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Shod Algebras !
Flavio Ulhoa Coelho

Abstract: An algebra A is called shod provided for each
indecomposable A-module, either its projective dimension is
at most one or its injective dimension is at most one. Tilted
and quasitilted algebras are examples of shod algebras. The
purpose of these notes is to survey recent results on the class
of shod algebras.
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In this paper we want to survey recent results on a special class of algebras
which has been much investigated lately. Covered under the general name of shod
algebras, this class includes the already classical tilted algebras and the quasitilted
algebras.

Before we go on into details in this discussion, let us briefly make some his-
torical comments. We could set here the begining of our comments in the pa-
per [4], where the so-called tilting theory has developed from. There, Bernstein-
Gelfand-Ponomarev gave another proof of Gabriel’s theorem which characterizes
the representation-finite hereditary algebras in terms of their ordinary quivers
(see section 1 for definitions). In this proof, they used the so-called Coxeter trans-
formations in order to study the relations between the module categories over
two distinct hereditary algebras whose ordinary quivers have the same underlying
graph.

In [2], Auslander-Platzeck-Reiten gave a module interpretation of the relations
induced by the Coxeter transformations. Roughly speaking, let H be a hereditary
algebra and let S be a simple projective H-module. Consider the H-module
M given by the sum of all indecomposable projective modules non-isomorphic
to S plus rng, where T_El denotes the Auslander-Reiten translation TrD. The
algebra H' = Endyg M is also hereditary and the functor Homy (M, —) induces
an equivalence between the category of all H-modules which do not have S as a
direct summand and its image in the category of H’-modules.

This idea was further explored in the 80’s by Brenner-Butler in [5] and by
Happel-Ringel in [24] in two fundamental works on tilting theory. Happel-Ringel’s
paper contains the formulation of tilting module and tilted algebras used nowa-
days.

To go on, let us now recall some notions. Let A be a finite dimensional k-
algebra, denote by modA the category of the finitely generated left A-modules,
and by ind A the full subcategory of modA consisting of one representative of each
isoclass of indecomposable module. A module T' € modA is called a tilting module
provided:
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(i) its projective dimension pd47" is at most one.
(ii) T has no selfextensions, that is, Ext} (T,T) = 0.

(iii) there exists a short exact sequence 0 — A —» 7" — T" — 0, where
T',T"” € addT, that is, the indecomposable summands of 77 and of T" are

also summands of T'.

The fundamental Brenner-Butler theorem alllows us to pass informations from
modA to mod B, which has been a very powerful technique in representation theory
of algebras (see Section 3). If the starting algebra A is hereditary, the algebra B
constructed as above is called tilted. One of the striking feature of a tilted algebra
B is the existence of a section ¥ in mod A, called complete slice, which completely
divides the category modB into two parts: for each indecomposable B-module
M, either Homp(M,X) # 0 or Homg(X, M) # 0 (but not both if M ¢ ¥). In
the former case, we also have the projective dimension pdgM < 1 and, in the
later case, the injective dimension idgM < 1. Also, a tilted algebra has global
dimension at most two. Recall that the global dimension of an algebra is the
suppremum of the projective dimensions of its modules.

Several attempts were made in order to extend these successful thecniques to
other contexts but we will not have the opportunity to discuss all of them here.
The interested reader will not have difficulty to find the appropiated references.

The next step in our discussion is the work of Happel-Reiten-Smalg [22], where
the class of quasitilted algebras was introduced. The idea was to give a general
treatment to tilting theory including not only tilted algebra but also the canonical
algebras, introduced by Ringel in [34], under the same construction. They consider
tilting objects in some hereditary abelian categories. A quasitilted algebra is then
defined to be the endomorphism ring of such an object (see [22] for details).

