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Likelihood Methods for Nonstationary 
Time Series and Random Fields 

R. Dahlhaus and M. Sahm 

Abstract: In this article we discuss a generalization of 
the Whittle likelihood approximation from stationary pro­
cesses to locally stationary processes and random fields. This 
yields a local likelihood for these processes which can be used 
as a starting point for both parametric and semi parametric 
estimation procedures. For parametric inference, we show the 
asymptotic normality of the corresponding estimates. In par­
ticular the bias reducing effect of using a data taper is dis­
cussed, which is essential in the random field scenario. 
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1. Introduction 

In this paper we derive a likelihood approximation to the Gaussian likelihood for 
locally stationary processes and random fields and show how this likelihood can be 
used in parametric and nonparametric statistical inference. As a framework for our 
considerations we use the notion of local stationarity as given in Dahlhaus (1996a) 
for time series and in Dahlhaus and Sahm (2000) for random fields. This notion is 
a rigorous framework for an asymptotic theory for processes that are locally close 
to a stationary process or a stationary random field and whose characteristics 
such as covariance functions, spectral densities and parameters change slowly over 
time. Such processes have been considered by numerous authors such as Priestley 
(1965), Neumann and v. Sachs (1997) or Mallat et al. (1998) . In Section 2 
a likelihood approximation for locally stationary time series is given which is a 
weighted average over local . likelihoods and a generalization of the well known 
Whittle likelihood for stationary time series. For parametric models we state 
the consistency and asymptotic normality of the corresponding estimates. This 
is achieved by considering the time series with time rescaled to the unit interval 
[0,1] . Section 3 provides a brief overview on non- and semiparametric methods 
based on the local likelihood derived in Section 2 such as kernel estimators, local 
polynomials and wavelet estimators. In Section 4 the notion of local stationarity 
as well as the Whittle type likelihood approximation are generalized to the random 
field case. We present asymptotic results and discuss the problem of overcoming 
the bias arising in fields of dimension d > 1. Section 5 gives an insight into the 
underlying idea of the Whittle likelihood for nonstationary processes. Here the 
approximation of Toeplitz matrices is generalized to nonstationary processes. 
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2. A Likelihood Representation for Locally Stationary Processes 

We start with the definition of a locally stationary process. It is given in the form 
of a time varying spectral representation. The equivalent form of a time varying 
M A(oo)-representation is discussed below. 

In comparison to Dahlhaus (1996 a,b; 2000) we have made a small change: 
The observation Xt,T is assigned to the rescaled time u = (t - 1/2)/T leading to 
a definition which coincides with the random field case treated in section 4. All 
asymptotic results stay the same with this modified notation. 

Definition 2.1 A sequence of stochastic processes Xt,T(t = 1, ... , T) is called 
locally stationary with transfer function AD and trend J.l if there exists a represen­
tation 

t - 1/2 111" 
Xt,T = J1.( T ) + _11" exp(i,xt)A~,T(.>')de(,x) (1) 

where 
(i) e(,x) is a stochastic process on [-11",11"] with e(,x) = e( -,x) and 

k 

cum{de(,xj), .. . , de(>'k)} = 1JC~:::>j) hk(,xI, ... , ,xk-dd,x1 . .. d,xk 
j=1 

where cum { ... } denotes the cumulant of kth order, hI = 0, h2(,x) = I, 
Ihk(,xI, ... ,,xk-I)I ~ constk for all k and 1J(>') = L~-oo o(,x + 211"j) is the period 
211" extension of the Dirac delta function. 

(ii) There exists a constant K and a 211"-periodic function A : [0,1] x R -+ C 
with A(u, -,x) = A(u, >.) and 

supIA~,T(,x) _A(t -;/2,,x)1 ~ KT- I (2) 
t ,>. 

for all T. A(u, >.) and J1.(u) are assumed to be continuous in u. 

!(u, >.) := A(u, >.)A(u, >.) is the time varying spectral density of the process. 
Under suitable regularity conditions it is uniquely determined (cf. Dahlhaus, 
I996a, Theorem 2.2) We denote by 

c(u, k) := I: !(u,,x) exp(i>'k)d>' (3) 

the local covariance of lag k at time u. If A(u,,x) is uniformly Lipschitz continuous 
in u we have 

COV(X[uTj,T, X[uTj±k,T) = c(u, k) + O(T- I), (4) 

and in view of the definition of the preperiodogram (see (9) below) 

cOV(X[uT+l+k/2j,T, X[uT+l-k/2j,T) = c(u, k) + O(T-l), (5) 

uniformly in u (under additional regularity assumptions also uniformly in k). 
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Remark 2.2 (time varying MA( 00 )-representations) There exists a close 
connection between the above spectral representation and time varying MA-re­
presentations. Let 

and 

I: Af,T (A) exp( iAk )dA, 

I: A(u, A) exp(iAk)dA 

Ct := I: exp(iAt)d~(A). 
Then Eet = 0 and Ee.ct = 2m)st, i.e. the et are uncorrelated. Since 

