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Dynamic Mixed Models for Irregularly Observed 
Time Series 1 

Robert H. Shumway 

Abstract : We review the conventional dynamic linear 
model in state-space form and give a useful generalization that 
admits fixed covariates to the measurement equation while 
treating the state vectors as time-varying random effects. What 
results is a time series analogue of the classical mixed model. 
The approach allows vector responses that can be incomplete 
and provides interpolated values for the missing components 
of the time sequenced vectors as well as maximum likleihood 
estimators for the model parameters. Estimators for the fixed 
covariate parameters and for the measurement matrix are de
rived. The Kalman filters and smoothers are applied to this 
model and produce best linear unbiased predictors for the time 
correlated random components, leading to a solution to the 
signal extraction problem. The results are illustrated for sev
eral environmental series involving stream-flows and pesticide 
concentrations 
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1. Introduction: The Dynamic Mixed Model 
The manifestations of the conventional linear model are pervasive and various 
forms of this model can be adapted to many practical applications. Even nonlin
ear models can often be expressed in linear from through transformations or by 
approximation. In the time series case, a simple version of the multivariate linear 
model, expressing a q x 1 output vector y t = (Ytl, Yt2, ... , Ytq)' in terms of some 
r x 1 input vector of fixed functions Zt = (Ztl' Zt2, ... , Ztr)', for t = 1,2, . . . , n 
time-indexed points covers many situations, i.e., 

(1) 

where r is a q x p matrix of regression coefficients relating the input and output 
vectors and v t, t = 1, 2, .. . , n are uncorrelated normal vectors with zero means and 
common covariance matrix R. Maximum likelihood estimation of the regression 
matrix r and the error covariance matrix R are a part of conventional multivariate 
regression analysis and the case where parts of the vectors y t are missing is covered 
in Johnson and Wichern (1992) . In the time series case, it is natural to allow a 
correlated random component, say Xt = (Xtl, Xt2, ... ,Xtp)' into (1), obtaining a 
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new mixed model of the form 

(2) 

where Xt is a random stochastic component that satisfies the state equation 

Xt = ~Xt-l + Wt· (3) 

In the above equations, the random component Xt in (2) is regarded as the 
unobserved signal, evolving according to the state transition equation (3) . Con
ceptually, the process starts with Xo drawn from some population, usually mul
tivariate normal, with mean vector Ilo and initial covariance matrix l:o· State 
errors Wt, assumed to be independent zero-mean vectors with common covariance 
matrix Q, are generated for t = 1,2, ... , n in (3), leading to the unobserved signal 
values Xt. Finally, the values of the observed process Yt in (2) are generated by 
adding the sequence of independent observation errors Vt, assumed to be mean 
zero with common covariance matrix R, to the covariance component rZ t and the 
linearly mapped signal AXt. 

The model for the unobserved components, Xt, is quite general and can easily 
be specialized to the classical mixed model considered by Laird and Ware (1982). 
For example, Jones (1992) gives the basic approach and Icaza and Jones (1999), 
among others, show how to apply the EM algorithm, given for the state-space case 
by Shumway and Stoffer (1982), to the mixed model with a univariate response. 
The specialization involves setting the error in (3) to zero and the transition matrix 
to ~ = I. Then, the distribution of the initial state vector can be taken as normal, 
with zero mean and covariance matrix l731 (xu = Xt-l,i, i = 1,2, ... ,p), and the 
sequence of state vectors become conventional random effects that do not change 
over time. More random effects can be added by stacking the state vectors. Fixed 
effects that don't change over time could even be added to the Xt vector by making 
0"5 = O. Note that we will sometimes need to let A(At) and r(ft ) be time varying 
in order to account for missing data. A notable extension to the replicated case 
and a conditional autoregressive structure, where the covariates appeared in the 
state equation (3) has been given by Schmid (1996). We do not need replication 
for the examples considered here, although it could be easily added by assuming 
independent, identically distributed vectors Yti, i = 1,2, ... , N. 

Like the multivariate linear regression model (1), the state-space model can 
be adapted to many special circumstances involving linear models. In addition, 
the Kalman filters and smoothers, used in conjunction with the EM algorithm 
offer an elegant approach to handling incompletely observed multivariate vectors. 
The state-equations (3) may also be specialized to produce different kinds of non
stationary signal models, for example, random walks or splines. The fitting of 
ARMA models to univariate irregularly observed series in state-space form was 
started by Jones (1980) and continued by Ansley and Kohn (1984), as well as 
others. The use of state-space models for fitting fully observed economic series 
with trends and seasonality has been explored by Kitagawa and Gersch (1984, 
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1996). Texts that contain examples of fitting various time series models in state
space form are Harvey (1991) and Shumway and Stoffer (2000) and Pole West 
and Harrison (1994). ' 

