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Shod AIgebras 1 

Flávio Ulhoa Coelho 

Abstract: An algebra A is called shod provided for each 
indecomposable A-module, either its projective dimension is 
at most one or its injective dimension is at most one. Tilted 
and quasitilted algebras are examples of shod algebras. The 
purpose of these notes is to survey recent results on the class 
of shod algebras. 
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In this paper we want to survey recent results on a special class of algebras 
which has been much investigated lately. Covered under the general name of shod 
algebras , this class includes the already classical tilt.ed algebras and the quasitilted 
algebras. 

Before we go on into details in this discussion, let us briefly make some his­
torical comrnents. We could set here the begining of our comments in the pa­
per [4), where the so-called tilting theory has developed from. There, Bernstein­
Gelfand-Ponomarev gave another proof of Gabriel's theorem which characterizes 
the representation-finite hereditary algebras in terms of their ordinary quivers 
(see section 1 for definitions). In this proof, they used the so-called Coxeter trans­
formations in order to study the relations between the module categories over 
two distinct hereditary algebras whose ordinary quivers have the same underlying 
graph . 

In [2], Auslander-Platzeck-Reiten gavea module interpretation ofthe relations 
induced by the Coxeter transformations. Roughly speaking, let H be a hereditary 
algebra and let S be a simple projective H -module. Consider the H -module 
M given by the sum of ali indecomposable projective modules non-isomorphic 
to S plus ril1S, where ril 1 denotes the Auslander-Reiten translation TrD. The 
algebra H I = EndH M is also hereditary and the functor HomH(M, -) induces 
an equivalence between the category of all H -modules which do not have S as a 
direct summand and its image in the category of HI-modules. 

This idea was further explored in the 80's by Brenner-Butler in [5] and by 
Happel-Ringel in [24] in two fundamental works on tilting theory. Happel-Ringel's 
paper contains the formulation of tilting module and tilted algebras used nowa­
days. 

To go on, lei. us now recal! some notions. Let A be a finite dimensional k­
algebra, denote by modA the category of the finitely generated left A-modules, 
and by indA the full subcategory of modA consisting of one representative of each 
isoclass of indecomposable module. A module T E modA is called a tilting module 
provided: 
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(i) its projective dimension pdAT is at most one . 

(ii) T has no selfextensions , that is , Ext~(T, T) = O. 

(iii) t.here exists a short exact sequence O --t A --t T' --t Til --t O, where 
T' , Til E addT, that is , the indecomposable summands of T' and of Til are 
also summands of T . 

The fundamental Brenner-Butler theorem alllows us to pass informations from 
modA to modE , which has been a very powerful technique in representation theory 
of algebras (see Section 3) . If t.he starting algebra A is hereditary, the algebra B 
constructed as above is called tilted. One of the striking feature of a tilted algebra 
B is the existence of a section 1: in modA , called complete slice, which completely 
divides the category modB int.o two parts: for each indecomposable B-module 
M , either HomB(M, 1:) :j:. O or HomB(1:, M) :j:. O (but not both if M tJ. 1:). In 
the former case, we also have the projective dimension pdBM ~ 1 and , in the 
later case, the injective dimension idBM ~ 1. Also, a tilted algebra has global 
dimension at most two. RecaIl that the global dimension of an algebra is the 
suppremum of the projective dimensions of its modules . 

Several attempts were made in order to extend these successful thecniques to 
other contexts but we will not. have the opportunity to discuss ali of them here. 
The interested reader will not have difficulty to find the appropiated references. 

The next step in our discussion is t.he work of Happel-Reiten-Smal(IJ [22], where 
the class of quasitilted algebras was introduced. The idea was to give a general 
treatment to tilting theory including Dot only tilted algebra but also the canonical 
algebras , introduced by Ringel in [34] , under the same construction . They consider 
tilting objects in some hereditary abelian categories. A quasitilted algebra is then 
defined to be the endomorphism ring of such an object (see [22] for details). 

In the same work, Happel-Reiten-Smal(IJ have shown that a quasitilted algebra 
A can be characterized by the following properties: (QTl) gl.dim A ~ 2; and 
(QT2) for each indecomposabl e A-module X, either pdAX :S 1 or idAX :S L 
These two conditions induce the existence of a trisection in indA. Let .cA (and 
nA) be the ful! subcategory of indA consisting ofthe modules such that its prede­
cessor (respectively, its successors) have the projective (respectively, the injective) 
dimension at most one. Hence indA = (.cA \ nA) v (.cA n nA) v (nA \ .cA) and 
the morphisms goes only from left to right in this trisection. Exploring it leads to 
important informations on the quasitilted algebras, as we shall see. 

Quasitilted algebras can also be characterized by the property: (*) any path 
in indA from an injective module to a projective module can be refined to a path 
of irreducible maps and any such path is sectional (see Section 1 for definitions) . 

In [11], in a joint work with Lanzilotta, we have extended the class of algebras 
A such that indA = .cA UnA . lndeed, among the two defining properties of 
quasitilted algebras ((QTl) and (QT2)), the one restricting the global dimension 
(QTl) does not play any role for the existence of the above trisection. So, in [11], 
we introduce the notion of shod algebras as being algebras satisfying the property 
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(QT2). The word shod stands for srnaJl homological dimensiono Observe that 
the global dimension of a shod algebra is at most three (see 2.2 beJlow) . 

As we wiII see along these notes , the following conditions are equivalent for an 
algebra A: 

(a) A is shod . 

(b) indA = .cA UnA . 

(c) any path in indA from an injective module to a projective module can be 
refined to a path of irreducible maps and any such path ·has at most two 
hooks, and , in case there are two, they are consecutive (see Section 1 for 
definitions) . 

The main purpose of this survey will be to show how these properties are 
related, and how they can be used to get informations on the class of shod alge­
bras or , particularly, on the Auslander-Reiten quivers of these algebras. We shall 
mostly discuss the results in our joint works with Lanzilotta [11 , 12, 13], with 
Lanzilotta and Savioli [14], with Savioli [17], with Happel and Unger [la], with 
Martins and de la Pena [15, 16] . We shall also discuss Reiten-Skowronski's work 
on shod algebras [33]. We wil! not provide proofs for ali the results. However, in 
order to show the techniques involved, we shall sketch some of them . We refer the 
reader to the above papers for the proofs of the results discussed . 

This paper is organized in the following way. Section 1 is devoted to some 
preliminary results that will be used along the paper. In Section 2, we show some 
basic properties on shod algebras and give some examples of shod algebras of 
global dimension three (which we wil! cal! slrict shod algebras). Section 3 contains 
a brief discussion on quasitilted and tilted algebras. 

When studying the Auslander-Reiten quiver of a strict shod algebra, we will see 
that there exists a component which plays a special role dividing the category indA 
into two parts . The components on these two parts, we will see, are components 
of tilted algebras and they are well-understood by now. We shall discuss the 
properties of this special component in Sections 4 and 5. AIso, in 4, we shall 
relate shod algebras and properties on paths from injective to projective modules. 

Another important technique used in our study of shod algebras is the one­
point extension . We will see in Section 6 that a strict shod algebra can be written 
as an iteration of one-point extensions starting at tilted algebras. Sections 7 and 8 
are devoted to discuss the consequences of the main result of Section 6. In Section 
9, we discuss when an one-point extension of an algebra is shod (or quasitilted) . 
The relations between shod algebras and some class of algebras of global dimension 
two is the subject of Section 10. The last section is devoted to the work of Reiten 
and Skowronski on shod [33] . 

We hope that, at the end of t.hese notes, the reader will have a good idea of 
the shod algebras and how some techniques are used to get informatiolls on them. 
We shall mention, however, that this survey is far from being complete in many 
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aspects. We have choosen to discuss mostly one direction of investigation , t.hat. 
is, the one exploring more closely the Auslander-Reiten quiver of a shod algebra , 
indeed of a strict. shod algebra. There are nice works on quasitilted algebras, 
for instance, which explore more directly the original definition envolving abelian 
categories (see [23 , 21] just to mention two of t.hem). Also , we will not discuss the 
derived equivalence which plays an essent.ial role in the understanding of tilted 
and quasitilted algebras (see [19,22] for instance) . The interested reader will not 
have difficult to get t.he appropriated references to go further in ali the related 
questions. 

One last word. Having in mind some properties discussed here on the A uslander­
Reiten quiver, as the existence of bounds on the lengths of paths from injectives 
to projectives, we can generalize some of the results of these notes. We have done 
so in a joint work with Lanzilotta [13] where we introduce the so-called weakly 
shod algebras. We will not discuss t.hem here and refer t.o [13] for details. 

1. Preliminaries 

Along t.hese notes, k will denote a fixed field. Ali algebras will be finite dimensional 
(associative) k-algebras. In fact, some of the results presented here will hold in a 
more general setting, that is, will hold for Art.in algebras (an Artin algebra is a 
algebra which is finitely generat.ed as a module over its center). For simplicity, we 
shall, however, restrict here the discussion for finite dimensional k-algebras. 

To a given finite quiver Ó, one can assign naturally a k-algebra. Since our 
examples will be mostly done in this way, we shall now recal! this construction. 
A quiver is just an oriented graph. More formally, a quiver Ó is given by two sets 
Óo whose elements are called vertices and Ó 1 whose elements are called arrows. 
To each arrow O' it is assigned two vertices: its start point s(O') and its end point 
e(O') . 

The path algebra kó of a quiver Ó is defined as follows . As a k-vector space, 
kó has a basis given by ali possible paths in Ó, including the paths of length 
zero, associated to each vertex of Ó. The multiplication in kÓ is defined as 
the concatenation of paths whenever it makes sense and zero otherwise and then 
extended linearly. The algebra defined in this way is associative, has unit (just 
the sum of ali paths of length zero). It is finite dimensional if and only if Ó is a 
finite quiver without oriented cycles. 

The next result due to Gabriel justify the importance of studying the quotients 
of path algebras. Recall that an ideal I <I kó is admissible if there exists an n ~ 2 
such that Jn C I C J2, where J denotes the ideal of kÓ generated by the arrows. 

THEOREM 1.1 Let A be a finde dimensional basic k-algebra, where k is an alge­
braically c/osed field. Then there exists a finite quiver ÓA and an admissible ideal 
I <I kÓA such that A == kÓA/ I. 
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The quiver élA of t,he above t,heorem is called the ordinary quiver of A. 
For an algebra A, denot.e by modA the category of finitely generated left A­

modules and by indA its full subcategory consisting of one copy of each isoclass of 
indecomposable A-modules. AIso , denote by r A the Auslander-Reiten quiver of 
A, that is, the qui ver where the vertices are associated t.o t,he obj ect.s of indA and 
the arrows represent the so-called irreducible morphisms of indA. By TA denot.e 
the Auslander-Reit.en translation DTr and by Til its inverse. For unexplained 
not.ions on representat.ion t.heory, we refer the reader to [3]. 