1 00 

Af,T(A) = 211" L at,T,kexp(-iAk) 
k=-oo 

and 
1 

A(u,A) = 211" L ak(u)exp(-iAk) 
k=-oo 

00 

we obtain 
t - 1/2 1 00 

Xt,T = 1-'( T ) + 211" L at,T,ket-k· 
k=-oo 

Condition (2) implies 

t - 1/2 1 
sup lat,T,k - ak( T )1 = O(T- ). 
t,k 

(6) 

If we start conversely with an infinite MA-representation (6) where the coefficients 
fulfill 

00 t - 1/2 1 
s~p 2: lat ,T,k - ak( T )1 = O(T- ) 

k=-oo 

(7) 

then it can be shown in the same way that a representation (1) exists and (2) 
is fulfilled. Note that heteroscedastic et and Ct with dependent components can 
be included by choosing other at,T,k in (6). The complicated construction with 
different functions Af,T(A) and AC-,JP, A) (at,T ,k and ak(t-dP) respectively) is 
necessary since we need on the one hand a certain smoothness in time direction 
(guaranteed by the functions A(u,A) and ak(u» and on the other hand a class 
which is rich enough to cover interesting applications. For example, the time 
varying AR(l)-process Xt ,T = </J( t-iP)Xt_1 ,T +et does not have a solution of the 

form Xt,T = E':=o ak(t-,jP)et_k but only of the form Xt,T = E':=o at,T,ket-k 
with (7) where ak(u) = </J(u)k. 
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As mentioned above the time parameter U = (t -1/2)/T in J-l(u) and A(u, A) is 
rescaled for a meaningful asymptotic theory leading to the above triangular array 
X t T . This is the same approach as in nonparametric regression. The classical 
asymptotics for stationary sequences are contained as a special case (if J-l and A 
do not depend on t). A detailed discussion of this definition and a comparison 
to Priestley's approach can be found in Dahlhaus (1996b). Another definition 
of local stationarity has recently been given by Mallat , Papanicolaou and Zhang 
(1998) . We remark that the methods presented in this paper do not depend on 
the special definition of local stationarity. 

Examples of locally stationary processes can be found in Dahlhaus (1996a). 
We just remark that for example ARMA-models with time varying coefficients are 
locally stationary, that is Xt,T defined by the difference equations 

.f.. t - 1/2 ~ t - 1/2 t - j - 1/2 
~ <Pj ( T )Xt-j,T = ~ "pj( T )u( T )Ct-j 
j=O j=O 

with <Po(u) == "po(u) == 1 and Ct iid with mean zero and variance 1 where the 
roots of 2:~=0 <Pj (u)zj lie outside the unit circle and are assumed to be uniformly 
bounded away from the unit circle. The time varying spectral density is 

u2(u) 12:3=0 "pj(U) exp(iAj)12 
f(U,A) = -- p . 

211" l2:j =o <pj{u) exp(iAj)12 
(8) 

(cf. Dahlhaus, 1996a, Theorem 2.3 and the discussion thereafter). 
The topic of this paper is statistical inference for parameter curves describing 

local stationarity such as the curves <pj(u) and "pj(u) from the above example. 
This may either be treated as a nonparametric problem or as a parametric prob­
lem where the <Pj (u) and "pj (u) are modelled e.g. as polynomials in time with the 
coeffficients being the parameters. For the estimation we will use a generalization 
of the Whittle likelihood (Whittle 1953, 1954) i.e. an approximation to the Gaus­
sian likelihood based on some distance measure in the frequency domain. For this 
reason we start our discussion with some considerations on spectral estimation. 

A statistic which plays a fundamental role is the preperiodogram. It was 
introduced by Neumann and von Sachs (1997) as a starting point for a wavelet 
estimate of the time varying spectral density. Here we use a modified form which 
in particuiar uses a data taper. For u E [0, 1] let 

JJ,h)(U,A) := 2~hT(U)-2 Lk X[~~+1_k/21,TX[~~+1+k/2],Texp(-iAk 
1~[uT+l±k/21~T 

(9) 
where [x] denotes the largest integer less or equal to x. xi~ := hTC-,;P)Xt,T 
are the tapered data where hT(U) is some rescaled data taper with 

T 
.!.. '" h (t - 1/2)2 = 1 
T~ T T ' 

t=l 
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I.e. 

( 1 T t-1/2 )-1/2 
hT(u) = T L hp( . T)2 hp(u) 

t=l 
(10) 

where p is the precentage of tapered data. For example hp(u) may be the cosine 
taper 

if 0 ~ U ~ p/2 
if p/2 ~ U ~ 1/2. 
if 1/2 ~ U ~ 1 

. If p = 0, we have the classical non-tapered case. 

(11) 

There exists a nice relation between the tapered preperiodogram and the ta­
pered ordinary periodogram: 

1 T 
27rT 1 L X;'j. exp( -iAT) 12 

r=l 

i.e. the periodogram is the weighted average of the preperiodogram over time. 
(12) means that the periodogram 4h ) (A) is the Fourier transform of the covariance 

estimator oflag k over the whole segment while the preperiodogram J}h) C-;'/2, A) 
. t th . X(h) X(h) k' d f "I I' "f h 
JUS uses e paIr [t+1/2+k/2) [t+1/2-k/2) as a m 0 oca estImator 0 t e 
covariance oflag k at time t (note that [t+1/2+k/2]-[t+1/2-k/2] = k). For this 
reason Neumann and von Sachs also called JT(,j.-, A) the localized periodogram. 

