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Abstract: After reviewing some classical statistical hy­
pothesis commonly used in image processing and analysis, this 
paper presents some models that are useful in synthetic aper­
ture radar (SAR) image analysis . The main focus is on how 
these models deviate from the classical ones, and on the im­
pact these departures have on processing and analysis tech­
niques. The multiplicative model, an important tool for SAR 
data modeling and analysis, and the Potts model, which plays 
a central role in image classification, are recalled. A selection 
of books and papers is collected, aiming at presenting some 
bibliographic references for the interested reader. 
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INTRODUCTION 

One of the biggest challenges nowadays is the precise understanding of the 
Earth environment, with respect to the land use, land cover changes, and explo­
ration and conservation of the natural resources. This knowledge is essential for 
government actions towards a sustainable development, which implies in improv­
ing the quality of life without degrading the environment. Countries like Brazil, 
with a continental dimension, have a need for information in large scale, which 
might be provided by remote sensing. 

Statistical tools have long been used to tackle some problems related to im­
ages. The stochastic nature of these objects, and the excellent results frequently 
obtained with this statistical approach, has stimulated the development of a vast 
bulk of methods and techniques. 

Most of these tools are based either on quite mild hypothesis (for instance, 
histogram equalization that assumes no distribution at all) or on the Gaussian 
distribution (Wiener filter, usual maximum likelihood classification etc.). The 
weaker the hypothesis about the distributional properties of the data the smaller 
the chances of making a mistake and, usually, the weaker the derived tools. When 
no hypothesis is made about the distributional properties of the data, the risk of 
making a mistake does not exist but, as an expected counterpart, the strength of 
the derived tools is quite limited. It is, therefore, desirable to tailor techniques 
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to appropriate models, in order to have successful methods for processing and 
understanding the data. The reader interested in those general techniques is 
encouraged to check, for instance, the textbooks [26J, [27J or [40J. 

Two different though complementary models will be discussed in this work, 
one for the observations (where the Gaussian hypothesis will be replaced by the 
Multiplicative Model) and one for the classes (where the usual assumption of spa­
tial independence and equal probability for each class will be abandoned in favor 
of the Potts model). In this work the concept of "class" refers to the unobservable 
choice that nature makes in every coordinate of the image, c.f. river, bare soil, 
virgin forest, urban spots etc. 

The Gaussian distribution is frequently used to model the observed data in 
images because, among other reasons, there are many techniques associated to 
this hypothesis. This distribution has been granted as the default data model for 
two centuries, its properties are well known and many computational methods are 
available to deal with it. An additional appeal of the Gaussian distribution is that 
the sum of many small random contributions tends to behave, under certain mild 
conditions, as a random variable governed by a Gaussian law. 

This last statement, known as the Central Limit Theorem, says that the be­
havior of a complex system may be characterized by the Gaussian distribution if 
this behavior is seen through the sum of a large number of small contributions, 
which are not too heavily correlated. This result is extremely useful , since it al­
lows the modeling of virtually any random process, provided it can be posed in 
the proper form. 

Most classical tools , i.e., those deriving from this Central Limit Theorem, rely 
on the Gaussian hypothesis. These tools aim at improving the visual quality of 
the data (contrast enhancement and filters, for instance), at reducing the number 
of variables at each pixel (principal component transformation, spectral rotation) , 
and at segmenting or classifying images (maximum likelihood classification, cluster 
analysis, etc.). The validity of that hypothesis is seldom contrasted with real data 
in practice, since experience shows that it can be assumed valid, at least for optical 
images under some conditions. 

In the last decades, there was an increasing interest in sensors operating in the 
microwave region of the spectrum, such as synthetic aperture radars (SAR). This 
is due to the fact that these sensors have some advantages, such as being almost 
weather independent (and, therefore, very attractive for monitoring tropical re­
gions), and supplying complementary information from optical data .. The study 
of the statistical properties of this type of data has lead researchers to doubt the 
adequacy of the classical tools. When SAR images are used instead of optical 
data, the Gaussian hypothesis is seldom verified. Therefore, there exists a great 
need for developing adequate tools for SAR image processing and analysis. 

When SAR images are used, instead of optical data, the exception becomes 
the rule: the Gaussian hypothesis is seldom confirmed. This is mainly due to 
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the coherent nature of the illumination, and the consequences of this departure 
are poor results, when classical tools are applied, and the need of studying and 
proposing new methods for SAR image processing and analysis. 

The observed data are, in the context of this work, the tree that hides the 
forest, being the latter the classes underlying the data. The conceptual framework 
for this approach is Bayesian, and proposes that the nature chooses a certain map 
of classes (which remains unobserved thereof) and that the sensor transforms these 
classes into observations. The most used assumption for the map of classes is the 
independence among them, and that they occur with same probabilities. 

This assumption of uniform distribution for the classes arises basically from 
the fact that it is the easiest way to derive a tool that works in the practice and 
that satisfies a great community of users: the Maximum Likelihood classification. 
When the Gaussian hypothesis is incorporated into this framework, users have 
the well known Gaussian Maximum Likelihood classification procedure, which 
is present, as far as the authors of this work know, in every image processing 
platform. 

The greatest difficulty encountered to incorporate more sophisticated (and 
possibly accurate) models for the spatial distribution of the classes is the fact 
that it is not trivial to derive classification procedures that are as easy to use as 
the aforementioned one. Many users are reluctant to new techniques, that may 
require a new understanding, even if they produce better results. 

A solution to this situation is presented in [19), where the Potts model is 
used as the distribution for the classes and a user-friendly implementation of the 
Iterated Conditional Modes (rCM) is provided such that users are not required 
to have any special training, but patience. The Potts model incorporates the 
spatial dependence among classes, in a simple parametric way, and it has been 
widely studied for many years (see [1) for details and references). The version 
employed in our studies uses a single real parameter to model the interaction be­
tween neighboring classes, and the estimation of this parameter (using a technique 
called "Pseudo-likelihood") permits the implementation of a system that requires 
no intervention. Results using this system are here presented. 

The final purpose of this work is presenting the main ideas and models be­
hind some of the most successful techniques for synthetic aperture radar analysis, 
being the usability of these techniques one of the main goals in the choice and 
development of procedures. 

