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Recent Results and Open Problems on the Hydrodynamics 
of Disordered Asymmetric Exclusion and Zero-Range Processes1 

Timo Sepp~iliiinen 

Abstract: This paper summarizes results and some open 
problems about the large-scale and long-time behavior of asym­
metric, disordered exclusion and zero-range processes. These 
processes have randomly chosen jump rates at the sites of 
the underlying lattice Z d. The interesting feature is that for 
suitably distributed random rates there is a phase transition 
where the process behaves differently at high and low densi­
ties. Some of this distinction is visible on the hydrodynamic 
scale. But to fully understand the phase transition, results on 
a finer scale are needed. 

Key words: Exclusion process, zero-range process, hy­
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1. INTRODUCTION 

This paper introduces some recent results on the hydrodynamics of disordered, 
asymmetric simple exclusion processes (SEP) and zero-range processes (ZRP). 
The disorder refers to the rates of jumping attached to the sites of the underlying 
lattice: The particles move on Zd, and each site x E Zd has a random variable 
O:'x that influences the exponential rate at which particles leave site x. In SEP 
O:'x is exactly the rate of jumping from x, and in ZRP O:'x multiplies the rate 
r(7J(x)) that depends on the number 7J(x) of particles currently occupying site x. 
The asymmetry pertains to the jump probabilities p(x, y), according to which a 
particle jumping from x chooses its new location y . We assume throughout that 
the kernel p(x, y) is translation invariant so that p(x, y) = p(O, y - x) == p(y - x). 
Asymmetric jumping means that there typically is a drift : I == L xp(x) i 0. The 
assumption I i ° is not always necessary, but without it the limiting macroscopic 
conservation law becomes trivial. Some theorems require a stronger assumption 
of total asymmetry: the dimension d = 1, and all jumps proceed to the right : 
p(l) = 1. 

The disorder can also be attached to particles, so that individual particles carry 
their own randomly chosen jump rates. We do not explicitly consider such pro­
cesses. One special case, the totally asymmetric simple exclusion process (TASEP) 
with particlewise disorder, is partially covered by our discussion. This is because 
the gaps between the exclusion particles with random rates can be regarded as 
t he occupation numbers of a ZRP with random rates on the sites. This special 
case has been studied in the physics literature as a model for traffic. See Krug 
(1998), Krug and Ferrari (1996), and their references. 

The interesting phenomenon that appears in disordered particle systems is a 
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phase transition where the process behaves differently at high and low densities. 
It occurs when the distribution of the random rate has a sufficiently thin tail at 
its left endpoint c > O. Not much rigorous mathematical work exists on this phase 
transi tion. 

A brief overview of the paper: In Section 2 the disordered ZRP is described, 
together with two theorems. In Section 3 the same is done for the disordered 
SEP. Section 4 lists four open problems. Section 5 contains some proofs and 
some comments on proofs. In particular, we included in Section 5 a rigorous 
construction of a disordered ZRP in Zd, and a proof of the invariance of a certain 
family of product measures. The construction is based on the percolation approach 
of Harris (1972). 

The hope is that this paper would be at least partially accessible to the non­
expert. This is the motivation for inclusion of the proofs in Section 5, which are 
often referred to but less often spelled out in the literature. For the same reason 
an attempt has been made to employ precise and complete notation. This may 
make the text somewhat heavy to follow at times, but the alternative is to risk 
confusing the reader who is not well-acquainted with disordered particle systems. 
Of course , such an outcome may be unavoidable in any case. 

Some familiarity with the subject of interacting particle systems is required 
for reading this paper. General references on particle systems are Durrett (1988, 
1995), Griffeath (1979), and Liggett (1985). References on hydrodynamicallimits 
are lectures by De Masi and Presutti (1991), the monograph of Spohn (1991) , re­
view papers by Ferrari (1994, 1996), and the soon-to-appear monograph of Kipnis 
and Landim. 