In the same work, Happel-Reiten-Smalg have shown that a quasitilted algebra
A can be characterized by the following properties: (QT1) gl.dim A < 2; and
(QT2) for each indecomposable A-module X, either pdy X < 1 or idaX < 1.
These two conditions induce the existence of a trisection in indA. Let £4 (and
R 4) be the full subcategory of indA consisting of the modules such that its prede-
cessor (respectively, its successors) have the projective (respectively, the injective)
dimension at most one. Hence indA = (L4 \Ra)V (LaNR4)V (Ra\ L4) and
the morphisms goes only from left to right in this trisection. Exploring it leads to
important informations on the quasitilted algebras, as we shall see.

Quasitilted algebras can also be characterized by the property: (%) any path
in indA from an injective module to a projective module can be refined to a path
of irreducible maps and any such path is sectional (see Section 1 for definitions).

In [11], in a joint work with Lanzilotta, we have extended the class of algebras
A such that indA = £, UR,. Indeed, among the two defining properties of
quasitilted algebras ((QT1) and (QT2)), the one restricting the global dimension
(QT1) does not play any role for the existence of the above trisection. So, in [11},
we introduce the notion of shod algebras as being algebras satisfying the property
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(QT2). The word shod stands for small homological dimension. Observe that
the global dimension of a shod algebra is at most three (see 2.2 bellow).

As we will see along these notes, the following conditions are equivalent for an
algebra A:

(a) A is shod.
(b) indA = L4 UR,4.

(c) any path in indA from an injective module to a projective module can be
refined to a path of irreducible maps and any such path has at most two
hooks, and, in case there are two, they are consecutive (see Section 1 for
definitions).

The main purpose of this survey will be to show how these properties are
related, and how they can be used to get informations on the class of shod alge-
bras or, particularly, on the Auslander-Reiten quivers of these algebras. We shall
mostly discuss the results in our joint works with Lanzilotta [11, 12, 13], with
Lanzilotta and Savioli [14], with Savioli [17], with Happel and Unger [10], with
Martins and de la Pena [15, 16]. We shall also discuss Reiten-Skowroriski’s work
on shod algebras [33]. We will not provide proofs for all the results. However, in
order to show the techniques involved, we shall sketch some of them. We refer the
reader to the above papers for the proofs of the results discussed.

This paper is organized in the following way. Section 1 is devoted to some
preliminary results that will be used along the paper. In Section 2, we show some
basic properties on shod algebras and give some examples of shod algebras of
global dimension three (which we will call strict shod algebras). Section 3 contains
a brief discussion on quasitilted and tilted algebras.

When studying the Auslander-Reiten quiver of a strict shod algebra, we will see
that there exists a component which plays a special role dividing the category ind A
into two parts. The components on these two parts, we will see, are components
of tilted algebras and they are well-understood by now. We shall discuss the
properties of this special component in Sections 4 and 5. Also, in 4, we shall
relate shod algebras and properties on paths from injective to projective modules.

Another important technique used in our study of shod algebras is the one-
point extension. We will see in Section 6 that a strict shod algebra can be written
as an iteration of one-point extensions starting at tilted algebras. Sections 7 and 8
are devoted to discuss the consequences of the main result of Section 6. In Section
9, we discuss when an one-point extension of an algebra is shod (or quasitilted).
The relations between shod algebras and some class of algebras of global dimension
two is the subject of Section 10. The last section is devoted to the work of Reiten
and Skowroiiski on shod [33].

We hope that, at the end of these notes, the reader will have a good idea of
the shod algebras and how some techniques are used to get informations on them.
We shall mention, however, that this survey is far from being complete in many



28 Flavio Ulhoa Coelho

aspects. We have choosen to discuss mostly one direction of investigation, that
is, the one exploring more closely the Auslander-Reiten quiver of a shod algebra,
indeed of a strict shod algebra. There are nice works on quasitilted algebras,
for instance, which explore more directly the original definition envolving abelian
categories (see [23, 21] just to mention two of them). Also, we will not discuss the
derived equivalence which plays an essential role in the understanding of tilted
and quasitilted algebras (see [19, 22] for instance). The interested reader will not
have difficult to get the appropriated references to go further in all the related
questions.