SAR IMAGES 

Why using SAR images, if most of the tools we already have do not work 
properly with them? 

In spite of this disadvantage (and this is not the only one, as we will see), SAR 
images are considered one of the greatest technological leaps in remote sensing. 
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The reader is invited to browse any remote sensing Journal and count the number 
of papers devoted to this technology. This subject is treated in general remote 
sensing books (as [40] for instance), and references [39], [48], [50] and [52] are 
among those solely devoted to remote sensing with SAR. Some virtues of this 
kind of images are briefly commented below. 

• They are related to the dielectric properties of the target returning, thus, 
information that may not be visible to optical sensors. In other words, the 
information retrieved by SAR and optical sensors is very different. 

• SAR systems can operate at different frequencies and polarizations, and each 
. combination extracts different kinds of information from the same target. 

• They are sensitive to microtextures as , for instance, differences between calm 
and rippled water surfaces. In this way, it is possible to infer the presence 
or absence of wind over lakes, the sea etc. 

• Their spatial resolution is related to the power of the emitted signal and to 
the kind of processing. Fine spatial resolutions can be attained, even with 
orbital platforms. 

• Good quality digital elevation models can be generated. 

• Microwave radiation penetrates, to some extent, the soil and vegetal canopies, 
depending on frequency, polarization and other physical parameters. 

• These images are almost weather-independent since the wavelength used is 
basically unaffected by clouds, fog, rain etc. 

• Radar sensors are able to operate during the night, because they are active 
and, thus, carry their own source of illumination. 

These advantages, and the forthcoming disadvantages, are the direct conse­
quence of the technology used. It is quite far from the aim of this paper to 
present a detailed discussion about the generation of SAR images. The interested 
reader is referred to [39], [48] and to [52]. It should suffice to say that a SAR image 
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is formed by sending a microwave signal towards the target and by recording and 
processing the reflected echo. The illumination used is coherent, and it can be 
proved (see [21) for instance) that when this technique is used a special kind of 
noise appears: speckle noise. 

Other disadvantage arises from the need of delicate, dedicated and expensive 
systems for SAR image generation. It is convenient to recall that these images 
are formed using electromagnetic signals, complex by nature. Figure 1 (from [39)) 
shows the same area, as seen in the real and imaginary components of the image 
and, after some processing, in the linear (amplitude) and intensity (quadratic) 
detections. More examples about representations or formats of SAR data can be 
seen in [39). 

Figure 1: Same area in three SAR formats - complex (upper) , amplitude (lower 
left) and intensity (lower right) 
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In the complex components it is utterly impossible to see any information. 
This is due to the fact that, in that format, different targets are separated by 
different variances; nature led our visual system to develop the ability to separate 
different objects by their means (brightness) or their colors. Natural selection was 
not aware that mankind would eventually build SAR systems! 

The mere visual interpretation of these images is a delicate problem, as the 
reader may feel looking again at Figure 1. Another difficulty arises when one 
tries to relate the observed data to physical parameters, such as vegetation type, 
biomass, etc. Visual interpretation is not obvious when the source of information 
is SAR data, mainly because most visual interpreters have been trained with 
optical data. 

Other problem related to these images is their geometric distortion, caused by 
the fact that the SAR measures distances to the targets (RADAR is an acronym 
from Radio Detection A.nd Ranging). This geometric distortion is heavier to taller 
objects (such as mountains, trees, buildings, etc.). The three main effects due to 
this distortion are foreshortening, shadowing and layover, and they are heavier in 
airborne SAR systems than in orbital platforms. 

Speckle noise is one of the most serious disadvantages of SAR images. It 
defies every classical hypothesis, since it is not Gaussian, it enters the signal in a 
non-additive fashion, and it depends on the true value. In order to combat this 
noise there is, besides filters, a technique called Multilook Processing, that aims 
at speckle reduction. This technique is often applied during the image formation 
process, and its use (as the use of filters) yields a resolution loss. In this manner, 
there is a tradeoff between the visual quality related to noise and the resolution. 

In the following sections a very successful (statistical) model for this noise , 
and for SAR images, will be seen. It will be the main subject of the forthcoming 
sections. Before jumping into statistical modeling, we should convince ourselves 
that it is worth the effort . Let us recall that visual improvement (contrast en­
hancement, filtering, etc.), segmentation, classification, and analysis all depend on 
the quality of the available models for data. At this point, the reader is required 
to believe that there are good statistical models for the images we are considering 
in this work. These models are encompassed by the so called Multiplicative Model. 

THE MULTIPLICATIVE MODEL 

There are essentially two ways of modeling SAR images: with an ad hoc ap­
proach and through the use of physical models. The former indicates that the 
first thing to do is fitting Gaussian distributions to the data; the result of doing 
this, for three different areas, is shown in Figure 2. 

In this figure three samples of extended areas were selected, corresponding to 
pasture, forest and an urban region. The mean and standard deviation of three 
Gaussian distributions were estimated, and the corresponding histograms and 
fitted densities are shown. It is quite clear that this sample of pasture (top) could 



Models for Synthetic Aperture Radar Image Analysis 51 

be modeled by this distribution to some extent, but is it is noticeable that forest 
(middle) and urban data (bottom) are quite far from admitting this hypothesis. 

Figure 2: Three areas, their histograms and fitted Gaussian densities. 

The ad hoc approach requires discarding the Gaussian distribution whenever 
it is not acceptable, and looking for another one, and so on until a suitable distri­
bution is found. The success of this approach depends, essentially, on the size of 
the available set of distributions. 

This way of applying statistics eventually leads to a distribution that fits well 
the data, but it is not immediate how to associate a meaning to that fitting. 
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Some usual distributions belonging to thIs statistical vocabulary are the Wei bull 
(see [14]), the Log-normal (used, for instance, in [39]) and the scaled Beta. The use 
of these and other distributions is presented in [56), and in many of the references 
therein. 

The other approach, namely the one based on the use of the Multiplicative 
Model, instead of looking for the distribution that best suits the data, offers a 
limited set of distributions, but all of them have a physical interpretation. This 
modeling, based on the physics of the image formation, can be seen in detail in (22) 
and in [39). It is based on the fact that the illumination is made with coherent 
radiation, and also on that the involved signals interfere in a constructive and 
destructive manner, introducing a certain degree of roughness in the observed 
targets. 