Here are some references that are closely related, but not directly on the topic 
of the paper: Hydrodynamic limits for asymmetric processes with inhomogeneous 
but not random rates have been proved by Landim (1996), Covert and Rezakhan­
lou (1997) , and Bahadoran (1998) . Koukkous (1996) and Gielis et a1. (1998) have 
studied the symmetric ZRP with random rates. [In the symmetric case the jump 
probabilities satisfy p(x) = p(-x).] 

Notational remarks. Z+ = {O, 1, 2,3, ... }. IA and I{A} denote the indicator 
random variable of the event A. dy is a delta function or a point mass at y, 
depending on the context: dy(X) = I{x = y} for points x, and dx(A) = IA(X) for 
sets A. 

2. THE DISORDERED ASYMMETRIC ZERO-RANGE PROCESS 

First we describe a disordered ZRP on Zd with bounded, monotone jump rates . 
Let {p(x) : x E Zd} be a finite-range probability distribution, in other words 
p(x) ~ 0, LP(X) = 1, and for some fixed finite set N ~ Zd, p(x) = 0 for x tf. N. 
The rate of jumping from a site depends on the number of particles present through 
a function r : Z+ -+ [0,(0), about which we assume that 

(2.1) 0= r(O) < r(l) :s r(2) :s r(3) :s r(4) :s ... 
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and 

(2.2) r(oo) = lim r(k) < 00. 
k-too 

The disorder comes in the form of random deceleration factors ax :::; 1 that depend 
on the sites x. Once a = (ax : x E Zd) is picked, the dynamics operates as follows: 
If there are 71(x) ~ 1 particles at site x, then at exponential rate axr(1](x)) a 
single particle jumps away from site x. The new location of this particle is y with 
probability p(y - x). This happens at each site x independently of what happens 
at other sites. 

For fixed rates a , the generator of the process is 

(2.3) LOt 1(1]) = L p(y - x)axr(71(x))[/(1]x,y) - 1(71)] . 
x,yEZ d 

Here 71 = (71( x) : x E Zd) is an element of the state space S = Zf of the process, 
and 1]x ,y is the configuration that results from the jump of a single particle from 
site x to site y: 71x ,y = 1] + 8y - 8x . Section 5 contains a construction of this 
process , based on a percolation argument of Harris (1972). Due to assumption 
(2.2) the process can be started from any configuration 1] E S. We denote the 
process by 1](t) = (1](x, t) : x E Zd) , where t ~ ° is the time variable. 

The standing assumption is that a is an ergodic [e, I]-valued process for some 
constant e E (0,1]. Let Q denote the distribution of the process a on the space 
A = [e, I]Zd . Fix e to be the left endpoint of the marginal distribution of aD, so 
that e is the largest number such that the process a is [e, I)-valued. 

What makes the disordered ZRP tractable are invariant distributions that can 
be explicitly described. This description uses the same ideas as the process without 
disorder. Ifax == 1 (no disorder) , among the extremal invariant distributions are 
the product measures J-l.p on S, indexed by a parameter 'Ij; E [0, r( (0)), with 
marginals 

(2.4) J-l.p(1](x) = k) = Z('Ij;)-l r(I) ~k.r(k)' x E Zd, k E Z+. 

[See Andjel (1982).) For k = ° the product in the denominator is interpreted as 
1. Z ( 'Ij;) is the normalization factor, defined by 

00 'lj;k 
Z('Ij;) = L ( ) . 

k=:O r(l)·· · r k 
(2.5) 

For the disordered process, fix a choice a for the rates. For real numbers 'P E 
[0, r(oo)e), let v:; denote the product probability measure on S whose marginals 
vary from site to site, as given by 

a( () k) Z( / )-1 ('P/ax)k d (2 .6) v<p 71 x = = 'P ax r(I) ... r(k) , x E Z ,k E Z+ . 
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Proposition 1. For each choice of rates a E A and each value of cp E [0, r( 00 )c), 
the probability distribution v~ is invariant for the process with generator L oc . 

