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Abstract: The article is aimed to give a brief review 
of works published by authors during at least last 10 years 
and devoted to the construction of solutions of systems of 
ordinary differential equations in a neighbourhood of a non­
elementary criticai point. It is assumed that those solutions 
have non-exponential asymptotics. The main idea of the pro­
posed technique is closely connected with the so-called first 
Lyapunov method. On the first stage one should cut the orig­
inai system of equations in an appropriate way, then find a 
particular solution of the obtained cut system and, finally, 
complete it up to a particular solution of the entire system 
by means of series. The authors show how the above scenario 
works for different classes of dynamical objects. 
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10. We will consider a certain class of dynamical systems which can be de­
scribed by means of a smooth vector field v( x) and which has an equilibrium at 
t.he origin x = O 

x = v(x), x E R n , v(O) = O (1) 

Using the first Lyapunov method , one can explicitly construct families of so­
lutions of (1) entering the equilibrium position x = O as t -+ +00 or t -+ -00 

in a form of series. The behavior of the above t.rajectories of dynamical systems 
contains a lot of important information about the structure of the phase portrait 
of the system in a small neighborhood of x = O. In particular, the existence of 
trajectories entering the equilibrium position as t -+ -00 implies inst.ability of the 
latter equilibrium. 

Let A = ~~ (O) be the Jacobian of the vector field v(x) evaluated at the 

equilibrium. Let us assume that the characteristic equation 

det(A - >..1) = O (2) 

possesses p roots À1 , ... , Àp with negative (positive) real parts. Then system (1) 
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has a p-parametric family af solutions going to the origin as t -+ +00 (t -+ -(0). 
Thase solutions can be expanded into the following series [IJ 

+00 
x(t) = L Xj" ... ,jp(t) exp((jIÀ1 + .. . + jpÀp)t) (3) 

j" ... ,jp=O 

Here jl + ... + jp 2: 1 and coefficients x;' , ... ,jp are polynomials in t and depend 
on p arbitrary parameters which have to be small enough to ensure convergence 
of series (3). The first partial sum of (3) UI + ... + jp = 1) is obviously a linear 
combination of particular solutions of the 'truncated' linear system 

x = Ax (4) 

lt. is however worth notlcmg that in a general case formula (3) represents 
complex solutions af system (1). To construct real solutions, ane needs more 
complicated and refined formulae. 

The first Lyapunov method in its cJassical 'quasi-linear ' set.ting actually con­
sists of three main steps: 

a) to simplify the original system by neglecting some terms and obtaining a 
cut system; 

b) to construct a particular solution or a family of particular solutions of the 
cut system; 

b) to build the above sol utions of the cut system up to the particular solutions 
of the entire system in a form of series. 

Before explaining the notion of strongly non-linear systems and advanced 
studying of the subject, let us consider a couple of examples on the classical first 
Lyapunov method. If the characteristic equation (2) has roots which do not lie on 
the imaginary axis, system (1) has particular solutions with specific asymptotic 
properties. Hence, it is very useful to know whether there are such roots of equa­
tion (2) or not without calculating them. We formulate now several corollaries 
which are almost trivial in the quasi-linear case. 

Example J. There is a hypothesis suggested by V.Ten [2]. Let x = O be an 
isolated equilibrium position, the dimension of the phase space n is odd and the 
vector field under consideration has an invariant measure with a smooth density 
p(x)(div(pv) = O,p > O) . Under those assumptions the origin x = O is unstable 
'in the future' and 'in the past' . It is worth mentioning that the above hypothesis 
is not true for infinitely differentiable vector fields and invariant measures (there 
is a counter-example). But for the analytic case it seems to be true . 

If det A :j:. O, the origin x = O is isolated. In this case we can simply prove that 
trA = O and equation (2) must have roots with positive and negative real parts. 

Example 11. Let us consider a gradient system 
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x = O<p (x ) (5) 
OX 

with a harmonic potential: 6.<p(x) == ° for which x = ° is a criticaI point . 
Then t.he equilibrium position of (5) x = ° is unstable in the future and in the 

past o Let us first notice that if we expand the potential <p(x) into the Maclaurin 
series with respect to homogeneous forms of x <p(x) = <P2(X) + <P3(X) + ... , ali of 
those forms admit both positive and negative values since they are also harmonic 
(6.<Pk(X) == O, k = 2,3 , . .. ). Presenting the quadratic part of the potential as 
<p2(X) = ~(Ax, x), AT = A ((.,.) is a standard scalar product in R n ), we can 
simply prove that trA = 0, and if A 1= 0, there are positive and negative roots of 
equation (2) . 

2°. Let us pass now to the main subject. A system is usually said to be 
strongly non-Iinear [3 ,4] if the behavior of trajectories in a small neighborhood of 
an equilibrium position cannot be determined by using only the linear approxi­
mation . According to this terminology, systems with non-exponential asymptotic 
trajectories , i.e. those going to the equilibrium position as t -+ +00 or t -+ -00 

but not exponentially with respect to time, may be called strongly non-linear ones. 
On the other hand , the phase portrait of a smooth system of differential equations 
in a small neighborhood of an equilibrium is topologically conjugate to the phase 
portrait of its linearization, if there are no roots of the characteristic equation 
with zero real parts (the Grobman-Hartmann theorem). Therefore, systems for 
which the characteristic equation has zero or purely imaginary roots can be also 
called strongly non-linear ones. 

Let us first concentrate our attention on the 'supercritical' case when A is a 
nilpotent matrix. The central notion we introduce in this section is the notion of 
semiquasi-homogeneous vector fields. 

Definition /. Let S = diag(sl,"" S2) be a diagonal matrix with positive integer 
elements. Let us denote the following diagonal matrix >. S = diag( >'" , .. . , >.' n ) . 