One last word. Having in mind some properties discussed here on the Auslander-
Reiten quiver, as the existence of bounds on the lengths of paths from injectives
to projectives, we can generalize some of the results of these notes. We have done
so in a joint work with Lanzilotta [13] where we introduce the so-called weakly
shod algebras. We will not discuss them here and refer to [13] for details.

1. Preliminaries

Along these notes, k will denote a fixed field. All algebras will be finite dimensional
(associative) k-algebras. In fact, some of the results presented here will hold in a
more general setting, that is, will hold for Artin algebras (an Artin algebra is a
algebra which is finitely generated as a module over its center). For simplicity, we
shall, however, restrict here the discussion for finite dimensional k-algebras.

To a given finite quiver A, one can assign naturally a k-algebra. Since our
examples will be mostly done in this way, we shall now recall this construction.
A quiveris just an oriented graph. More formally, a quiver A is given by two sets
Ap whose elements are called vertices and A; whose elements are called arrows.
To each arrow « it is assigned two vertices: its start point s(a) and its end point
e(a).

The path algebra kA of a quiver A is defined as follows. As a k-vector space,
kA has a basis given by all possible paths in A, including the paths of length
zero, associated to each vertex of A. The multiplication in kA is defined as
the concatenation of paths whenever it makes sense and zero otherwise and then
extended linearly. The algebra defined in this way is associative, has unit (just
the sum of all paths of length zero). It is finite dimensional if and only if A is a
finite quiver without oriented cycles.

The next result due to Gabriel justify the importance of studying the quotients
of path algebras. Recall that an ideal I akA is admissible if there exists an n > 2
such that J™ C I C J?, where J denotes the ideal of kA generated by the arrows.

THEOREM 1.1 Let A be a finite dimensional basic k-algebra, where k is an alge-
braically closed field. Then there exists a finite quiver A and an admissible ideal
IakA, such that A= kA,/l.
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The quiver A, of the above theorem is called the ordinary quiver of A.

For an algebra A, denote by modA the category of finitely generated left A-
modules and by indA its full subcategory consisting of one copy of each isoclass of
indecomposable A-modules. Also, denote by I'y the Auslander-Reiten quiver of
A, that is, the quiver where the vertices are associated to the objects of indA4 and
the arrows represent the so-called irreducible morphisms of indA. By 74 denote
the Auslander-Reiten translation DTr and by r;l its inverse. For unexplained
notions on representation theory, we refer the reader to [3].

For X,Y € indA, denote by rad4(X,Y) the set of the morphisms f: X — Y
which are not isomorphisms and by rad¥(X,Y) the intersection of all powers
rady (X,Y), ¢ > 1, of rada(X,Y). We indicate by rad®(modA) the ideal in
modA generated by all morphisms in rad% (X,Y) for some X,Y € indA. Recall
that a component T of T'4 is generalized standard provided rad*(X,Y) = 0 for
each X,Y €T. By [39] a generalized standard component has only finitely many
T4-orbits.

Given XY € indA, we denote by X ~» Y in case there exists a path
(¥) B o B oy By Lpond B5Y By 05 By
(t > 0), from X to Y in indA, that is, with f;,---, f; being non-zero non-
isomorphisms and Xy, X, -, X, being indecomposable modules. By convention,
there always exists a path X ~» X, for X € indA. When all morphisms f;’s in the
path (%) are irreducibles, then we say that () is a path of irreducible morphisms
or, simply, a path in I'y. A path in I'4 starting and ending at the same module
is called an oriented cycle.

A hookin (%) isa j, 1 < j < t—1, such that X;_; <2 X; 24 X, satisfies: (i)
f; and fj41 are irreducible maps; and (ii) 74X;41 = X;-1. A path of irreducible
maps without hooks is called a sectional path. We recall two results which will be
important in our considerations. The first result is due to Igusa-Todorov, while
the second is due to Bautista-Smalg.