The phase transition of the disordered ZRP is the following situation: If Q is 
such that very slow sites are sufficiently rare, then the family of invariant distribu­
tions {v~ : cp E [0, r(oo)c)} does not cover the entire range of densities a :s: p < 00. 

Instead, there is a critical density p* < 00 such that the equilibria v~ only exist 
for densities p E [0, p*]. To see this, set first 

(2.7) 
1 00 k'l/i 

M('IjJ) = Z('IjJ) ~ r(l) .. ·r(k) , 'IjJ E [O,r(oo)). 

M ('IjJ) is the density under j.L1/J. It is a strictly increasing function from [0, r( (0)) 
onto [0 , (0) and has an inverse function M- 1 which we need to refer to below. For 
the disordered model the density p as a function of the parameter cp is defined by 
averaging over the random rates: 

_ Q[ 1 ~k(cp/ao)k]_ Q[ ( )] 
(2 .8) p(cp) - E Z(cp/ao) ~ r(l) . .. r(k) - E M cp/ao . 

Here EQ denotes expectation over the distribution Q of a, and the random vari­
able inside the expectation is 0.0 . For a fixed equilibrium v~ the density p( cp) can 
be realized as a spatial average 

v::-a.s ., for Q-a.e. a. 

By letting cp increase to its upper bound r( 00 )c, (2 .8) shows that the maximal 
density is 

(2 .9) 

This quantity mayor may not be infinite, depending on the distribution Q. l,From 
(2 .7) M(r(oo)) = liill.p/r(oo) M('IjJ) = 00, so in particular if Q(ao = c) > 0, then 
p* = 00. The interesting case with phase transition is the one where Q(dao) has 
a sufficiently thin tail as 0.0 '\t c, to make the integral in (2.9) finite . 

The function p: [O,r(oo)c) -t [O , p*) is strictly increasing. Let J : [O,p*)-t 
[O,r(oo)c) denote its inverse function. In other words, for p E [O,p·), J(p) is 
implicitly defined by 

(2.10) 

Now we state a hydrodynamic limit for the disordered ZRP, due to Benjamini, 
Ferrari, and Landim (1996). For each choice of rates a, there is a sequence of 
zero-range processes indexed by n, generated by Loc. P:: denotes the probability 
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measure on the probability space of the nth process {7Jn(x, t) : x E Zd , t :::: O} , 
n = 1,2,3,... . The theorem is a weak law of large numbers for the empirical 
measure defined by 

(2.11) 7rn(t) = n- d L 7Jn(x,t)ox/n, 
xEZ d 

where Ox is a unit mass at the point x E Rd. The assumptions are the following: 

(A.l) The transition probability p( x) satisfies this irreducibility condition: for 
each x, y E Zd there exists a finite sequence x = Xo, ... , Xk = Y such that 
P(Xi+1 - Xi) + P(Xi - Xi+l) > 0 for all i . 

(A.2) There exists a bounded continuous function Uo on Rd such that lIuolloo S; 
M(r(oo)B) for some B < c, and for each 0:, the initial distribution of the process 
7Jn is given by 

[Recall the definitions of J-L.;., and M('l/J) from (2.4) and (2 .7).] 

(A.3) The marginal distribution of ao is supported by a finite set: For some 
C = Cl < C2 < ... < Cm S; 1, Q (ao E {Cl, ... , cm }) = 1. 

Assumption (A.2) ensures that for some fixed tp E [0, r(oo)c) and all 0:, all 
the initial distributions are stochastically dominated by v~ . This is true because, 
on the 1](x)-marginal v~ = J-l<p/a"" and this dominates J-lr(oo)1I as long as tp/ax :::: 

r(oo)B, which in turn is true for all ax E [c, 1] if tp :::: r(oo)B. 
Let I E Rd be the mean drift under p(x): 'Y = I:xEzd xp(x). Let u(x, t) on 

R d X [0 ,(0) be the unique entropy solution of the scalar conservation law 

(2 .12) au/at + 'Y' \7x [f(u)] = 0, u(x, 0) = uo(x). 