At. this point it is convenient to recall that the speckle noise, which is suitably 
modeled within the multiplicative model, appears in every image obtained with 
coherent illumination. Examples of these are SAR, sonar, ultrasound and laser 
images. 

For the sake of simplicity, only quadratic detection (intensity data) will be 
treated here. The curious reader is referred to [14], [16) and [18) for a treatment 
of the other cases, namely complex and amplitude data. 

The multiplicative model states that the observed intensity data is the out­
come of the random variable Z which, in turn, is the product of two independent 
random variables: X, associated to the terrain backscatter, and Y, which models 
the speckle noise. The distribution for the return depends on the distributions 
associated to both the backscatter and the speckle. 

In the next sections, models for monospectral data (one band and one polariza­
tion) and polarimetric data (one band and various polarization) will be presented. 
For the first case, models for speckle, backscatter and intensity return are consid­
ered. When the return is given in intensity or amplitude the phase of the received 
signal is lost, which does not happen when complex polarimetric data are used. 

MONO SPECTRAL DATA 

SPECKLE NOISE 

In the complex format, it is usually considered that the speckle noise Ye has a 
bivariate Gaussian distribution, and its real (Yn) and imaginary (YF) components 
are independent and identically distributed, with zero mean and variance equal 
to 1/2. The relations between the complex format and intensity and amplitude 
formats of the speckle are given by YI = lYel 2 and YA = lYe I = JY~ + Yj, 
respectively. For this situation, which is called I-look, it can be proved that Y1 

has an exponential distribution and that YA has a Rayleigh distribution (see [32]). 
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The n looks intensity image (multi-look processing) is built by averaging n 
independent samples of YI, leading this random variable to a Gamma distribution, 
denoted by y}n) '" r(n, n) and given by: 

(1) 

In multi-look case, the amplitude is obtained by extracting the square root of 

multi-look intensity data, that is , Y: = Vy}n), where y}n) has the distribution 

given byeq. (1). In this way, the random variable yin) will have a Square Root 
of Gamma distribution. 

Though the number of looks n should, in principle, be an integer, seldom this 
is the case when this quantity is estimated from real data, due to, among another 
reasons, the fact that the mean of intensity is taken over correlated observations. 
Therefore, n is, in general, called equivalent number- of looks. For high values 
of n the r(n, n) distribution approaches the Gaussian distribution, which can be 
explained by the Central Limit Theorem [57] . 

INTENSITY BACKSCATTER 

The backscatter modeling is always associated to the degree of homogeneity of 
the imaged area, which depends also of the sensor parameters (frequency, polar­
ization, incidence angle, etc.). In this work, following the modeling described in 
[16], it is considered a general model for the backscatter, which has as special cases 
simpler models for areas with different degree of heterogeneity, here denoted, in 
general manner, homogeneous, heterogeneous and extremely heterogeneous areas. 
Those simple models have the advantage of having less parameters to be estimated 
and lower computational effort. 

In the general model, the backscatter has a generalized inverse Gaussian dis­
tribution with parameters a, "I and A, denoted here as X '" N-1(a, "I, A) and 
characterized by the density 

x> 0, 

where K 0< denotes the modified Bessel function of third kind and order a, and the 
parameters space is given by 

{
"I> 0, A ~ 0, se a < 0 
'Y > 0, A > 0, se a = 0 
"I ~ 0, A > 0, se a > 0 

(2) 

The moments, properties and other information about this distribution can be 
found in [16] and [18]. 
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This distribution has as particular cases (simpler models) the following distri­
butions, largely used for radar data modeling: 

• a constant ({3), used to model homogeneous areas, leading to the class of 
Gamma distribution for the intensity return; 

• the Gamma, used to model heterogeneous areas, leading to the class of K 
distribution for the intensity return. The Gamma distribution, denoted 
here as r(a, 'x), is characterized by the density 

,X<> 
fx(x) = r(a) x<>-lexp{-,Xx} a,'x,x > 0; 

• the reciprocal of Gamma, used to model extremely heterogeneous areas, lead­
ing to the class of G-Zero distribution (GO) for the intensity return. The 
reciprocal of Gamma, denoted here as r-1 (a, ,) , is characterized by the 
density 

X<>-l , 

f x (x) = r( ) exp { - - } 
,<> -a x 

- a",x > O. 

The relations between the N-1 (a",'x) distribution and its particular cases can 
be summarized in the following diagram: 

r (a,A) 
p 

~ /31 
a A. --i>CO r --i>0 

Heterogeneous 
, 

a '70 a {A. --i> ~ 112 

N-1(a,Y,A) Homogeneous 

A.--i>~ Extremely - a,r --i>CO 

Hetero geneous - a I r --i> /3;112 -a,r > 0 
/32 r-\a,Y) p > 

where D and P denote convergence in distribution and in probability, respectively, 
of the associated random variables. 

INTENSITY RETURN 

The distribution of the intensity return for multi-look data, that arises from 
the product Z}n) = Xlyjn) , where XI'" N-1(a",'x) and yjn) '" r(n,n), is here 
denoted by G1 (a",'x, n) and it is characterized by the density 
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z E IR, (3) 

where the parameters space is given in (2). 

Analogously to the discussion presented for intensity backscatter, particular 
cases of this distribution are the Gamma distribution (used for homogeneous ar­
eas), the K -Intensity (utilized for heterogeneous areas) and G-Zero Intensity 
(G~, used for extremely heterogeneous areas). These distributions are character­
ized, respectively, by the following densities 

n,j3,z > 0, (4) 

Ct, A, n, Z > 0, (5) 

- Ct,,,(,n,z > 0, (6) 

The relations among these distributions are summarized in the following diagram: 

K] (a; A,n) D~ r(n,nll.f) 
Y -70 a A-7CO a:;:>:' Heterogeneous 

alA -7P1 

G] (a; r, A,n) Homogeneous 

A~ 
Extremely 

-a,Y -7 co Heterogeneous 
-aIY-7p, - a,Y >0 G~ (a; Y,n) > qn,nP;) 

0 

where D denotes convergence in distribution of the associated random variable. 