In order to introduce the extensions covered here, we consider two sets of 
environmental data; the first involves water flow at three contiguous sites· the 
second example involves levels of pesticides in water under two different sam~ling 
methods. In the first case (see Shumway, 1998), we consider estimating mean and 
covariance parameters in the state-space models (2) and (3) when there are with 
missing stream flows and then interpolate the missing observations. In the second 
case, we are primarily interested in extracting a common pesticide signal using 
one series with daily samples and another benchmark series measured weekly. 
ESTIMATION AND INTERPOLATION: MONTHLY STREAM FLOWS 

In the analysis of river and stream flow data, the estimation of flow-frequency 
statistics, such as monthly means and variances, is of interest for monitoring 
water resources. Difficulties arise when there are significant portions of one or 
more stream flows missing in a given set of records. There are a number of papers 
in the hydrology literature (see, for example, Alley and Burns, 1983, Salas et al, 
1980 and Vogel and Stedinger, 1985) proposing somewhat ad-hoc solutions to the 
problem of estimating the means and variances of bivariate stream flows in various 
stages of completion. Some of the potential difficulties to when observations are 
missing can be seen by inspecting Figure 1, which shows 454 measured monthly 
flows at three stations on the Yakima River, where we assume that the original 
complete flow record had 504 observations for each series. The incomplete series 
has 50 observations missing from the beginning of the Keechelus Lake series and 50 
observations missing from each of the Cachess Lake and Yakima River series. For 
this particular data, we happen to know the missing values, enabling a comparison 
of the interpolation and estimation results. Of interest to hydrologists are the 
monthly flow rates , and the mean monthly flows, expressed as a simple average 
over the 42 years. Figure 2 shows the 12 month profiles for the 42 years and the 
average profile using the fully observed data and we see that the monthly values 
tend to behave like fixed effects, with the maximum flows occurring generally in 
the month of April (month 8). Referring to the model defined in (2) and {3), the 
mean adjustments will be parameters in r and the residuals will be taken care of 
by the terms involving the signal, Xt if the flows are serially correlated. We defer 
the details of this analysis to Section 4. 
ESTIMATION OF THE PESTICIDE SIGNAL 

Measurements of pesticide concentrations in water samples tend to be quite volatile 
and records of daily concentrations measured by an automatic samplers such as 
those shown in Figure 3 tend to have a number of large peaks and many values 
that are either zero or below a threshold. Two episodic bursts of activity observed 
in daily concentrations over the year are marked in the left upper panel of the 
figure and it is natural to be interested in the predicted profiles of these episodes. 
The right panel shows pesticide concentrations collected by grab samples on a 
weekly basis and we note that there are still peaks for the episodes that roughly 
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Figure 1: Monthly flows at three stations on the Yakima River for 42 years. 
Incomplete data has 50 months missing from the beginning of of Keechelus Lake 
and 50 months missing from the end of Cachess Lake and Yakima Rivers 

correspond to those in the left panel. Of interest would be estimated signals cor
responding to these episodes, extracted from some sensible model. Because of 
the large excursions, a transformation might be sensible here and the fourth root, 
shown in the lower part of Figure 3, seems to produce a more stationary process 
that might have approximately normally distributed errors. Section 4 shows how 
to estimate common profile signals for the two episodes using a version of the 
general model specified in (2) and (3). 
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Figure 2: Monthly profiles for 42 years of flows on Yakima River (left panel) and 
mean monthly flows (right panel) using complete data, with 95% confidence limits 
computed from conventional multivariate regresssion. 

2. Signal Extraction and Interpolation 
When data are missing from the stream flow vector, we will consider the following 
special notation for the reordered vector of observed and unobserved parts. Let 

( (1») 
Yt =~12) 

denote a partition of Yt, where the ql x 1 and q2 x 1 components contain the 
observed and observed parts for each month t and ql + q2 = q. In the case where 
the vector above is only partially observed, we write the model · as 

(yF») (rl) (AI) (v~l») 
y~2) = r 2 Zt + A2 Xt + V~2) (4) 

with all matrices partitioned into subcomponents corresponding to the observed 
and unobserved parts respectively. Note that, at a particular time point, 

( V(l») (R cov t = 11 
v(2) R21 

t 

(5) 

defines the partitioned covariance matrix, where the configuration obviously changes 
as t changes. It will also be convenient to introduce a notation for the complete 
data and we will use Yn = (Yl, Y2, ... ,Yn) to denote the collection of completely 

d Th y;(l) «1) (1) (1» observe vectors. en, we may use n = Yl 'Y2 , ... , Yn . to denote the 
fully observed part when there are missing components at various times. To con
tinue, we note that the maximum likelihood approach should lead to estimators 
for the parameter vector e = (r, A, R,~, Q) under arbitrary missing data con
figurations. Using standard arguments, we obtain these results in the following 
sections. 
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Figure 3: Observed concentrations of chlorpyrifos in the Orestimba Creek mea
sured daily by an automatic sampler (left panels) and weekly by grab samples 
(right panel) . Transformed (fourth root) concentrations are shown in the bottom 
panels 