Let further m be a positive integer number, m 1= 1. We say that vector field 
v(x) = Vm (x) is quasi-homogeneous of degree m with exponents SI, . .. , Sn if for 
any x E R n , >. > ° the following equality holds 

(6) 

It is useful to note that if v( x) is a quasi-homogeneous vector field, system 
(1) is invariant under the transformation t t-t f.l-1t, x t-t f.lG x where G = aS, 
a = l/(m - 1). Hence, (6) can be rewritten as 

(7) 

Equality (7) can be treated as a generalized definition of quasi-homogeneous 
vector fields for an arbitrary real matrix G with eigen-values in the right half-plane 
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where f-lG is meant. as t.he following mat.rix exponential JlG = exp( G log f-l). In this 
case the degree m plays a formal role. 

Definition 11. A vec:t.or field v( x) is said to be a semiquasi-homogeneous one 
if it can be presented as a formal sum of quasi-homogeneous polynomials v( x) = 
2::;;'=0 vm+k(x) so that 

(8) 

In principIe C\' can be any real positive number. 
Any smooth vector field with a 'trivial' linear part can be represented in a 

semiquasi-hornogeneous formo This can be done by means ofNewton's polyhedron 
technique. And one should bear in mind that such a representation is not unique. 
Let us consider two simple examples. 

Example IJI. The following system of equations 

is quasi-homogeneous of degree m = 3 with exponents Sl = 2, S2 = 1. On the other 
hand, it is semi-homogeneous, i .e. semiquasi-homogeneous for equal Sl = S2 = 1 
and m = 2. In this case the cut system reads as follows 

Example IV. The system of equations 

is of course homogeneous àf degree m = 3. On the other hand, it is quasi­
homogeneous with respect to the structure associated with a non-diagonal matrix 

where t5 is a free parameter. 
Furthermore, any system of the form 

where p = xf + x~ and t/;(p) = o(p) as p -+ 00, is semiquasi-homogeneous. 
Systems of equations for which the matrixof the linearization is nilpotent can 

be studied using the program of the first Lyapunov method described in Section 
1: 
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a) to represent an original syst.em of equations as a semiquasi-homogeneous 
one and to cut it up to t.he quasi-homogeneous system corresponding to the 
introduced structure ; 

b) to construct a particular solution of the quasi-homogeneous cut system in 
the form 

(9) 

to build the particular solution (9) of the cut system up to the particular solutions 
of the entire system in the form 

+CXl 
x(t) = (±t)-c 2.: xk(log(±t))(±t)-ak, Xo = c, (10) 

k= O 

where Xk are polynomial vedor functions. Here the sign '+' is used if we are 
interested in asymptotics of the solution of the system under consideration (1) as 
t -t +00 and '-' if t -t -00 . Below we confine ourselves mostly to the case 
t -t +00 if the opposite is not assumed. 

Let us consequently consider those three steps. 
In fact, the first step has been already described . Using Newton 's polyhedron 

technique [5], we can obtain a quasi-homogeneous cut system 

(11) 

The second step consists offinding a real vector c in (9). Obviously, that vector 
has to satisfy the following equality 

(12) 

The problem of finding the above vector looks like the linear algebraic problem 
of eigen vectors. In the linear case such a vector can be found explicitly. In the 
non-linear situation it is not so. However, the next proposition shows that under 
quite general restrictions such a vedor c really exists. 

Lemma 1. Let vm(x) =1= O for any x =1= o. Then 

a) ifthe index ofthe vector field C-1vm(x) is even (for example, ifvm(x) is a 
homogeneous vector field of even degree m), there exist both 'positive' and 
'negative' eigen-vectors. 

b) if the dimension of the phase space n is odd, there exists either a 'positive' 
eigen vedor or a 'negative' one. 
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We will use the !ast. statement discussing later the hypothesis on instability 
for vector fields with an invariant measure formulated previously. 

The proof of the above lemma can be found in [3 ,4]. 
If v( x) is a gradient vector field with a harmonic potentia! i.p , for which x = O is 

a degenerate critica! point, we can fulfill those two steps in the foJlowing way. Let 
the Maclaurin expansion of i.p(x) start at order m + 1, m 2: 2, i.p(x) = i.pm+l (x) + 
i.pm+2(X) + ... . 

The cut system reads as follows. 

. âi.pm+l ( ) x=---x 
âx 

(13) 

That homogeneous form 'Pm+l (x) is ais o harmonic and can admit both negative 
and positive values. System (13) possesses a rectilinear particular solution 

(14) 

which enters the equilibrium position x = O as t ~ +00. 

The vector e satisfies the equality e = lele where e provides the homogeneous 
form i.pm+dx) with the absolute minimum -a on the unit sphere sn-l and lei = 

(( m : 1 )a) a . In a similar way we can find a solution of (13) entering the origin 

as t ~ -00. To do so, we have to use a vector which provides i.pm+l(X) with the 
absolute maximum on the unit sphere sn-l. 

As for the third step, if the desil'ed particular solution of the cut system (11) 
exists , we can always complete the above solution up to a particular solution of 
the entire system (1) in a form of series. To completely construct series (10), we 
should perform the foJlowing recurrent procedure. We consider only the case with 
the sign '+'. Let us first do the exponential change of time T = logt. Then by 
substituting series (10) into system of equations (1) , we obt,ain an infinite chain of 
linear differential equations with constant coefficients and polynomial right-hand 
sides. 

(15) 

Here <Pk , k = 1,2, ... are, in fact, polynomial functions of 'previous' coefficients 
Xo, ... , Xk-l , and Kk = akI + K, where K is the so-called Kovalevsky matrix 

K = G + âVm (e) 
âx 

(16) 

System (15) always has a polynomial particular solution. Hence, series (10) 
can be completely constructed. 

As for convergence of series (10), in general, we can only aflirm that there is 
always a particular solution of (1), infinitely smooth on an interval [T, +(0) , for 
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which (10) is an asymptotic expansion [3 ,4,6J . The proof ofthe above fact is based 
on a version of the abstract implicit function theorem. Nevertheless , if the vector 
field v( x) is analytic and if -1 is the only eigen value of the Kovalevsky matrix of 
the type -ak , k = 1, 2, ... the above series converges on an interval [T, +00) and 
we can explicitly construct an infinitely sheeted Riemann surface on which the 
corresponding particular solution of (1) is holomorphic [6J. Precisely speaking, 
that means that the desired solution can be obtained in the form of series 

+00 
x(t) = r G 2: Yk sk , Yo = c, 

k=O 

(17) 

which converges on a small complex disk s :S So, where s = s(t) is a function 
inverse to the function t(s) = s1-m - CTa- 1 10gs, CT is a certain real parameter. 