A classical kernel estimator of the spectral density of a stationary process 
at some frequency AD therefore can be regarded as a weighted average of the 
preperiodogram over all time points and over the frequencies in the neighbourhood 
of AD . It is therefore plausible that averaging the preperiodogram about some 
frequency AD and about some time-point to gives an estimate of the time-varying 
spectrum fCoi/ 2 , A). 

(5) shows that J}h) (u, A) is an asymptotically unbiased estimate of the time 
varying spectral density f(u, A) . Similar to the ordinary periodogram it is, how­
ever, not consistent. The large variability is for example reflected by the relation 

r J(h) (t - 1/2 A)dA = 27r';'" J(h) (t- 1/2 A) = X2 1- T T' T ~ T T ' St · 
-1r .=1 
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This means that smoothing of the preperiodogram in time and frequency direction 
is essential to make a reasonable estimate out of it. The advantage over (say) a 
classical periodogram on some small time segment is that it does not contain any 
implicit smoothing which makes it a valuable raw estimate for adaptive smooth­
ing techniques such as wavelet estimates of the time varying spectral density or 
likelihood oriented methods as discussed in this paper. 

In the stationary situation data tapers are known to reduce the bias of the 
ordinary periodogram Ir ()..) due to spectral leakage. The same holds for all esti­
mates which can be written as functionals of the periodogram such as empirical 
covariances, Yule-Walker estimates and Whittle estimates (cf. Dahlhaus, 1988; 
Dahlhaus and Kiinsch, 1987). The percentage p is usually chosen to be small (say 
between 0.1 and 0.3) and p = PT -+ 0 as T -+ 00 is a realistic assumption leading 
to asymptotically efficient estimates. In the present nonstationary situation the 
data taper leads to a downweighting of the observations at the edges and in ad­
dition to a downweighting of the preperiodograms at the edges (as in (12) or in 
the Whittle function (14) below), which is plausible in view of the small number 

of summands over k in the preperiodogram J~h) (u, )..) for u close to 0 or 1. 
We now use the preperiodogram to construct an approximation to the Gaussian 

likelihood of a locally stationary process. For stationary processes Whittle (1953, 
1954) had introduced the likelihood 

1 111" { 2 Ir()..) } 
411" -11" log411" 'II()..) + Ie()..) d)" (13) 

which is an approximation to -,j,log Gaussian likelihood. Dahlhaus (1987) had 
suggested to use the Whittle likelihood with the tapered periodogram instead. 

If we use 4h )()..) instead of Ir()..) in this likelihood and replace the model 
spectral density Ie()..) by the time-varying spectral density Ie(u,)..) of a parametric 
nonstationary model, we obtain 

T 
~..!.. "h (t - 1/2)2 
411"T~ T T 

t=l 

1 11" {lOg [411"2 Ie (t -1/2 )..)] + J~h)(~, A)} d)" 
-11" T' Ie (t-i/2, )..) 

(14) 

as a generalization of the Whittle likelihood to nonstationary processes. If the 
model is stationary, i.e. 'lI(u,)..) = Ie()..) then the above likelihood is identical to 
the classical Whittle likelihood, i.e. we have a true generalization to nonstationary 
processes. 

In Dahlhaus (2000) the asymptotic properties of this likelihood and the corre­
sponding estimate have been investigated in the nontapered case. The properties 
in the tapered case follow as a special case from the investigations for random fields 
in Dahlhaus and Sahm (2000) (see also Section 4 below). We briefly describe the 
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results here. Let 

BT := argminCT(O). 
flEe 

463 

(15) 

A P 
Below we state that OT ~ 00 where 00 is the true parameter. If the model is 
misspecified the same holds with 

00 := argminC(O) 
9Ee 

(16) 

where 

with 
h(u) = lim hT(u) 

T-too 

is the limit of CT(O). In the case where the model is correctly specified, l.e. 
f(u , A) = f9' (u, A) with some O· E 8 one can show that 00 = 0·. 

We also define the exact Gaussian likelihood estimate by 

OT := argminCT(O). (18) 
9Ee 

where 
- 1 1 1 I 1 

CT(O) := 2Iog(2rr) + 2T logdet 1::9 + 2T X 1::; X (19) 

is - jr log Gaussian likelihood and 1::9 is the variance covariance matrix of the 
model under consideration. 

We set 'Vi = at and 'V'fj = ae~;9j. The results hold under the following 
assumptions. 

ASSuIllption 2.3 (i) We observe a realization Xl,T, ... , XT,T of a locally 
stationary Gaussian process with mean 0, transfer function A 0 and covari­
ance matrix 1::. We fit a class of locally stationary Gaussian processes with 
mean 0, transfer function Ae and covariance matrix 1::9, 0 E 8 C ~P, 8 
compact. 

(ii) 00 = argminC(O) exists uniquely and lies in the interior of8. 

(iii) A9(U,A) is differentiable with respect to 0, u and A with uniformly con­

tinuous derivatives 'Vi} ::2 :>. Ae (u , A) . 