Let Co (R d) denote the space of compactly supported continuous functions on Rd. 
This theorem was proved by Benjamini et al. (1996): 

Theorem 1. Under assumptions (A.l)-(A.3), the following holds for Q-a.e. 0:: 

For each t > 0, ¢> E Co(Rd ), and E > 0: 

(2.13) 

The integral against 7rn (t) is defined by 7rn (t, ¢» = n- d I:x 7Jn(X, t)¢>(x/n). The 
statement is that, in the topology of Radon measures on Rd, 7rn (nt) converges to 
u(x, t)dx in probability as n --r 00. 
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The shortcoming of this result is that it does not indicate what happens on 
the hydrodynamic scale if the process starts at density above critical, that is, 
UO(X) > p* for some or all x . In fact, assumption (A.3) makes p* = 00, so there 
can be no phase transition under these hypotheses. 

Next we state a theorem that covers the hydrodynamics also in the high-density 
regime p > p* and admits more general initial distributions for the process. How­
ever, we pay a serious price for this strengthening: The theorem is valid only for 
the most basic type of ZRP with rate function r(k) = I{k ~ I}. Furthermore, we 
are restricted to totally asymmetric jumps in one dimension: d = 1 and p( 1) = 1, 
so jumps happen only to the right on Z. Finally, we assume that the process of 
rates (ax: x E Z) is i.i.d. 

In this case the measures v~ are products of geometric distributions: 

(2.14) 

Now M(l/;) = l/;/(1 -l/;), so the definition of the critical density becomes 

p* = c r (ao - C)-IQ(daO) . 
i[e,l] 

From this formula it is plainly obvious how the tail of Q(dao) at ao = c+ 
determines whether p* < 00 or not, that is, whether phase transition happens or 
not. 

For p E [0, p*) the flux function f(p) is defined implicitly by the equation 

(2 .15) 

If p* < 00, set 

(2.16) 

p = f(p) r (ao - f(p)) -IQ(daO). ire, I] 

f(p)=cforp~p*. 

This makes f a nondecreasing and concave function on [0,00). 
Again we assume we have a sequence of processes 1Jn(t) and corresponding 

probability measures P::. The assumption on initial distributions is this: 

(A.4) Suppose Uo (x) is a nonnegative locally integrable function on R. Assume 
that this holds for Q-a.e. a : For all <fJ E Co(R) and c > 0, 

(2.17) }~~ P:: (l7rn (O, <fJ) - L <fJ(X)uo(X)dXI ~ c) = 0. 

Previously this assumption was a consequence of assumption (A .l) so it was 
not stated explicitly. Let u(x, t) on R x [0,00) be the unique entropy solution of 

(2.18) Bu/Bt + Bf(u)/Bx = 0, u(x, 0) = uo(x) 

where f is the function defined by (2.15)- (2.16). Then we have a theorem due to 
Seppiiliiinen and Krug (1998): 
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TheoreIll 2. Assume that d = 1, p(l) = 1, r(k) = I{k ~ I}, and that Q zs an 
i.i.d. distribution for a = (ax). Then under assumption (A.4) the following holds 
for Q-a.e. a: For each t > 0, ¢ E Co(R), and c > 0: 

(2.19) }i~ P:: (l7rn (nt, ¢) - fa ¢(x)u(x, t)dxl ~ c) = O. 

In the phase transition case this theorem has an interesting consequence: Sup­
pose the initial profile satifies Uo (x) ~ p* everywhere on R. Then since f is 
constant for this range of densities, it follows that u(x, t) = uo(x) for all t > O. In 
other words, the profile does not change on the hydrodynamic scale. 