For X , Y E indA , denote by radA (X, Y) the set of the morphisms f: X --+ Y 
which are not isomorphisms and by radA (X, Y) the intersection of all powers 
rad~(X, Y), i 2:: 1, of radA(X , Y) . We indicate by radOC(modA) the ideal in 
modA generated by a!l morphisms in radA (X, Y) for some X , Y E indA. Recall 
t.hat a component r of r A is generalized standard provided rad oc (X, Y) = o for 
each X, Y E r . By [39] a generalized standard component has only finitely many 
TA-orbits. 

Given X, Y E indA, we denote by X"-"> Y in case there exists a path 

X X li X h ft-1 X j, X ? = o --+ I --+ ... --+ t-I --+ t = } 
(t 2:: O), fram X to Y in indA, that is, with fI,··· , ft being non-zero non­
isomorphisms and Xo, XI , .. " X t being indecomposable modules . By convention, 
there always exists a path X "-"> X , for X E indA. When ali morphisms /; 's in the 
path (*) are irreducibles, then we say that (*) is a path of irreducible morphisms 
or , simply, a path in r A· A path in r A starting and ending at t,he same module 
is called an oriented cycle. 

A hook in (*) is a j, 1 ~ j ~ t-l, such that X j - l A X j :0.:!:t Xj+1 satisfies: (i) 
fJ and fj+l are irreducible maps i and (ii) TAXj +1 = Xj-I. A path of irreducible 
maps without hooks is called a sectional path. We recall two results which will be 
important in our considerations . The first result is due to Igusa-Todorov, while 
the second is due to Bautista-Smal~. 

THEOREM l.2 [29](13.4) Let X o ~ Xl .!:4 ... .!.!...t X t be a sectional path in r A . 

Then the composition ft . .. fI is non-zero. 

THEOREM l.3 [6] Let X = X o --+ Xl --+ ... --+ X t = X be an oriented cycle 
in r A. Then X o --+ Xl --+ .. . --+ X t --+ Xl is not sectional. 

A module M E modA is called directing provided there exist no paths 
M' "-"> TAX and X "-"> Mil where X E indA is not a project.ive module and 
M' , Mil are indecomposable summands of M. Observe that. an indecomposable 
module is directing if and only if it does not belong to an oriented cycle. 

For a module X E modA, we shall denote by pdAX and by idAX the projective 
and the injective dimensions of X, respectively. We will need the following result 
whose proof can be found in [3](IV .l.16). Recall that D denotes the usual duality 
Homk(-, k). 
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THEOREM 1.4 Let A be an algebra and X be an indecomposable module. Then 

(a) pdAX :s 1 if and only if HomA(D(AA), TAX) = O. 

(b) idAX:S 1 if and only if HomA(Ti1X , A) = O. 

Also, gl.dim A wi\l denote the global dimension of A, that is, the suppremum 
of the projective dimensions of the A-modules. In the study of quasitilted or shod 
algebras the following two subcategories of indA play an important role . Denote 

C A = {X E indA: if there is a path Y ........ X, then pd A Y :s I} 

nA = {X E indA: if there is a path X ........ Y, then idA Y :s I} 

REMARKS 1.5 Let A be an algebra. Then 

(a) pdAX < 1 for each X ECA' 

(b) idAX :s 1 for each X E nA · 

(c) CA is closed under predecessors and so HOmA(nA \ CA , CA) = O. 

(d) nA is c\osed under su.ccessors and so HomA(CA \ nA, nA) = o. 

2. Shod algebras 

In this sect.ion we wilI discuss some preliminary results concerning the class of 
shod algebras introduced in [11] . We start with a definition. 

DEFINITION 2 .1 An algebra A is called shod (for small homological dimensions) 
provided for each indecomposable A-module X, pdAX :s 1 or idAX ~ 1. 

PROPOSITION 2.2 [22] A shod algebra A has global dimension at most three. 

Proo! Let X E indA and assume pdAX 2: 4. Let 

be the start of the minimal projective resolution of X. Denote by f{ = ker fI . 
Clearly, pdAf{ 2: 2 and so there is an indecomposable summr,nd Y of f{ such that 
pdAY 2: 2. It also folIows from the above sequence that Ext~ (X, Y) =F O and so 
idA Y 2: 2, a contradiction to the fact that A is shod. O 

A shod algebra of global dimension three will be calIed strict shod. 
Hereditary algebras are clearly shod since alI their modules have projective 

dimension at most one . As we shall see in the next section, tilted and quasitilted 
algebras are also examples of shod algebras, alI of them of global dimensions at 
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most t.wo. Wp shall now give some examples of st.rict shod algebras. 

EXAMPLES 2.3 (a) Lpt A be t.he k-algebra given by the quiver: 

• 

(} 
y~ 6 .-. .-. 
~h 

• 

.31 

with relations (} j32 = O, /3111 = /32/2 and 116 = O. It. is not difticult to check that 
A is indeed a strict shod algebra. 

(b) The radical square zero k-algebra given by the quiver 

1 :::::== : _. __ ~ ::=== ! 

is a represent.ation-infinit.e strict shod algebra. 

One of the most important feature for a shod algebra A is the existence of a 
trisection, induced by the subcategories CA and nA, in the category indA. We 
shall only sketch the proof of this result here, refering the reader to [11 , 22], where 
the details can be fOllnd . We observe that the existence of such trisection was first 
established for quasit.ilt.ed algebras in [22] and later extended to shod algebras in 
[11] . We shall need the following lemma. 

LEMMA 2.4 [11](1.1 ,1.2) Let A be a shod algebra and let Y E indA such that 
pdAY ~ 2. 

(a) 11 there exists a path Y "'--> X in indA, then there exists Z E indA, pdAZ ~ 2, 
and HomA(Z , X)::f= O. 

(b) 11 U E indA salisfies idAU ~ 2, then HomA(Y, U) = O. 

THEOREM 2.5 [ll] An algebr-a A is shod il and only il CAunA = indA. Moreover, 
in this case, bolh (add R A, add (CA \ nA)) and (add (nA \ CA), addCA) are split 
torsion pairs in modA . 

Proof. Clearly, if indA = CA UnA, then each X E indA satisfies pdAX :S 1 01' 

idAX :S 1 and A is shod. 
Assume now that A is shod and let X E indA. If X ti:. CA , then there exists a 
path Y"'--> X with pd A Y > 2. We shall show that Y E nA which will imply that 
X E nA because nA is closed under successors . For this purpose, let Y "'--> X' 
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be a path in indA. By Lemma 2.4(a) , there exists Z E indA with pdAZ 2: 2 and 
HomA(Z , X') ::j:. O. By Lemrna 2.4(b), it yields that idAX' ::; 1 and so Y E nA. 
This proves the first part of the statement. 
Now , HOmA(nA \ LA , LA) = O by 1.5 . If HOrnA(n A \ LA , M) = O, with 
M E indA , then M ~ nA \ LA and so M E LA- Dually, if HomA(N, LA) = O, 
with N E indA, then N ~ LA and so N E nA \ LA · This proves in fact that 
(add (nA \ LA) , add LA) is a torsion pair in modA , which clearly splits because 
LA UnA = indA. Similarly, one can show that (add (nA \ LA), addLA) is a split 
torsion pair in modA . <> 

It follows from the above considerations that 

where the non-zero morphisms of indA goes only from left to right, that is , 

We would like to stress at this point the importance of the existence of this 
trisection in indA. This division of the category will induce most of the time a 
clear division also in the Auslander-Reiten quiver r A of A, allowing one to give a 
complete description of it (see Section 7). 

One could wonder how large is the intersection L A n nA. In one extreme, A 
is hereditary if and only if LA n nA = indA. The next example shows, however, 
that this intersection can be indeed empty for a strict. shod algebra. 

EXAMPLE 2.6 Let A be the k-algebra given by the quiver: 

1 

a {3 fI' Ó é 
.-----..~.~.-+--. with {3a = Óé = ,{3 = I'Ó = O 
23456 

The Auslander-Reiten quiver of A has the following shape: 
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~6 

P3 S5/ ~ • ... ................ . • .. .... .... ... .... ... • 16 

p,~'\,<>.( 
p; ................... S; ~"'/ . 12 

The dotted lines , indicate, as usual, the Auslander-Reiten translation. 
that .cA = {PI, P4, 54, P3 , P5 } and nA = {I4, 55, P6 , h, 53, P2 , h}. 
.cA n nA is empty and .cA unA = indA. Also , gl.dimA = 3. 

3. Quasitilted algebras 

33 

Observe 
Clearly, 

In this section we shall discuss very briefly the class of quasitilted algebras which 
contains the tilted algebras and the canonical algebras. We start recaIling some 
notions on tilting theory. 

Let A be an algebra and T E modA be a tilt.ing module , that is, a module 
satisfying the following properties: 

(TI) pdAT < 1 . 

(T2) Ext~ (T, T) = O. 

(T3) there exists a short exact sequence O --+ A --+ TI --+ Til --+ O, where 
T' , Til E addT. 

The next result , due to Brenner and Butler is essential, in tilting theory since 
it relates two module categories allowing the transfer of informations from one to 
the other. For a proof, we refer to one of the following papers [1, 5, 24]. 

THEOREM 3.1 [5] Let A be an algebra, TA be a tilting module, and B= EndAT. 
Then 

(i) BT is a tilting B-module and A :::: EndBT. 

(ii) The categories 

T(T) = {M: Ext1(T,M) =O} and Y(T) = {N: Torf(N,T) = O} 

are equivalent, lhe equivalence being given by the functor HomA(T, -) and 
its inverse - i'g) B T. 
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(iii) The categories 

F(T) = {M : HomA(T, M) = O} anel X(T) = {N : N ®B T = O} 

are equivalent, the equivalence being given by lhe functor Ext~ (T, -) anel its 
inverse Torf ( -, T) . 

For furt.her details in tilting theory, we refer t.he reader to [1, 5, 7, 24] . 
Let. now H = k6. be a hereditary algebra , where 6. is a finite quiver without 

oriented cycles, and TE modH be a tilting module . Since gl.dimH:S 1, then t.he 
condition (TI) above is naturally satisfied. In t.his case, t.he algebra B = EndHT 
is called a tilteel algebra of type 6. . 