The distributions used to model multi-look intensity data (speckle, backscatter 
and return), for areas with different degree of homogeneity, are given in Table 1, 
in a simplified form. 
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Table 1 - Modeling of multi-look intensity data 

Areas Backscatter Speckle Return 

(XI) (y/n) (Z~n) 

Homogeneous fJ r(n,~) 
Heterogeneous r(a,A) r(n, n) KI(a, A, n) 

Extr. Heterogeneous r1(a, ,),) G~(a, ,)" n) 
General N -l(a,')',A) GI(a,,),,A,n) 

The amplitude return distributions can be obtained from the intensity return 
distributions by the transformation f zen) (z) = f zen) (z2)(2z) which, applied to the 

A T 

distributions induced by eq. (3), (4), (5) and (6) , lead to the G-Amplitude (GA), 
Square Root of Gamma (r!) , K -Amplitude (KA) and G-Zero Amplitude (G~) 
distributions, respectively (see [18]). 

Three relevant questions arise now, namely: 

• Are these distributions quite different from the tractable and familiar Gaussian 
one? 

• Is it possible to estimate their parameters from the available data? 

• Do they fit well the observations? 

Probably the most relevant is the third one, since the former two only make 
sense if the effort of using the Intensity G is worthy. Figure 3 shows the result 
of fitting special cases of this distribution to the same set of data presented in 
Figure 2, and the results could not be better. Other (quite successful) results of 
fitting hard-to-model data are presented in [16] and [19], where the quality of the 
fitting is assessed through statistical goodness-of-fit tests, rather than using visual 
inspection. 

~ rt of Gornmo 
O.012".......,~;....;;;.~"......., 

0.010 

\ 
'. 

GAa 
lOto 

o.Oll 

'-OlQ 

~'O ~ 
0.000 

so ".Q 150 2IlC ~ 

Figure 3: The result of fitting the samples from Figure 2 with distributions 
emerging from the multiplicative model. 



Models for Synthetic Aperture Radar Image Analysis 57 

The answer to the second question, if it is possible to estimate the relevant 
parameters, is yes. It is possible to use the substitution (or moment) method, 
and standard numerical tools, to perform this estimation. More specialized (and, 
hopefully, better) estimation techniques are currently under study. The first ques­
tion is, probably, already answered when comparing Figure 2 (obtained with the 
Gaussian distribution) and Figure 3. 

POLARIMETRIC DATA 

When polarimetric SAR sensors are used, the full complex signal is recorded 
and, thus, the return in all configurations of the transmission and reception anten­
nas (HH, HV, VH and VV) are fully recorded (intensities and relative phases). In 
order to accomplish this, for every resolution cell, the complex scattering matrix, 
denoted by 

is measured. If subscripts p, q E {H, V} denote the transmission and reception 
components of the signal, respectively, the elements Spq are called complex scat­
tering amplitude. Sarabandi [45] shows that 

N 

Spq = ISpqlexp{i4>pq} = L IS;qlexp{i4>;q}, 
n=l 

where N is the number of scatters inside each resolution cell, each having ampli­
tude IS;ql and phase 4>;q. The resultant vector Spq has amplitude ISpql and phase 
4>pq. Ulaby and Elachy [51] show that, for a mono static satellite (which is the 
usual case), it is possible to assume that S HV = Sv H. Therefore, the complex 
scattering matrix can be reduced, without loss of information to 

Ze = [~:~ 1 
Svv 

where Ze denotes a complex vector. 

The multiplicative model can be also applied to the polarimetric data. In 
this case, due to the number of polarizations, the speckle (Ye) is modeled by 
a multivariate complex Gaussian distribution. Therefore, the return Ze (here 
represented by the vector Ze ) has a multivariate complex Gaussian distribution, 
when the backscatter (X) is modeled by a constant (homogeneous areas). 

The vector Ze characterizes the I-look polarimetric data, and for being com­
plex and having different polarizations (components), produces a large volume 
of data over the imaged surface. Therefore, the polarimetric SAR data are fre­
quently processed in order to increase the number of looks (multi-look), for data 
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compression and speckle reduction. A fixed number, n, of independent outcomes 
of Zc are averaged to form the n-looks covariance matrix, given by [31] 

Z~) = ~ t Zc(k)Z'Cl(k), 
k=l 

(7) 

where Z(J' (k) denotes the transpose conjugate of Zc( k). 

The advantage of dealing with the covariance matrix, when a constant is used 
to model the backscatter (homogeneous areas), is that the matrix Ac = nZ~) 
exhibits a multivariate complex Wishart distribution [48]. Therefore, the density 

associated to the matrix Z~) , is given by: 

_ nqnlzl(n-q ) exp {-nTr(Cc/ z)} 
iz);, )(z) - K(n,q)ICcln n,q > 0, (8) 

where q denotes the dimension of the vector Zc, 

K(n, q) = 7T( ~)q(q-l)r(n) ... r(n - q + 1), 

TrO denote the trace of the matrix, C c = E[ZcZcrJ , and EO denotes the 
expected value. 

The use of Equation (8) with multivariate polarimetric SAR data implies in 
high computational effort. Therefore, [31], [32] and [35] derived, from Equation 
(8) (considering a consta.nt backscatter, that is, homogeneous areas), some uni­
variate (phase difference, ratio of intensities) and bivariate (pair of intensities 
and pair intensity-phase) distributions. The following subsections describe these 
distributions. 

DISTRIBUTION OF PAIR OF MULTI-LOOK INTENSITY IMAGES 

Consider two multi-look intensity images, represented by the random variables 
Zl and Z2, obtained from two components Sr and S8 of the scattering matrix, 
using the equations 

and 

The distribution of the pair of multi-look intensity images, derived in [32], is given 
by: 

where hll = E[Zd, h22 = E[Z2], and 

ZlZ2 ) 

hllh22 ' 
(9) 
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E[SrS;] . 
Pc = v'E[lSrI2]E[ISsI2] = IPcl exp {zO, 

and IPcl and ~ are the modulus and phase of the multi-look complex correlation 
coefficient, respectively, i = A and In - 1 is the modified Bessel function of order 
n-l. 