3. THE DISORDERED ASYMMETRIC EXCLUSION PROCESS 

The disordered SEP is less well understood than the ZRP. The reason is that 
no invariant distributions have been found. Presently we can prove the existence 
of a hydrodynamic limit for the totally asymmetric SEP, in dimension one. But 
the flux function f of the macroscopic equation (2.18) remains unknown. The 
theorem covers a more general totally asymmetric SEP, namely the so-called f{­
exclusion, where each site admits f{ particles instead of just one. The state space 
is S = {O, ... ,I<}z , and we write again 1] = (1]( x) : x E Z) E S for the particle 
configurations. When the rates a have been chosen, the generator is 

(3.1) LOt f(1]) = L axI{1)(X)2:1 ,1)(X+l)~K-1}[J(1]x,X+l) - f(1])]· 
xEZ 

In other words, a jump occurs from site x to x + 1 at rate ax, provided site x is not 
empty and site x+ 1 has less than f{ particles. Consider f{ fixed but arbitrary. As 
before, assume we have a sequence of totally asymmetric I<-exclusion processes 
1]n(t), with probability measures P:: when the rates a are fixed. As for Theorem 
2, we only assume that the initial distributions of the processes have a well-defined 
macroscopic profile: 

(A.5) Suppose Uo is a hounded measurable function on R such that 0 ~ uo(x) ~ 
K. Assume (2.17) holds for all ¢ E Co(R) and E > 0, for Q-a.e. a. 

The theorem about the existence of the hydrodynamic limit is proved in Seppii­
liiinen (1998): 

TheoreIll 3. Fix a positive integer I< and an i. i. d. distribution Q for a = (ax). 
Then there exists a concave function fK on [0, I<] that depends on Q such that, 
if u(x, t) is the unique entropy solution of (2.18) with flux f = fK, then under 
assumption (A .5), the limit in (2.19) holds for Q-a.e. a, for each t > 0, ¢ E 
Co(R), and E > O. 

The entropy solution to (2.18) with f = fK and Uo bounded measurable can be 
constructed without explicit reference to the p.d.e: Pick a function Uo such that 
U~ = Uo a.e. on R. Let Ii be the concave conjugate of IK: 

fi(x) = inf {xp - fK(p)}, 
O~p~K 
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Set 

(3.2) U(x,t) = sup {UO(y) +tfx((x - y)/t)}. 
yER 

Finally, let u(x, t) = (8/8x)U(x, t), a derivative that is defined at least a.e. Lax 
(1957) discusses this construction of the entropy solution of a scalar conservation 
law. See also Section 3.4 in Evans (1998). The conjugate fx has a probabilistic 
meaning in this context: It is the macroscopic shape of a growth model associated 
to the K-exclusion process [SeppaJainen (1998)]. 

4. OPEN PROBLEMS 

Problem 1. Extend Theorem 1 to describe hydrodynamic behavior also at high 
density p > p*. Or, equivalently, extend Theorem 2 to more general ZRP's. The 
proof of Theorem 2 in Seppalainen and Krug (1998) depends on special properties 
of the tbtally asymmetric ZRP with rate function r( k) = I {k ~ I}. The proof of 
Benjamini et al. for Theorem 1 follows a strategy invented by Rezakhanlou (1991), 
and may be a better candidate for generalization. 

Problem 2. In the phase transition case, the hydrodynamic theorem reveals only 
trivial behavior at high density p > p* (the profile does not move, see Theorem 
2). It is expected that on a finer space scale one can see inhomogeneities develop, 
specifically, that the particles concentrate on exceptionally slow sites. No rigorous 
results exist to decribe these phenomena. Krug (1998) and Seppalainen and Krug 
(1998) discuss this in terms of the exclusion version of the totally asymmetric 
ZRP. 

Problem 3. An interesting open problem for the disordered ZRP concerns the 
weak convergence of the process: Fix the rates 0:, and take the initial distribution 
of 1)(0) spatially ergodic with density p. Does the distribution of 1)(t) converge 
weakly, as t -t 00, to one of the equilibria v:;? If p > p. in the phase transition 
case, does TJ(t) converge weakly to the equilibrium with density p*? For the 
standard ZRP results of this type were proved by Andjel et al. (1985). 

Problem 4. For the disordered TASEP, any new rigorous results would be wel­
come. For example, is there a phase transition similar to the one for disordered 
ZRP? Does the flux function fK (p) have a flat segment on an interval around 
p=K/2? 