(iv) f9(u , A) = IA9(u, A)j2 and f(u, A) = IA(u , A)j2 are bounded from below 
by some constant C > 0 uniformly in 0, u and A. 
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(v) The data taper hT is a normalized taper of proportion p E [0,1] (see 
(10)), where hp is symmetric about 1/2 and hp(u) = 1 for U E [p/2, 1/2] 
and h(u) = w(u/(2p» for u E [0, p/2]; w : [0,1] -+ [0,1] is twice continously 
differentiable and strictly increasing with w(o) = 0, w(l) = 1 and w'(o) = 
w'(l) = 0. (Note that this also includes the nontapered case by letting p = 0.) 
The limit of hT (T -+ (0) will be denoted by h. 

In Dahlhaus (2000) (nontapered case) and in Dahlhaus and Sahm (2000) (ta­
pered case) we have proved the following result. 

Theorem 2.4 Suppose that Assumption 2.3 holds. Then we have 

Vr(OT - Bo) ~ N(O, fh1Vhfh1) and Vr(BT - Bo) ~ N(O, fllV1fl1) 

with 

(f h )ij = 4~ 11 h2 (u) I: [ (f - foo filij 1;;/ + !eo C'ild;;/) 100 ("Vj 1;/) ] d)'du , 

and 

(Vh)ij = 4~ 11 h4(u) I: I ("ild;;/)I ("ilj/;;/) d)'du 

where f1' VI dentote the matrices fhi Vh corresponding to the nontapered case 
h(u) = X[O,l]. 

Remark 2.5 (i) Theorem 2.4 contains the asymptotic distribution of the Whittle­
estimate and the MLE in the stationary situation as a special case (if I and !eo 
do not depend on u). Theorem 2.4 also gives the asymptotic distribution in the 
case where a stationary model is used with the classical Whittle-likelihood but 
the process is only locally stationary. 
(ii) The matrices f and V from Theorem 2.4 simplify in several situations, in 
particular when the model is correctly specified (i.e. 1= 10J, when a stationary 
model is fitted (fo does not depend on u), and when the parameters separate. 
(iii) In the correctly specified case (f = 10J we have f1 = VI. Furthermore VI 
is the limit of the Fisher information matrix, i.e. the MLE is efficient (for LAN 
see also Remark 3.3 in Dahlhaus, 2000). By using the Cauchy-Schwarz inequality 
it can be shown in the case I = !eo that fh1 Vhfh1 - V1- 1 ~ 0, i.e. fiT is less 
efficient than the MLE with equality if the data taper is asymptotically vanishing 
(which is a reasonable assumption). 
(iv) It can be shown in the nontapered case (cf. Dahlhaus, 2000, Theorem 2.8) 
that LT (B) is an approximation to iT (B) thus confirming the heuristics of the 
beginning of this section. Furthermore OT - BT = Op(T-1+€) holds for each c> ° 
(Dahlhaus, 2000, Remark 3.4). Presumably this also holds for asymptotically 
vanishing tapers but not for non-vanishing tapers. 
(v) In Dahlhaus (2000) the more general situation of a multivariate locally sta­
tionary process with time varying trend I' and a time varying trend model 1'0 has 
been considered. 
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There are a number of estimates with similar properties which are based on a 
simplified or modified form of the likelihood : 
(i) The first simplification results from the observation that the first summand 
of the likelihood is often free from the parameters describing autocorrelations. 
Suppose for example that the process has a one-sided MA( 00 )-representation 

t - 1/2 1 00 

Xt,T = J.l( T ) + 211" L at ,T,kCt-k 
k=O 

with at,T,k as in Remark 2.2 and Bct = 0, BesCt = 27r().t. Let 

1 
(12(u) = -ao(u)ao(u) 

211" 

where ao(u) = J':,.. A(u, A)dA. (12((t - 1/2)/T) is up to an O(T-l)-error (due to 
the approximation (2) or (7)) the variance of the one-step prediction error at time 
t and the variance of the innovations in a standardized MA(oo)-representation. 
It follows from Kolmogorov's formula (cf. Brockwell and Davis, 1987, Theorem 
5.8.1) that 

1 1'" 211" _,..log[(211")f(u , A)]dA = log (12(u) 

leading to a simplified version of £T(O). 
(ii) Another simplification results from the replacement ofthe integral in £T(O) by 
2,f times the sum over the Fourier Frequencies. It can be shown that the resulting 
estimate has the same asymptotic properties as OT . 

3. Nonparametric Local Likelihood Estimation 

In this section we demonstrate how the above likelihood can be used for the con­
struction of various nonparametric estimates of parameter curves O(u) for locally 
stationary curves. 

The likelihood derived in (14) is of the form 

, T 

£T(O) = ~ L hTC -;/2ff.T (O , t -;/2) 
t=l 

(20) 

with 
1 1'" 2 J}h)(U,A) 

f.T(O,U) = - {log [411" fe(u,A)] + t ( A) }dA, 
411" -7r e u, 

(21) 

i.e. £T(O) has (up to the weights hT((t -1/2)/T)2) a similarform as the negative 
log-likelihood function of iid observations where f.T(O, t-iP) is the negative log­

likelihood at time point t. In the present dependent situation f.T (0 , t-iP) may still 
be regarded as the negative log-likelihood at time point t which now in addition 
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contains the full information on the dependence (correlation) structure of X t,T 
with all the other variables . 