It is worth noticing that -1 is always an eigen value of the Kovalevsky matrix 
K in accordance with the )emma from [7] . 

So, the following resu)t holds. 
Theorem /. If the cut system (11) has a particular solution (9), then the entire 

system (1) has a particular solution x(t) -+ O as t -+ +00 or t -+ -00 for which 
(10) is an asymptotic expansion. 

Let us consider now several examples. 
Example V. We can partially prove the hypothesis mentioned in Section 1. 
Theorem lI. Let the dimension of the phase space n of system (1) be odd and 

v(x) be an analytic vector field with a nilpotent linear part possessing an invariant 
measure with a smooth density. If there exists a quasi- homogeneous structure 
such that the origin x = O is the only criticaI point of the cut vector field vm (x), 
the equilibrium position x = O of the entire system (1) is unstable both 'in the 
future ' and 'in the past'. 

Using lemma I, we can simply prove the above theorem . Indeed, according 
to the lemma I , there exists either 'positive ' or 'negat.ive' eigen vector of problem 
(12). Consequently, there is a particular solution x(t) of the entire system (1) 
going to the origin x = O either as t -+ +00 or as t -+ -00. That means that 
x = O is unstable either 'in the future' or 'in the past' . But since system (1) 
possesses an invariant measure, instability 'in the future ' results in instability 'in 
the past' and vice versa instability 'in the past' results in instability 'in the future '. 

Example V/. Let us now consider a gradient system (5) with a harmonic po­
tential. The following statement holds . 

Theorem lI/. The equilibrium position x = O of every gradient system with a 
harmonic non-constant potential cp(x) is unstable both 'in the future' and 'in the 
past '. 

Proof Let. us consider the Maclaurin expansion ohhe potential cp(x) = CP2(X)+ 
.... If that expansion starts at a second order form , the statement can be proved 
only by means ofthe linear approximation, as was shown in Section 1. That is why, 
we confine ourselves only to the case when the Maclaurin expansion starts at a 
form of order m+l , m ~ 2. Then the above expansion reads cp(x) = CPm+1 (x)+ .. .. 
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As we have already shown , the cut system (13) possesses two rectilinear solutions 
going to zero as t -t +00 and as t -t -00 which can be cornplet.ed to particular 
solutions ofthe entire system (5) with the same asymptotic properties which leads 
to both instabilities. 

Example VII. A particular case of the inversion of the Lagrange-Dirichlet the­
orem on stability of an equilibrium position of a mechanical system and the Earn­
shaw theorem on instability of a point. charge in an electrostatic field. 

Let us consider a mechanical system described by a Hamiltonian syst.em of 
differential equations 

. ôH ( ) . ôH ( ) ( ) n n q = -ô q,p, p = --ô q,p , q,p E R x R , 
p q . 

(18) 

where H(q,p) is an analytic function of the kind H(q,p) = ~(]{(q)p,p) + U(q) . 
Here ]{ (q) is a positive definite symmetric matrix of coefficients of t.he kinetic 

energy of the system (without loss of generality we can assume that ]{ (O) = I, U (q) 
is the potential energy of the system . If q = O is a criticaI point of the potential 
energy, q = p = O is an equilibrium position of the system. The Lagrange­
Dirichlet theorem [1] states that the above equilibrium position is stable if q = 
O provides U (q) with a strict minimum. The folIowing question arises . Is the 
trivial equilibrium unstable if U(q) does not have a minimum at the point q = O? 
The positive answer was quite recently given by V.Palamodov [8] who completely 
proved the above statement. We give a simple proof of a weaker theorem . 

Theorem IV. Let us consider the MacIaurin expansion of the potential energy 
at the equilibrium position U(q) = Um+! (q) + ... , m ~ 1. Then if the first non­
trivial form Um +1 (q) does not have a minimum, the equilibrium position q = p = O 
is unstable [4,9]. 

It is worth noticing that via the time-reversibility of equations (18) the above 
instability is 'two-sided'. 

Proof The case m = 1 can be simply studied by means of the linear ap­
proximation. Let the Maclaurin expansion of U (q) start at order greater than 
two. Then introducing a quasi-homogeneous structure by means of the foIlowing 
positive definite diagonal matrix G = diag(2a, . . . , 2a, (m + l)a, ... , (m + l)a), 
a = l/(m - 1) we can obtain a cut system 

q =p, p = ôUm +! ( ) 
ôq q, (19) 

for the entire system (18). 
If conditions of theorem IV hold, the quasi-homogeneous cut system (19) ad­

mits a particular solution q(O)(t) = er201 , P(O)(t) = -2aer(m+l)0I , where the 
vector e E R n is paraIlel to a unit vector e providing Um+! (q) with a minimum 
-a, a > O on the unit sphere Sn-l. The length of the vector e can be calculated 

as lei = Cm~l)a) OI. Therefore, the entire system (18) has a particular soIution 
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(q(t),p(t» -t (O , O) as t -t +00. This leads to instability 'in the past ' and conse­
quently 'in the future '. 

The equations of motion of a point charge in an electrostatic field also have 
the form of (18) where n = 3, K(q) = J, and U(q) is a harmonic funct.ion. Ali 
the forms in the expansion of the potential U(q) into the Maclaurin series are 
alternating. Hence, to prove inst.ability (the Earnshaw theorem) , we can simply 
refer to theorem IV . 

Example VII I. At the end of this Section we consider an extension of the 
Lyapunov criterion on instability of a trivial equilibrium position of a system of 
differential equations with a nilpotent linear part [3 ,4]. Lyapunov studied only 
the case n = 2. We consider the case of a higher co-dimension when n > 2. 