5. COMMENTS ON THE PROOFS 

5.1 Construction and invariant distributions. To construct the disordered 
ZRP with generator (2.3), start by giving each site x E Zd an independent rate 
r(oo) Poisson point process TX on the time line (0,00). [Here we make use of 
the assumption r( 00) < 00.] To the ith epoch of T X attach two random objects: 
A random threshold U{ uniformly distributed on [0, r( 00)] and independent of 
everything else, and a destination site yf chosen with probability p(yf - x), again 
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independently of everything else. Fix the rates a = (aX : x E Zd) and an initial 
configuration T) = (T)(x) : x E Zd). Informally speaking, from these ingredients the 
construction of the dynamics goes as follows: Suppose r is an epoch of TX with 
threshold U and destination site y, and the dynamics T)(t) has been constructed 
for times 0 ::; t < r. If U ~ axr(T)(r- )), do nothing. If U < axr(T)(r- )), move 
one particle from site x to site y; in other words, set 

T)(X, r) = T)(x, r-) - 1, 

T)(Y, r) = T)(Y, r-) + 1, 

and T)(z,r)=T)(z,r-) forz=j:.x,y . 

Subsequently site x lies dormant until the next epoch of TX. However, the lattice 
Zd is infinite, so this induction never even begins because there is no first epoch 
among the point processes {TX : x E Zd}. 

To make the construction rigorous, we show that there exists a fixed time to > 0 
such that, starting with an arbitrary T) in the state space S, the evolution T)(t) can 
be computed for t E [0 , to] . Since to is independent of T), the construction can be 
repeated, starting with T)(to), and extended to [0,2to] . And so on, to arbitrarily 
large times. 

Given a fixed number to > 0 and the Poisson processes {TX}, construct the 
following random graph, with vertex set Zd: Connect x and y with an edge if 
x - y or y - x lies in N, and either TX or TY has an epoch in [0, to]. Recall that 
p(z) = 0 for z outside N. 

Lemma 5.1. For small enough to > 0, the random graph thus constructed has 
no infinite connected components, for almost every realization of {TX}. 

Before proving the lemma, let us observe how it solves the construction problem: 
All the sites y that could possibly influence the evolution at site x up to time to are 
connected to x in the random graph . Since x lies in a finite connected component 
C, the point process UxEcTx has only finitely many epochs in [0, to]. Consequently 
the evolution T)(z, t) can be computed for z E C and t E [0, to] from the informal 
rule spelled out above, by considering the finitely many epochs in their temporal 
order. This procedure is repeated for all connected components. 

Proof of Lemma 5.1. By translation invariance, it suffices to show that the origin 
is almost surely connected to only finitely many vertices. Let N" = N U (-N) 
and J{ = IN"I, the number of vertices x such that either x or -x lies in N. Call 
Xo, Xl , . . . ,Xn a self-avoiding path with n edges in the random graph if Xi =f. Xj 
for i =j:. j and there is an edge between Xi and Xi+l for each i . In particular, then 
Xi+l - Xi E N* for each i. 

Let I · I be any norm on R d , and R = max{lxl : x E N*}. If the origin is 
connected to a vertex x with Ixl > L, there is a self-avoiding path with at least 
Lj R edges starting at the origin. The probability that a self-avoiding path with 
2n - 1 edges starts at the origin is at most 
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To se~ this, note first that the factor J{2n-1 is an upper bound on the number 
of such paths. If ° = XO, Xl, .. . ,X2n-l is such a path, the n edges (xo, Xl)' 

(X2' X3), ... , (X2n-2, x2n-d are present independently of each other, and each 
with probability 1 - e - 2r (oo)to [at least one of ,x2 ; and ,X2 ;+1 must have an 
epoch in [0, to], and each ,x; has rate r(oo)). Pick to small enough so that 
f{2(1 - e- 2r (oo)t o) < 1. Then by Borel-Cantelli, self-avoiding paths from the 
origin have a finite upper bound on their length , almost surely. 0 

This approach to the construction of a particle system is due to Harris (1972). 
Our presentation followed Durrett (1995). 

