word xy. There exist effective functions 6, and 6 such that x = 6 (xy), 
and y = 6(xy). 

• x C y - the word x is an initial part (beginning) of the word y. 

• W = WIW2 ... Wn ... - an infinite word in the alphabet A. 

• n - set of all infinite words w. 

• X· = nux - set of all finite and infinite words. 

• f(x} :::S g(x} means (3C)('v'x) f(x}:S g(x} + C. 

• f(x} ::=::: g(x} means f(x} :::S g(x} and g(x} :::S f(x}. For example, l(x} ::=::: log2 x. 

• climn-to,,/(n} = A is a constructive limit. In other words, there is an 
effective nonnegative function g(n) that tends to zero (often taken 2- n ) 

such that If(n) - AI :S g(n); (We know how close fen) and A are for each 
n}. 

2.1 Recursive functions 

Recursive functions are a formal, mathematical analogue of the notion effectively 
calculable functions. We give the necessary definitions and results. Good refer­
ences are [55], [21], and [49], among others. 

Definition 2.1 The functions 

Z(XI, . . . , x n ) = 0, 

Ik(XlJ .. . , x n ) = Xk, 1:S k :S n, 

Sk(XI, .. . ,xn ) = Xk + 1, 1:S k :S n . 

are the initial functions. 

(1) 

Definition 2.2 (Dedekind 1888) A function F(XI , ... , x n , Xn+l) is defined from 
G(X}, . . . , x n ) and H (Xl, . . . , Xn+2) by primitive recursion if 

F(Xb . .. , x n , 0) = G(Xl, ... , x n ), 

F(xl> .. . , Xn , Y + 1) = .H(xl> . . . , Xn , y, F(XI ·,· .. , Xn , y}} . 
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Definition 2.3 A function F(XI' .. . ' xn) is defined from functions 
H(xl, . .. ,xm ) andG 1 (xl, ... ,xn )' . . . ,Gm (X1, ... ,xn ) by composition if 

F(x1, .. . , xn) = H (G I (Xl, ... , Xn), . .. , G m (X1, ... , xn)). 

Definition 2.4 (Kleene 1936) A function F(xl, ... , xn) is defined from 
G(Xl, ... , xn) by J.t-recursion if 

F(Xl, . .. , xn) = J.ty(G(X1, ... , Xn-l, y) = xn), 

where J.ty(G(XI ' ... ' Xn-1, Y) = xn) is the least number a such that 
G(Xl, .. . , Xn - l, y) = a holds . 

We will consider that J.ty(G(Xl, . .. , Xn- }, y) = xn) is not defined when: 
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(i) F(XI, ... , Xn- I. y) is defined for all y < a, but different than Xn , and 
F(x1, . .. , Xn-1, a) is not defined, 

(ii) F (Xl, .. . , Xn- 1, y) is defined for all values of y, but is different than x n . 

Definition 2.5 (Skolem, GodelJ93J). The class of primitive recursive func­
tions is the smallest class of functions 

(i) containing the initial functions, 
(ii) closed under primitive recursion and composition. 

Definition 2.6 (Kleene 1936) The class of partial recursive functions P is 
the smallest class of functions 

(i) containing the initial functions, 
(ii) closed under primitive recursion, composition and J.t-recursion. 

The class of everywhere defined partial recursive functions is called total func­
tions and are denoted by o. 

Church Thesis (Church 1936) The class of effectively computable functions co­
incides with the class of partial recursive functions. 

Theorem 2.1 (Kleene 1 938) There exists a partial recursive function U of n + 1 
arguments, universal for the class of all n-dimensional partial recursive functions 
pen) with the property 

(2) 

n F is the number of function F with respect to U. 

The function U is often called an enumeration of the class pn. An enumeration 
of the set sn is any n-tuple of total functions (FI, . .. , Fn) that map N to sn. The 
number of (Xl, .. . ,Xn ) E sn is k if Fi(k) = Xi. 

Definition 2.7 The set A is enumerable if the set of its numbers (in a fixed 
enumeration) is a domain of some partial recursive function F. It is said that F 
enumerates A. 
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Theorem 2.2 The predicate pn(al' . .. ,an) is a partial recursive (total) if there 
is a partial recursive (total) function F taking the value 0 at all and only the 
n-tuples (al,"" an) satisfying the predicate. 

Theorem 2.3 For any partial recursive predicate pn+rn the set 

is enumerable. 

2.2 Kolmogorov Complexity 

Definition 2.8 (30) Let F E P and let x E X. The algorithmic (Kolmogorov) 
complexity of the word x with respect to F is 

with min¢= 00. 

Kp(x) = min£(p) : F(p) = x, 
pEX 

(3) 

The dependence on a particular function F in the previous definition is elimi­
nated by the following optimality theorem. 

Theorem 2.4 (62), (30} 

(3Fo E P)(VG E P)(Vx E X) Kpo(x) ~ Kc(x). (4) 

Fo is called an optimal partial recursive function and K Po (x) is denoted simply 
by K(x). 