To illustrate this we give two examples: 

1. Suppose we have independent observation with a time varying variance, i .e. 
our model is 

t - 1/2 
Xt,T = 0'( T )Ct, Ct iid N(O, 1) , 

with O'(u) = O'O(u). This process is locally stationary. It is easy to show that 
in this case 

i.e. in the nontapered case .cT(O) is exactly the negative Gaussian log­
likelihood. We remark that this example can be extended to the general 
model of nonparametric regression with heteroscedastic errors 

t t 
Xt ,T = meT) + O'(T)ct , Ct iid N(O, 1) 

We then have to modify the definition of .cT(O) and 'T(O,,f) to include the 
time varying mean (as in Dahlhaus, 2000, (2.6» and obtain 

t - 1/2 1 2 t - 1/2 1 t - 1/2 2 
'T(O, T ) = 2 log 21rO'o ( T ) + 2O'~C-~/2) (Xt ,T - mo( T » 

which again gives exactly the Gaussian log-likelihood. 

2. Suppose 

t - 1/2 t - 1/2 
Xt ,T = ¢( T )Xt-1 ,T + 0'( T )Ct, Ct iid N(O, 1), 

with ¢(u) = ¢o(u), O'(u) = O'o(u), Then Xt,T is locally stationary with time 
varying spectrum 

leading to 

, (0 t - 1/2) 
T , T 

1 2 t - 1/2 2 log 21rO'o ( T ) + 
1 t - 1/2 2 

2(t_l/2)(Xt,T-¢0( T )Xt-1 ,T) +rt 
20'0 T 

+ 
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with 

( t - 1/2 2 2 2 
rt = ¢ T ) (Xt,T - Xt-1,T), 

and 'L.~=l rt = Op(l). 

The fact that f T (8, t-;p) can be seen as the local likelihood of the process at 
time t opens the door for various non parametric estimation methods. 

Recall that several nonparametric estimation techniques can be written as the 
solution of a least squares problem, for example for the simple nonparametric 
regression problem 

t - 1/2 
Xt,T = m( T ) + €t 

a) a kernel estimate can be written as 

1 ~ (u - (t -1/2)/T) m(u) = argmin b T L-t K b {Xt,T - m}2 
m T t T 

where K is the kernel and bT is some bandwidth; 

b) a local polynomial fit can be written as 

_( ) _ . _1_ ~ K (u - (t - 1/2)/T) . 
c u - argmm b T L-t L 

C T t V'j' 

{ ~ t-1/2 .}2 
. Xt,T-~Cj( T -u)3 ; 

J=O 

where C = (co, ... , Cd)' are the coefficients of the fitted polynomial at time 
u; 

c) an orthogonal series estimator (e.g. wavelets) can be written as 

together with some shrinkage to obtain the final estimator a. Here the t/Jj (.) 
(j = 1, . . . , J) denote some orthonormal functions. J usually increases with 
T. 

Note that the { .. . }-brackets always contain the negative log likelihood of the 
parameters up to some constants. 

Suppose now we have a locally stationary model which is parametrized by one 
or several curves in time. By using the local likelihood we may define completely 
analogously to above 
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a) a kernel estimate by 

, . 1 ~ .' (u - (t - 1/2)/T) 0 (B t - 1/2) . 
B(u)=argmm b T~K b {.T, T ' 

(J T t=l T 

b) a local polynomial fit by 

' ( ) _ . 1 ~ K (u - (t - 1/2)/T) . 
C u- argmm b T ~ b 

c T t=l T 

(~ t - 1/2 . t - 1/2) 
iT ~Cj( T -up, T 

j=O 

c) an orthogonal series estimator (e.g. wavelets) by 

together with some shrinkage of a. 

In case of several parameter curves (a vector of curves) B, the Cj and the Cij 

are also vectors. In case of a multivariate process or a process with mean different 
from zero the definition of iT(B, t-;p) from Remark 2.10 of Dahlhaus (2000) has 
to be used. Furthermore, we conjecture that it is beneficial to use the weights 
hT((t -1/2)/T)2 as in (20) . 

It is obvious that the properties of these estimators have to be investigated in 
detail. In Dahlhaus and Neumann (2000) this has been done in the nontapered 
case for the wavelet estimate from c). It has been shown that the usual rates of 
convergence in Besov smoothness classes are attained up to a logarithmic factor 
by the estimator. 

4. Local Likelihood Methods for Random Fields 

In this section we consider a process on the d-dimensional grid DN = {I, ... , N}d, 
denoted by X n , n E DN. Here and throughout this section, n is a multiindex of 
dimension d (we use nand N instead of t and T to distinguish the random field case 
from the time series situation). We will extend the notion of local stationarity 
to the random field situation and introduce the generalized Whittle likelihood . 
Again, this likelihood has a representation as an average over local likelihoods 
and can therefore be used as a starting point for various non- and semi parametric 
procedures as discussed in the last section. We will focus on the parametric 
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situation and discuss the main difficulty and difference to the time series case: a 
potential bias of crucial order. 

The random field case can be treated in quite the same way as the time series 
situation; however, due to the presence of potential bias more thorough analysis 
of the derivative of the likelihood is called for . 

First we define locally stationary random fields in the same way as for the time 
series. 