Let us write the system of equations for that criticaI case as follows 

Xi = Xi+J + ... , i = 1, . . . , n - 1; xn = ax~ + ... , (20) 

where the dots present non-linear terms for which the monomial axi in the last 
equation is singled out . 

Those dots show the manner how system (20) can be truncated. In fact , 
the cut system is quasi-homogeneous with respect to the diagonal matrix G = 
diag(n , n+ 1, .. . , 2n -1) . 

That cut system has a particular solution X(O)i(t) = Cirn+i-J , i = 1, .. . , n if 
. (2n-1)!(n+í-2)! . 

a"# O. Here Ci = (-lr+·- J a((n _ 1)!)2 . That solutJOn can be completed 

to a particular solution of the entire system (20) entering the equilibrium position 
as t -t +00 . This means instability 'in t-he past' . Analogously, a solution of (20) 
which enters the equilibrium position as t -t -00 can also be constructed . And 
instability 'in the fut.ure ' also takes place. This holds if n 2: 2. 

If, nevertheless , a = O, the initial system of equations should be rewritten as 
follows 

If we neglect alI the non-linear terms denoted by dots, we obtain a quasi­
homogeneous system of equations associated with the matrix G = diag(n -
1, n, ... , 2n - 2) (here we assume that n 2: 3) . That system has a particular solu-
. . _ . -n+i-2 ._ . ._(_ )n+i(2n-3)!(n+i-3)! 

tJOnx(O) , (t)- c. t ,z-l , .. . , nlfb+c:f:O,c,- 1 (b+c)((n-2)!)2 ' 

. ( (2n - 3)! )2 A . I h I ' b 
l = 1, . . . , n-1 , Cn = c (b+c)(n-2)! . s prevJOusy, t at sout.Ion can e 

built up to a particular solution of the entire system (21), which goes to the origin 
as t -t +00 . In this case the origin is unstable 'in the past'. On the ot-her hand , 
it is also possible to construct a particular solution of system (21) entering the 
origin as t -t -00 which results in instability 'in the future'. 
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30. Let us pass to the case when the characteristic equation (2) has non­
zero roots. We rnainly confine ourselves t.o the case of purely imaginary roots 
of equation (2) . The matrix A of the linear approximation to system (1) can be 
expressed as a sum A = D + J, where D is diagonalizable and J is nilpotent . 
Then (1) reads 

x=Dx+u(x) (22) 

where u( x) = J x + ... , dots represent ali the non-linear terms. 
The next step is to transform system (22) into a normal formo Let us carry out 

a formal power transformat.Íon x = y + LYp(Y) . where Yp(Y) are homogeneous 
vector forms of order p 2' 2. Aftel' that system (21) gets the form 

iJ = Dy + w(y) (23) 

where w(y) = Jy + .. .. 
Let us remind of the following definition . System (23) is said to be writ­

ten in Poincare 's normal form if exp(Dt)w(y) = w(exp(Dt)y) (see, for example, 
[lO)). Thus. we can use the following construction. After the following linear 
non-autonomous bounded invertible transformation y = exp(Dt)z system (23) 
becomes 

i = w(z), (24) 

where formal vector field w(z) has a nilpotent linear parto 
Thus, we find ourselves in the situation of the previous section and can per­

form the whole scheme described above. But though, in general, the eigen vector 
problem (12) is solvable for diagonal matrices G which the Newton poIyhedron 
method provides us with. in concrete criticaI cases it is not so and we have to use 
a more refined technique. 

Let there exist no < n independent linear semi-sim pie fields of symmetry for 
system (24) Djz, j = 1 •. .. ,no with diagonalizablematrices Dj. Let also G be a 
diagonal matrix defining a quasi-homogeneous structure obtained by means of the 
Newton polyhedron technique such that it commutes with alI matrices of linear 
fieIds of symmetry (GDj = DjG, j = 1, ... , no). Let the system of equations 

(25) 

be a quasi-homogeneous cut system for (24). 
The following statement holds. 
Lemma 111 [4J. Theset ofmatricesG" = G+L:j~l ójDj, whereó = (Ól, " ', Óno ) 

is a set of arbitrary real parameters, defines a quasi-homogeneous structure under 
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which (25) is quasi-homogeneous and (24) is semiquasi-homogeneous and (25) is 
the corresponding cut system . 

For instance, we can use the matrix Gó = G + tSD, 6 E Rn as a matrix of the 
desired structure. Using that approach, we obtain not only solutions of the cut 
syst,em of the 'ray ' type but also solutions looking like curled rays . 

Opposite to (9) particular solutions of (25) may have the following form in 
general 

(26) 

The further construction is the same. Hence, the desired formal particular 
solution of (23) can be obtained in a form of series 

+00 
y(t) = exp(Dt - Gó log(±t)) LYk(log(±t))(±t)-ak, Yo = c (27) 

k=O 

However, we should bear in mind that in general a normalizing transformation 
diverges and since the normalized system (23) is only a formal system of differential 
equations, series (27) are only formal series. But using a partial normalizing 
transformation and a kind ofthe implicit funct ion theorem technique we can prove 
that a partial sum of (27) of high order approximates a real smooth solution of a 
partially normalized system which goes to the equilibrium position as t -+ +00 or 
t -+ - 00. 

The following general result takes place. 
Theorem V. Ifthe cut system (25) has a particular solution (26) , then the entire 

system (22) possesses a particular solution x(t) -+ O as t -+ +00 or t -+ -00. 

Example IX. Non-exponential asymptotic solutions of general systems of dif­
ferential equations with additional 1:1 frequency resonance and non- simple ele­
mentary divisors. 

Let us consider a 4D system of differential equations for which the character­
istic equation has purely imaginary roots >'1 ,3 = ±..;=Tw, >'2,4 = ±..;=Tw, with 
a non-diagonalizable matrix of the first approximation . 

Stability of the trivial equilibrium position of the system under consideration 
was investigated in [ll] . . 