The class of tilted algebras has been much investigated since its introduction 
in [24] . On one hand, the class of heredit.ary algebras is by now well-understood 
and so , it is possible to get much information on the torsion pair (T(T) , F(T)). 
On the other hand, a tilting module over an hereditary algebra H is splitting, 
that is , the induced torsion pair (X(T) ,Y(T)) splits , and so each indecomposable 
B-module (where B = EndHT) lies either in X(T) or in Y(T) . Therefore, each 
X E indB is eit.her of the form HomH(T, M) for some M E T(T) or of the form 
Ext1(T, N) for some N E F(T). 

Using homological techniques, one can show that pdBM :s 1 for each 
M E X(T) and idBN :s 1 for each N E Y(T) . AIso, gl.dimB :s 2. In re­
sume, the following holds for a tilted algebra (recall t.hat (X(T) , Y(T)) splits) . 

PROPOSITION 3 .2 [24] Let B be a tilted algebra . Then gl.dimB :s 2 and for each 
indecomposable module X, pdBX :s 1 or idBX :s 1. 

By now , the Auslander-Reiten quiver of a tilted algebra is well-understood. Let 
B be a tilted algebra of type 6.. Then r B has a special component r containing 
a so-called complete slice E. The underlying graph of a complete slice is the same 
of ~ . Such a component r is called connecting component and plays an important 
role in the study of rB. A connecting component is generalized standard and 
has no oriented cycles. There are at most two connecting components in r B and, 
if two, they are a postprojective and a preinjective component and, in this case, 
the algebra is called concealed. The complete Auslander-Reiten quiver of a tilted 
algebra has been described in [31] . The components of r B are of the following 
form : 

(i) postproject.ive component(s) . 

(ii) preinjective component(s). 

(iii) a connect.ing component (if neither postproject ive nor preinjective) . 

(iv) stable tubes. 

(v) components of type ZAoo. 



Shod Algebras 35 

(vi) components constructed from tubes or from ZAoo by ray or coray insertions. 

As mentioned in the introduction, quasitilted algebras arise as endomorphim 
algebras of tilting objects in hereditary abelian categories [22J. We are , however , 
more interested in an equivalent definition, also given in [22). 

DEFINITION 3 .3 An algebra A is called quasitilted provided it satisfies the following 
two properties: (QT1) gl.dim A :s 2; and (QT2) for each X E indA, pdAX < 1 
or idAX :s 1. -

Clearly, quasitilted aIgebras are shod. By 3.2 , tiIt.ed algebras are quasit,ilted. 
Another important class of quasitilted algebras is given by the canonical algebras 
introduced by Ringel [34]. Recently, Happel [21J has characterized the hereditary 
cat.egories wit,h tilting objects and, as a consequence, it follows that a quasitilted 
algebra is derived equivalent either to a tilted algebra or to a canonical algebra. 

It. is also worth mentioning that SkowroIÍski has characterized the tame qua­
sitilted algebras. He shows, for instance, that a quasitilted algebra A is tame if 
and only if A is either a tame tilted or a tame semiregular branch enlargement of 
a tame concealed algebra (see [40J for details) . 

We finish this section recalling the following result from [8J . 

THEOREM 3.4 [8] Let A be a quasitilted algebra and lel r be a component of r A 

consisling of directing modules. Then r is postprojective, preinjective or connect­
zng. 

4. Paths from injective modules to projective modules 

We have seen in 1.4 t,hat there exists a strong relation between the existence of 
non-zero morphisms from injective modules to t,he translation TAX of a module 
X E indA and its projective dimensiono More especifically, HomA(D(AA), TAX) = 
O if and only if pdAX :s 1. Dually, one has HomA(TÃ 1 X, A) = O if and only if 
idAX < 1. 

If ~w A is a shod algebra, then there is no indecomposable modules X with 
both pdAX 2: 2 and idAX 2: 2 and so no modules X E indA has simultaneously 
HomA(D(AA) , TAX) =I O and HomA(TÃ 1 X , A) =I O. Intuitively, there is no much 
room for modules which are successors of injective modules and predecessors of 
projective modules. In this section, we want to explore this idea. The results here 
have been mostly proven in [l1J. 

Let X, Y E indA and let 

X " X h /.-1 X J. X Y X = o ~ 1 --'---+ ... ~ t-l --'---+ t = 

(t 2: O) be a path in indA. A refinement of (*) is a path 

Z g1 Z g2 gu-1 Z gu Z Y X = o --'---+ 1 --'---+ . . . ~ 'U - 1 --'---+ ti = 
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in indA from X t.o Y such t.hat. t.here exist.s an order-preserving funct.ion (j from 
{I, ... , t - I} t.o {1, .. " u - 1} such that Xi == ZO(i) for each 1 ::S i ::S t - 1. 

PROPOSITION 4.1 Let A be a shod algebra, and suppose there exists a path 

in indA , where I and Pare, respectively, an injective module and a projective 
module. 

(a) If for each 1 ::S i ::S t - 1, Xi is neither projective nor injective, then 
t ::S 2 (n + 1) , where n stands for the number of simple modules. 

(b) [11](1.3) Nane of the f; 's lie in mcF (modA). In particular, (*) has a re­
finement of irreducible maps. 

Proof. (a) Suppose t > 2n + 2. Then there exists a refinement of (*) as follows: 

I y, 9, Y Y. 9m y. (O Z h, Z Z h, Z P = o -=-t I ----+ ... m-I ~ m"-+ I ----+ l-I ----+ ... I ----+ 0= 

where gl , ... , gm, h l , ... , hl are irredueible morphisms, (ç) is a path in indA, and 
at least n + 1 modules among Yo, .. " Ym are non-injeetives and at least. n + 1 
modules among Zo, . . . ,Zl are non-projeetives. 

Claim . Ym çJ. LA· 
Let (**) : I = Yo ~ Yí ----+ ... Y m -I ~ Y m be the begining of t.he above 
refinement , and suppose first. that it is not. seetíonal. Then there exists j < m 
sueh that T.4. l-j+ I == Yj - 1. Choose it mínimal. By 1.2, HOIDA(I, l-j-t} "# O and 
so, by 1.4, pdA l-j +1 2: 2 implying the claim. Suppose now that (**) is seetional. 
Henee HomA(I, Y;) "# O, for eaeh i (1.2) and so, by 1.4, pdATÃ 1y; 2: 2, whenever 
Y; is not. injective. If Y; == l-j for distinct. i and j, then one ean easily construct 
a non-sectional path I "-+ Ym (using 1.3) and, as above, Ym çJ. LA . So, we can 
assume that (**) pass through at least n+ 1 non-isomorphie non-injective modules. 
By [38J, there exist 1 ::S p, q ::S n such that HomA(TÃIYp, Yq) "# O and so Yq çJ. LA 
beca use pdATÃIyp 2: 2. The clairn is now proven beeause LA is closed under 
predecessors . 
Similarly, one ean show that ZI çJ. R A and so Ym çJ. (LA URA), a contradiction to 
the fact that. A is shod. 

(b) Suppose fi E radOO(modA) for some I. Then, by [37], for each r 2: O, there 
exists a path 

XI-l = Uo ~ UI ----+ ... Ur - I ~ Ur ~ XI 

where 91 ,"', 9r are irreducíble maps, hr E radoo (modA) .and h r9r'" 91 "# O. 
Choosing conveniently r, one get.s at least. 2n + 3 non-isomorphic modules among 
Uo, ' . " Ur which are neither project.ives nor injeetives. This leads to a contradic-
tion to (a) . O 
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THEOREM 4.2 [11] An algebra A is shod if and only if any path in indA from an 
injective module to a projective module can be refined to a path of irreducible maps 
and any such refinement has at most t100 hooks; and in case there are t1Oo; they 
are consecutive. 

Proof. Assume that A is shod and suppose there exists a pat.h I "" P in indA 
where J and Pare, respect.ively, an injective module and a projective module. 
Using the 4.1 , it yields that. there exists a path of irreducible maps 

I=Xo ~XI ----t ", X t- l ~Xt =P 

Assume that. (*) has at least two hooks. Hence, there are j and I such that. 
'rÃ I Xj = Xj+2' TAXt = Xt-z and the paths J ----t Xl ----t ... ----t Xj+l and 
Xl- I ----t . .. ----t Pare sectionals. Since there are at least. two hoüks , we infer 
that j + 1 < l-L By 1.2, HomA(I, TAXj+Z) i= O and HomA(TÃ 1 Xt-2 ' P) i= O. 
Hence pdAXj+2 ;::: 2 and idAXI_2 ;::: 2. If now j + 2 < 1- 1, we get a pat.h 
Xj+2"" XI-2, a cont,radiction to Lemma 2.4. So j + 2 = l-I and in this case 
the path (*) has only two hooks and they are consecutives. 
Suppose now that A is not shod. Then there exists an indecomposable mod­
ule M with pdAM ;::: 2 and idAM ;::: 2. Hence HomA(D(A), TAM) i= O and 
HomA(TÃ 1 M , A) i= 0, and so there exists a path in indA 

I ~TAM ~ E ~ M A F ~TÃIM 14 P 

where I is an indecomposable inject.ive module, Pis an indecomposable project.ive 
module, and fi is irreducible for i = 2,3 , 4,5 . By 4.1, (*) can be refined to a path 
of irreducible maps which clearly contains two non-consecutive hooks. <> 

COROLLARY 4 .3 Let A be a shod algebra . Then there exísts a positive integer no 
such that any path in indA from an injective module to a projective module has 
length at most no. 

For our next result , recall that for a given non-projective X E indA, a(X) de­
notes the number of indecomposable modules in the middle term of an Auslander­
Reiten sequence ending at X. 

PROPOSITION 4.4 Let Abe a strict shod algebra and suppose there exísts a non­
sectional path (*) in r A from an injective J to a projective P. Then 

(a) [11](2.3) there exists a path from I to P in r A 10ith just one hook. 

(b) there exists a projective module P ' in the path (*) having a submodule X 
with pdAX ;::: 2. 