SIGNAL EXTRACTION 

The treatment of the general state-space model given by (2) and (3) depends upon 
being able to compute 

(6) 

the optimal smoothed estimators for the process in the presence of missing data 
and 
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(7) 

the mean square covariance of the smoothed estimators. Because the estimators 
(6) are for an unobserved process, we will sometimes refer to them as the extracted 
signals. For the maximum likelihood estimators in the next section, we will also 
need the covariance between two adjacent smoothed estimators, namely, 

(8) 

These are just the Kalman smoothers, as given in Shumway and Stoffer (2000) for 
the missing data case (see also Shumway and Stoffer, 1982). In order to compute 
the values in (6), (7) and (8), we need a powerful recursive procedure based on 
the Kalman filters and smoothers. For the case of completely observed vectors , we 
give the filters and smoothers in the Appendix and then indicate the modifications 
that are required for incompletely observed vectors. 
INTERPOLATION 

For solving the problem of interpolating the missing part y;2) of the vector, it is 
convenient to first take expectations conditionally on yJl) , Xt and then on yJ 1) , 

noting that 

For the partition (4) we have E{y~l)IYJl>} = yp> for the observed part and 

= E{r2 zt + A2 xt + B(yP) - rlz t - AlXt)lyJl)} 

rZzt + A2xf + B(y;l) - rlzt - Alxf) 

for the unobserved part, where 

(9) 

(10) 

denotes the regression of the unobserved errors on the observed errors. Note that 
(9) and (10) provide the appropriate equations for interpolating the missing data 
vector using the entire sample. In case the vector Yt is completely unobserved, 

(11) 

In the following section, we show how to get maximum likelihood estimators in 
the general missing data case. 

3. Estimation of Parameters 
We review the maximum likelihood procedure for estimating parameters using 
the EM algorithm of Dempster et al (1977), as proposed by Shumway and Stoffer 
(1982). Extensions to that paper covered here are (1) including the covariates Zt 

in the model and estimating r and (2) estimating the measurement matrix A. The 
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latter of these two procedures can be regarded as the time series version of factor 
analysis. Hence, the maximum likelihood procedure will be applied to the model 
given by (2) and (3), assumed to depend on the parameter set 8 = (r, A, R, 4>, Q) , 
with either Po or ~o possibly added; both should not be included at the same time. 
We may also want to fix A or r; setting r = 0 is common when there are no fixed 
effects. 

The computation of variances and covariances of the estimated parameters 
has been an unwieldy proposition because the EM algorithm does not provide an 
easily computed version of the information matrix. Direct computation of the 
information matrix via recursions is possible as in Harvey (1991) or Cavanaugh 
and Shumway (1996) . Versions of the information matrix, obtained from outputs 
arising naturally in the EM algorithm, such as in Meng and Rubin (1991) or Oakes 
(1999), are either hard to compute, as in the former, or will involve relatively 
untractable derivatives as in the latter. A compromise that is easy to apply and 
will be robust towards distributional assumptions is the bootstrap, as derived in 
Stoffer and Wall (1991) and we focus on their methodology here. 
MAXIMUM LIKELIHOOD ESTIMATION 

The log likelihood of the incomplete data is the classical innovations form 

1 n 1 n 
logL(y~l); 8) ex: -2 Llogl~tl- 2 L(Yt -rZt _~-lY~tl(Yt -rZt _Ax~-l) 

t=l t=l 
(12) 

where the filtered Kalman filter values, X~-l are as in the previous section and 
the innovations covariance matrix is defined as 

(13) 

For the EM algorithm, we need the value of the complete data log likelihood as 
well, given by 

logL(Yni 8) ex: - ~ log IRI - .!. ..£-- (Yt - rZt - AXt)' R-1 (Yt - rZt - AXt) 
2 2~ 

t=l 

-~logl~l- ~ (xo _PoY~ol(xo -Po) 