DISTRIBUTION OF THE MULTI-LOOK PHASE DIFFERENCE IMAGE 

Consider a multi-look phase difference image, represented by the random vari­
able llJ (, obtained from two components Sr and Ss of the scattering matrix, using 
the equation (see [32]): 

1 n 

llJ = Arg (;;: L Sr(k)S;(k)), 
k=l 

where Arg 0 denotes the argument of a complex number. Then, the distribution 
of llJ, derived in [34], is given by: 

h('!j;) = r(n + ~)(1 -lpcI2)n,8 + (1 -lpcI2)n 2Fdn, 1; -21 ; 82) (-11" < '!j; < 11"), 
2V'1iT(n)(1 - 82 )n+'2 211" 

(10) 
where 8 = IPcl cos('!j; - 0, 2Fl denotes the Gaussian hypergeometric function [23] 
and ~ is the phase of the complex correlation coefficient. 

DISTRIBUTION OF MULTI-LOOK INTENSITY RATIO IMAGES 

From two multi-look intensity image, represented by the random variables Zl 
and Z2, the distribution of the ratio W = ~ was derived in [32], and is given by 

where 7 = ll:u. 
h22 

7 n r(2n)(1 -lpcI2)n(7 + w)wn - 1 

fw ( w) = ll!!.ill ' 
r2(n)[(7 + w)2 - 471Pc12W] 2 

(11) 

DISTRIBUTION OF PAIR OF MULTI-LOOK INTENSITY-PHASE DIFFER­
ENCE IMAGES 

Consider two multi-look images, one intensity and other phase difference, rep­
resented by the random variables Zl and llJ, respectively. Consider an image 
represented by the random variable B 1 , defined by (see [31]) 

n 

I: ISr(k)1 2 

Bl = nZl = _k=_l __ _ 

hll hll 

The joint distribution of Bl and llJ is given by 
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_ b~-I exp {-~} .1. (FbI 6b~-! exp {_ b'(Id-6
2
)} 

f(Bl,'II)(b I , 'Ij!) - 27Tr(n) IFI [1, 2' -d-J + 2J1fr(n)Vd ' 

(12) 
where d = l-IPc1 2 and IFI 0 denotes the confluent or degenerated hypergeometric 
function (see [1]). 

Parameter estimators techniques for the distributions given in eq. (9) to (12) 
can be seen in [10]. 

POLARIMETRIC MODELLING UNDER THE PRESENCE OF ROUGHNESS 

As presented in previous sections, the assumption of constant backscatter (that 
leads to Gamma, Square root of Gamma and Wishart distributions for intensity, 
amplitude and multivariate polarimetric returns, respectively) only works in re­
gions of small roughness. When heterogeneous and extremely heterogeneous areas 
are observed, it is imperative to introduce some variability in the backscatter, for 
instance using Gamma or Reciprocal of Gamma distributions, or their square 
roots if amplitude or complex format are being modeled. 

Let us first consider the situation of modeling heterogeneity. Similarly to the 
amplitude case, the Gamma distribution can be used to characterize the backscat­
ter through the random variable G below and, thus, the complex scattering matrix 
can be now posed as 

Ze = vaue. (13) 

Novak et al [40] derive this distribution, called multivariate single look K, while 
Lee et al [35] derive the multilook case that has density 

2Izl(n-q) (na) !(a+qn) K a- qn (2vnaTr(C"(/z)) 
iz(n)(z) = ~ , (14) 

c K(n,q)ICclnr(a)Tr(Cc/z) 2 

Though this model fits very well heterogeneous data, it again fails to explain the 
variability of extremely heterogeneous targets. In order to alleviate this situation 
the fully polarimetric multilook GAO distribution is proposed in [10]. It is obtained 
using the Reciprocal of Gamma distribution for the intensity backscatter and the 
same multiplicative scheme presented in eq. (13). The density that characterizes 
this distribution is 

iz(n)(Z) = [1 ]qn-a 
C (-a)ar(-a)K(n,q)ICel n nTr(Cc z) - a 

(15) 
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PARAMETERS AND NATURE 

We have been dealing with very general statistical models, stated in a single 
class of distributions, that aim at describing every possible return in SAR images. 
We have also seen that these models perform well. A relevant question remains 
open: what does it mean? 

Fortunately, the multiplicative model allows us to use a single parameter in 
order to characterize the homogeneity of the observed target. This parameter is 
o and, as seen in the parameters space, it spans the whole real line. 

The other two parameters associated to the backscatter (namely .A and I ) 
work as scale parameters and, thus, are related to the brightness of the scene. 
The speckle has only one parameter associated to it, namely n. 

Going back to 0, what does it mean selecting an interesting area and estimating 
its parameter with a certain estimator a (the reader is required to believe that 
there are suitable estimators to perform this task (see, for instance [53], [56] and 
[57])? Fortunately, that value means a lot. This parameter is a measure of the 
homogeneity of the considered area. The higher its absolute value, the more 
homogeneous the observed data. Homogeneous areas are associated, for certain 
SAR sensors, to agricultural, pasture or deforested regions, so if a suspicious area 
yields to a = 17.3, a human and/or automatic interpreter should fire an alarm 
because lal is too big for being related to a peaceful primary forest (that should be 
heterogeneous). Such result of an estimation procedure would be enough evidence 
of a deforestation. Complementarily, if an area previously classified as pasture 
suddenly exhibits a = -1.9 that value could be used as evidence of newly born 
manmade structures where cows should be feeding. While modeling and analyzing, 
which is what we have been doing so far , is quite interesting per se, all this effort is 
fully rewarded when we use this framework to tackle other kind of problems. The 
reader might be worried, with the impression that only three classes of land use 
can be detected with SAR images, namely those corresponding to homogeneous, 
heterogeneous and extremely heterogeneous returns. The technical report [57) 
shows how this is a mere didactic simplification, presenting in detail many more 
intermediate situations. 

Other measures that can be derived from SAR images can be seen in [37], in 
[47] and in [58). They are used, respectively, to retrieve biomass in regenerating 
tropical forests, to discriminate types of crops and to relate SAR data to tropical 
forest regeneration stages. Some of these quantities are of statistical nature, but 
not directly related to the multiplicative model. 

MODELING CLASSES AND THE PRACTICE OF BAYESIAN IM­
AGE CLASSIFICATION 

In the previous sections the Multiplicative Model has been posed as an inter­
esting tool for the characterization of SAR data. Let us now turn to the problem 
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of describing the classes in an image, bearing in mind that this modeling is, in 
principle, worthy for any image independently of the sensor that provides it. 