Proo! (a) Let 

1= X o ~ Xl ----t ... ----t X t- 1 ~ X t = P 
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be a path of irreducible maps in indA from I to P with two (consecutive) hooks. 
Then there exists an i such that TÃ I Xi-I = Xi+1 and TÃ I Xi = X i+2. If 
O'(Xi+d = 1 and O'(Xi+2) = 1, then 

f'+I 0-+ X i - 1 -+ Xi ~ X i +l -+ O and 

O -+ Xi ~ X i+1 -+ Xi+2 -+ O 

are Auslander-Reiten sequences and so 1i+1 is an isomorphism, a contradiction. 
So , either O'(Xi+d > 1 or O'(Xi+2) > 1. AIso, if X i+3 is not projective, then 
O'(Xi+2) ~ 2 because Xi+1 and TAX i+3 are non-isomorphic summands of the 
middle term of the Auslander-Reiten sequence ending at Xi+2. In this case, 

I -t Xl -t . . . -t Xi -t TAXi+3 -t TÃ I Xi -t X i+3 -t Xi+4 -t . .. -t P 

is also a path from I to P with two hooks. Thus, without loss of generality, we 
can assume that i = t - 3, and that. X j is not injective for j > O. Clearly, 

is a subquiver of r A. Suppose now that O'(TÃI(Xi ) 2: 3 for some 2 ~ i ~ t - 4. 
Then, the middle term of the A uslander-Reiten sequence ending at TÃ I Xi has an 
indecomposable summand Y which is neither isomorphic to TÃ I Xi-I nor to Xi+l. 
Therefore the path of irreducible maps 

I=: X o -+ Xl -+ . .. -+ Xi -+ Y -+ TÃIXi -+ ... -+ X t = P 

has exactly one hook. 
A similar argument can be done if O'(TÃ I XI) ~ 2 or if O'(TÃ 1 X t - 3 ) ~ 2. It remains 
to consider the case where O'(TÃ 1Xd = 1 = O'(TÃ IX t _ 3) and O'(TÃI(Xi» = 2 for 
i = 2, ... , t - 2. In this case, 92 should be an epimorphism because 

O-+XI-+X2~TÃIXl-+O 
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is an Auslander-Reit.en sequence. 50 gi is an epimorphism for each i = 2,·· " t - 3. 
However , gt-3 cannot be epimorphism because 

is an Auslander-Reiten sequence. This proves (a). 

(b) 5uppose (*): 1= X o --+ Xl --+ ... --+ X t = P is a paht in r A wit-h just 
one hook i. 50 'TAXi+1 == Xi-I. Let r> i + 1 such t.hat P' = X r is a projective 
module and if i + 1 < I < r , t.hen XI is not projective. By applying conveniently 
'TA if necessary in (*) one gets a path 

(**) 1= Yo --+ Yl --+ ... --+ Yr - 3 --+ Yr - 2 --+ 'TÃ 1Yr _ 3 --+ Yr = P' 

in r A . 5ince A is shod , if (**) has another hook, it has to be r - 3. In any case, 
1= Yo --+ Yl --+ ... --+ Yr - 3 is sectional and so HomA(I, Yr - 3 ) 1= 0(1.4). This 
yields that pdA'TÃ 1y"_3 2: 2 and the result is proven since 'TÃ IYr _ 3 is a direct 
summand of radP'. Ô 

The next. result has been established in [22] . We shall give here an alt.ernat.ive 
proof. 

COROLLARY 4.5 [22] An algebra A is quasitilted if and only if any path in indA 
from an injective module to a projective module can be refined to a path of irre­
ducible maps and any such refinement is sectional. 

Proof Suppose A is quasitilted . Then , by 4.1 , any path in indA from an injective 
to a projective can be refined to a pat.h in r A. Assume now that there exists a 
non-sectional path I ~ P in r A where I is an injective and P is a projective. 
By Proposition 4.4, there exists a projective P' E indA having a submodule X 
with pdAX 2: 2. Clearly, the quotient- ~ is indecomposable and has projective 
dimension at least 3, a contradiction to t-he fact that. A is quasitilted. 
Conversely, if any path in indA from an injective module to a projective module 
can be refined t.o a pat.h of irreducible maps and any such refinement is sectional, 
t.hen A is shod by 4.2. If A is not quasitilted, then gl.dimA = 3. In particular, 
there exists a simple module S with pdAS = 3. Let Ps E indA be t.he projective 
module associated to S . Then radPs has an indecomposable summand X with 
pdAX = 2. Hence, t-here exists a pat-h 

in indA where I is an injective module and f , 9 are irreducible morphisms. By 
4.1, such a path can be refined to a path in r A which is clearly not sectional , a 
contradiction. Ô 

COROLLARY 4.6 [11] The following stalements are equivalent for a shod algebra 
A: 
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(a) A is striet shod. 

(b) There exists a non-sectional path in indA from an injective module to a 
projeetive module. 

(c) nA \ LA has a projeetive module. 

(d) LA \ nA has an injective module. 

Proof. The equivalence between (a) and (b) follows directly from Corollary 4.5. 
(b) ::} (c) and (d) . Assume there exists a non-sect.ional path (*) in r A from an 
injective module I to a projective module P. Since (*) is not sectional but it has 
at most two (consecutive) hooks, then there exists a non-injective module X such 
that (*) has the form : 

where (t"d and (t"2) are sectional paths. In particular, pdATAlX 2: 2 and idAX 2: 
2. Since A is shod, we infer that X E LA \ nA and TAl X E nA \LA and so 
I E LA \ nA and P E nA \ LA· 
(c) ::} (b) Assume there exists a projective P E nA \ LA . Since P ti. CA, there 
exists a path X "'-> P in indA with pdAX 2: 2. As before, one gets a path 
1--+ TAX --+ E --+ X ....... P in indA, where I is an injective. Hence (b) holds. 
The proof of (d)::} (c) is similar. Ô 

We finish this section with two examples. 