-~ log IQI- ~ teXt -q>Xt_dQ-l(Xt - q>xt-d· (14) 
t=l 

To apply the EM algorithm, note that successively maximizing 

(15) 

as a function of 8, with 8 0 the value of the parameter at the preceding iteration 
will increase the incomplete data log likelihood and converge, under appropri
ate regularity conditions (see Wu, 1983), to a unique maximum. Examining the 
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expression (15), it is clear that we will need the expressions for the conditional 
means and covariances derived in the previous section . It will be convenient to 
assume that the covariance matrix of xo can be specified and just concentrate on 
the parameters r, A, R in the first term and the parameters q" Q in the last term, 
leading to e = {r, A, R, q" Q} as the set of parameters to be estimated. For the 
parameters q, and Q, Shumway and Stoffer (1982) give 

q, = SlOSoi} (16) 

and 

Q = .!.(S11- S lOSOi}SOl), 
n (17) 

where 
n 

S11 = L(x~xt + Pt), (18) 
t=l 

n 

SlO = L(x~x~-t' + Pt~t-l)' (19) 
t=l 

and 
n 

Soo = L(X~lX~-l' + Pt-l)' (20) 
t=l 

where the components of the above equations can be computed as in (Al)-(A3) of 
the Appendix with the values eo set at those obtained in the previous iteration. 
In order to develop estimators for r, A and R from the first term, note that it will 
reduce to minimizing 

n 

L EO{(Yt - rZt - Axt)(Yt - rZt - AXt)'lY} 
t=l 

over r and A first and then evaluating 

Performing the first operation, it can be seen that 

(r A) = (E~=l EO{YtIYJl)}Z~, E~=l EO{YtX~IYJl)}) a-I, (22) 

where 

(23) a - (EztZ~ 
- ~xnz' 

L..J t t 

with S11 given previously in (18). The elements of the matrix to be inverted are 
easy to compute but we make a further computation to evaluate the first matrix. 
It follows that 

(24) 
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and 

= Eo{ (r2Zt + A2Xt + B(y~I) - rIZ t - AIXt»)X~IYJI)} 

= (r2 Z t + A2xf + B~I»xt + (A2 - BAI)Pt (25) 

where 
(1) (1) rAn 

€t = Yt - IZt - IXt (26) 

is the Kalman smoother residual for the observed part of the vector y~l). In the 
case where Yt is completely unobserved 

EO{ytX~IYJl)} = Eo{{rzt + AXt)X~IY~I)} 
= (rzt + Axf )xt + APt (27) 

It follows that the update (22) can proceed by substituting from (24)-(27) using 
the Kalman smoothed values xf and covariances Pt, along with y~l). 

In order to derive the update for R in (21), note first that 

can be written as 

where 

and 
V~2) = y~2) - r 2zt - A2 X t 

for the observed and missing parts of the vector Yt. Now, it is clear that 

where €P) is given in (26). Then, 

and taking the conditional expectation again, conditioned on y~l), 

(29) 
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where B is the regression coefficient (10). The transpose of (29) gives 
E{V~2)vil)'1Y2)}. We also need 

= cov{ V~2) Iy~l), xd + 
+ EO{V~2) 1Y2), xdEo{vi2)ly~1), xd' 

R22.1 + Bv~l)vP)' B', 

where R22 .1 is the conditional covariance matrix 

R22.1 = R22 - R21Rl/ R 12 . 

Then, taking the expectation of (30), conditional on yJl} gives 

EO{v~2)v~2)'IY~I)} = R 22.1 + B[~I)tOP)' + A1Pt A~lB' 

Then, defining 
G (1) (I)' A pnA' 

u = tOt Ei + 1 t l' 
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(30) 

(31) 

(32) 

(33) 

we arrive at the entries for the incremental contributions in the estimation equa
tion (21), i.e. 

E { V v'ly(I)} _ ( Gll 
Ott n - BGll 

CuB' ) 
R 22 .1 + BCllB' , (34) 

when there is a mix of observed and unobserved data. When the vector is com
pletely unobserved, simply add R to the sum. 

The iterative procedure for obtaining maximum likelihood estimators in the 
dependent case is as follows 

(i) Compute initial estimators of the matrix of means r and the covariance 
matrix R using the incomplete data or as the final values from the iterations 
in the dependent case. Obtain initial estimators for the matrix A. One 
possibility is to obtain them from separate regressions on the residuals Yt -
f'Zt or simply by guessing reasonable start values for the matrix A. Fix the 
uncertainty of the initial values at ~o. Start the matrix Q at any reasonable 
positive definite value, say Q = klq, where Iq denotes the q x q identity 
matrix. 

(ii) Run the Kalman filters and smoother using the recursions in AI-A3 in the 
Appendix, modified for missing data. This produces -the Kalman smoothed 
estimators xf for the state vector Xt and it mean square covariance Pt. 

(iii) Compute the updated estimator for r and A using (22), (23) and (24)-(27). 

(iv) Update the components of R using (21), substituting into (34) from (10),(26), 
(31) and (33). 
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(v) Repeat steps (ii), (iii) and (iv) to convergence. 