Let Y = (Y1 , Y2, Y3, Y4) be a phase vedor of the normalized system. The di­
agonalizable part of the matrix of the linear approximation may be represented 
as 

D~U 
-w O O ) O O O 

(28) 
O O -w 
O w O 

The cut system analogous to (25) reads [ll] 
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(29) 

a, b are real paramet.ers ofthe system. Here the diagonal matrix G = diag(l , 2, 1, 2) 
is used t.o perform the necessary quasi-homogeneous truncation. 

Obviously, the matrix G commutes with the matrix D and we can apply the 
procedure described above. The mentioned algorithm makes us to search for 
particular solutions af system (29) in t.he following form 

Z(Q)I(t) = rl(CI cos6w logt - c3sin<5w logt) 
Z(Q)2(t) = r 2(C2 cos 6w logt - C4 sin <5w logt) 
Z(Q)3(t) = rI (CI sin <5w logt + C3 cos <5w logt) 
Z(Q)4(t) = r 2(C2 sin <5w log t + C4 cos <5w logt) 

(30) 

Those solutions (30) form a one-parameter family CI = pcos O, C2 = p(<5 sin O­
cos O) , C3 = psin B, C4 = -p(<5 cosO + sin O). 

Here O is the parameter of the above family and the magnitudes p, <5 have to 
be determined . They satisfy the following algebraic system of equations 

ap2+(<5w)2_2=0,3<5w-b/=0 (31) 

Conditions of solvability of system (31) can be presented in a complex form 
which coincides with conditions to instability found in [11] 

w:j: -lwJ, w = a + Hb (32) 

If inequality (32) holds, the initial system of equations possesses a one-parameter 
family of solutions which goes to the equilibrium position as t --+ +00. We can 
also prove the existence of solutions going to the equilibrium position as t --+ -00. 

It is worth pointing out some obstacles we meet while investigating the case 
when some of roots of the characteristic equations (2) do not lie on the imaginary 
axis. In this case we can reduce the system under consideration onto a center 
manifold. After that we can apply the procedure described above. But the prob­
lem is that the center manifold may have only finite order of smoothness . That is 
why, series like (27) remain only formal series and the question of persistence of 
non-exponential asymptotic solutions requires a more careful analysis. 

4°. Now we stop at the situation which can be characterized as singular. This 
means that we can construct series like (10) but t-hey diverge in most cases even for 
analytic right-hand sides of the system under consideration. A classical example 
has been already given by Euler. 

Example X. Let us consider the following 2D system of differential equations. 

(33) 

System (33) has a particular solution xJ(t) = e-t foo s-le' ds , X2(t) = rI --+ 
(O , O) as t --+ +00 which means, of course, inst-ability. The function Xl (t) can be 
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developed into power series wit.h respect t.O inverse powers of t. That series takes 
lhe form Xl(t) = L:~ (k - l)!t- k , and, of COUl·se, diverges. 

The reason for such a phenomenon can be explained from two different points 
of view. First , such non-exponential asymptotic solutions lie on a center manifold 
which in most cases is not analytic . Second , if we insert a small parameter into 
the system under consideration which corresponds to the quasi-homogeneous scale 
associated with first non-trivial terms of the above series, the system looses some 
of derivatives while the small parameter vanishes. Anyway, such a phenomenon is 
connected with a crucial interaction between variables corresponding to zero and 
non-zero roots of the characteristic equation. The obtained series are asymptotic 
series to the desired particular solutions but the direct technique of the implicit 
function theorem is not applicable here. We have to use a more refined result of 
A.Kuznetsov [12,13] . Roughly speaking, he managed to prove that if a smooth 
system of equations possessed a formal solution in the form of series (10) then 
it had a real smooth solution for which (10) was an asymptotic expansion. That 
powerful tool fails, however, in the case when the matrix G is non-diagonal. There­
fore , it does not work for the case of 'curled ' solutions which normally appears if 
there are some purely imaginary roots of the characteristic equation. 

Now let us discuss the first reason for the divergence of series (10) connected 
with non-analyticity of the center manifold . We can formulate the following state­
ment. 

Lemma IV [4]. Let the characteristic equation for system (1) have no < n zero 
roots. (It is not assumed here that other roots have non-zero real parts. They 
only have to be unequal to zero.) Then system (1) can be rewritten as follows 

iJ=Ay+Bz+f(y,z), z=Jz+g(y,z), (y , z)ERn'xRno, (34) 

where y, z are nl- and no- vectors respectively (nl = n - no), A is a non­
degenerate nl x nl- matrix, J is a nilpotent no x no- matrix, B is a nl x no­
matrix, the vector-functions f, 9 denote non-linear terms. 

There exists a formal invariant manifold y = <p(z) where <p can be presented 
in a form of formal power series, such that on that manifold system (34) reads 

i=Jz+h(z), (35) 

h(z) means power series representing a set of non-linear terms. 
Now we can apply the procedure described in Section 2 to system (35) and , 

therefore, construct a formal solution of system (34). The application of K uznetsov's 
theorem mentioned above gives us a real solution. 

We can also apply that result to systems which are not solved with respect to 
derivatives 

F(x,i:) = O, xE R n , F(O,O) = O (36) 
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Let there be a quasi-homogeneous structure associated with a matrix G. This 
st ructure can be lifted to the following quasi-homogeneous structure associated 
with the block matrix block(G, G+I). It is assumed that after t.he transformation 
x >-t J..LG x , x>-t p,G+I X the system can be rewritten as folIows Fm(x , x) + O(p,"') = 
O, a = l/(m-l) as p, -+ O. Then system (36) is said to be semiquasi-homogeneous. 
The cut system 

Fm(x, x) = O (37) 

may loose some derivatives and become a system of differential-algebraic or even 
algebraic equations. 

For simplicity let us consider the case of asymptotic behavior of solutions of 
system (36) at +00 . This situation corresponds to the sign '+ ' in (10) . We can 
search for a particular solution of (37) in a 'traditional' form Df (9) and then try 
to continue it up to the series (10). But to find alI the coefficients of (10), we have 
to solve a linear system 

(38) 

on every k-th step instead of system (15) . 
ôFm ) ( ôFm Here A = ôx (c , -Gc , Bk = -A akI + G) + a;-(c, -Gc) . If det A f. O, 

that procedure does not differ from the procedure described previously in Section 
2. But in the case of irregularity of the matrix we should examine solvability of 
systems (38) much more carefully. ]f nevertheless the whole chain of systems (38) 
is solvable, we can construct series (10) and apply Kuznetsov 's theory. 