EXAMPLES 4.7 (a) Let A be the k-algebra given by the quiver 

2 
• .5 

7~~1 
1. .4 

~~~2 
• • 6 

with aIfh = azflz = (3212 = O 

3 

This is a representation-finite iterated tilted algebra of type Ãn. Its Auslander­
Reiten qui ver has the following shape: 

P6 

/.~./.~ 
/.~./.~./.~./.~./.~./. 

• ......... ..... • I 1 .----+-.---....----+-.------...---+-.~. 

~/~/~/~/~/~ . ... ... .. ...... . .............. . .............. . .. ...... .. ... . . ......... . .... . 
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An easy caJculation shows that A is shod. Also, since gl.dimA = 3, A is indeed 
strict. shod. Observe that. from 11 to P6 there are both a path with one hook and 
a sectional path . 

(b) Let A he the k-algebra given by: 

with /36! = a/3 = O 

Its Auslander-Reiten quiver is: 

Observe that from h to P6 there is one path with one hook and another with two 
hooks. Clearly, A is strict shod. 

5. Non-semiregular components for shod algebras 

The results in the last section indicate that the paths in r A from an lllJective 
module to a projective module when A is shod can play an import.ant. role in the 
understanding of the category modA, or particularly, on the Auslander-Reiten 
quiver of A . 

We have seen that if A is strict shod, then there always exist a path in indA 
from an injective to a projective. On the other hand, if A is quasitilted but not 
tilted , there is no such path and if A is tilted, there could exist such path. In any 
case, it follows from 4.1 that if there exists a path in indA from an injective I to a 
projective P, it can be refined to a path of irreducible morphisms. In particular, 
I and P lie in the same component of r A. We shall now study some properties 
of such component. It will, indeed, play the same role for strict shod algebra as 
the so-called connecting component for tilted algebras, dividing the category indA 
into two parts, the left one lying in LA and the right one in nA. 
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Our first aim is to establish that a non-semiregular component r of r A for a 
shod algebra A has no oriented cycles. Indeed , such a result can be generalized 
and we have done so in [12] in a joint work with Lanzilotta, where we have studied 
the so-called pip-bounded components. However, we shall provide here a different 
proof for the non-existence of oriented cycles than the one given in [12] . We shall 
need the following lemma proved in [18]. For the convenience of the reader, we 
shall give here a proof. 

LEMMA 5.1 [18](1.4) Let A be an algebra, X = X o --+ Xl --+ ... --+ X t = X 
be an oriented cycle in r A, and r 2: 1. If r~ Xj -j:. O for each 1 ::; i ::; r and 
j = O,, . " t , then there exists a path in r A from X to rÁX. 

Proof. By l.3 , the path (*) : X = X o --+ Xl --+ ... --+ X t --+ Xl = X t+l is 
not sectional and so there exists an I , 1 ::; I ::; t , such that rAXI+l == XI-I ' By 
hypothesis , one can apply r A to (*) to get the following path 

( **) 

in r A . Observe that. the module rAXI+I == XI-I appears in both (*) and (**) and 
hence, there exists a path 

in r A from X t.o rAX, lterating this procedure, one gets the desired result . <> 

PROPOSITION 5.2 Let r be a component ofr A and let Z E r be a module lying in 
an oriented cycle. 

(a) Ifr has projective modules, then there is apath in r A from Z to a projective. 

(b) If r has injective modules, then there is a path in r A from an injective to 
Z. 

Proof. We shall only prove (a) since the proof of (b) is dual. 
(a) Let (j : Z = Zo --+ Zl --+ ... --+ Zt = Z be an oriented cycle in r containing 
Z. Suppose first. that there exists an j such that rÁ Zj is a projective module for 
some r 2: '0. Without. lost of generality we can assume that r~ Zi is not projective 
for each I < r and each i = O, .. . , t. By 5.1, there exists a pat.h from Zj to rÁXj 
as required. 
Suppose now that each Zo , · ·· , Zt is left stable, that is, rA Zi is not a projective 
for each n 2: O and each i = O, ... , t. Since r contains projective modules and it 
is connected, there exists a walk 

Z' = X o - Xl - ... - X m = P 

in r A of minimallength, where P is a projective module in r and Z' is a module 
in the r A -orbit of Z . lt follows from the imposed minimality on (*) that each 
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of X o, ... , X m - I is left. st.able. Therefore , by applying TA if necessary one gets a 
path 2" ---+ .. . ---+ P , w here Z" = TÃ Z for some s. If s < O, then clearly there 
exists a path Z"-> TÂZ in r . Otherwise, if s > O, then by 5.1, there exists a path 
2"-> TÃ Z in r . In both cases , we get a path 2"-> P as required . <> 

In order to show our main result of this section , we recall the following lemma 
from [12] . 

LEMMA 5.3 [12] Let A be a shod algebra and let r be a non-semiregular component 
oi r A· Then r has only jinitely many TA -orbits. 

THEOREM 5.4 [12] Let A be a shod algebra and r be a non-semiregular component 
oi r A · Then r is generalized standard and has no orienied cycles. 

Proof. (a) Suppose that (*) : X = X o ---+ .. . ---+ X t = Xis an oriented cycle in 
r. Since r is non-semiregular , by 5.2, there exist an injective I and a projective 
P and paths I "-> X and X "-> P. Using (*), one can produce paths I "-> P of 
arbitrary length, a contradiction to 4 .3. 

(b) Suppose there exists a non-zero morphism i E radA' (X, Y)with X and Y in 
r. By [37], there exists an infinite path 

of irreducible maps and non-zero maps gi E radOO(Xi, Y), for each i . By 5.3 , r 
has only finitely many TA-orbits , and so there exists a positive integer no and an 
infinite set- of integers J such that if j E J, then t-he rA-orbits of Xj and of X no 

coincide. Without lost of generalit-y, we can assume that no = O. Observe also 
that, since r has no oriented cycles, if jl, Í2 E J , Í1 2: Í2, then rÃ Xii ~ X h for 
some s 2: O. In particular , the modules Xj, with j E J , are right stable. Since r 
has injective modules , it is not difficult to see that any right stable rA-orbit has a 
module which is a successor of injectives. Let then L be such that X, is a successor 

of an injective I . Hence, we have shown the existence of a path I t2 X, ~ Y 
from the injective I to Y passing through a morphism gl in radA' (XI, Y). Using a 

dual argument and the morphism g" one gets a path (**) : X, ~ Y' "-> P with 
P an indecomposable projective and g' E radA' (XI, Y'). Thti glueing ofthe paths 
(*) and (**) yields a contradiction to 5.1 and the result. is proven. <> 

COROLLARY 5.5 Let A be a connected quasitilted algebra and Let r be a non­
semiregular component oi r A. Then A is tilted and r is a connecting component. 

Proof. We shall only sketch the proof here. By 5.4, r has no oriented cyclesand 
it is generalized standard . Therefore, ris directing. Suppose r is not connecting . 
Then, by 3.4, r is either postprojective or preinjective. Suppose the former . 
If r contains all the indecomposable projective modules, then it is connecting, 
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contrary to our assumption. Therefore, there existo projective modules not lying 
in f . Since A is connected, there are projectives P, P' E indA such that P E f, 
P' ~ f and HomA(P, PI) =f. O. Clearly, HomA(P, PI) = rad:;t'(P, P'). Lifting any 
non-zero morphism of HomA (P, PI) through paths of irreducible morphIsms in f, 
one gets a path from an injective I E f to P' passing through a morphism in 
radoo (modA), a contradiction t.o 5.1. Dually, one gets a contradiction if assuming 
that f is preinjective. Ô 

COROLLARY 5.6 A representation-jinite connected quasitilted algebra is tilted. 

Proof. Since A is connected, then f A is also connected (see [3](VII .2.1)). Clearly, 
it is a non-semiregular component and so the result follows from 5.5 . Ô 

In [12], in a joint work with Lanzilotta, we have considered an special kind of 
component in the Auslander-Reiten quiver f A which includes the one discussed 
above. A component f C f A is called pip-bounded provided there exists a positive 
integer no such that any path in indA from an injective in f to a projective in f has 
length at most no . We have shown that a pip-bounded component is generalized 
standard and has no oriented cycles (see [12]). The following result follows easily 
from 4.3. 

COROLLARY 5.7 Let A be a shod algebra. Then any non-semiregular component 
of f A is pip-bounded. 

The study of pip-bounded components has been also useful in [13] where we 
consider a more general class of algebras, the so-called weakly shod algebras. We 
just recall its definition and refer the reader to [13] for details. An algebra A is 
called weakly shod provided there exists a positive integer no such that any path 
in indA from an injective to a projective has length at most no. 

6. Shod algebras as an iteration of one point extensions 

We have seen that if A is a strict shod algebra, then f A has a non-semiregular 
generalized standard component f with no oriented cycles. We will see below 
that in fact, if A is connected, then there exists a unique such a component which 
is, in addition, faithful. Moreover, it resembles a connecting component for tilted 
algebras in many aspects since it divides f A into two parts. In order to prove this, 
we shall make use of a technique called one point extension. Being more precise, 

let B be an algebra and M E modB. The algebra A = B[M] = (! ~) is 

called the one point extension algebra of B by M. In this case, the A-modules can 
be described as triples (k t , X, f), where X is a B-module and f: kt ®k M --t X 
is a B-homomorphism. Observe then that modB can be naturally embedded 
into modA. The indecomposable projective A-modules can be described as: (i) 
(O, P, O) where Pis an indecomposable projective B-module; and (ii) the extended 
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projective A-module Pw = (k, M, idM ) , whose radical is the module (O , M , O). 
Also , if ! is an injective B-module , then (O , ! , O) is an injective A-module if and 
only if HomB(M, I) = O. When there is no danger of confusion, we shall also 
indicate the A-module (O , X, O) simply by X. 

Suppose A = B[M) . If one denotes by n the number of simple A-modules , 
then the number of sim pIe B-modules is n - 1. Also, the ordinary quiver ~A of 
A is an extension of the ordinary qui ver ~B of B in the folllowing way: (~A)O = 
(~B)O U {w} and (~Ah has ali the arrows of ~B plus some extra arrows going 
from the vertex w to vertices in (~B)O . For more details on this construction we 
refer the reader , for instance, to (3) . 

Observe that the construction above wiU allow us to transport some informa­
tions from the algebra B to A using induction on the number of sim pIe modules . 
The next result is very useful for this purpose . 

LEMMA 6.1 1f A = B[M) is a shod algebra, so is B. 

Proof Suppose B is not shod and let X E indB with pdBX 2: 2 and idBX 2: 2. lt 
is not difficult to see that pdA(O, X, O) 2: 2 and idA (O, X, O) 2: 2, which contradicts 
our assumption on A. <> 

Using this reduction procedure, we will see that any strict shod algebra is in 
fact an iteration of one point extensions starting at a product of tilted algebras 
and one can then use the knowledgment on this later class of algebras to study 
the class of strict shod algebras. This is the aim of this section. For complete 
proofs of the material discussed here, we refer to [13, 30). 