Proof: Let Fo(x) = U(2)(~1(X), 6(x)), where U is the universal function from 
Theorem 2.1. Let G be any partial recursive function, and let nc be the number of 
G in the numeration U. Let K c(x) = 10. That means that there exists a program 
Px of length to such that G(px) = x. Then the function Fo applied to the program 
q = ncpx prints x as well. Also, K(x) = Kpo(x) ~ £(ncpx) = 2nc + 2 + 10 = 
C + Kc(x). The constant C does not depend on x; it depends only on the choice 
of the universal numeration U and the number of the function G in the chosen 
numeration U. 0 

The optimal function Fo is not unique. Nevertheless, this poses no difficulty 
since for any other optimal function F~ 

Remark: The conditional Kolmogorov complexity Kc(xIY) is defined similarly. 
Namely 

Kp(xIY) = min£(p)IF(p,y) = x. 
pEX 

(5) 
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As analogy with unconditional complexity, there is an optimal function FJ2) such 
that a result equivalent to Theorem 2.4 holds. Also K(xIA) = K(x). 

Since K(x) is an algorithmic measure of entropy, it is possible to introduce 
the algorithmic measure of information that the word y carries about the word x, 
I(y : x), as 

I(y: x) = K(x) - K(xIY) . (6) 

For the properties of the algorithmic measure of information, the reader may see 
[30], [31], [80], [24], and [66], among others. 

We give here some basic properties of the Kolmogorov complexity measure. 

• K(x) :::5 f(x) 

The identity function I(x) = x needs a program of length exactly f(x) . 

• [80] The proportion of words x E xn for which 

K(x) < n-m (7) 

is not bigger than 2- m . (For most of the words K(x) ~ f(x).) 

• [80]limx ->oo K(x) = 00. 

• [80] Define the function 

m(x ) = inf K(y), 
y ? x 

(8) 

i.e. m(x) is the largest nondecreasing function that is a lower bound on 
K (x) (Figure 1). No recursive function exists that goes to 00 more slowly 
than m(x). 

• [80] The function K (x) is 'smooth', i.e. 

IK(x + h) - K(x)1 :::5 f(h) . (9) 

• The function K (x) is not recursive. 

• [80] There exists a monotone nondecreasing total function H (t, x) such that 

lim H(t ,x) = K(x), 
t->oo 

(10) 

but the limit is not constructive. 

• [4] II(n) = min{K(x) : f(x) = n} ;::;: K(n) :::51ogn. 

• [4] n $ max{K(x): f(x) = n} :::5 n 

• [4] max{K(xlf(x)) : £(x) = n};::;: n. 
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o 

Figure 1: Functions K(x) and m(x) 

• [5} For any set A 

max{K(xIY) : x E A} ~ 1(IAI) - 1 :;,:: log IAI, 

t(.x.) 
K(.:<.) 

• [4] Let Px (p~) be any program for which Fo(px) = x (F6(p~, y) = x). The 
program Px (p~) can be defined uniquely, but the procedure is not recursive. 
Then 

K(p~) :;,:: K(xIY). 

• [4]limy-+oc K(xIY) ~ 0 is not true, but 

lim inf K(xIY) ~ 0 
y-+oc 

holds. 

• [5] Let Am = {x: K(x) :::; m} and Bm = {x : K(xlm) :::; m} then 

m - 2logm ~ loglAml ~ m, 

and 
loglBml:;,:: m. 
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• [24] Let F and G be any functions. 

K(F(x)ly) :S K(xIG(y» 

and 
K(F(x, y)ly) j K(xly) · 

2.3 Schnorr Complexity 

Definition 2.9 [58} The function :F E P is a monotone process (or simply a 
process) on X if for x C y and :F(y) defined, then :F(x) is also defined and :F(x) C 

:F(y) . The class of all processes is denoted by PRo 

EXaIIlples. 
(i) The identity function I(x) = x is a process. 
(ii) The word function defined by :F(xO) = :F(x )00 and :F(x I) = :F(x) 1 is a 

process. 

The following theorem shows the class of processes to be a basis for defining a 
measure of complexity: 

Theorem 2.5 (Schnorr 1970) There exists a universal process U(2) (enumera­
tion of PR) such that 

(V:F E PR)(3nF) U(2)(nF,x) = :F(x). (11) 

Definition 2.10 The process complexity of x EX, with respect to :F E PR is the 
quantity 

KPF(X) = minl(p): :F(p) = X. 
pEX 

(12) 

The existence of the universal process (Theorem 2.5) gives the following optimality 
theorem: 

Theorem 2.6 [58),[80} 

(3:Fo E PR)(Vg E PR)(Vx) K P(x) :::::: K PFo (x) j K Pg (x). (13) 

We give without proof some basic properties of the measure K P (x). 

• KP(x) j £(x). 

• [58] K(x) j K P(x) j K(x) +2£(K(x». The constant 2 can be improved to 
1 + € by more compact coding, for arbitrary € > O. 

• [66) For any F E p(2) 

K P(F(x, y» j K P(x) + K P(y) + 2£(K(x)K(y» . 

• [65] K P(x) is not in the class P. 