Although the parameters Po and ~o are omitted from the above argument, it 
is easy to see from the complete data log likelihood (14) that one could take either 
Po = xCi or to = (xC) - Po)(xo - Po)' + Pd\ but not both, in the procedure given 
above. 

BOOTSTRAP ESTIMATION OF STANDARD ERRORS 

As we have previously noted, there are a number of approaches to estimating 
the the variances and covariances of the maximum likelihood estimators (see, for 
example, Meng and Rubin, 1991, Oakes, 1999). We propose here a bootstrap 
estimator as given by Stoffer and Wall (1991) . The procedure, summarized in 
Shumway and Stoffer (2000, Sect. 4.7), does not even require the Gaussian as
sumption although we do use the maximizer of the innovations log likelihood (12). 

Suppose that we obtain maximum likelihood estimators for e = {r, A, R, ~} 
as 6 = {r, A, il, «i>}, where we may stack the components in a vector e(6). Define 
the residuals from these estimators as Vt = Yt - rZt - AX~-l and construct scaled 
residuals of the form 

A f.-1/2 A 

Et = ..... t Vt· (35) 

where a hat over a quantity indicates that that it has been evaluated at the 
maximum likelihood estimator 0. Then, draw a random sample, say ~, t = 
1, . .. , n without replacement from the scaled residuals. Rescale the residuals, Le., 

(36) 

to obtain residuals with the correct time varying covariance matrix. To reconstruct 
the data, note that 

(37) 

and compute the . values of x:- I using Property Al in the Appendix and the 
maximum likelihood estimators 0 with (A.3) replaced by 

(38) 

Use the reconstructed bootstrap sample to compute maximum likelihood estima
tors 0* = {r*, A*, «i>*, h*} using the procedure described in Section 3.3. Note 
that the residuals for times when there are missing points are kept as missing or 
partially missing in the procedure, i.e., the identities of the missing points are kept 
the same throughout the sampling procedure. This implies that the results will 
be conditional on the particular missing data pattern observed in the data. An 
alternate approach might be to use a random mechanism to generate the missing 
points within each bootstrap replication. 

The above bootstrap steps are repeated a large number, B, times, obtaining 
{0b, b = 1,2, ... , B} The finite sample distributions of 0 - eo are approximated 
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by the the distribution of {e~ - e, ~ = 1,2, ... , B} , For example, the estimated 
variance of the estimated parameter Oi can be computed as 

B 

iTi = B ~ 1 I)Oi - 0*)2. 
b=l 

(39) 

where 0* denotes the mean of the bootstrap estimators. 

4. Examples 
We return here to a consideration of the monthly stream flow series in Figure 1 
and the observed pesticide concentrations in Figure 2. For the monthly stream 
flow series, the questions of primary interest relate to estimating monthly mean 
parameters under serial correlation. Figure 2 makes it plausible to assume the 
existence of a fixed monthly mean, because the 42 profiles are roughly parallel 
with fairly consistent peak months. FUrthermore, taking residuals from these 
monthly means yields residuals that are both highly correlated over space and 
time. Modeling these residuals as the sum of an autoregressive component and 
error allows estimation of the monthly means under serial correlation and the 
interpolation of the missing stream flows. For the concentrations of the pesticide 
chloropyrifos, the interest is more in estimating the common signal by combining 
the weekly benchmark grab samples with the automatic daily values to estimate 
a common signal. In Figure 3, we see that the common values of the series occur 
during the short episodic bursts that punctuate the longer periods when one is 
observing nondetectable levels. 
ESTIMATION OF MONTHLY MEAN STREAM FLOWS 

It is natural to consider methods for exploiting the fact that streams in close 
proximity have similar time profiles when portions of both series have missing 
values. The similarity is induced both by spatial proximity and by the possibility 
of serial correlations over time. Methods for estimating flow-frequency statistics 
should be tailored to exploit both of these kinds of correlation. There are a num
ber of papers in the hydrology literature attacking various aspects of the problem 
of estimating the means and variances of stream flow records in various stages of 
completion (see, for example, Alley et al 1983, Salas et al 1980 and Vogel and 
Stedinger 1985). A typical case considered in the above papers might be monthly 
flows for a complete series, say Ytl, t = 1,2, ... , n months and a second series 
Yt2, t = 1,2, .. . , nl < n observed only at some nl points. Generally, it is assumed 
that the Ytl and Yt2 have some joint distribution (typically bivariate normal) and 
are independent with common means ILl, IL2, variances ar, a~, and with common 
.correlation p. If bivariate normality holds, note that a model involving the condi
tional mean 

is implied, where 
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and the conditional variance is 

with a? and a~ the usual variances of Ytl and Yt2, and p is the usual correlation 
coefficient. In that case, we may rewrite a model implied by (1.1) as the conditional 
regression model 