THEOREM 1.2 [29](13.4) Let Xo 5 X; 22 ... 24 X, be a sectional path in T 4.
Then the composition f; - -- f1 is non-zero.

THEOREM 1.3 [6] Let X = Xg — X; — -+ — X; = X be an oriented cycle
mTy. Then Xg — X1 — -+ — X; — X s not sectional.

A module M € modA is called directing provided there exist no paths
M’ ~ 74X and X ~ M" where X € indA is not a projective module and
M’, M'" are indecomposable summands of M. Observe that an indecomposable
module is directing if and only if it does not belong to an oriented cycle.

For a module X € modA, we shall denote by pd 4 X and by id 4 X the projective
and the injective dimensions of X, respectively. We will need the following result
whose proof can be found in [3](IV.1.16). Recall that D denotes the usual duality

Homk(-—, k).
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THEOREM 1.4 Let A be an algebra and X be an indecomposable module. Then
(a) pdaX <1 if and only of Homa(D(aA),7aX) = 0.
(b) idaX < 1 if and only if Homa(r7'X, A) = 0.
Also, gl.dim A will denote the global dimension of A, that is, the suppremum

of the projective dimensions of the A-modules. In the study of quasitilted or shod
algebras the following two subcategories of indA play an important role. Denote

L4 ={X € indA: if there is a path Y ~ X, then pd,Y <1}

Ra = {X €indA: if there is a path X ~ Y, then id,Y < 1}

REMARKS 1.5 Let A be an algebra. Then
(a) pdaX <1 foreach X € L4.
(b) idaX <1 foreach X € R4.
(c) L4 is closed under predecessors and so Homg(R4 \ £4,L4) =0.

(d) Ra is closed under successors and so Hom4(L4 \R4,Ra) = 0.

2. Shod algebras

In this section we will discuss some preliminary results concerning the class of
shod algebras introduced in [11]. We start with a definition.

DEFINITION 2.1 An algebra A is called shod (for small homological dimensions)
provided for each indecomposable A-module X, pdg X <1loridsX <1.

PROPOSITION 2.2 [22] A shod algebra A has global dimension at most three.
Proof. Let X € indA and assume pdq X > 4. Let

Py—3 Ps—> Po — Py 25 Pp—y X —5 0

be the start of the minimal projective resolution of X. Denote by K = kerf;.
Clearly, pd 4 K > 2 and so there is an indecomposable summ-.nd Y of K such that
pdaY > 2. It also follows from the above sequence that Ext.:‘; (X,Y) # 0 and so
idaY > 2, a contradiction to the fact that A is shod. O

A shod algebra of global dimension three will be called strict shod.

Hereditary algebras are clearly shod since all their modules have projective
dimension at most one. As we shall see in the next section, tilted and quasitilted
algebras are also examples of shod algebras, all of them of global dimensions at
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most two. We shall now give some examples of strict shod algebras.

EXAMPLES 2.3 (a) Let A be the k-algebra given by the quiver:

N A

with relations a3, = 0, 191 = B2v2 and 7,8 = 0. It is not difficult to check that
A 1s indeed a strict shod algebra.

(b) The radical square zero k-algebra given by the quiver

is a representation-infinite strict shod algebra.

One of the most important feature for a shod algebra A is the existence of a
trisection, induced by the subcategories £4 and R4, in the category indA. We
shall only sketch the proof of this result here, refering the reader to [11, 22], where
the details can be found. We observe that the existence of such trisection was first
established for quasitilted algebras in [22] and later extended to shod algebras in
[11). We shall need the following lemma.

LEMMA 2.4 [11](1.1,1.2) Let A be a shod algebra and let Y € indA such that
pdaY > 2.