Definition 4.1 A sequence of random fields Xn,N, n E DN is called locally sta­
tionary with transfer function A 0 and trend p if there exists a representation 

( n -1/2) 1 Xn,N = P N + exp(i < A, n » A~,N(A) de(A) 
(_n-,,,-jd 

where e(A) is a process on (-11", 1I"]d fulfilling (i) of Definition 2.1. 
Furthermore there are a constant K and a periodic function A : [0, l]d x 

(-11', 1I"Jd -+ <C such that A(u, A) = A(u, -A) and 

~~r IA~'N(A)-A(n-N1/2,A) I < ~ (22) 

The quantity f(u, A) = /A(u, A)j2 is called the varying spectral density of the field. 

Note that in the time series case the approximation error of order N-1 corre­
sponds to the number of observations N, while in the random field scenario with 
N d observations this error of order N-1 is much larger relative to the normalizing 
constant N- d in the likelihood (see (24)). However, important examples as AR­
or MA-processes with smoothly varying coefficients, which have to be included 
in the framework of locally stationary random fields, require this definition. For 
example, a two-dimensional causal AR(l) process with varying coefficients a and 
f3 and constant variance (T2: 

(where nl, n2 E {I, ... , N} and a and f3 are smooth functions on the unit square) 
has a spectral representation 

with 
o (n-1/2) 1 (n-1/2) -2 

An,N(A) = A N ,A + N B N ,A + O(N ) (23) 

where 

A(u, A) 
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This can easily be calculated from the MA-representation of the process. Note 
that A(u,·) is the transfer function of a stationary AR(l)-process with parameters 
a(u) and J3(u) and that in general B(u, >.) does not vanish . This structure of an 
existing second order approximation seems to be the typical situation and will be 
used later in Theorem 4.5. 

The generalized Whittle likelihood we consider is almost the same as in the 
time series case with some modification due to the potential presence of a bias. It 
is defined by 

1 1 ~ h2 (n-l/2) 
2 (21l")d Nd ~ N -W- x 

nEDN 

! { j{h)('2.=2i2. >.) } 
log [(21l")2d " (n-l/2 >')] + N N' d>' (24) 

8 N' ~ (n-l/2 >.) 
( ] d J(J N ' 
-1f' , 7r 

where the tapered preperiodogram now is defined as 

j{h) (n - 1/2 >.) = h,?(u) [~ ei <A ,r> X(h) r X(h) r + (25) 
N N' 2(21l")d ~ [n+,,],N [n-,,],N 

r 

~ i<>' ,r> X(h) X(h) ] 
~ e [n+~]. ,N [n- ~]. ,N 

r 

where [n]* denotes the smallest integer larger or equal to n and the sums are taken 

over all r E LZ such that the corresponding observations x~~1 = hN (n-;/2)Xn,N 

exist; hN is a normalized d-dimensional taper of proportion p, i.e. 

where hp is a one-dimensional taper of proportion p. 
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For the modified preperiodogram we have the same relation as in (12) , namely 

(26) 

1 I'"' (h ) . 12 (27rN)d L.mEDN Xn ,NexP(-z < >.,n » (27) 

This means that the likelihood IN(fJ) is for stationary fields (where fe(u, >.) is 
independent of u) a generalization of the stationary Whittle likelihood with a ta­
pered periodogram. The latter was introduced by Dahlhaus and Kiinsch (1987) 
to reduce the bias of the stationary Whittle estimate from order N- 1 to the 
order N- 2 leading to a central limit theorem for 'ON with rate N- d/2 for dimen­
sions d = 1,2,3. More precisely, the scorefunction in the stationary case has a 
bias of order N- 1 which is reduced to 0(N- 2 ) by using a data taper (see also 
Guyon (1995), Section 4.2). Unfortunately the situation is more complicated in 
the locally stationary setting. The scorefunction V'LN(fJO) as in (14) with the 
preperiodogram as in (9) generalized to the random field case, has three potential 
sources of bias. The first one is the aforementioned bias of the preperiodogram 
close to the boundary of the field, a phenomenon which also appears in stationary 
random fields. This bias is of order N- 1 , the proportion of boundary points of 
the field . By using a data taper, this bias is reduced to the order N- 2 as in the 
stationary case (see Dahlhaus und Sahm, 2000). 

The second source of bias is the 'skew' definition of the preperiodogram (9), . 
which is oriented at the Wigner spectrum for nonstationary processes. The prepe­
riodogram defined in (25) takes care of this skewness and reduces the bias due 
to the definition of the preperiodogram to the order N-2. This is the reason 
why we use IN(fJ) instead of LN(fJ) as in (14). From a technical point of view, 
it is even better to use the quadratic form -#;rXTU X as the second part of the 
likelihood, where the matrix U is given in (31). This, however, destroys the nice 
representation of the likelihood as a sum over local likelihoods. 

The third source of bias is the notion of local stationarity itself, since due 
to (22) the local spectral density characterizes the considered process only up to 
the order N-l, which also results in a bias of order N-l . We will address this 
problem again after the asymptotic results for the estimates based on (24) are 
presented . The assumptions needed are essentially the same as those in Section 2, 
we only assume a little more smoothness to achieve a more accurate bias control. 
A detailed proof of the following results can be found in Dahlhaus and Sahm 
(2000). 