Example X may be examined from those two different points of view. First, 

system (33) has a center manifold Xl = r,o(X2) = - exp (_2..) ("2 exp(l/u) du = 
x2 lo u 

00 

L) k - 1) 'x~ . Hence, the particular solution of the second equation of system 
k=1 
(33) X2(t) = ri can be lifted up to the particular solution ofthe whole system as 
follows xt{t) = r,o(X2(t)). Second, by using the following quasi-homogeneous scale 
Xl >-t P,XI , X2 >-t P,X2 , Xl >-t J..L 2XI ' X2 >-t p, 2X2 and putting p, = O, we obtain the 
cut system of differential-algebraic equations 

(39) 

possessing a particular solution x(o)dt) = X(O)2(t) = rI which can be continued 
up to the solution of the entire system (33). 

As we can see, the derivative Xl in (39) is lost . The above construction remains 
valid if we perturb system (33) as folIows 
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where fI starts at terms of second order while h st.arts at terms of third order . 
Coefficients of the corresponding series for system (40) can be found from the 

following chain of equations 

( 41) 

System (41) is , of course, solvable for any polynomials tPlk(r), tP2k(r) . 
A less t.rivial example of using the above technique is connected with the 

problem of inversion of the Lagrange-Dirichlet theorem formulated in Section 2. 
Example XI. 

Let us consider a Hamiltonian system of equations (18) where U(q) does not 
have a minimum at the origin q = O. As usual, we consider the Maclaurin expan­
sion of the potential energy U (q) = U2 (q) + Um+1 (q) + ... , m ~ 2. Let the second 
variation of the potential energy at the criticai point q = O be positive semi­
definite, i.e. the vector q can be presented as follows q = (q(O), q{l), q(O) E Rno, 
q(l) E R n " no < n , nl = n - no, so that U2 (q(0), q(l) = ~(Aq(1), q{l)), where A 

is a positive defini te symmetric nl x nl - matrix. That matrix can be diagonal­
ized as follows A '" diag (wr, ... , w~,), where Wl, ... , W n , are frequencies of small 
vibrations. We also denote the restriction of the form Um+! (q) onto the plane 
q{l) = O as Vm +1 (q(O). 

The following statement holds. 
Theorem VI [4,14] . If the form Vm +1 does not have a minimum, the equilibrium 

position q = p = O of system (18) is unstable. 
Proa! We only outline the main stages of the proclaimed proof. System (18) 

can be formally treated as a system non-solved with respect to derivatives. Using 
the following quasi-homogeneous scaling q >-* p.2cx q, P >-+ p.(m+l)cxp , a = l/(m -1) 
and putting p. = O, we obtain a cut system 

If conditions of theorem VI hold, system (42) has an evident particular solution 
q(O)(t) - ct- 2cx q(J)(t) - O p(O)(t) - _2acr(m+l)cx p(l)(t) - O c E Rno The (O) - ,(O) - , (O) - ,(O) -, . 

vector eis parallel to a unit vector e providing the form Vm +1 with a minimum on 
the unit sphere gno-l. It. is easy to prove that the system for higher coefficients 
of the corresponding series is solvable. Applying the cited results of [12,13], we 
can prove the existence of a particular solution of (18) (q(t), (p(t» -+ (O, O) as 
t -+ +00. This means instability 'in the past'. Due to the usual time-reversibility 
of system (18) the trivial equilibrium position is unstable 'in the future'. 
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5° . We show now a quit.e unexpectable applicàt.ion of the first Lyapunov 
method described above for a class of syst-ems of differential equations with delays. 
Let. us consider t-he following syst-em of functional differential equations 

x(t) = f (x(t), x(t - td, ... , x(t - t.)) , ( 43) 

such that x(t) = ° is a t.rivial particular solution (f(0, 0, . .. , O) = O). Here 
tI, .. . , t. are real positive constants. 

Moreover, let us assume that the characteristic equat-ion for (43) has ónly 
zero roots. For this very special case we find conditions for inst-ability of the 
trivial solution by constructing a particular solution of (43) x(t) -+ ° as t -+ -00. 

Since there are no roots with eit-her positive or negative real parts, it is expected 
that there is a center manifold attracting solutions of (43) superexponentially 
(Pror. Jack Hale has drawn t.he aut.hors' attention to that fact, see also [15]). On 
the other hand, after the reduction onto the above center manifold the reduced 
finite dimensional syst-em has only zero roots and we can expect that the desired 
solution possesses power asymptotic properties. But we try to find conditions for 
the existence of the above particular solutions without appealing to the center 
manifold arguments. 

Let us introduce the following notations x{O)(t) = x(t), x(1)(t) = x(t - tt}, ... , 
x{')(t) = x(t -t.) . We say t.hat the system of equations (43) is quasi-homogeneous 
with respect to the structure associated with a matrix G and denote it as 

x(t) = fm (x(t), x(t - tt), ... , x(t - t.)), (44) 

if after the following formal t.ransformation t f-t J.l-1t, x{O) f-t J.lGx{O) x(1) f-t 

p.Gx{l), ... , x{·) f-t IPX{') it remains invariant. 
If after the above t.ransformation it takes the form of formal power series 

with respect to J.lOt x(t) = fm (x(t), x(t - tJ), . .. , x(t - t.)) + O(p.Ot) , where a = 
l/(m - 1), we say that (43) is semiquasi-homogeneous. System (44) is said to be 
the corresponding quasi-homogeneous cut for the entire system (43). 

The problem is that the cut system (44) does not generally have any particular 
solutions like (9) or (26). That is why we have to carry out additional simplifi­
cations. By putt.ing all the delays equal to zero, we obtain another cut system of 
ordinary differential equations 

x = 9m(X) = fm(x, x, .. . , x) (45) 

Roughly speaking, it is possible to prove that the entire system of FDE (43) 
inherits instability properties of the cut system of ODE (45). More precisely, the 
following result takes place. 