(a) If there exists a path Y ~» X in indA, then there exists Z € indA, pdaZ > 2,
and Homa(Z, X)) # 0.

(b) If U € indA satisfies idqaU > 2, then Homa(Y,U) = 0.

THEOREM 2.5 [11] An algebra A is shod if and only if L4UR 4 = indA. Moreover,
in this case, both (add R 4, add (L4 \Ra)) and (add (Ra\ La), addL4) are split
torston pairs in modA.

Proof. Clearly, if indA = £4 UR 4, then each X € indA satisfies pda X < 1 or
id4X <1 and A is shod.

Assume now that A is shod and let X € indA. If X ¢ L4, then there exists a
path Y ~» X with pd4Y > 2. We shall show that ¥ € R4 which will imply that
X € R4 because R4 is closed under successors. For this purpose, let Y ~ X’
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be a path in indA. By Lemma 2.4(a), there exists Z € indA with pd4Z > 2 and
Homu(Z, X’) # 0. By Lemma 2.4(b), it yields that idaX’' < 1landsoY € Ra.
This proves the first part of the statement.

Now, Homa(Ra \ La, £4) = 0 by 1.5. If Homa(Ra \ £a,M) = 0, with
M € indA, then M ¢ Ra\ L4 and so M € L4. Dually, if Homs(N,£a) = 0,
with N € indA, then N ¢ £, and so N € Ra \ La. This proves in fact that
(add (Ra\L4) ,add L,) is a torsion pair in modA, which clearly splits because
L4 UR. = indA. Similarly, one can show that (add (Ra\ £4), addL4) is a split
torsion pair in modA. &

It follows from the above considerations that
indAd = (LA \Ra)V(LaNRA)V(Ra\La)
where the non-zero morphisms of ind A goes only from left to right, that is,
Homa(Ra,La\Ra) =0= Homuy(Ra \La,LaNRy4).

We would like to stress at this point the importance of the existence of this
trisection in indA. This division of the category will induce most of the time a
clear division also in the Auslander-Reiten quiver I'4 of A, allowing one to give a
complete description of it (see Section 7).

One could wonder how large is the intersection £4 N R 4. In one extreme, A
is hereditary if and only if L4 "R 4 = indA. The next example shows, however,
that this intersection can be indeed empty for a strict shod algebra.

EXAMPLE 2.6 Let A be the k-algebra given by the quiver:

1
I‘r
s B B 1O L& with fa =fe=y8 =76 =0
5 3 4 5 6

The Auslander-Reiten quiver of A has the following shape:
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The dotted lines, indicate, as usual, the Auslander-Reiten translation. Observe
that L4 = {Py, P4,S4,P3,Ps} and R4 = {l4,Ss, Ps, Is,S3, P2, I2}. Clearly,
L4NTR,4 isempty and L4 UR 4 = indA. Also, gl.dimA = 3.

3. Quasitilted algebras

In this section we shall discuss very briefly the class of quasitilted algebras which
contains the tilted algebras and the canonical algebras. We start recalling some
notions on tilting theory.

Let A be an algebra and 7' € modA be a tilting module, that is, a module
satisfying the following properties:

(T1) pdaT <1.

(T2) Ext)(T,T)=0.

(T3) there exists a short exact sequence 0 — A — 7" — T" — 0, where
T',T" € addT.

The next result, due to Brenner and Butler is essential, in tilting theory since
it relates two module categories allowing the transfer of informations from one to
the other. For a proof, we refer to one of the following papers [1, 5, 24].

THEOREM 3.1 [5] Let A be an algebra, Tx be a tilting module, and B= EndaT.
Then
(i) BT 1s a tilting B-module and A = EndgT.
(i1) The categories
T(T) = {M : Ext\y, (T,M) =0} and Y(T)={N : Tor2(N,T) = 0}

are equivalent, the equivalence being given by the functor Homa(T,—) and
tts inverse — @p T'.
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(ii1) The categories
F(T)={M : Homa(T,M) =0} and X(T)={N:N@pT =0}

are equivalent, the equivalence being given by the functor Extly (T, —) and its
inverse TorP (=, T).