ASSuIllption 4.2 (i) We observe a realization Xn,N, n E DN of a locally sta­
tionary Gaussian random fields with mean 0, transfer function AO and quickly 
decaying covariances: COV(Xn,N, Xm,N) = O((lnj - m j 1 + 1)-3) for i = 1, . . . , d. 
We fit a class of locally stationary Gaussian random fields with mean 0 and trans­
fer function A~ , fJ E e c lRP I e compact. 
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(ii) Ae is differentiable with respect to e, u and>' with uniformly continous deriva­

tives 'V;,j,k';;~Ae; A is differentiable with respect to u and>' with uniformly 
. d" &2 &2 A contmous envatzves &u~ &)0.2 • 

(iii) I = IAI2, Ie = IAel2 are bounded from above and bounded away from 0 
uniformly in e, u and >.. 

(iv) The taper hN fulfils Assumption 2.3 (v) and is of proportion p > O. 

Theorem 4.3 Let X n , n E DN be a locally stationary random field of dimen­
sion d and let assumptions (i)-(iv) hold. Furthermore f denotes the true spectral 
density of the process and we assume that 

eo = argmin r h2(u) r [logfe(u, >.) + :~u, ~\ ] d>.du (28) 
ge0 J[O,ljd J(-7r,7rjd 9 U, 

exists uniquely and lies in the interior of e. 
The estimator ON := argminge0 CN(e) has the following properties. 

a) Consistency: ~ - eo (p» O. 

b) Bias of the scorefunction: JE( 'V CN(OO)) = O(N-l). 

c) Normal Law: 

N d/ 2 (~ - eo - r;lJE('V CN(eO)) ~ N(O, r;l Vh r;l) 

with 

(Vh);j 
1 J h4(u) J I ('Vdi./) I ('Vj 19,/ ) d>.du (29) = 2(27r)d 

[O,ljd (_7r,7rjd 

(rh );j = 1 J 2 2(27r)d h (u) J [ (f - !eo) 'V;j Ii./ (30) 

[O,ljd (_7r,7rjd 

+ foo ('Vdi./) !eo ('Vj Ii;/) ] d>.du , 

Remark 4.4 (i) The result also holds for the likelihood defined in (14) generalized 
to the random field case; for the important Theorem 4.5, however, the use of CN 
is essential. 
(ii) If the taper proportion p is chosen to be of order N- I / 5 and the model is 
correctly specified, the asymptotic variance simplifies to VI-I, where VI is obtained 
by inserting the constant funtion X[O,lj for h. 
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(iii) The bias of the scorefunction of order N- 1 should give rise to a bias of the 
estimator e;. of the same order, so that the normal law would read N d/2(iiN -
1EeN) ~ N(O,fhlVhfhl). Due to the restrictive moment assumptions it should 
be possible to prove this using properties along the lines of Lemma 4.1 in Dahlhaus 
and Giraitis (1998). However, this slight improvement of the result does not seem 
to justify the rather large technical effort. 

The problem of Theorem 4.3 is the bias. Since the bias is of the same or larger 
order than the normalizing constant in the normal law, Theorem 4.3 is not useful 
for practical application in dimensions d > 1. However, the only source of bias of 
order N- 1 is the approximation (22), the remaining bias is of order N- 2 . This · 
means, if there is a second order approximation (as for example in (23)) available, 
this part of the bias can be calculated (if the model is correctly specified) and we 
obtain an applicable normal law for the important dimensions d = 2,3 . 

Theorem 4.5 Let X n , n E DN be a locally stationary random field in dimension 
d < 3 with mean 0 and transfer function A O and Assupmtions 4.2 be fulfilled. 
(1) If A~,N (A) = A(n-~/2, A) for all n E DN then 

N d/2 (eN - 00) ~ N(O, fhl Vh fhl) 

where the matrices fh and Vh are given in (29) and (30). 

(2) If A~,N (A) = A(n-~/2, A) + ~ B(n-~/2, A) +O(N-2), where B fulfils Assump­
tion (ii), then 

N d / 2 (eN - 00 - ~fhl M(Oo» ~ N(O, fhl Vh fhl) 

where 

M(O) (2!)d! h2('ll) ! A('ll,A)B('ll,A) 'Vef;l(U,A) dAd'll. 

[O,ljd (-11" ,n-jd 

Remark 4.6 (i) If the model is correctly specified, the quantity fhl can be 
consistently estimated by fhl(eN)' obtained by substituting eN for 00 in (30); 
N d/ 2 - 1 M(Oo) can be consistently estimated using 

M(BN) = (2!)d ! h2('ll) ! 
[O,ljd (_7r,7rjd 

If moreover the taper proportion p is of order N- 1 / 5 , one can use the corrected 
. - -1 .- - - . . estimator ON = ON - N- 1 VI (ON) M(ON, ON) and Theorem 4.5 slmphfies to 
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(ii) Theorem 4.5 yields the desired normal law for the important dimensions d = 
2,3. For higher dimensions the asymptotics generally fails due to additional bias 
of order N - 2. Here an alternative would be to consider the scorefunction 

(UN (fa-I) as defined in (32)) and the estimate 8 defined by S N (8) = o. This 
scorefunction is clearly inspired by the Whittle likelihood, but it is by definition 
unbiased . For estimates based on this scorefunction, one easily obtains a normal 
law in any dimension d (analogously to the proof for the Whittle likelihood). 
However, this procedure requires knowledge of the exact covariance matrix of the 
process, which can be very difficult to obtain to the desired precision; in the worst 
case, the covariance would have to be simulated, leading to some time-consuming 
annealing scheme. Another possibility is to apply a Newton step starting from 
ON, i.e. to use 

as an estimator. This estimator has the required normal limit for d :S 3, for d 
larger one needs multiple iterations of the Newton step. 