A very general model for image formation (see [5), [21) and the references 
therein) builds the image from the classes and from the observations associated 
to each class. The former and their spatial distribution are chosen by the nature, 
they are not observed, and this is the information sought by the user. The latter is 
imposed by the imaging system, depends on the technology employed to observe 
the nature and, for SAR images, the already presented Multiplicative Model will 
be used. 

Since the 80's many techniques based on the use of Markov random fields have 
proved their usefulness in image processing and understanding applications. Such 
techniques use the Bayesian framework, and assume that the true image obeys a 
probabilistic law that incorporates spatial dependence. 

The eldest antecedent of those models can be traced upon the 20's: the cele­
brated Ising model, originally proposed as a means of explaining the phenomenon 
of spontaneous magnetization exhibited by ferromagnetic materials. Ising could 
not pursue his work successfully, but his model is still receiving the attention of a 
large community of researchers worldwide. 

A wide class of models that incorporate dependence among neighboring ran­
dom variables is called Markov random field, since it is a natural extension of 
Markov chains to the multidimensional case. Its adequacy as an image model 
arises from the fact that it can successfully model local homogeneity and, at the 
same time, sharp transitions. This feature is useful since classes (the unobserved 
types of region present in the image), and even radiometries (the observed values), 
exhibit both characteristics in many images. 

Geman and Geman [21] and Carnevalli, Coletti and Patarnello [7], in their pio­
neering (and apparently independent) works showed how the Markovian approach 
can be a serious competitor to more classical techniques for image blur and noise 
reduction, classification, segmentation etc. Regarding the application of Markov 
random fields to image processing and analysis, the reader is referred to the work 
by Besag ([1], [3] and [4], for instance), Bustos et al [6], Dubes and Jain [12) and 
Wrinkler [55]. 

The number of published works where Markov random fields play a central 
role in image processing has grown explosively in the last years, and most of the 
results obtained with this modeling are impressive. 

In this work the Potts model will be used to model the choice of the class map. 
This choice is made by the nature, and the chosen map is unavailable. Consider 
the image defined on the finite Euclidean grid S = {O, ... ,m-1} x {O, . :., n-1} of 
size m x n. Assume that every coordinate in s E S has an associated neighborhood 
Os of elements (different from s) in the grid. This neighborhood ranges from the 
empty set 0 to the rest of the coordinates S \ s, and it is the set that will influence 
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choice of a class in coordinate 8 given the rest of the map. The only restriction 
that neighborhoods must satisfy is that 8 E at if and only if tEas' 

Assume that in every coordinate one class among the classes of the set 3 will 
be chosen. In principle this set could be different in different coordinates, but we 
will restrict our attention to the models used in the applications we bear in mind. 
The set 2 describes the possible targets in the image, such as "grass", "river", 
"urban area", "corn" etc. In this modeling the elements in 2 do not possess any 
order relationship. 

Now imagine that in every coordinate 8 a random variable X -8 chooses a class 
among the available ones in the set 2. This choice will be influenced by the classes 
already chosen by its neighbors. In other words, the conditional distribution of Xs 
given the rest of the image, only depends on the classes observed in the neighboring 
coordinates, i.e., for every 8 E S, Pr(Xs = ~j I XS\s = XS\s) = Pr(Xs = ~j I 
Xa. = xaJ, where ~j E 2 and XA denotes the set of random variables indexed 
by the set A E S. This model is conceptually very attractive, since it is expected 
that distant coordinates do not heavily influence the structure of the map. Notice 
that this definition extends the notion of Markov chain to a situation where the 
indexes no longer belong to the real line, but where they are part of an arbitrary 
space. The notion of present, past and future is, thus, no longer relevant. 

The class of distributions governing the set of random variables (Xs)sES in­
duced by conditions as presented in the previous equation (if it exists) is called 
Markov random field. A detailed study of their properties and special cases, 
always within the context of image modeling, can be seen in [6]. 

The Potts model used in image classification is a special Markov random field, 
where 

Pr(Xs = f.j I Xa. = xaJ ex: exp {f3#{t E as: Xt = ~j}}, 

where f3 is a real number and ex: denotes proportionality. This model incorporates 
the notion of spatial dependence whenever f3 i=- o. If f3 > 0 then one has an 
attractive model, in the sense that clusters of equal classes will be favored against 
chessboard-like outcomes, and the reciprocal if f3 < O. When f3 = 0 there is no 
influence of neighboring sites, and one returns to the independent equally probable 
class model. 

This model can be extended in many directions. A possible modification is the 
use of different marginal probabilities for different classes in 2. Another extension 
consist of using different parameters for each direction. These extensions could 
be of theoretical interest, but in the applications here commented they yielded no 
noticeable improvement and they made the algorithms considerably slower. 

The neighboring set defined by all the coordinates that are at most at distance 
v'2 from the considered site was enough to capture the desired features, as will 
be seen in the classifications. Figure 4 shows a simple grid S of size 6 x 6, with 
an element 8 and its corresponding \12 neighborhood highlighted in gray. The 
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neighbors of borders and corners have less elements than those positions in the 
core of the support. 

Figure 4: A grid, a generic element and its neighborhood in gray. 

The simulation of outcomes from Markov random fields is out of the scope 
of this work, but it is interesting to take a look at some samples in order to 
develop some intuition about the objects we are dealing with. Figure 5 shows 
four outcomes from a binary Markov random field , where:::: = {O, I} and "0" is 
shown in black while "1" is shown in white. Figure 5 a) shows an outcome from 
a (3 < 0 distribution, and the repulsion effect is evident: a checkerboard effect is 
obtained. Figure 5 b), c) and d) exhibit outcomes from distributions with positive 
and increasing values of (3. It is clear that the bigger the parameter the stronger 
the interaction and, thus, the larger the clusters obtained. 

The adequacy of Markov random fields models for image analysis has been 
questioned by some authors, the strongest criticism being the fact that these 
distributions may exhibit a "phase transition like" behavior. This phenomenon, 
which only occurs when S is an infinite set, when dealing with finite supports 
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is the dominion of a single class over the remaining ones. In other words, when 
sampling from finite Markov random fields if the imposed parameter j3 is "too 
big" then only a single class (maybe with sparse and small spots from the other 
classes) will be obtained. Since this type of images is not commonly expected in 
practice, some voices have been heard against the use of these models. 