• limx->oo K p(x) = 00. 
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3 More Properties of K (x) and KP (x) 

The function m (x) defined by (8) has interesting properties. We already men­
tioned the fact that it is unbounded. 

Theorem 3.1 

lim m(x) = 00. (14) 
x->oo 

Proof: Suppose the opposite. Then there is a constant C for which 
lim infx->oo m(x) :::; c, and we can find an infinite sequence Xl, X2, ... , with the 
property K (Xi) :::; C. This is impossible since there are at most 2C+l - 1 distinct 
words with complexity less than or equal to C. 0 

Some other functions connected with K (x) and m (x) can be defined. 

Definition 3.1 

M(x) = max y 
K(y)~x 

P(x) = min y 
-m(y»x 

(15) 

(16) 

Since the functions K (x) and m (x) are defined on a set of integers, the func~ 
tions M (x) and P(x) are integers and M (x) + 1 = P(x). Figure 2 shows the 
connection between the four functions K(x), m(x), M(x), and P(x). 

Theorem 3.2 P(x) (M (x)) is not a recursive function. It tends to infinity faster 
than any other partial recursive function that tends to infinity, i. e. 

("IF E P)(3xo)(Vx > xo) F(x) < P(x). (17) 

Proof: Suppose the opposite. Then there is an infinite set S for which ("Ix E 

S) F(x) 2: P(x). This set is enumerable (Lemma 3.1), and there is an infinite set 
So C S on which F(x) is a total function. Define 

G( ) = { F(x) + 1, x E So 
x F(miny~x,YEsO y) + 1, x E (So)C 

G(x) is total and G(x) > F(x) > P(x), x E So. 
On the other hand, one has K (G (x)) > K (P (x)) > x by the definition of the 

function P(x). Therefore, x < K(G(x)) :;:::: KcoFo(X) ~ K(x) ~ R(x), which is a 
contradiction. 0 

Corollary 3.1 The function m(x) is not recursive. It tends to infinity more 
slowly than any other recursive function that tends to infinity. 
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110) 

Figure 2: Relations between the functions K, m, M, and P 

Theorem 3.3 There is a total function 71! (x, t) such that limt->oo 71!(x, t) = m(x), 
but the limit is not constructive. 

Proof: Since (3C) K (x) < l(x) + C, we can take an algorithm that calculates Fo, 
and performs t steps on all words of length less than l(x) + C, taken in a natural 
(lexicographic) ordering. Let 

K(x t) = { l(p), if the above procedure yielded x. 
-' l(x) + C, otherwise 

(18) 

Define 

~(x, t) = in>f IS(y, t). 
y x 

(19) 

The function ~(x, t) is a total function and limt->oo ~(x, t) = m(x) . 
Similarly, one can define total counterparts f(x, t) and ¥(x, t) of the functions 

p(x) and M(x), such that limHoo f(x, t) = P(x) and limHoo ¥(x, t) = M(x). 

Lemma 3.1 For a fixed FE P, the set {xIF(x) 2: p(x), FE P} is enumerable. 

Proof of the Lemma: The predicate [F(x) 2: f(x, t)] is total. Consequently, 
the set {xl (3t)F(x) 2: f(x,t)} = {xl F(x) 2: p(x)} is enumerable. 0 

Example: By an elementary argument we can check that m(x) is slower than 
n times a repeated logarithm, for arbitrary n. 
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,2 

Let N = 22 . One can define a function F(n) which for the input n prints 
n ,.............. 

N zeroes. Then, K(x) :; Kp(x) = n = l(l . .. l(x)) ... ) + c. 
Therefore, the following result holds 

Theorem 3.4 

n 
~ 

(Vn) m(x) :;l(l( ... l(x) ... ) (20) 

Banjevic (1981) proved that there is no partial recursive function F(2) for 
which K(F(x, v)) ;:;:: K(x) + K(y), thus the relation K(F(x, V)) ~ K(x) + K(y) is 
true. 

We now give a few upper bounds on K {F (x , y)). 

• [65] K(F(x , y)) :; 2K(x) + K(y) is a straightforward bound. 

• [65] K(F(x , V)) ::; K(x) + K(y) + ~l(K(x)K{y)) + l(l(K(x)K(y))) . 

• [65) For any 8,0 < 8::; lex), 

1 
K(F(x,y)):; (1 + 28)(K(x) +K(y)) +8. (21) 

and 

1 
KF(x):; (1 + -)K(x) + 8 . (22) 

8 

• [65) If F(x, y) E p(2) is such that x and yare decodable, i.e. (3G , H E 

P)G(F(x,y)) = x, H(F(x , y)) = y then 

1 
K(F(x , y)) !; 2(K(x) + K(y)) . (23) 

A consequence of (23) is K(xy) ~ ~(K(x) + K(y)). 