5. Generalized Toeplitz Matrices 

In this section we show how the local likelihood is derived by a certain approxi­
mation of the inverse of the covariance matrix together with a generalized version 
of the Szego identity. For simplicity we restrict ourselves again to the time series 
case d = 1. Similar results also hold for the random field case (cf. Dahlhaus and 
Sahm, 2000, Section 4). 

Note that in the stationary case the covariance matrix E is equal to the Toeplitz 
matrix 

BT(f) = {[: exp(i>.(r - s))f(>')d>'} r,.=l .... ,T 

where f(>.) is the spectral density of the process. It is well known (cf. Grenander 
and Szego, 1958) that BTU) can be approximated by BT(~f-l) which leads 
together with the Szego identity 

in the case of f = Ie to the Whittle likelihood (13) as an approximation of -,Jr log 
Gaussian likelihood. 

In the locally stationary case we obtain for the covariance matrix E 

Er,s cOV(Xr,T,X.,T) i: exp{i>.{r - s)}A (r -;/2, >.) A (s -;/2, >. )d>. + O{T- 1 ). 
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If A is sufficiently smooth in time this implies 

1'11". (r+ s -1 ) Er ,> = _'II" exp(xA(r-s»1 2T,A dA+O(T- 1). 

The above approximation of Toeplitz matrices now suggests to use 

{ I 1'11". (r + s - 1 ) -1 } 
411"2 _'II" exp{ZA(r- s)}1 2T,A dA 

r,,,=l, ... ,T 

(31) 

as an approximation of B- 1 in (19) in the nonstationary case. Since it leads to a 
slightly nicer criterion we use instead UT(~1-1) where 

{1'11". (1 [r + s] 0 1 ) } UT(<fJ) = _'II" exp{zA(r - s)}<fJ T -2- - 2T' A dA _ 
r,-,_l, ... ,T 

(32) 

and [x]O denotes the smallest integer larger or equal to x. Note that UT(~ 1-1) = 
BT (~1-1) is the classical Toeplitz-approximation if I is constant over time 
(stationary case). We now use this approximation, i.e. 

E;l F:;j UT (4!2 1;-1) 
to approximate the second part of the likelihood in (19). We obtain with the 
substitution [~]O = t and r - s = k 

X'UT(f;l)X = r~l Xr,TX.,T I: exp{iA(r- s)}fe (~ [r;sr - 2~'A) -IdA 

T 1'11" t - 1/2 
= ~ -7r fe( T ,A)-l ~X[t+1/2+k/2]'TX[t+1/2_k/2]'Texp(iAk)dA . 

= 211" tl:lect-;/2,A)-lhct-;/2,A)dA, 

i.e. the second part of the local likelihood £T(B) as defined in (19) (with h(u) = 
X[O,l](u».The first part of the approximation follows from a generalization of 
Szego's formula to the nonstationary case (see Proposition 2.5 in Dahlhaus, 2000) 

2.logdet Ee = ~ t 17r log[211"fe(u, A)]dAdu + O(T- 1+e ) 
T 211" 10 -7r 

with e > O. That UT ({ 411"2 J} -1) is a good approximation to E-1 is made precise 
in Proposition 2.4 of Dahlhaus (2000) where it is proved under suitable regularity 
conditions that 

(33) 
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and 
~ 1 UT(<fJ)-l - UT({411"2<fJ}-1) 12 = O(T-l+") . 
T 

for e > 0 There exist a large number of additional results for these generalized 
Toeplitz matrices, e.g. on norms and matrix products (cf. Dahlhaus, 2000, Ap­
pendix A). 

The tapered likelihood C¥:) (0) arises as an approximation of the exact Gaus­
sian likelihood iT (0) if one uses UJ!') ({ 411"- 2 f} -1) instead of UT ( { 411"2 f} -1) as an 
approximation of :E- 1 where 

and 
(h) . 1/2 (T - 1/2) 

IT = dlag{ hT ( T)' .. . , hT T } 

with hT(U) as in (9). In the stationary case (where UT(<fJ) := BT(<fJ)) it has been 
proved in Dahlhaus (1990) that this is indeed a better approximation of :E-1 if 
the taper is asymptotically vanishing. Heuristically, the classical approximation 
without taper is particularly bad at the edges of the matrix. This is improved by 
downweighting the edges with a taper. Thus the use of a data taper in the Whittle­
likelihood means using an improved approximation of:E- 1 and not downweighting 
the observations at the edges of the observation domain (as it looks from a first 
view). 

All considerations of this section also hold in the random field case (cf. Dahl­
haus and Sahm, 2000) . 
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