Let (0, F, IJD)denote the probability space whose sample point w represents a 
realization of the Poisson processes {T"}, the random thresholds {Ut}, and the 
destination sites {yr} . We constructed the random path 1](') = {1](x, t) : x E 
Zd , t ~ o} as a function of the initial state 1], the rates 0, and a sample point w. 

Since the Poisson processes are Markovian, and the random choices of threshold 
U and destination state yare independent of everything, the process 1](') is a 
time-homogeneous Markov process. Let V = V([O, (0), S) denote the space of 
right-continuous S-valued functions on [0,(0) that have left limits at each point 
t E [0 , (0). For fixed (0,1]) the path 1](-) is a V-valued random variable, and it 
has a probability distribution pa,T/ on V induced from the measure IJD on O. Write 
Eo< ,T/ for the expectation under pa,T/. 

Next we prove Proposition 1 about the invariant distributions. For this we 
restrict the process to a cube Ak = {-k , ... ,k}d ~ Zd . The jump probabilities 
p(y - x) are then interpreted with periodic boundary conditions, and become 

(5.1) Pk(X, y) = L {p(z - x) : z = y + (2k + 1)w for some w E Zd} 

for X, Y E Ak . The finite-volume generator is 

(5.2) L'k f(1]) = L Pk(X, y)axr(1](x))[f(1]x,y) - f(1])]. 
x,YEA. 

L'k generates a Markov jump process with uniformly bounded rates on the count­
able state space Sk = Z~· . Existence of this process follows from standard text­
book material. Write E,/:,T/ for expectations under distributions of the process 
restricted to Ak • Notice that if f is a cylinder function on S, L'k f = La f for all 
large enough k. 

Define dual transition probabilities by pk(x,y) = Pk(Y,X) and p*(x) = p(-x). 
Then pZ is obtained from p. exactly as Pk from P according to (5.1). Let L'/:'* and 
La,. be the generators with kernels pi, and p. in place of Pk and p. 

Lemma 5.2. Let ° E A and <p E [0 , r( 00 )c), and let II'; be the product probability 
measure defined by (2.14). Then for all bounded measurable functions f ,g on Sk, 
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Proof Start by writing 

1/; (gL'k f) = L Pk(X, y)axl/; [1'(1](x))g(1])f(1]x,y)] 
x,YEA. 

where the last equality defines the quantities Al and A 2 . 

Continue first with AI: For any x, y let i/ denote the marginal distribution of 
~ = (1](z) : Z #- x,y). Abbreviate R(m) = 1'(1) · · ·1'(m). Then for a fixed x, the 
sum over y in Al can be expressed as 

= L pdx, y)ax J ii(d~) L Z(<p/ax)-l Z(<p/ay)-I R(mx)- l R(my)-I 
yEA. mr~l 

my~O 

(<p/ax)mr (<p/ay)my1'(mx)g(~, mx, my)f(~, mx - 1, my + 1) 

L Pk(X, y)ay J i/(d~) L Z(<p/ax)-I Z(<p/ay)-I R(nx)-I R(ny)-l 
yEA. nr~O 

ny~1 

(<p/ax)nr(<p/aytY1'(ny)g(~,nx + 1,ny -l)f(~,nx,ny) 

L Pk(X , y)ayl/; [1'(1](y))g(1]y ,X)f(1])]. 
yEA. 

In the above calculation we first used the definition (2.14) of v:; . The expectation 
is taken separately over the marginal distributions of~, 1](x), and 1](y). In the 
second expression, mx and my are summation variables that represent integration 
over the distributions of 1](x) and 1](Y) . Because r(mx) = 0 for mx = 0, we sum 
over mx ~ l. In the second equality we do a change of variable in the sum: 
nx = mx - 1 and ny = my + l. The last equality is just the definition (2.14) of 

or . 
1/'1' agam. 

Now sum over x E Ak and interchange the summation indices x , y to get 

Al = L p;;(x , y)axv:; [r(1](x))g(1]x ,Y)f(1])]. 
x,YEA. 