4 Measures on nand Martin-Lof's tests 

The set r x C n defined as 

rx = {w E nl Wl,l(x) = x} (24) 

is called a cylinder centered at x. To define a measure on the space n it is enough 
to define the measure on each of the sets r x , x EX. (Sets r x form a basis 
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for topology on the space Q and they are Borel subsets of Q.} Moreover, for an 
arbitrary function m : X -+ R, that for any x E X satisfies 

(i) meA) = I, 
(ii) m(xO) + m(xl} = m(x), and 
(iii) m(x) 2:: 0, 

there exists a unique measure J.t on Q for which (\Ix) J.t(rx ) = m(x) . Sometimes 
we will write J.t(x) instead of J.t(rx }, when there is no danger of misunderstanding. 
The measure J.t of a single word x will be denoted by J.t ({ x}). 

Let Ex = r xU {xYI Y EX}. The measure v on X· can be defined by assigning 
m(x) to each of the Ex (It is possible to introduce a topology on X· with the 
sets Ex as a basis, but the resulting topological space is very poor - it is a To 
space.) 

Restricted to Q, v defines a semi-measure, i.e. a set function with the proper-
ties: 

(i) v(Q) :S I, 
(ii) v(rxO} + v(rxl} :S v(fx), 
(iii) v(rx) 2:: o. 

Definition 4.1 (80) Probability (semi) measure J.t on Q is called calculable if 

() () F(x,t) 
(3F 2 ,G 2 EO) r/L(x,t} = -(-) 

G x, t 

is nondecreasing and 

Exatnples: 

• Uniform probability measure on Q is defined as 

(25) 

(26) 

(27) 

In a natural transformation of Q to the interval [0,1]' (by w -+ (O .w b), the 
measure A corresponds to the Lebesgue measure. Obviously, the measure A 
is calculable . 

• Another example of a calculable measure on Q is Bernoulli measure. If 
w(x) = L:~{ Xi is the "weight" of x E X, then the measure f3p defined 
through the function b : X -+ R as 

b(x) = pw(x)(1 - p)l(x)-w(x); 0 < p < 1, (28) 

is called Bernoulli(p) measure. Note that f31/2 = A. 
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• [14] Let n ;::: 2 be a fixed number. Define measure t on n as follows. 

(i) teA) = 1, 

(ii) 

{ 
t(rxo) = t(rx)(l- (l(x)~2)"')' 
t(r xl) = t(r x) (l(x)~2)n. 

For example, for n = 2, t( {OOO ... 0 ... }) = !. 

4.1 Martin-LoC's tests 

Definition 4 .2 [46j,{80/ A total function V defined on finite words is called 
Martin-Laf's test (ML test) with respect to a calculable measure /1 if 

clim m -.;/1(wl V(w) ;::: m) = 0, (29) 

where V(w) = sUPn V(w n ) . A word w is ML-nonrandom with respect to test V 
(does not withhold ML test V) if V(w) = 00. 

Theorem 4.1 (46/ There exists a universal ML test U, such that for any other 
ML test V: 

(V'x) U(x) t Vex). (30) 

Definition 4.3 i46j A word w is ML-random if it passes the universal ML test. 

Example: The function 

l(x) i 

V,(x) = 2:1(IW(; ) - ~I > E), 
i = 1 

(31 ) 

where xi is the first i symbols of x, and w is the weight of x, is an ML test under 
the uniform measure, for any fixed E. 

(i) V, is a total function, 
(ii) ,\ (wjV (w) ;::: m) -+ 0, hecause of the Borel strong law of large numbers. 
In other words, V, is a ML test that rejects all wEn for which the relative 

frequency of ones is different than !. 
Example: This example is an adaptation of the result of Erdos and Revesz (1976). 
If the word w is ML-random with respect to the uniform measure, then the length 
of the longest 1 run (the longest piece consisting only of ones) in w n has to be 
between 

logn -logloglogn + logloge - 2 - E, (32) 

and 

logn + l.llogloglogn, (33) 
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for any to If n = 2220 , the length of the longest I-run is between 1,048,569 and 
1,048,598. Amazingly, the difference is only 29, so that the random sequences are 
almost deterministic in some aspects of their stochastic behavior. 
Example: [69] The sign-test can be interpreted as an ML test. Suppose we 
have two samples, Xl> X2 , . . . , Xn and Yl, Y2, ... , Yn, for which we want to test 
the hypothesis that they come from the same continuous population. Form the 
finite word x = XIX2 .. . Xn as follows: 

Then the function 

Xi = { 1, 
0, 

is an ML test with respect to the uniform measure. 
(i) F is a total function, 

(34) 

. (ii) For large m, if ~ is the cdf of the standard normal law, >.(wl F(w) :2: m) :$ 
2~(-rn) :$2- m. 

In the paper [46] Martin Lof introduces the measure of randomness of a 
word x, with respect to an ML test F as 

KBF(X) = lex ) - inf F(z ). 
xc z 

(35) 

The measure K B(x) resembles closely the measures of complexity K(x) , K P(x) , 
etc. Some properties of the measure K B (x) are given here. 

• [46] There is a universal test U so that for any other test F 

KB(x} = KB u (x}:$ KBF(X}. (36) 

• [68] Let Gx(i, y) be the result of the application oU(x) steps of the algorithm 
that calculates U 2 (i , y). Then 

lex) - maXi$ f(x) ,yc xGx(i , y) :$ K B(x) :$ lex). 