Our main result here can be stated as follows. 

THEOREM 6.2 [13] Let A be an stricl shod algebra. Then lhere are algebras 
B = Ao, AI,' " , At = A and Ai-modules Mó ; i = O, .. " t - I, such lhat: 

(a) B is a product of tilted algebras. 

(b) For each i = 1, "' , t, Ai = A-dMi-tl . 

(c) For each i = 1, " ', t, there are no paths from the extended projeclive A i -

module to any other projective Ai-module. 

We shall now discuss only the main steps of the proof of the above theorem. 
Let A be a strict shod algebra and denote by P! the set of alI indecomposable 
projective A-modules lying in nA \ LA. By 4.6 , P! :::j::. 0 and, clearly, an indecom­
posable projective A-module P lies in P1 if and only if there exists a non-sectional 
path in indA from an injective module 1 to P. 

Let now P, P ' E P! and let 1 E indA be an injective module such that there 
exists a non-sectional path 1 "-lo P . lf P' is a successor of P, then there is no 
path P' ........ P, since otherwise one would get a non-trivial path P "-lo P and so 
paths of arbitrary length from 1 to P, contradicting 4.3. Hence, one can define 
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the following order in p~ : for P, P' E indA , P ::S P' if and only if there exists a 
path P ~ P'. 

U nder this order, a maximal element P E p~ also satisfies the following 
HomA(P, PI) = O for each indecomposable projective P' not isomorphic to P . 
In terms of the ordinary quiver óf A, the vertex associated to P is a source. 
Therefore, A can be seen as one-point extension e[M) , where P is the extended 
projective A-module. 

Write e = e 1 x .. . x et and M = M 1 X ... x Mt where for each i = 1," ' , t , 
ei is a connected algebra and Mó E mode •. We know , by 6.1, that each ei is a 
shod algebra. In fact , each e i is either a strict. shod algebra or a tilted algebra, 
the possibility Ofei being quasitilted but not. tilted excluded (see [13] for details). 
Moreover , if r' is a component of rc; cont.aining an indecomposable summand of 
Mi , then r' is either a pip-bounded component (in case ei is strict shod) or a 
connecting component (in case e, is tilted) . One can now repeat this procedure 
for each summand of e which is strict shod. An induction on the number of 
indecomposable projective modules gives now the main resulto 

This procedure also shows that a pip-bounded component r of a strict shod 
algebra can be built up from connecting components of some connected tilted 
algebras. Since a connecting component of a connected tilted algebra is faithful , 
one gets the following result (see [13](5.4) for a complete proof). 

THEOREM 6.3[13] Let A be a connected strict shod algebra. Then r A has a unique 
pip-bounded component which is, in addition, faithful. 

Next result is a direct consequence of 6.2 and shows that the ordinary qui ver 
of strict shod algebra has no oriented cycles. For an alternative proof, we refer 
the reader to [11](2.2) and [22](I1I .Ll). 

COROLLARY 6.4 The ordinary quiver of a shod algebra A is directed. 

Proo! (a) If A is quasitilted, then the the result follows from [22]. Suppose A 
is strict shod. As we have seen , A is then built up from a (product of) tilted 
algebra(s) by iterating one-point extensions. The result will now follow from the 
folJowing easily verified remarks: (i) the ordinary quiver of a tilted algebra is di­
rectedj and (ii) the process of one-point extending an algebra does not produce 
cycles in its ordinary quiver. O 

There exists a dual notion of one-point coextension. It is not difficult to see 
that 6.2 can be dualized using this notion. We finish this section with an example 
to ilJustrate the above procedure. 

EXAMPLE 6 .5 Let A be the k-algebra given by the qui ver Â : 
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7 ep8 ç9 ()1O 
• ------+- • ~ • ----.... • 

wit-h relat-ions ()ç = çep = <517 = 0, a j 5 = 0, {3it = 0, 5,,/j = ° and "/iE. = 0, for 
each i = 1, 2. Observe that P! consists of the projectives P6 and P7 and both are 
maximal there. Choosing P7 as the extended projective, A can be written as the 
one-point extension A = (q X q')[58 EB NJ, where: (i) N is t-he indecomposable 
module of length 2 such that radN == 54 and NjradN == 53 ; (ii) q is the radical 
square zero algebra given by the quiver: 

aI 5 E. ~ - -
-I -;;- -2 -r-r ~ '4 --;J; -5 

"/1 "/2 

- 6 

and (iii) q' is the algebra given by the quiver 

ç () 
8 9 10 

with Oç = ° • ~. ----+-. 

Observe that q' is a tilted algebra while q is a strict shod algebra. Now P~I = 
1 

{P6 } and so we can write q = C2 [53]. Observe that C2 is the radical square zero 
algebra given by the quiver: 

which is a tilted algebra. In the notations of 6.2, we have B = Ao = C2 EB Cí' , 
AI = qEB Cí', Mo = 53 and M) = 50 EB N. 

7. The Auslander-Reiten quiver of a shod algebra 

It follows from our considerations in the last section that if A is a strict shod 
algebra, then r A has a unique non-semiregular component which is, in addition, 
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faithful , generalized standard and has no oriented cycles. In [36], Skowronski , 
studied the algebras whose AR-quivers have a generalized standard component 
without oriented cycles. We shall now combine these two results to further under­
stand the AR-quiver of a strict shod algebra. The following resuIt is a consequence 
of SkowroIÍski 's results of [36]. 

THEOREM 7.1 Let A be an Artin algebra and let r be a connected component of 
r A. lf r ís faíthful, generalized standard and without oriented cycles, then there 
exist tilted algebras A(l) and A(r) such that any component r' of r A different of 
r, satisfies one and only one of the follow'ing conditions: 

(a) r' is a component of r A(I) and HomA(X, Y) :j:. o for some X E r' and 
Y E ri or 

(b) r' is a component of r A(r) and HomA(X, Y) :j:. o for some X E r and 
Y E r' . 

Applying this to our context, we have the following resulto We refer to [13] for 
a proof. 

PROPOSITION 7 .2 [13] Let A be a strict shod algebra and let r be the umque 
non-semiregular component of r A. 

(a) if r' is a component of r A different of r, then r' ís semíregular and either 
r' c cA \ nA or r' c nA \ CA· 

(b) the intersection CA nnA is finite and it is contained in r . 

Let A be a connected strict shod algebra, and let r be the uni que non­
semiregular component of r A. As we have seen above, if r' is a component of 
r A different from r, then it is a component of a tilted algebra. Using now the 
well-known description of the Auslander-Reiten quiver of tilted algebras, we have 
the following. For a strict shod algebra A, the components of r A are of the 
following shape (using the notation of (7 .1)): 

(i) postprojective component(s) (those of r A(I)). 

(ii) preinject.ive component(s) (those ofrA(r»). 

(iii) a unique and faithful pip-bounded component which IS the uni que non­
serniregular component . 

(iv) stable tubes. 

(v) components of type ZAoo. 

(vi) cornponents constructed from tubes or from ZAoo by ray or coray insertions . 
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Observe moreover t.hat. t,he components of f A(l) (or f A(r») which are embedded 
in f A are semiregular without injective (respectively, projective) modules and are 
contained in LA \ nA (respect.ively, in nA \ LA) (see (7.2)). 

We finish this sect.ion with some further results concerning the connection of 
components of f A and the subcategories LA and nA for a strict shod algebra A. 
We first recal! the following result which has been proven in [15] and [22]. 

LEMMA 7.3 Let A be a tilted algebra with connecting component r which is neither 
postprojective nor preinjective. 

(a) [15](3.1) Then LA n nA c f. 

(b) [22](11.3.1) lf f is regular, then LA n nA = f. 

PROPOSITION 7.4 Let A be a connected shod algebra. 

(a) lf LA n nA contains a component of r A, then A is quasitilted. 

(b) Assume A is not hereditary. Then LA nnA contains a directing component 
if and only if A is a tilted algebra with a regular connecting component r. 
Moreover, in this case, LA nnA = r. 

Proof. (a) It follows from 7.2(b). 
(b) If A is a tilted algebra with a regular connecting component r, then by 7.3 
r = LA n nA and LA n nA, in particular, contains a directing component. 
Suppose now that LA nnA contains a directing component r'. Observe first that 
if P E r' is a projective module, then radP is also projective. Indeed, if radP has 
an indecomposable summand X which is not projective, then idA"TAX ~ 2 and so 
f' ct. LA nnA· 
Suppose r' is postprojective. The remark above implies that each projective in 
r' is hereditary. Since the algebra A is not hereditary, there exist projective 
modules not lying in r'. Since now A is connected, there exist projective modules 
P, P' E indA with P' E r' and P fi. r' and a non-zero morphism f: P' -+ P. 
Lifting now f through the irreducible morphisms of r' it is not difficult to see that 
HomA(X, P) i: o for some non-projective module X E f'. As above, idA"TAX ~ 2 
and so r' ct. LA n nA, a contradiction. A similar argument shows that r' cannot 
be preinjective. Then, by 3.4, f' is a connecting component of a tilted algebra. 
Clearly, if r' is not regular, then it would contain either a projective P such that 
radP is not projective or, dually, an injective I such that I/socI is not injective, 
a contradiction and the result is proven. O 

We refer the reader to [13, 18], where further results relating the components 
of r A and the categories LA and nA, for A shod or quasitilted, are proven. 
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8. Hochschild cohomology of strict shod algebras 

In this section, we want to show how Theorem 6.2 can be used to calculate the 
Hochschild cohomology of a strict. shod algebra. The results below appear in a 
joint work with Lanzilotta and Savioli [14] . 

For an algebra A, denot.e by Hi (A) it.s i-th Hochschild cohomology group (see 
[20, 27] for details) . We want to show here that, for a strict shod algebra A, 
Hi (A) = O for each i 2: 2. The next results, due to Happel, will be useful in our 
considerations. For a proof of them, we refer to [20]. 

THEOREM 8.1 [20] . Let B be a connecled tilted algebra of type.6. . Then 

(a) HO(B) = k ; 

(b) H1 (B) = O if and only if.6. is a tree; 

(c) Hi(B) = O for each i 2: 2. 

THEOREM 8.2 [20]. Let A = B[M]. Th en there exists a long exacl sequence 

O --+ H o(A) --+ H o(B) --+ ( End AM)jk --+ H l(A) --+ 

--+ H 1(B) --+ Ext1(M, M) --+ . . . 

. .. --+ H i(A) --+ H i (B) --+ Ext~(M, M) --+ . .. 

Let A be a strict shod algebra. The strategy of the proof of our main result is 
to show that at each step in the iteration of one-point extension given in 6.2, the 
modules Mi 's satisfy Ext~ i (Mi , M i ) = O, for j = 1, 2 (using the Ilotations of 6.2) 
and then use Happel's long exact sequence given in 8.2. This will follow from the 
next proposition. 

PROPOSITION 8.3 [14] Let A = B[M] be a striei shod algebra and assume that the 
extended projeeiive A-module Pw is a maximal element in P!. Then ExfB(M , M) = 
O, for each i = 1, 2. 

Proof. We shall Ilot give a complete proof here , see [14] for it. However, we shall 
s~etch the proof that Ext~ (M , M) = O for the taste of it. 
Suppose Ext1(M, M) =f: o. Then there exists an indecomposable summand MI 
of M such that Ext1(M,MJ)"# o. Clearly, then, Ext~((O,M,O) , (O,MI,O))"# O. 
Denote by Z the quotient of the extended projective A-module Pw = (k, M, idM) 