where a = J.L2 - bJ.LI · 

Yt2 = J.L2 + b(Ytl - J.LI) + et 

= a + bytl + et, 

An ad-hoc approach, often taken in the above situation, is to use the first nl 
observations to estimate a and b by least squares, obtaining the estimators ii and 
b. Then, simply use the average of the first nl known values and the predicted 
values Yt2 = ii + bytl for t = nl + 1, .. . ,n as the estimator for J.L2. This procedure 
is advocated in Alley and Burns (1983). It is clear that the above situation covers 
only the simplest practical case; it is easy to envision situations where both series 
will have missing values at various points in either series and where there will 
be more than two stream series of interest. Alley and Burns (1983) do a search 
for each series with missing values over the totality of possible independent series 
and choose the input series that minimizes the sum of the estimated single point 
prediction variances as the predictor. 

It is also clear that a maximum likelihood approach to estimating the param
eters J.LI, J.LI, a? ,a~ and p using the joint distribution of Ytl and Yt2 would be of 
interest. Vogel and Stedinger (1985) consider maximum likelihood estimators of 
the mean based on all N observations that are restricted in the sense described 
earlier. Under bivariate normality and the restricted missing data structure, the 
maximum likelihood estimators are reasonably tractable and the solution is given 
in Anderson (1984, problem 48, p. 154). Vogel and Stedinger give the variance of 
this estimator under the assumption that parameters on the righthand side of the 
equation for the estimator are known. They also consider weighted averages of the 
two terms involved in the maximum likelihood estimators and derive the weights 
that minimize the variance. This is a minimum variance estimator restricted to 
those that combine y~l) and y~2) - yP), where the superscript 1 denotes a mean 
over the first nl observations and the subscript 2 denotes a mean over the last 
n2 = n - n l observations and will not be minimum variance over the class of 
linear estimators. The analysis assumes knowledge of the true correlation p and 
the variances a? and a~ when they appear in the estimating equations. 

The analyses discussed above apply only to a bivariate observations, observed 
according to a very restricted missing data pattern. In general, it is important to 
be able to handle more than two stream flows at a time with arbitrary missing data 
patterns rather than the restricted pattern considered above with observations 
only missing in a block of one of the series. In addition, there is a high probability 
that there will be serial correlation in the series after the means have been fitted 
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and the estimation procedure should take this into account. Finally, there will 
always be a preference for full maximum likelihood estimation with incomplete 
data. This section proposes a full maximum likelihood solution to the parameter 
estimation problem when there are an arbitrary number of incompletely observed 
stream flows. 

In order to develop a general model for the stream flow case, we argue for a 
fixed component of the form 

EYt = rZt 

where r = (1'1'1'2, . . . ,1'12)' with Pi = (J-t1i, J-t2i, J-t3d is the 3 x 1 vector of stream 
flows for month i. Hence, r is a 3 x 12 matrix of means for the three flows over 
12 months. The 12 x 1 vector Zt has a one in position i when observation t is on 
month i and zeros elsewhere. To find a sensible model for the signal Xt, Shumway 
(1998) examined the residuals y t - f'Zt, based on the part of the record where all 
series were observed and found that the residuals were highly correlated across 
streams and that a first-order autoregressive model was reasonable. If we assume 
that the serially correlated signal is the same, up to a constant multiplier ai at 
each stream, we might write the state-space model in the form 

(40) 

where a = (al,a2,a3)' is a vector that scales the three stream flows. The state 
equation expresses the common univariate signal Xt as 

(41) 

where we take var Wt = qu = 1 to make the log likelihood identifiable. The 
parameter set in this case is e = {r, a, R, 4>}, where we set the initial mean, J-to, 
to zero and the initial variance at ag = 10. 

The model given in (40) and (41) was applied to both the incomplete data 
given in Figure 1 and the complete data (not shown) for comparison purposes. 
The estimated scale parameters using (22) are shown in Table 1, with the standard 
errors computed by the bootstrap shown in parentheses. 

Table 1. Maximum likelihood estimators (se) for scale parameters. 

iiI (se) ii2(se) a3(se) 
Complete 7.44(1.32) 7.20(1.31) 22.37(3.92) 

Incomplete 7.67(1.29) 7.44(1.28) 22.88(3.78) 

The estimators of the state transitions ¢, also computed from (22), were ¢ = .54 
for both the incomplete and complete data, with estimated · standard deviations 
of .06 and .08 respectively. The estimated measurement error covariances 

( 
40(45) 29(32) 

R = 29(32) 23(25) 
82(92) 63(69) 

82(92) ) 
63(69) 

198(211) 
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differed the most when comparing the complete and incomplete data, where the 
format of the matrix is incomplete(complete) . 