K B is a smooth function, 

KB(xy) - K B(x) :$ l(y) 

• There is an increasing total function ~(t, x) such that 

(i) ~(t,x):$ KB(x), 

(ii) limt-->oo ~(t, x) = K B (x) . 

(37) 

(38) 
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• [68] K B (x) is not recursive, but the predicate 

TI(x, a) = [K B(x) < a] 

is a partial recursive and the set 

{xl (3a)KB(x) < a} 

is recursively enumerable. 

• 
>.(rxl K B(x) ::; £(x) - m) ::; 2- rn . 

• [46] 
IK B(x) - K(x)1 ~ (2 - c)£(£(x)). 

• [68] If F is a process for which 8(F(x)) = £(x) - £(F(x)), then 

KB(x) - KB(F(x)) ~ 8(F(x)). 

4.2 Measure Transformations and Universal Prior 

Definition 4.4 (80) Let F be a process. We say that the process F is applicable 
to an infinite word w if the result is also an infinite word. We will call process F 
J.L-regular if the J.L measure of words to which it is applicable is 1. 

Define a measure v on X' (semi-measure on Q) as follows: 

v(~x) = J.L( U r x). (39) 
x:F(x)= y 

We will say that the measure II is a process transformation of the measure J.L and 
write v = F(J.L). 

(i) If J.L is calculable, then v is also a calculable measure. 
(ii) For any calculable measure II there is >.-regular process F such that 

F(>.) = v. (40) 

The process F can be chosen in a such way that 9 = F- 1 is v-regular. 

Definition 4.5 (80) The measure J.L is called semi-calculable if there is a process 
F, such that 

J.L = F(>.). (41) 

It can be proved that a semi-calculable measure J.L can be approximated by the 
ratio (25) in which the functions F and G are partial recursive. 
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Definition 4.6 180J The probability measure 7r defined as 

7r = Fo(A) , (42) 

where Fo is an optimal process, is called the universal prior. 

The universal prior is "larger" (up to a multiplicative constant) than any other 
semi-calculable measure - thus the name prior. In the absence of any information 
about the distribution on n, the most noninformative assumption is that the 
distribution is 7r . It has the "fattest tails." 

Theorem 4.2 (80! 

(43) 

Proof: Let f.L be an arbitrary semi-calculable measure and let :r be the process 
generating the measure f.L from the uniform measure A. If 

then f.L(r x ) = A(A). Let 

B = {ial i is the number of the process:r w.r.t. U(2);a E A}. 

Then Fo(x) = U(~l(X), ~2(X)) transforms B into rx: 

Fo(ia) = U(i , a) = :rea) E r x· 

Finally, 

The constant C Ji in the statement of the theorem is 2 - £(1), where i is the number 
of the process :r, in the numeration U . 0 

Corollary 4.1 ('fx) 7r(x} > O. 

Proof: Suppose the opposite, that for some Xo EX, 7r(xo) = 0 holds. Take 
any semi-calculable measure f.L which is concentrated on r x. Then 0 = 7r(xo) ~ 
CJif.L(xo} > o. 0 

The following theorem connects the measure of Schnorr complexity K P and 
the universal prior. 

Theorem 4.3 180} 

KP(x} X -log7r(x}. (44) 
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As Theorem 4.3 says, the prior 7T gives a large probability to the words with 
small complexity. The complex words, on the other hand, have a small probability. 
Another consequence of Theorem 4.3 is: 

n 

Corollary 4.2 (i) 7T~:2: ~Clo~2n' 
(ii) If K(w n ) :2: n + C, then 

n 

Proof: Since K P~ ::S fen) + 2f(f(n)), assertion (i) follows. The proof 
of fact (ii) is easy. 0 

Example: We can construct a measure on !1 that simulates 7T in the following 
sense: it gives high probability to sequences consisting of a large number (close to 
the length) of zeroes or ones. 

Suppose that we know that a measure on !1 is fJp, but p is unknown. If the prior 
on pis Be(a, b), then the standard Bayesian calculation gives that the distribution 
of pix is Be(a + w(x),b + f(x) - w(x)). The predictive (marginal) distribution 
for x is m(x) = B(a + w(x), b + f(x) - w(x)), where B(.,.) is the standard Beta 
function. 

If the prior on pis "noninformative", i.e. p ""' Be(l, 1) then 

n 

m~ = B(1,n+1) = _1_. 
n+l 

The following theorem connects ML tests and the universal prior. 

Theorem 4.4 An infinite word w is ML-random with respect to the measure ).., 
if and only if there are constants C1 and C2 such that 

(45) 

Moreover, 

(46) 

4.3 Robustness results for the universal prior 

Let j.£ and v be two semi-calculable measures. Let 

(47) 

and 

(48) 
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Theorem 4.5 d(J.L, v, n} is the Kullback-Leibler distance between the predictive 
measures J.L(enlel,n- d and v(enlel,n- l}. 