Figure 5: Samples from binary Markov random fields. 

An important fact that reduces the impact of this clearly annoying behavior 
is the fact that the direct simulation of the aforementioned distributions is rarely 
used within image processing and analysis. When we are dealing with real data, 
Markovian models are used as prior distributions in a Bayesian context for the 
derivation of estimators and algorithms that, hopefully, yield good classification 
schemes. The prior model may not be perfectly matched to what one expects 
the nature to behave, but it certainly allows the obtainment of very interesting 
results, as will be shown in the forthcoming sections of this work. 

One of the most useful transformations in image processing is called classifica­
tion. It takes an image as input, and generates a map as output; in other words, 
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it turns numbers into information. There are many ways of doing this: using 
neural networks, decision rules, mathematical morphology etc. In this work only 
the statistical approach is considered. 

The preferred statistical classification technique is called maximum likelihood. 
It consists of associating to every coordinate in the image that class which makes 
a certain measure of plausibility highest. This measure of plausibility is calculated 
using the densities that characterize every class. Examples of fitting densities to 
classes were presented in Figure 2 and Figure 3, where it was also shown that the 
Gaussian distribution seldom is a good hypothesis for SAR data. A comparison 
of classification techniques is available in [44], for instance. 

In [19] it is presented a study on the effect of using the Gaussian and the correct 
(under the multiplicative model) distributions on the classification of areas using 
SAR data. It was concluded that, though the use of the multiplicative model 
significantly improves the classification (in more than 50%), the low signal-to­
noise ratio of these images requires additional efforts to attain acceptable results. 

This additional effort was made using a Bayesian framework for the classifi­
cation, and deriving an iterative and deterministic scheme for the obtainment of 
maps: the ICM algorithm. This was performed with the user in mind and, thus, 
all the techniques were developed "behind" user-friendly interfaces and within the 
context of a goal-driven system. 

The aforementioned Potts model was used to assign a pior distribution for the 
classes, and the set of distributions associated to the Multiplicative Model was 
incorporated as the models for the observations given the classes. 

Once this Bayesian framework is established, one has to propose and implement 
an estimator for the unobserved class map given the observations. There are, 
basically, two estimators and an algorithm to perform this task, being the former 
the MAP (maximum a posteriori) and MPM (marginal posterior modes). In both 
cases it is impossible to derive them in a general and direct manner. MAP requires 
the use of global minimization techniques, as simulated annealing, and MPM 
imposes the use of stochastic simulation of the posterior model. In both cases, 
there is a plethora of unknown parameters which are crucial for the obtainment 
of good results. 

An intermediate solution is the use of the Iterative Conditional Modes, ICM. 
This deterministic algorithm requires an initial classification, that will be improved 
using both the observed value and the contextual information in every pixel. As­
sume x(k) = (xs(k))sEs denotes the classification at stage k. In our work X(O) is 
the maximum likelihood classification. 

The classification at stage k + 1 is obtained replacing in every s E S the 
class xs(k) by the one that maximizes the conditional distribution Pr(~ I zs,xa.) 
which, with the aforementioned assumptions is given by Pr(~ I 'a,) /{(zs), where 
Os. denotes the neighborhood of the coordinate under inspection and fE.(zs) is the 
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density of the distribution associated to class ~ evaluated in the observed value 
Zs. In other words, the method maximizes in every coordinate the likelihood of 
the observed value h,(zs) weighted by the contextual evidence Pr(~ I X8 •. 

This contextual evidence, which is expected to favor the occurrence of clusters 
of the same class, depends on a single real parameter, namely (3, which is unknown. 
Our approach consists of estimating it from the previous classification through the 
maximization of the pseudo-likelihood function, which is given by P L((3 I x) = 
IlsEs Pr{3(xs I X8., and can be obtained using standard numerical tools. When 
#os = 8, as is our implementation, this equation involves sixty-seven terms, and 
each term involves the counting of times certain local configurations occur and a 
rational function of polynomials of exponential terms (for details see [54]). 

Figure 6 shows the result of using this classification procedure with amplitude 
data, where it is quite evident that there is an important improvement from the 
first (maximum likelihood) to the second (IeM) classification. In both classifica­
tions, cyan depicts primary forest, magenta clear cut and yellow second regrowth. 
The original image is from the JERS-l over Tapaj6s. 

Figure 6: (from left to right) Original JERS-l image; Best Fit Maximum 
Likelihood classification (under the multiplicative model) and Best Fit 10M clas­
sification. 

As previously presented, polarimetric data is a good candidate for having more 
information than either intensity or amplitude formats. It was then implemented 
the IeM classification scheme under the multiplicative model for the already pre­
sented distribution for reduced data. The objective of this implementation was 
twofold: first, delivering an easy-to-use tool for the obtainment of good classifica­
tions; second, the evaluation of the information content in those different formats 
and in two frequencies (bands L and e) and all available polarizations (HH, HV 
and VV). 
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The original data, in the form of a color composite image, is shown in Figure 
7. The results, whose complete description is available in [11], are shown in Figure 
8. Only the best classifications obtained are shown here. 

It is important to say that even tough the Pair of intensities L-HVVV lCM 
classification had given the best classification (quantitatively assessed), it was not 
possible to discriminate all classes of interest in this classification. The river and 
prepared soil classes were better classified with C band, while the other classes 
were better classified with L band. Besides, there was a high confusion between 
Soybean2 and Corn2 classes. 

Those results show that it is not possible to discriminate in a single classifica­
tion, using the uni/bivariates polarimetric distributions, more than three classes 
with C band and more than six classes with L band for the Bebedouro image. 
However, depending on the type of application and the modeling used (utilization 
of the contextual information), the use of uni/bivariates polarimetric data can 
produce good results, specially if the phase information is available, showing the 
complementary aspect of this kind of data. 

III Caatinga 

~C ! ~ om 

• Com2 
II Tillage 

• River 

BJl Soybean! 