Keechelus L. (FuU) Keechelus L. (Incomplete) 
60 60 

~ 40 40 
u::: 
c as 
Q) 20 :; 20 

5 10 5 10 
Cachess L. (Full) Cachess L. (Incomplete) 

60 60 

~4O 40 
u::: 
c as 
Q) 20 :; 20 

5 10 5 10 
Yakima R. (FuU) Yakima R. (Incomplete) 

150 150 

~ 100 100 
u::: 
c as 
Q) 50 50 ::E 

5 10 5 10 
Month Month 

Figure 4: Estimated monthly flow profiles and 95% confidence intervals in the 
dependent case for three series, with standard errors estimated by the bootstrap. 
Left panel shows means estimated from complete data whereas right panel gives 
comparable results for the incomplete data in Figure 1. 

The estimated mean profiles were of primary interest to the hydrologists and 
we note from Figure 4 that they are essentially the same, with standard errors 
that are about 30% larger in the incomplete case and about twice as large for the 
stream 3 means. The estimated mean profiles are basically identical. 

As a final task, there will be interest in the interpolating the missing stream 
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flows in Figure 1. For this, we can use (9) and (10) from Section 3. Since the 
values were nearly the same, a scatter plot, as shown in Figure 5 for two of the 
streams gives more detailed information. This plot shows the true known flows 
on the horizontal axis and the interpolated values on the vertical axis. Note that 
the points are distributed quite evenly about the line, with no particular bias, 
indicates that the interpolation does very well. 

60 200 

Keechelus 180 Yakima 
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* 160 * * 
140 

40 * 
120 

30 100 

80 

20 

* 
60 ,* 

10 

40 60 100 150 200 

Figure 5: Scatterplot showing true and predicted flows for unobserved portions of 
Keechelus and Yakima Rivers 

SIGNAL EXTRACTION FOR MONITORING PESTICIDE CONCENTRATIONS IN WA

TER 
Monitoring levels of pesticide concentrations in water often involves measurements 
at contiguous locations made by different sampling techniques. A simple exam
ple involves the concentrations of the pesticide chlorpyrifos taken from Orestirnba 
Creek in California between May, 1996 and May 1997 (364 days). Two different 
sampling methods were used, namely (1) automatic collection hourly and com
posited over a 24 hour period every day and (2) grab samples collected weekly. 
Both series are shown in Figure 3, with the samples that failed to measure below 
a detection limit replaced by the detection limit. Independent samples which have 
a number of non-detections can be treated as in Shumwayet al (1989). Because 
the non-detections for pesticide concentrations are far below the conventional val
ues, the more sophisticated treatment in this case was not applied. The original 
daily values of the composite sampler and the weekly grab sample series have been 
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previously shown in Figure 3. 
The relative large sporadic excursions observed in the concentrations indicates 

a nonlinear behavior which could be treated in a number of ways. One might try 
various transformations to achieve a series that is more linear and approximately 
Gaussian. General power transformations are possible and the result of applying 
a fourth root transformation is shown in the bottom two panels of Figure 3. 
This transformation produces histograms that are approximately normal and the 
transformed series exhibit a more stationary behavior. The treatment of the 
process in terms of stochastic volatility models such as ARCH or GARCH (see 
Engle, 1982, Shepard, 1996, Shumway and Stoffer, 2000) is also possible but we 
do not consider those models here. 

In order to fit a reasonable state space model, we noted that the first differences 
of the transformed daily series, say y:/4 -Y:~i tended to be white so that a sensible 
model for merging the two series Yt = (Ytl, Ytz)' into an estimator for unobserved 
signal, say Xt might be 

1/4 1/4 
Yti = X t + Vti, (42) 

for i = 1,2, where 

(43) 

and the fourth root of the signal is assumed to be a simple random walk. Once 
the underlying transformed signal and its variance are estimated using A1-A3 
of the Appendix to get (6) and (7), we might assume normality to obtain 95% 
prediction limits for the smoothed signal. 'I!ansforming back to the raw signal 
will give approximate 95% prediction limits for the raw signal Xt .. The predicted 
signal and its variance, combined with a Bonferroni argument, also will yield 
various probabilities of interest, for example, the probability that m consecutive 
values will exceed some pre-specified threshold. 

Again, the EM algorithm of Section 3. was applied, leading to the measurement 
covariances ru = .0011, r1Z = .0004, rzz = .0080 and state variance qll = .0050. 
Interpreting these, the full series has measurement standard error .033, whereas 
the weekly series has a standard error of .089, as might be expected. The corre
lation between the two measurement errors was small (r = .14) . The standard 
deviation of the state error .071. The signal to noise ratios of the two measure
ments are about 5 to l(qll/rll) for the daily samples and less than 1 to 1 (qn/rzz) 
for the incomplete weekly data. 