Proof: Simple transformations give 

( ) _ J.L J.l(WnIWl,n-l} 0 
d J.l, v, n - E log (I )" 

v Wn W1,n-1 

If we do not know J.l and use 7r instead as a conditional measure, then after 
observing a word long enough, the prediction by the universal measure becomes 
almost as good as the prediction by J.l. The prior 7r "catches" the measure J.l. 

Theorem 4.6 d(J.l, 7r, n} ---- 0, n ---- 00 . 

Proof: 

r{J.l, 7r, W1,n} = r(J.l, 7r, WI} + r(J.l, 7r, W1,2} - r(J.l, 7r, wd + ... + (49) 

r(J.l, 7r, WI,n} - r(J.l, v, wI,n- d· 

It follows that 

n 

EJ.L r (J.l,7r,W1,n} = EJ.Lr(J.l,7r,WI} + Ld(J.l,7r,i} . (50) 
i=1 

First, d(J.l, 7r, i} ~ o. It follows from the fact that for two probability vectors 
PI. ... ,Pn and ql, ... ,qn 

" P L.JPi log""': 2:: o. 
i qi 

Second, EJ.Lr (J.l , 7r, W1,n} is uniformly bounded in wand n, because of property (43) 
of universal measure, namely 

Therefore, 2:::1 d(J.l, 7r, i) is convergent, and d(J.l, 7r, n} = o(~} D. 

Theorem 4.7 There exists a sequence 7rn such that 
(i) 7rn is a computable measure for any n, 
(ii) limn -+oo d(J.l, 7rn , n} = O. 

Remark: Gacs (1974) proved a stronger result. For any fixed finite word y, and 
for any semi-computable measure J.l: 

when x ---- 00, 

holds with J.l-measure 1. 
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4.4 Universal word 

Definition 4.7 The infinite word w is called calculable if there is a total func­
tion G, such that 

(\:In) Wn = G(n}. 

Define the lower frequency of a finite word x with respect to the word w as 

¢>w(x} = liminf.!. ~l(x = x(i}}, 
n--+oo n ~ 

i=l 

where w = x(l}x(2}x(3} ... and l(x(i}} = l(x}, (\:Ii) . 

Theorem 4.8 There is a universal word p so that for any other word w, 

where the constant C depends only on the word w. 

One can define a measure of complexity of x as 

C(x} = -log¢>p(x}. 

(51) 

(52) 

(53) 

(54) 

Remark: The word p is not calculable. This is a consequence of the fact that the 
universal function for the class of all total functions is only a partial recursive. 

5 Minimum Description Length Principles 

Pluralitas non est ponenda sine necessitate. 

William of Ockham (1290-1349) 

As Jeffreys and Berger (1991) pointed out, the idea of measuring complexity 
and connecting the notions of complexity and prior probability goes back to Sir 
Harold Jeffreys' pioneering work on statistical inference in the 1920s. On page 47 
of his classical work [271, Jeffreys says: 

Precise statement of the prior probabilities of the laws in accordance with 
the condition of convergence requires that they should actually be put in 

an order of decreasing prior probability. But this corresponds to actual 
scientific procedure. A physicist would test first whether the whole variation 

is random against the existence of a linear trend; than a linear law against 
a quadratic one, then proceeding in order of increasing complexity. All we 
have to say is that simpler laws have the greater prior probabilities. This 
is what Wrinch and I called the simplicity postulate. To make the order 
definite, however, requires a numerical rule for assessing the complexity law. 
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In the case of laws expressible by differential equations this is easy. We 
would define the complexity of a differential equation, cleared of roots and 
fractions, by the sum of order, the degree, and the absolute values of the 
coefficients. Thus s = a would be written as ds/dt = 0 with complexity 
1 + 1 + 1 = 3. s = a+ut+ ~ge would become d2 s/dt2 = 0 with complexity 
2 + 1 + 1 = 4. Prior probability 2-'" of 6/,rr2m2 could be attached to the 
disjunction of all laws of complexity m and distributed uniformly among 
them. 
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In the spirit of Jeffreys' ideas, and building on work of Wallace and Boul­
ton, Akaike, Dawid, Good, Kolmogorov, and others, llissanen (1978) proposed 
the Minimum Description Length Principle (MDLP) as a paradigm in statistical 
inference. Informally, the MDLP can be stated as follows: 

The preferred theory H for explaining observed data D is one that minimizes: 

• the length of the description of the theory (Ockham's razor principle) 

• the length of the description of the data with the help of the chosen theory. 

Let C represent some measure of complexity. Then the above may be ex-
pressed, again informally, as: 

Prefer the theory H, for which C(H} + C(DIH} is minimal. 
In the above sentence we emphasized the word "some." Aside from the formal 

algorithmic definitions of complexity, which lack recursiveness, one can define a 
complexity measure by other means. The following example gives one way. 

Example: Let It be a measure on fl, and let It(x} = It(rx }. Then the Shannon 
code for a word x uses r -log It (x )l binary symbols. With r 0: 1 we denote the 
smallest integer larger than the number 0:. The Shannon code is optimal in the 
sense that it uses the minimum number of symbols for coding. A complexity 
measure C(x} can be defined as the length of its Shannon code, i.e. -loglt(x}, 
rounded up to the next integer. 