Theorem VII [16]. If the cut system (45) has a particular solution (9) with 
the sign '+' in it, then the entire system (43) has a particular solution x(t) -+ ° 
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as t -+ -00 for which (10) with lhe sign ' - ' is an asympt.otic expansion and the 
t.rivial solut.ion is unstable. 

The formal as~ect of t.he ~roof is based on a simple fact that if a solution x(t) 
can be expanded mto t.he senes (10) , ali the shifts x(t - td, ... , x(t - (,) can be 
re-expanded into the series like (10) with the same leading termo To prove t.hat. 
the above series is an asymptotic expansion for a real solution , one should use a 
kind of the implicit function technique. lt is worth noticing that in the case of 
time delays of an arbitrary sign (for example, for advanced systems) series like 
(10) can be also formally constructed, but the implicit funct.ion theorem is not 
applicable here and we are not able to say whether they describe a real solution 
of the system under considerat.ion. 

Let us consider an interest.ing application of theorem VII. 
Example XII [16]. Explosive instability in logistics equations. 
The following system of equations 

Ni(t) = Ni(t) (ki + fy l t a;jNj(t - t i j )) , i = 1, ... , n (46) 
3=1 

is a very popular model describing different. processes in various fields such as 
biology, ecology, economics etc. For instance, by means of (46) we can describe 
the interaction of populations in a certain ecosystem, where Ni (t) is the number 
of individuaIs in a population of the i- t.h species at the time t , (aij) is a constant 
matrix which, as a rule, is assumed to be skew-symmetric in this problem (aij > O 
means that the i-th species increases at the cost of the j-th species while in the 
opposite case the i-th species is reduced in favor of the j-th species), k; is the 
difference between the birth rate and the death rate of the i-th species if it is left 
to its own resources, and the coeilicients f3i > O are parameters characterizing 
the fact that the reproduction of one 'predator' is usually connected with the 
disappearance of more than one 'prey '. Since the number of individuaIs in the 
populations affects the birth rate in each species with a delay, the constants tij 
are positive. In reality it makes sense to consider systems of the fonn (46) only 
for non-negative Ni, i = 1, . .. ,n. The properties of solutions of system (46) were 
first studied by Volterra without taking delays into account [17], and then he later 
considered the question of the influence of the delay effect on the birth rate in 
a population, but in a form somewhat different from that in (46) . It should be 
mentioned that the case k; = O, i = 1, . . . , n for system (46) has hardly been 
studied at all. An except.ion is formed by a very few papers , for example, [18], 
where (46) is used under the condition k i = O, i = I , ... , n, tij = O, i , j = I, ... n 

to analyze the dynamics of employment in different branches of production. In 
[18] the authors assumed that the components of the matrix (aij) satisfy the 
conditions aij > O, i,j = 1, . .. , n, i -# j , aii < O, i = 1, .. . , n . It is obvious that 
in other important applied problems it is possible to impose different restrictions 
on the coeilicients aij . 
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Thus, we are interested in conditions of t.he exÍstence of positive solutions 
Ni(t) -+ 0, -i = 1, .. . , n as t -+ -00 of t.he following syst.em of equations 

n 

Ni(t) = (3i- 1 N;(t) I>ijNj(t - tij) , -i = 1, ... , n 
j=1 

for tij > 0, i,j = 1, ... , n. 
The corresponding cut system of ODE takes the following simple form 

n 

Ni = (3i- 1 N; 2: aij N j , i = 1, . .. , n 

j=1 

( 47) 

( 48) 

Let us find conditions for the existence of a positive part.icular solution of (48) 
ofthe form N(O)i = Ci(-t)-l, Cj > 0, i = 1, .. . ,n, t < O. 1t exists iffthe following 
system of linear algebraic equations 

has a positive solution. 

n 

2: aij Cj = (3i , i = 1, .. . , n 
j=1 

( 49) 

According to theorem VII this means that system (47) has a positive solution 
N;(t) -+ O as t -+ -00. Since equations (47) are invariant under the time shifts 
t >-:+ t - T, the existence of a positive solution of (49) results in instability of the 
trivial solution of (47). This instability is of explosive type. Solutions stop to 
exist or go to infinity in a finite time. This means that there exists a regime in the 
ecosystem under consideration such that alI the species are very small in number 
at an initial moment and then they begin to grow very rapidly. 

60 . The last object we consider in this article is invariant curves of analytic 
maps. The problem can be described as follows. Let us consider a discrete dy­
namical system 

(50) 

associated with a map f : R n -+ R n analytic in a neighborhood of the origin 
x = O. 

Let x = ° be a fixed point of that map and let f be invertible in a small 
neighborhood of the origin, i.e. det A =1= 0, A = ~ (O) . To investigate the behavior 
of system (50) in a neighborhood of a fixed point, it is useful to find localIy 
invariant curves of the above map, i.e. smooth vector functions x{s), x : (O, so) -+ 
Rn , So is small enough, lim x(s) = O such that 

$~+OO 

f(x(s)) = x(,~(s)), (51) 
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where À(s) is a smoot.h funct.ion, À : (O , So) -7 (O , so) defining a reparamet.risation 
oft.he curve x(s) , Iim À(s) = O. 

~-++ oo 

Then we can easily const.ruct a trajectory of (50) on t-hat- invariant curve 

(52) 

Those curves can be obt.ained by means of the first Lyapunov method. 
Let us first. consider the situation when there are roots of t.he characterist.ic 

equation 

det(A - ÀI) = O (53) 

lying strictly inside or outside of the unit circle which can be referred to non­
criticaI cases. 