• Soybean2 

• Soybean3 

• Pt'epared soil 

Figure 7: Color composition (R-HH, G-HV and B-VV) of Bebedouro image 
with the training samples of the classes of interest. 

This lCM implementation, using iterative estimation of the parameter with 
pseudo-likelihood, has been implemented for most of the distributions associated 
to the Multiplicative Model, and also for the multivariate normal distribution. 
Since the implementation was performed as a plug-in of a commonly used image 
processing system, the community of users of this tool is growing. 

FILTERS UNDER THE MULTIPLICATIVE MODEL 

Filters are a very important class of tools. They transform the original images 
into new images, aiming at attaining certain goals. Some common goals are: 
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reducing atmospheric attenuation (when optical images are used), reducing noise 
and enhancing certain characteristics in an image. 

As has been previously seen, under the mUltiplicative model the parameter a 
is a measure of homogeneity. In [38] this was used to produce a texture image 
aiming at detecting regrowth stages. This image was built calculating a over small 
areas (called windows) in the image, and the resulting image was used as input 
for classification algorithms. It was there seen that this a image retrieved very 
important information that, though present in the original data, was not evident 
without this processing stage. In [44] the same procedure was used to derive new 
features for Radarsat (a Canadian SAR sensor) image classification. 

Figure 8: lCM classification of reduced polarimetric data: Pair of intensity 
images (a) C-HVVV, (b) L-HWV, (c) L-HHVV, (d) Ratio of intensity images 
L-HHW, (e) Pair intensity-phase L-HHVV. 

In order to illustrate this point, Figure 9 shows an area (corresponding to 
a region where primary forest coexists with heavily managed parcels, secondary 
regrowth, etc., in Tapajs, Par state, Brazil) as seen by Landsat-TM (optical data, 
in a color composite: Band 5 in red, Band 4 in green and Band 3 in blue) and 
by Radarsat. While the first exhibits a wide variety of classes (depicted by the 
many colors there observed), there is barely any visible information in the second 
one. The third image is the result of applying the a filter to the SAR image, after 
which similar information to that from the optical image emerges. 

This result, and the possibility of using only the GAO distribution for SAR 
image analysis [25], led to the idea of using estimators of its parameters (a, ')') as 
features for input in classification techniques. The quite encouraging results of 
this idea are presented in [9]. 
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Figure 9 (left to right): Landsat image, Radarsat image and the result of 
calculating the image over the SAR data. 

Effective noise reduction can also be attained after it has been so carefully 
modeled. Reference [17] offers a proposal of filters based solely on statistical hy­
pothesis (on the multiplicative model) and on robust inference. Most of commonly 
used filters for speckle noise reduction use, to some extent, statistical modeling as 
can be seen in [33] and [43]. 

A filter built without assuming any type of model is called a heuristic filter. 
The simple moving average (mean filter), geometrical (see [12]) and morphological 
(see [42]) filters are examples of heuristic filters. These filters are efficient over 
homogeneous areas, however the first one blurs indiscriminately the images while 
the last two are supposed to preserve edge attributes. In [30] SAR data are 
modelled as normally distributed in order to developed the Sigma filter. The 
filtered pixel , in this filter, is obtained by averaging those pixels (in a moving 
window) that fall within two standard deviations from the mean value. Since, as 
previously seen, the Gaussian model is not suitable for SAR data, the performance 
of the filters based on this model will be poor when compared with filters developed 
using distributions derived from the multiplicative model. 

The multiplicative model suggests that homomorphic techniques (based on the 
use of logarithmically transformed data that turn the multiplicative noise into an 
additive one) could be used to reduce the speckle noise. Some examples where 
homomorphic filters were successful on speckle removal are presented in [15] and 
[24]. Some other speckle noise filtering algorithms based on the multiplicative 
model are summarised below: 

• Frost Filter [20]: it is linear and convolutional, derived from the minimisation of 
the mean square error over a multiplicative noise model. It is adaptive and 
the dependence among observations is incorporated through an exponential 
spatial correlation function . 

• Lee Filter [29]: it is a local linear minimum mean square error fiiter, derived 
from a linearization of the model, by Taylor expansion, around the mean. 
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This approximation transforms the multiplicative model into an additive 
one, and then the Wiener filter is applied. 

• Kuan/Nathan Filter [28]: it is similar to the previous one. The difference is 
that this filter does not make any approximation. It is, also, an adaptive 
algorithm. 

• MAP Filters (see [36) and [43)): they consist on computing the maximum a 
posteriori estimative of a random variable which represents the backscatter 
given an outcome of another random variable that represents the observa­
tion. There is a great variety of filters of this kind, because they depend on 
the distributions used to model the backscatter and the observations. 

• Robust Filters: they are based on robust estimates of random variables which 
represent the backscatter. Six different robust estimators were used in [17] 
to recover the backscatter value, yielding six robust filters. The estima­
tors used in that work are the median, the trimmed moments (TMO), the 
trimmed maximum likelihood (TML), the inter quartil range (IQR), the 
median absolute deviation (MAD) and the best linear unbiased estimator 
(BLUE). Three of them are based upon the trimming of extreme obser­
vations, and three based upon order statistics, and all of them assume a 
particular distribution belonging to the multiplicative model. 

New filtering techniques and schemes for speckle removal are always appearing 
in the literature. The intent of this section was to present concepts of some filters 
for speckle reduction, which have a very wide bibliography. Interested readers can 
find IIlore details about this subject in the references contained in this section and 
those therein. 

CONCLUSIONS 

The main consequences of a delicate statistical modeling of SAR data were 
presented. Though the topics covered here only scratch the surface of the subject, 
it has been shown how these images defy the classical Gaussian hypothesis. Noth­
ing has been said about the analysis of phase, for instance, but every time SAR 
data appears, the reader must be prepared to gracefully abandon the comfortable 
hypothesis that sustained the analysis and processing of optical images. 

The central idea is that a careful assessment of the statistical properties of 
synthetic aperture radar images is not only an academic exercise. This gymnastics, 
when properly performed, also yield to algorithms, techniques and methodologies 
that clearly improve the results and aid the use and analysis of this kind of images. 

Far from being a closed subject, the statistical modeling and analysis of SAR 
images is an active research area, being some of its greatest challenges finding 
suitable models, estimators and relations between parameters and physical quan­
tities. 
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