Many other effective measures of complexity have been proposed. Lempel and 
Ziv {1976} gave a combinatorial measure of complexity. Their measure is used in 
the theory of compact coding. Vidakovic (1985) and Stojanovic and Vidakovic 
(1987) propose a measure of complexity based on the number of 1, V, and /\ 
operations in the Boolean function generating the binary word. Though their 
measure is effective, practically it is impossible to calculate the complexity of 
words of even moderate length (e.g. 64), because of the exponential calculational 
complexity. 

It is interesting that Bayes rule implies MDLP in the following way. For a 
Bayesian, the theory H for which 

( I )- p(DIH}P(H} 
PHD - P(D} (55) 
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is maximal, is preferred. Taking negative logarithms on both sides we get 

-logP(HID} -log P(D IH} - log P(H} + log P(D} 

C(DIH} + C(H} + Const. 

(56) 

The Maximum Likelihood Principle (MLP) can also be interpreted as a spe­
cial case of Rissanen's MDL principle. The ML principle says that, given the 
data, one should prefer the hypothesis that maximizes P(DIH), or that mini­
mizes -logP(DIH}, the first term in the right hand side of (56). 

If the complexities of the hypotheses are constant, i.e., if their descriptions have 
the same length, then the MDL principle becomes the ML principle. The rationale 
of the ML principle was to be objective and independent of prior assumptions. 
From the MDLP standpoint, the ML is very subjective, having all hypotheses of 
the same complexity. Berger and Wolpert (1988) give a lucid discussion on the 
ML principle. 

5.1 Algorithmic Complexity Criterion 

Let /-t be an unknown semi-computable measure on n. After observing x EX, we 
want to estimate /-t. 

As an estimate of /-t, choose a measure fi that minimizes 

1 
K(v} + log v(x}' (57) 

The second part of (57) is minimized for any measure v for which v(r",} is 1. 
The first part of (57) is an algorithmic counterpart of the penalty for choosing 
measures that are too complex. With no data in hand, 10gIl1([,,..) = 0, and the 
preferred measure is the simplest measure. 

A natural enumeration of the class r of all semi-computable measures can be 
defined by the function T (p) as follows. The function T takes an argument p and 
finds the process UJ2) (p, .). The process Ud2) (p, .) is a modification of the universal 
process U 2 for which the number of Fo is A (empty word). 

The process g(.} = U(f(p, .} transforms the uniform measure ,\ to some semi­
calculable measure /-t E r. In that way, the function T enumerates r. Therefore, 
the following theorem holds: 

Theorem 5.1 In absence of data, the best estimate, with respect to the above 
described enumeration T, is the universal measure 7r. It embodies Ockham's razor 
principle. 

Proof: K(rr} ~ Kr(rr} x O. 0 



On Algorithmic Complexity, Universal Priors and Ockham's Razor 381 

5.2 Bayesian interpretation of the algorithmic complexity 
criterion (Barron-Cover (1989» 

Let X 1. X2, .. . , Xn be observed random variables from an unknown probability 
density we want to estimate. The class of candidates r is enumerable, and to each 
density f in the class r, the prior probability 7r(J) is assigned. The "complexity" 
C(J) of a particular density f is -log7r(J). 

The minimum over r of 

1 
C(J)+logn ( ) 

kf Xk 

is equivalent to the maximum of 7r(J) nkf{Xk), which as a function of f, is 
proportional to the Bayes posterior probability of f given X 1. ... , X n . 

Remark: There is a connection between the Bayesian and the coding inter­
pretations in that if 7r is a prior on r then log 7rtJ) is the length (rounded up to 

integer) of the Shannon code for fEr based on the prior 7r. Conversely, if C(J) is 
a codelength for a uniquely decodable code for f, then 7r(J) = 2- 0 (f) I D defines 
a proper prior probability (D = E!E[' 2- 0 (f) ::; 1 is the normalizing constant). 

Let in be a minimum complexity density estimator. If the true density f is 
on the list r, then 

(3no)(Vn ~ no)in = f. 

Unfortunately, the number no is not effective, i.e. given r that contains the true 
density and X), . .. , X n , we do not know if f".. is equal to f or not. Even when 
the true density f is not on the list r, we have the consistency of in. Let f' 
denote the information closure of r, i.e. the class of all densities f for which 
infgE[' D(Jllg) = 0, where D (Jllg) is the Kullback-Leibler distance between f and 
g. The following result holds [9]: If LgEr' 2 - 0(g) is finite, and the true density is 
in f', then 

lim Pn{S) = p{S) 
n 

holds with probability 1, for all Borel sets S. 

5.3 Wallace-Freeman Criterion 

Wallace and Freeman (1987) propose a criterion similar to the Barron-Cover cri­
terion for the case when r is a parametric class of densities. 

Let Xl, X 2, .. . X n be a sample from the population with density f (x 10). Let 
7r(0) be a prior on O. 