by (O, M I , O) . Applying now HomA((O , M, O), -) to the short exact sequence 

O --+ (O, MI , O) --+ Pw --+ Z --+ O 

one gets 

I 2·) . . . --+ ExtA ((O, M, O), Z) --+ ExtA ((O , M , O), (O, M I, O) --+ 
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-+ Ext! ((O, M , O) , Pw) -+ ... 

Observe that idA Pw < 1. Indeed , if idA Pw 2: 2, there would exist a non­
zero morphism from Til Pw to a projective A-module leading to a contradic­
ti.on to th2e fact that Pw is maximal in P~. !herefore, Ext! ((O, M, O) , Pw) = O. 
Smce ExtA ((O, M, O), (O, MI' O)) -# 0, we then mfer that Ext~ ((O, M, O), Z) is non­
zero. Consequently, HomA(Z, TA(O, M, O)) -# ° (recall that Ext~((O, M, O), Z) = 
D HomA(Z, TA(O, M, O)), see (3](IV.4 .6)). In particular, there exists an indecom­
posable direct. summand N of M such that HomA(Z, TA(O, N, O)) -# O. We obtain 
then an oriented cycle 

Pw -+ Z -+ TA(O, N, O) -+ * -+ (O, N, O) -+ Pw 

in r A . Since Pw E P~ there exists a path (**) : f '"'-' Pw in indA where f is an 
injective module. Using the paths (*) and (**) we would get paths f '"'-' Pw of 
arbitrary length, a contradiction to 4.3 . <> 

We can now show the main result of this sect.ion. 

THEOREM 8.5 (14] ff A is a striet shod algebm, then H'(A) = O for eaeh i 2: 2. 

Proof. By 6.2, there are algebras B = Ao, AI, ... , At = A and Ai-modules Mi 
for each i = O, ··· , t - 1 such that: (i) B is a product of tilted algebras; (ii) 
Ai+l = Ai[Md for each i = O,···,t -1; and (iii) the extended projective Ai+I­
module (k, Mi, idM) is a maximal element in P Ag . . We shall use induct.ion on .. ..+1 
t 2: 1 to get our resulto First observe that, since gl.dim A :S 3, we get Hi (A) = O, 
for each i 2: 4. Suppose t = 1, that is, A = B(M], where B is a product of tilted 
algebras and the extended indecomposable project.ive A-module is maximal in P~. 
Then, by 8.1, Hi(B) = O, for each i 2: 2. Since Extk(M, M) = O for each i = 1,2, 
we get from Happel's long exact sequence that H2 (A) = H3 (A) = O. The above 
argument can be indeed made at each step of the iteration of one-point extensions 
described in 6.2 in order to get the desired resulto <> 

We first observe that 8.5 cannot be generalized to shod ·algebras since there 
are quasitilted algebras A with H 2 (A) -# o. The second remark we want to make 
concerns the first Hochschild cohomology group of a strict shod algebra. The 
group H1 (A) wiII clearly depend on the types of the tilted algebras which are 
components of B and properties of the modules Mi (using the notations of 6.2) 
as shown in the next resulto 

PROPOSITION 8.6 [14] Let A be a strict shod algebra. Using the notations of 6.2, 
H1 (A) = ° if and only if 

(a) B ís a produet of eonneeted tilted algebras of tree type; 

(b) for eaeh i > 0, the extended projeetíve Ai+l-module ís separating; and 

(c) for eaeh i> 0, the module Mi is a direct sum of pairwise orthogonal brieks. 
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We refer to [14] for more details of this discussion . We finish this section with 
some examples. 

EXAMPLES . (a) Let B be the k-algebra given by the quiver: 

- 5 1, 
with a/h = O 

f3 
2 3 4 

It is not difficult to see that B is a tilted algebra of type Ds. Therefore, by 8.1, 
H1 (B) = O. Consider M = 1'-2 P3, that is , the indecomposable B-module of di­
mension vector dimM (O, O, 1, 0,1) and A = B[M]. Then A is the k-algebra 
given by the qui ver 

8 
5---6 

f3 
1, 

1 2 3 4 

Clearly, A is a st,rict. shod algebra, and since M is a brick and the extended pro­
jective A-module is separating we infer that H1 (A) = O. 

(b) Let B be the k-algebra given by the quiver 

f3 • ::=:::::= • -+---- • with af3 = O 
123 

The algebra B is tilted of type Ã3 (with a complete slice in its preinjective com­
ponent) and therefore by 8.1 , H1 (B) =F O. Consider the one-point extension 
A = B[S3J of B by the simple B-module S3 associated to the vertex 3 which 
is indeed the unique indecomposable B-module of projective dimension 2. It is 
not difficult to see that there are then only two indecomposable A-modules which 
have projective dimension greater than 2, namely, S3 and S4. Since pdA S3 = 2, 
pd A S3 = 3, idA S3 = 1, and idA S4 = O, we infer that, A is a strict shod algebra. 
Also, it follows from the above considerations that H1(A) =F O. 
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9. Shod extensions of algebras 

We have seen that if A is a shod algebra, then there exists an algebra B and a 
B-module M such that A = B[M] and this allowed us to understand better the 
algebra A . In this section , we sh all discuss the converse problem, that is, given 
an algebra B and a B-module M, when is the one-point extension B[M] a shod 
algebra? As we have seen in Section 6, if A = B[MJ is strict shod , then B is 
a product of algebras which are either strict shod or tilted . In other words , if 
B has a summand which is a quasitilted algebra but not tilted, then there is no 
connect ed one-point extension of B which is strict shod. So, it is sensible to divide 
our discussion into two parts: (i) quasitilted extensions of algebras; and (ii) strict 
shod extensions of algebras. 

Quasitilted extension of algebra. The results below are part of a joint work 
with M. L Martins and J . A. de la Pena and their proofs can be found in [15, 16J. 

As we have seen, the canonical algebras are quasitilted. On the other hand, 
they are one-point extensions of hereditary algebras by indecomposable modules 
lying in regular components. It is not difficult to see that these modules are not 
directing. Our first result implies that, in a sense, the above construction is an 
exception , that is , if a one-point extension B[MJ is quasitilted and M decomposes , 
then M is directing. 

THEOREM 9.1 [15] Let B be a connected algebra and let M be a non-zero decom­
posable B-module such that the one-point extension B[MJ is quasitilted. Then M 
is directing. Moreover, A is a tilted algebra. 

The following results provide complete characterizations of the properties of a 
decomposable B-module M for B[M] to be quasitilted in case B is indecompos­
able. Our first. theorem deals with t he case where M E add(LB n 1lB) . 

THEOREM 9.2 [16] Let B be an indecomposable quasitilted algebra and M be a 
non-zero decomposable B-module in add(LB n 1lB) . The following are equivalent: 

(a) B[M] is tilted. 

(b) B[M] is quasitilted. 

(c) M is directing. 

In t he situation complementary to the above theorem, since M E addLB, we 
have to consider non-zero decomposable modules M with non-zero direct sum­
mands in LB \ 1lB. We shall divide it in the next two theorems. 

THEOREM 9.3 [16] Let B be an indecomposable quasitilted algebra and M = 
M 1 EB M2 be a B-module such that O :f. M 1 is an indecomposable module in LB \ 1lB 
and O :f. M 2 E add(LB n 1lB) . Then the one-point extension B[M] is quasitilted 
if and only if the following conditions hold: 
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(a) B[Md is quasitilted; 

(b) M2 lS a hereditary projeetive module and HomB(M2 , nB \ LB) = O; 

(c) M i$ direeting. 

THEOREM 9.4 [16] Let B be an indeeomposable quasitilted algebra and M a de­
eomposable B-module in addLB sueh that it eontains at least two non-zero inde­
eomposable direet summands in LB \ nB. The following eonditions are equivalent: 

(a) B[ M]is a quasitilted algebra; 

(b) M is a hereditary projeetive B-module and HomB(M, nB \ LB) = O; 

(c) M is a projective B-module and HomB(M, nB \ LB) = O. 

There has been some further work in order to characterize the modules M in 
modB such that an extension B[M] is quasitilted, see [26, 32,41] for instance. 

Strict shod extensions of algebras. We shall now comment the main results 
from our joint work with A. Savioli (see [17] for details). 

We have seen that if A = B[M] is shod then so is B. The informations one gets 
on M are somehow not so straight. The next results give some partial informations 
on M. 

THEOREM 9 .5 [17, 13] Let A = B[M] be a striet shod algebra sueh that the exlended 
projective A-module /ies in P!. Then: 

(a) each indeeomposab/e summand of M lies in a eomponent of rB whieh lS 

generalized standard and without oriented eycles. 

(b) M is a direeting module. 

Proo! (a) If the extended projective module is a maximal element in P! the result 
has been established in [13], where we refer the reader to for a proof. However , 
the result can be extended to the case considered here. Indeed, suppose the 
extended projective module Pw is a non-maximal element in P!. So, there exists 
a projective A-module P' which is maximal element in P! and a path (*) from Pw 
to P' . Observe that since Pw is the extended projective, then HomA(Pw, P') = O 
and the path (*) is not sectional. On the other hand, since Pw EP!, there exists 
a path (**) from an indecomposable injective module to Pw. Glueing now the 
paths (*) and (**) we get a path from an injective to P' which can be refined to 
a path in r A and so Pw and P' lie in the same component in r A . The result now 
follows from the description of the components containing Pw (5.4). 
(b) Clearly then each indecomposable direct summand of M is directing. By [25], 
we infer that M is itself directing. Ô 
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PROPOSITION 9.6 [17] Let A =B[M] be a shod algebra where M is a direeting 
module. Then either M is a projeetive B-module or rBM E addCB . 

We shall consider first the situation where M is a projective B-module and 
characterize when A = B[M] is (strict) shod . We observe that the equivalence of 
conditions (a) and (c) of the next result was first established by Huard in [28]. 
For a complete proof, we refer the reader to [17J. 

THEOREM 9.7 [17, 28] Let B be an algebra and let M be a projeetive B-module. 
The following statements are equivalent: 

(a) A = B[M] is shod. 

(b) For eaeh W, X , f) E indA , either X E addLB or X E adclR-B. 

(c) For eaeh (k t , X, f) E indA, either pdBX :S 1 or idBX :S 1. 

As a corisequence we have the following. 

PROPOSITION 9.8 [17J Let A = B[M] be a shod algebra where M is a projective 
B-module. 

(a) lf M E adel'RB : then A is shod. 

(b) A is siriet shod if and only if B is sirict shod. 

Proo! (a) Let Z = (k t , X , f) be an indecomposable A-module. We want to show 
that pdBX :S 1 or idBX :S 1. If X is indecomposable, this is the case because Bis 
shod (by 6.1). If Xis not indecomposable, then in particular f =f. O. Moreover, the 
image of f intersects each indecomposable summand of x. Since, by hypothesis 
M E addnB , it yields that X E addnB and, in particular, idBX :S 1. The result 
now follows using 9.7. 
(b) In general , if A = B[M] then gl.dimA = max{ gl.dimB,pdBM + I} (see 
[3J(III.2 .7» . Now , since in our case A is a shod algebra we have that gl.dimA:S 3. 
Since pdBM = O, we infer that gl.dimA = 3 if and only if gl.dimB = 3 and the 
result is proven . <> 

The next result deals with the second possibility discussed in 9.6. 

THEOREM 9 .9 [17] Let B be a shod algebra and let M be a direeting B-module in 
adclR-B sueh lhat rBM E addLB. 

(a) Then B[M] is shod. 

(b) The algebra B [M] is siriet shod if and only if B is striet shod or if pdB M = 2. 
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We borrow the following example from (17) (see also (35)) to show that there 
exists an extension B[M) which is strict shod but with M not directing. 

EXAMPLE 9.10 Let B be the radical square zero k-algebra given by the quiver b.: 