Figures 6 and 7 summarize the estimated chIorpyrifos signal and its 95% pre
diction limits. It is clear that high concentration episodes will be of more interest 
than the majority of values tending to lie at or below the detection limits and we 
plot two of these episodes and their 95% limits in Figure 7. These signal profiles, 
shown in the upper panels with their 95% prediction intervals, can be taken as 
the signature of the two merged observed series shown in the lower panels. 

5. Discussion 
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Figure 6: Combined estimate of chlorpyrifos signal. Transformed is in upper panel, 
estimated original signal in lower panel. 

The intent here has been to adapt the state-space model to situations where there 
can be a mixture of time varying fixed and random effects that are serially cor
related over time. Additionally, we have given a complete characterization of the 
EM algorithm that works for very general missing data patterns and enables inter
polating missing values with a correlated measurement structure. The estimation 
of the scaling matrix A for the random component Xt provides a time series version 
of the factor analysis model. 

While the theory can work for any longitudinal mixed model by specializing 
the measurement and state equations, it is best for data with quite severe missing 
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Figure 7: Estimated signals focused on two high concentration episodes. Dashed 
lines are 95% prediction limits in upper panels. Bottom panels show daily series 
as solid lines and weekly benchmarks as dashed lines. 

data patterns. In this context, the method provides maximum likelihood estima
tors for all parameters and estimated variances via the bootstrap of Stoffer and 
Wall (1991). As an additional output, one gets an extracted signal vector xr and 
its covariance matrix pr, enabling one to fuse the common random features of a 
number of series, possibly observed at different intervals, into a consistent estima
tor for the signal. Finally, there is an optimal method for interpolating missing 
observations. 

We have given two examples of problems in the water sciences where the above 
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methods can be useful. For the stream flow series, we were primarily interested 
in estimators for the yearly mean profiles as components of the fixed part of the 
model. A secondary problem of interest was in interpolating the flows that were 
missing from the three series. The pesticide example was more oriented towards 
extracting a common signal from the daily series and a weekly benchmark. Again, 
the extracted signal came with approximate 95% prediction intervals, enabling 
treatment of such problems as the estimating the probability that the signal exceed 
a given regulatory restriction. The programs for both the applications are written 
in MATLAB and are available from the author at shumway@wald.ucdavis.edu. 
An exploratory data analysis Windows package, ASTSA, with a general state
space option (not including covariates or the bootstrap) can be downloaded from 
the website http://www.stat.ucdavis.edu/ shumway/tsa.html. 
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7. Appendix 
For the properties below, we use the notation 

where Ys = (YI, Yz , ... , Y 8) denotes the vectors up to time s . For s = t - 1, 
the expectation is a forecast whereas for s = t, the expectation is the Kalman 
filtered value. For s = n, the expectation is conditional on the entire data and 
is the Kalman smoother. This is the logical value to use for filling in missing 
observations. The conditional covariances 

and 
P/u = E{(xt - xZ)(X,. - X~),1Y8} 

are interpreted in a similar way. We summarize the equations for the Kalman 
filters , smoothers and their covariances in the three properties below. 

Property AI: The Kalman Filter 
For the state space model specified in (2) and (3) with initial conditions xg = J.Lo 
and Pg = Eo, for t = I, ... ,n 

with 

and 

where 

t-I ;r,. t-I 
X t = ':l'Xt _ 1 

t t-l K ( rAt-I) x t = x t + t Yt - tZt - tXt , 

K t = pf- I AaAtpf-1 A~ + Rt]-I 

is called the Kalman gain. 

Property A2: The Kalman Smoother 

(A.I) 

(A.2) 

(A.3) 

(A A) 

(A.5) 

For the state-space model specified in (2) and (3) with initial conditions x~ and 
p;: via Property Al, for t = n, n - 1, ... , 1, 

n t-I J (n t -I) 
X t - I = X t - I + t-I X t - X t (A.6) 
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n pt-I J (pn pt-I)J' Pt-1 = t-1 + t-1 . t - t t-1' (A.7) 

where 
J == pt-1ip' [pt-1]-1 

t-1 t-1 t (A.8) 

Property A3: The Lag-One Covariance Smoother 
For the state-space model specified in (2) and (3), with K t , Jt , t = 1, ... , n obtained 
from Properties Ai and A2, with initial condition 

(A.9) 

for t = n, n - 1 . .. ,2, 

(A. 10) 

As Shumway and Stoffer (1982) point out, the modifications to the above recur
sions when only parts of vectors are observed amount to zeroing out the unobserved 
rows of Yt and their counterparts in r t and At during the recursions. The covari
ance matrix R t is modified by zeroing out the rows and columns corresponding 
to the missing components with the exception of the diagonal elements which are 
left unchanged. 
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