In A2 simply observe that I:y Pk(X , y) = 1 = I:y p;;(x, y) and write 

A2 = L {L Pk(X,y) }axl/;[r(1](x))9(1])f(1])] 
xEA. yEA. 

= L p;;(x, y) ax 1/:; [r(7](x))g(1])f(1])] . 
x,YEA. 
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Combining gives 

and the lemma is proved . 0 

Proof of Proposition 1. Let to > ° be the number chosen in Lemma 5.1. Since 
1J(t) is Markovian, invariance follows if we prove that, for any cylinder function f 
on S, 

(5.3) L E'",T/ [f(1J(t))] 1/~(dTJ) = L f dl/~ 
for all t E [0 , to] . 

For any 1] E S, let TJAk denote its restriction to Ak. Let 1]k U denote the process 
in Sk generated by L'k. (This of course is not the restriction of the process 17(') to 
Ak') Taking 9 == 1 in Lemma 5.2 shows that 1/:; is invariant for the process TJk( .), 
so we have 

(5.4) 

for all k large enough so that f can be regarded as a function on Sk. [Here 
again we rely on basic facts of continuous-time Markov chains on countable state 
spaces. The whole point is of course that the space S is not countable, so we need 
something more to pass from Lemma 5.2 to (5.3).] It remains to argue that 

(5 .5) 

boundedly, as k --* 00 , for any fixed t E [0 , to] and 1] E S. For fixed (0:,17) , we 
can construct the processes 1](') and 1]k (.) on the same probability space ([2, F, JPl). 
We only need to interpret the destination sites yf "modulo Ak" for the process 
1]k(-). Then both f(1]k(t)) and f(1](t)) are functions on [2, and both expectations 
in (5.5) are integrals over ([2, F, JPl). Since f is bounded, it suffices to show that 

(5 .6) as k --* 00 , 

almost surely on ([2, F, JPl). 
Pick ko large enough so that f(TJ) is completely determined by (1](x) : x E Ako)' 

Let Cko be the random set of vertices connected to Ako in the random graph 
discussed in Lemma 5.1. By that lemma, Cko is almost surely finite. But then 
f(TJk(t)) = f(1](t)) as soon as k is large enough so that Cko ~ Ak , because then 
all the transitions that affect the value of f are performed identically for 1](') and 
TJkU throughout the time interval [0, to] . This proves (5.6) and thereby (5.5), and 
then (5.4) turns into (5.3) as k --* 00. 0 



Hydrodynamics for disordered particle systems 13 

5.2 The hydrodynamic limits. Theorem 1 is Theorem 3.1 from Benjamini 
et al. (1996). It is proved by deriving a microscopic version of Kruzkov's entropy 
inequalities that characterize the entropy solution of a conservation law. This idea 
for proving hydrodynamic limits of asymmetric processes is due to Rezakhanlou 
(1991) . 

Theorem 2 follows from Theorem 2 in Seppiiliiinen and Krug (1998). The 
discussion in this paper is formulated for a totally asymmetric exclusion process 
where the random rates are attached to the particles. To obtain results for the 
ZRP with site disorder, interpret the occupation numbers (7]i) as the gaps (= 
number of empty sites) between successive exclusion particles. The proof uses a 
special construction that works for the totally asymmetric ZRP with rate function 
r(k) = I{k ~ I}. Whether the technique can be somehow generalized to deduce 
results for other choices of r(k) is presently unclear. 

Theorem 3 is proved in Seppiiliiinen (1998). The approach is similar to the one 
in Seppiiliiinen and Krug (1998). It involves coupling the exclusion process with 
a countable collection of realizations of the same process but with a simple initial 
configuration. This coupling has the property that a microscopic version of the 
Lax-Oleinik formula (3.2) holds almost surely. 

Acknowledgment. I thank IME at the University of Sao Paulo for fruitful hos­
pitality, and Pablo Ferrari, Joachim Krug, Claudio Landim, Gunter Schlitz, and 
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