.:==::.~.1--. 

1 2 3 4 

The Auslander-Reiten quiver f B of B consists of a postprojective component and 
a family of homogeneous tubes corresponding to the algebra given by the full 
subquiver of b. containing the vertices 1 and 2, and a component f as follows: 

The subcategory LB consists of alI indecomposable B -modules but S3, P4 and 
S4, while 1<-B consists of the modules P3, S3, P4 and S4. So B is shod. Moreover, 
it is strict shod because pd B S4 = 3. Let now M = (k:t k - O - O) in indB. 
It is not diflicult to see that M belongs to one of the homogeneous tubes of fB 
and so M is not directing. Consider now A = B[M), that is, the k-algebra given 
by the quiver b.': 

5 • 

with 0'2Ó = 0'113 = 0'213 = 13, = O. Observe that the k-algebra B' given by the 
full subquiver of b.' consisting only of the vertices 1, 2 and 5 is tilted . AIso, it is 
not diflicult to see that the algebra A is strict shod. Hence, there are strict shod 
algebras which are one-point extensions by non-directing modules. 

10. Tilting up shod algebras 

In this section we will comment very quickly some results from our joint work 
with Happel and Unger [10), where we refer to for details. 

The starting point of our considerations was the problem whether or not there 
is a relantionship between hereditary abelian categories and strict shod algebras 
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via the tilting processo The following example, borrowed from [35] h th t , s ows . a . 
there are strict shod algebras which do not come in this way. 

EXAMPLE 10.1 Let A be the k-algebra given by the quiver .6.: 

with af3 = O, /J= O and JtjJ = O. This is a strict shod algebra. Observe however 
that Ext~ (S, SI) f O and Ext~ (S' , S) f O if S is the unique sim pIe injective 
module and S' is the uni que simple projective. Therefore, by [19](IV.l.ll) , A 
cannot be a piecewise hereditary. 

However, there is a nice relation between the class of strict shod algebras and 
a class of algebras of global dimension 2 admiting a special tilting torsion pai r 
which we shall now describe. We start discussing the so-called canonical tilting 
module. 

Let A be a strict. shod algebra. Let now P' (respectively, l') be the sum of 
all indecomposable projective (respectively, injective) modules Iying in R A \ CA 

(respectively, in CA \ RA) ' By 4.6 , both P' and I' are non-zero. Let finally J be 
the sum of l' with ali indecomposable modules X E C A such that TAl X tJ. C A . 

In fact , J is the sum of ali indecomposable Ext-injective modules of CA . Recall 
that a module X is an Ext-injective in a subcategory C of modA if X E C and 
Ext1 (X, C) = O for each C E C. Dually, one can define Ext-projective modules in 
C. 

THEOREM 10.2 [10](3.6) lf A is a strict shod algebra, then T = P' Ef) J is a tilting 
module. 

The (tilting) module T as in 10.2 is called the canonical tilting module for A. 
Observe that a similar version of this module has been considered by Savioli in 
[35] in connection with the so-called separating slice of Assem. 

Let A be a strict shod algebra and let T = P' Ef) J be the canonical tilting 
module. Clearly, P' is an Ext-projective in RA \ CA. AIso, it is not difficult to 
see that the torsion pair (T(T), F(T)) induced by T is 

T(T) = add ((RA \ CA) U ind J) and F(T) == add (LA \ ind J) 

Consider now the following set S consisting of all pairs (A, T) where: 

(i) A is a strict shod algebra. 

(ii) T = Tt Ef) Tr is a cotilting module , Tt is Ext-injective in add(L A \ RA) . 
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(iii) t.he t.orsion pair (X(T) , Y(T)) splits. 

(iv) pdAX :S 1 for each indecomposable X E Y(T) which is not a direct sum­
mand of T. 

For a strict shod algebra A , the pair (A, T) , where T is the canonical tilting 
module , belongs to S . The main result of [10] is t.he following theorem. 

THEOREM 10 .3 [10] There exísts a bijeclive correspondence between the set S and 
lhe set of all pairs (B , T') where: 

(a) B is an algebra of global dímension lwo. 

(b) T' is a lilting module. 

(c) idBX :S 1 for each X E F(T' ) and pdBY :S 1 for each non-ínjeclíve Y in 
ináT(T' ). 

(d) Ext~(:F(T') , T(T' )) # O. 

11. Double tilted algebras 

In an independent work, Reiten and Skowronski [33] have proven some similar 
results to the main results of Section 6. There, they introduce the notion of 
double section and double tilted algebras and relate them to strict shod algebras. 
In this section, we want. to discuss this work very briefly, refering to [33] for details . 

DEFINITION 11.1 Let A be an algebra and r be a component. of r A. A double 
section .6. in r is a full connected subquiver of r such that 

(i) .6. has no oriented cycles. 

(ii) .6. is convexo 

. (iii) .6. crosses each TA -orbit of r at least once and at most twice. 

(iv) If .6. crosses two modules X , X' in the same TA-orbit then (without lost of 
generality) X' = TAX and there are sectional paths I"" TAX and X"" P, 
where I is an injective module and P is a projective module. 

This double section can be seen as the glueing of a left section .6.1 and a right 
section .6.r (with a possible intersection). A double tilted algebra A is an algebra 
such that r A has a component with a faithful double section .6. which induces two 
tilted algebras A(I ) and A(r) which are factors of A (we refer to [33] for a precise 
definition). The main result of [33] is the following . 
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THEOREM 11 .2 [33] The following statements are equivalenl for a connected alge­
bra A: 

(a) A is a strict shod algebra. 

(b) A is an iterated slrict shod extension of a tilted algebra. 

(c) A is an iterated strict shod coextension of a tilted algebra. 

(d) A is a double tilted algebra. 

(e) r A admits a component r with a faithful strict double section ~ such that 
HomA(X, TAY) = O for aU modules X from ~r and Y from ~I. 

AIso in [33] , Reiten and SkowroIÍski studied the tame st.rict shod algebras. In 
particular, they extend SkowroIÍski's characterization oftame quasitilted algebras 
to shod (see [33](9.4)) . 

References 

1. I. Assem, Tilting theory - an introduction, in: Topics in AIgebra, Banach 
Centre Publications , voi. 26, PWN, Warsaw (1990), 127-180. 

2. M. Auslander, M. 1. Platzeck , L Reiten , Coxeter functors without diagrams, 
Trans. Amer. Math . Soc. 250 (1979), 1-46 . 

3. M. Auslander, L Reiten, S. Smal~, Representation theory of artin algebras, 
Cambridge Studies in Advanced Mathematics 36, Cambridge Univ. Press, 1995. 

4. I. N. Bernstein , I. M. Gelfand , V. A. Ponomarev, Coxeter functors and 
Gabriel theorem, Uspekhi Mat. Nauk 28 (1973) 19-33; translated in Russian 
Math. Surveys 28 (1973) 17-32 . 

5. S. Brenner, M. Butler, Generalizalions of lhe Bernstein-Gelfand-Ponomarev 
refiection functors, in: Proceedings ICRA 11, Ottawa 1979, Lectures Notes in 
Maths 832 (1980), 103-169. 

6. R. Bautista, S. Smal~, Non-existent cycles, Comm. Algebra 11 (1983) 1755-
1767. 

7. F. U. Coelho, A n introduction to tilted algebras, Proceedings of the Tercer 
Congreso Dr. Antonio Monteiro, UNS, Bahia Blanca (1996), 145-176. 

8. F. U. Coelho, Directing components for quasitilted algebras, Coll. Math. 82 
(1999) 271-275. 

9. F. U. Coelho, D. Happel, Quasitilted algebras admit a proeprojective compo­
nent, Proc. Amer. Math. Soc. 125,5 (1997) 1283-1291. 



60 Flávio Ulhoa Coelho 

10. F. U. Coelho . D. Happel, L. Unger , Tilting up algebras ofsmall homological 
dimensions , preprint 2001. 

11. F. U. Coelho , M. Lanzilotta, Algebras with small homological dim ensions , 
Manuseripta Mathematiea 100 (1999) 1-11. 

12. F . U. Coelho, M. Lanzilotta, On non-semiregular components containing 
paths from injective to projective modules, Comm. AIgebra, to appear. 

13 . F. U. Coelho , M. Lanzilotta, Weakly shod algebras, preprint, 2001. 

14. F. U. Coelho, M. Lanzilotta, A. M. Savioli , On the Hochschild cohomology 
of shod algebras, Annales des Seiences Mathemat.iques du Quebec, to appear. 

15. F. U. Coelho, M. I. Martins, J. A. de Ia Pena, Quasitilted extension of algebras 
l, Proc. Amer. Math. Soe 129 (2001) 1289-1297. 

16. F. U. Coelho, M. 1. Martins, J. A. de la Pena, Quasitilted extension of algebras 
lI, J. of Algebra 227 (2000) 582-594. 

17. F . U. Coelho , A. M. Savioli , Shod extension of algebras, preprint , 2001. 

18. F. U. Coelho, A. Skowronski, On the Auslander-Reiten components of a 
quasitilted algebra, Fund. Math., 149 (1996), 67-82 . 

19. D. Happel , Triangulated categories in lhe representation theory of finite di­
mensional algebras, London Math. Soe. Lecture Note Series 119 (1988) . 

20 . D. Happel, Hochschild cohomology of finite dimensional algebras, Seminárie 
Marie Paul Malliavin, Lect. Notes in Maths. 1404, Springer Berlin (1989) 108-
126. 

21. D. Happel, A characterization of hereditary categories with tilting objects, 
Invent . Math . 144 (2001) 381-398. 

22. D. Happel , I. Reiten, S. Smal~, Tilting in abelian categories and quasitilted 
algebras, Mem . Amer. Math . Soe. 120 (1996), No. 575. 

23. D. Happel , I. Reiten , Hereditary categories with tilting object, Math . Zeit . 
232, (1999) 559-588. 

24. D. Happel, C. Ringel, Tilted algebras, Trans. Amer. Math. Soco 274 (1982) , 
399-443. 

25 . D. Happel , C. Ringel, Directing projective modules, Arch . Math. 60 (1993) 
247-253 . . 

26 . D. Happel , J. Slungard , One-point extensions of decomposable hereditary 
artin algebras, Proc. of ICRA VIII , CMS (1998),285-291. 



Shod Algebras 61 

27. G. Hochschild , On lhe cohomology groups of an associative algebra, Ann. of 
Math. 46 (1946) , 58-67. 

28 . F. Huard , One-poinl extensions of quasi-tilted algebras, preprint 2000. 

29. K. Igusa, G . Todorov, A characterization of finit e Auslander-Reiten quivers, 
J. AIgebra 89 (1984) 148-177. 

30. M. Lanzilotta, Álgebras shod, PhD's thesis, Universidad de la Republica , 
Uruguay, 90 pp. 2000. 

31. S. Liu, The connecled components of the Auslander-Reiten quiver of a tilted 
algebra, J. Algebra 161 (1993) 505-523. 

32. J. A. de la Pena, S. Trepode, One-point extensíons of quasitilted algebras 
by modules on stable tubes, Proc. of Conference on Representatíons of Algebras 
- São Paulo, Lecture Notes in Pure and Applied Maths., MareeI Dekker, 2001. 

33. I. Reiten, A. Skowroúski, Characterizations of algebras with small homological 
dimensions, preprint, 200l. 

34. C. Ringel, Tame algebras and integral quadratic forms, Leeture Notes in 
Math. 1099, Springer-Verlag, Berlin-Heidelberg-New York (1984) . 

35. A. M. Savioli, Extensões por um ponto de álgebras shod, PhD's thesis, Uni­
versidade de São Paulo, 2000 . 

36. A. Skowroúski, Generalized standard Auslander-Reiten components without 
oriented cycles, Osaka J . Math. 30 (1993), 515-527. 

37. A. Skowroúski , Minimal representation-infinite artin algebras, Math. Proe. 
Cam. Phi. Soc. 116 (1994) 229- . 

38. A. Skowroúski, Regular AR-components containing directing modules, Proc. 
Amer. Math. Soe. 120 (1994) 19-26. 

39. A. Skowronski, Generalized standard Auslander-Reiten components, J. Math. 
Soe. Japan 46 (1994) 517-543. 

40. A. Skowronski, Tame quasitilted algebras, J. AIgebra 203 (1998) 470-490. 

41. I. Slungard, Quasitilted one-point extension algebras, PhD's thesis , Troncl­
heim University, 1998. 

Flávio Ulhoa Coelho 
Department of Mathematics - IME 
University of São Paulo 
Rua do Matão, 1010 - CEP 05508-900 
fucoelho@ime.usp.br 
Brazil 