For simplicity we consider only real roots. The following statement holds. 
Theorem VIII [19]. Let there be a real root À, 0< IÀI < 1 of the characteristic 

equation (53) such that for any other root /-l of (53) the following non-resonance 
inequality holds 

(54) 

then there is an analytic invariant curve of f which can be presented by means of 
. . 

converglllg power senes 

00 

x(s) = s L Xk sk 
k=O 

If, nevertheless, there are some roots /-l of (53) for which 

(55) 

(56) 

then there is a cK -l-curve which can be presented by means of asymptotic series 

00 

x(s) = s L Xk(Iog Isl)sk (57) 
k=O 

where K ís the mínimal natural number for which resonance (56) holds and Xk 

are polynomials. 
In both cases function À(s) has a very simple form À(s) = Às independently of 

the fact whether (54) or (56) hold, and Xo = c where c Ís an eigen vector of the 
matrix A with the eigen value ).. I 

We omit the proof of the formulated theorem. 
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The series like (55) or (57) can be constructedalso in the complex case (>' E C) 
but. if we are interested in real curves, the corresponding series t.ake more awkward 
formo 

The opposite case 1>'1 > 1 can be also studied. To do so, we should simply 
invert the map f and apply the above theorem. 

Let us pass to a more delicate situation. Let us assume t.hat the reduction 
ont.o a center manifold has been already performed. That. means that. ali the root.s 
of (53) lie ori t.he unit circle. Of course, t.hat center manifold may have only finite 
class of smoothness [10] but we consider only a formal aspect of the problem. 
Precisely, we consider a procedure of constructing formal invariant curves in a 
form of formal series. For that purpose it is quite enough to assume that. f can 
be expanded int.o formal Maclaurin series. 

We can rewrite the map f as follows 

f(x) = Dx + j(x), (58) 

where D is diagonalizable (D ,...., diag(exp( yCI pt}, ... , exp( yCI Pn)), Pl, " " Pn 
are some real numbers, j(x) = Jx + ' ' " J means a nilpotent. matrix and dots 
present the set. of non-linear terms, 

Then t.he map in the .. form (22) should be transformed into a normal form 
by means of formal power transformation x = y + 2: Yp(Y), where Yp(Y) are 
homogeneous vector forms of order P 2: 2. Then we obtain a new map 

g(y) = Dy + g(y), 

g(y) = Jy + ... , such that for any real positive U' g(DU y) = DU g(y) 
The next step is to consider the map 

h(z) = z + h(z), 

(59) 

(60) 

where h(z) = D-1g(z). This map can be obtained from (59) by substitution 
y = D-1z . 

The linear part of the vector field h(z) is nilpotent, so we can try to repre­
sent the above map in a semiquasi-homogeneous form h(z) = L.:~=o hm+k(Z) so 
that hm+k(>'sz) = >.S+(m+k-l)Ihm+k(z), S is a diagonal matrix obtained by the 
Newton polyhedron approach. We introduce also the notat.ion Q = l/(m - 1), 

Let the quasi-homogeneous cut hm(z) of the vector field h(z) be such that 
there is a real non-zero vector c satisfying the following non-linear 'eigen vector 
problem' 

(61) 
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Theorem IX [20] . Let. there be a non-zero real vector c such that (61) holds. 
Then the formal map (59) has an invariant curve which can be represented lU a 
form of series 

+00 
y(s) = Dsl -

m sS LYk(logS)sk, Yo = c, s > O 
k=O 

(62) 

where Yk are polynomial vector functions and the function A(s) lU (51) has the 
form 

(63) 

Here coefficients Yk can be aIs o recurrently calculated as particular solutions 
of linear systems of ordinary differential equations with constant coefficients and 
polynomial right-hand sides. The question of convergence or asymptoticity of 
series (62) is less trivial. To prove that a particular sum of (62) is a good approx­
imation for an invariant curve of the partially normalized map, we have to apply 
also the implicit fllnction theorem technique, but a more refined one than in the 
case of ODE. 

If we consider a formal dynamical system generated by the normalized map 
(59) 

Y(P+1) = 9 (Y(p)) , P E Z (64) 

then it is quite easy to construct a formal trajectory of (64) going to the trivial 
fixed point Y = O as p -+ -00. 

Indeed , since the reparametrization function A( s) has the quite sim pIe form 

(63), we write s (p) = (p + (S(O)) l-m) -a and by substituting the last expression 

into (62), we obtain 

+00 
Y(p) = DPp-aS LYZ(Iogp)p-ak, Y; = c, (65) 

k=O 

It is also po;si ble to obtain trajectories entering the trivial fixed point as 
p -t -00. To do so, we should invert the original map and apply the above 
results . 

Example XII. Let us consider an automorphism of a two-dimensional plane for 
which the origin Xl = X2 = O is a fixed point and the eigen values of the linear 
part are equal to exp (± 2; V=I). The partial normal form of that map reads as 
follows [111 

( 
cos 2,,­

sin 2; 
_ sin 2,,-

3 
cos 2,,-

3 

a(y? - y~) + 2bYtY2 
-2aYIY2 + b(yr - y5) 

) + ... , (66) 
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a, b are real parameters . 
Using theol'em IX , it is possible to prove that. if a2 + b2 ::j:. 0, the map (66) has 

an invariant curve 

- sin ;; ) ( S(YOI + 0(1)) ) +0 
cos;; S(Yo2+ 0 (1)) , ass-t , (67) 

( O 211") (O 211") . / a where YOI = rcos \9 - 9 ,Y02 = rsin 9 - 9 , r = ya2 +b2 , coso = ; ' 
. O b sm =-. 

r 
Asymptotic represent.ation (67) shows that the corresponding trajectory of the 

dynamical system associated with the map (66) takes the form 

( YI (p) ) = ( c~s ~ 
Y2(p) sm T 

-sin~ ) (p-I(YOI +0(1)) ) 
~ -I( + (1)) as p -t +00, cos 3 P Y02 o 

(68) 

We can also prove that the dynamical system under consideration has a tra­
jectory entering the fixed point as p -t -00 which means instability of the fixed 
point. 

Thus, we have considered several objects providing us with very different types 
of dynamics. As we can see, main ideas of the first Lyapunov method allow us 
to study the behavior of trajectories in a neighborhood of a fixed point also in 
criticaI cases for ali those objects. 
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