The Minimum Message Length (MML) estimate is defined as 
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'WE 
----------------~Or_~----~~---------

Figure 3: Barron-Cover and Wallace-Freeman estimators 

n 1 
arg min[-log1f(61) -logII f(XiI6l) + -log II(61)Il. 

9 2 
i = l 

(58) 

where I(61) is the appropriate information matrix. Note that this is equivalent to 
mll.ximizing 

1f(61) n~-l f(XiI 6l ) . 
II(61)ll/2 

(59) 

Interestingly, if the prior on 61 is chosen to be the noninformative Jeffreys' prior, 
then the MML estimator reduces to ML estimator. Another nice property of the 
MML estimator is its invariance under 1-1 transformations. 

Dividing by II(61)ll/2 in (59) may not be what a Bayesian would do. In this 
case, instead of choosing the highest posterior mode, the MML estimator choses 
the local posterior mode with the highest probability content, if it exists (Figure 
3). 
Example: [77] Suppose a Bernoulli experiment gives m successes and n - m 
failures. Take the Beta(a, b) prior on 61. Then, T(61) = 9(l~9)' 

The MML estimator is a value that maximizes 61 a+m - 1/ 2(1_ (1)b+ n - m - 1/2, i.e. 

61' = 
a+m- ! 

a+b+n-l 
(60) 
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Note that the Bayes estimator 8 B = a"t-t~';. is slightly different. 

Example: [77] Another example of the application of MML criteria is a simple 
model selection procedure. 

Let PI-' = {N(JL, 0"2), 0"2 known}. Chose the best of the hypotheses: Ho: JL = 
JLo, and HI : JL i JLo, in light of data x = (Xl, ... , Xn). 

H 0 is parameter free, the message length is - log j (x IJL). 
Let JL ,...., Unij[LO", UO"]. Then, assuming equal prior probabilities for Ho and 

H 11 the hypothesis H 0 is preferred to HI if 

Ix - JLo I VI ne(U - L)2 
z = 0" / Vii < og 12 (61) 

This is in contrast with the usual frequentist significance test in which the right­
hand side of (61) has the constant za/2 = <}>-1(1 - 0:/2). 

In the case of vague prior information on JL (U - L -+ 00), the above criterion 
leads to a strong favoring of the simple hypothesis Ho, as Jeffreys (1939) pointed 
out. 

Remark: O'Hagan (1987) proposed a modification of the MML estimator as 
follows: Estimate 0 by the value 0 that maximizes 

where H (0 , x) = - &r iog7r(Olx). 

7r(OIX) 
H(O ,x )1/2 

(62) 

O'Hagan's modification is more in the Bayesian spirit, since everything depends 
only on the posterior. But the maximizing fj may not be at any posterior mode, 
and in addition, the invariance property of the MML estimator is lost. 

5.4 Rissanen's Criteria 

Except for motivational purposes, llissanen does not include algorithmic complex­
ity in his criteria. The "complexities" he refers to are effective measures emerging 
from the theory of optimal coding. They simulate non-effective complexity mea­
sures and give a working, real criteria. The MDLP, which Rissanen discusses in 
[53], goes as follows: In the case when the parameter 0 = (01 , .. . ,Ok) of variable 
dimension k describes the model, chose the model that minimizes 

(63) 

where 
(i) P{xIO) is the likelihood; 
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(ii) log*(z) = log(z)+loglog(z)+logloglog(z)+ ... , where only positive terms 
are included in the sum; 

(iii) C (k) is the volume of the k-dimensional ball; 

(iv) II0ilM(O) = JOI M (0)0, where M(O) is the k x k matrix of second derivatives 
of -log P(xIO). The second part in (63) is Rissanen's counterpart for the negative 
complexity of the model (0). 

6 Epilogue 

There are few more ways of using the complexity theory ideas in statistics. We 
may want to produce finite binary words of maximal complexity. 

Example: (Parmigiani) Let a finite binary word x of the length n represents an 
ordered group of n patients. The symbol 1 on kth place in the word x means that 
the kth patient has received a treatment. Zeroes stand for placebo. The word x 
can be designed. The response is again a binary word of length n, in which the 
symbol 1 stands for "survived". 

The goal is to test if 0 = p(lll) is different than p(lIO). It is felt that 0 
depends on the place of the corresponding 1 in the word x. (The medical staff 
giving the treatment becomes more experienced, or perhaps, after a while, the 
staff gets bored and the quality of treatment decreases.) 

Theoretically, one should choose the following design. The word x should be 
of maximal complexity. That ensures that the testing procedure is robust with 
respect to all simply describable dependences 0 = O(k), 1 ::; k ::; n, which we pose 
as our prior. This choice is in the spirit of Mises' "preserving the randomness" 
recursive choice of a subsequence. 

Vovk (1991) connected the complexity theory results with the theory of asymp­
totic efficiency of estimators. 

The complexity theory approach to statistical inference is far from being a 
unified theory. The main difficulty is that there is no effective measures of com­
plexity. All working Minimum Description Length Procedures include some cal­
culable counterpart of an algorithmic complexity measure. The compromise is 
to simulate algorithmic complexity measures as closely as possible and keep the 
procedure effective. 
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