For further details in tilting theory, we refer the reader to [1, 5, 7, 24].

Let now H = kA be a hereditary algebra, where A is a finite quiver without
oriented cycles, and 7' € modH be a tilting module. Since gl.dimH < 1, then the
condition (T1) above is naturally satisfied. In this case, the algebra B = EndyT
is called a tilted algebra of type A.

The class of tilted algebras has been much investigated since its introduction
in [24]. On one hand, the class of hereditary algebras is by now well-understood
and so, it is possible to get much information on the torsion pair (7(7T'), F(T))-
On the other hand, a tilting module over an hereditary algebra H is splitting,
that is, the induced torsion pair (X(T"), V(7)) splits, and so each indecomposable
B-module (where B = EndgT) lies either in X(T) or in Y(T'). Therefore, each
X € indB is either of the form Hompg (T, M) for some M € T(T) or of the form
Ext}, (T, N) for some N € F(T).

Using homological techniques, one can show that pdgM < 1 for each
M € X(T) and idgN < 1 for each N € Y(T). Also, gl.dimB < 2. In re-
sume, the following holds for a tilted algebra (recall that (X (T), Y(T)) splits).

PROPOSITION 3.2 [24] Let B be a tilted algebra. Then gl.dimB < 2 and for each
tndecomposable module X, pdg X <1 or wdpX < 1.

By now, the Auslander-Reiten quiver of a tilted algebra is well-understood. Let
B be a tilted algebra of type A. Then I'g has a special component I' containing
a so-called complete slice ¥©. The underlying graph of a complete slice is the same
of A. Such a component I is called connecting component and plays an important
role in the study of I'g. A connecting component is generalized standard and
has no oriented cycles. There are at most two connecting components in I'g and,
if two, they are a postprojective and a preinjective component and, in this case,
the algebra is called concealed. The complete Auslander-Reiten quiver of a tilted
algebra has been described in [31]. The components of I'g are of the following
form:

(i) postprojective component(s).

(i1) preinjective component(s).
(iii) a connecting component (if neither postprojective nor preinjective).
(iv) stable tubes.

(v) components of type ZA .
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(vi) components constructed from tubes or from ZA ., by ray or coray insertions.

As mentioned in the introduction, quasitilted algebras arise as endomorphim
algebras of tilting objects in hereditary abelian categories [22]. We are, however,
more interested in an equivalent definition, also given in [22].

DEFINITION 3.3 An algebra A is called guasitilted provided it satisfies the following
two properties: (QT1) gl.dim A < 2; and (QT2) for each X € indA, pdaX < 1
oridyg X <1.

Clearly, quasitilted algebras are shod. By 3.2, tilted algebras are quasitilted.
Another important class of quasitilted algebras is given by the canonical algebras
introduced by Ringel [34]. Recently, Happel [21] has characterized the hereditary
categories with tilting objects and, as a consequence, it follows that a quasitilted
algebra is derived equivalent either to a tilted algebra or to a canonical algebra.

It is also worth mentioning that Skowronski has characterized the tame qua-
sitilted algebras. He shows, for instance, that a quasitilted algebra A is tame if
and only if A is either a tame tilted or a tame semiregular branch enlargement of
a tame concealed algebra (see [40] for details).

We finish this section recalling the following result from [8].

THEOREM 3.4 [8] Let A be a quasitilted algebra and let T' be a component of T'4
consisting of directing modules. Then T' is postprojective, preinjective or connect-
imng.

4. Paths from injective modules to projective modules

We have seen in 1.4 that there exists a strong relation between the existence of
non-zero morphisms from injective modules to the translation 74X of a module
X €indA and its projective dimension. More especifically, Hom4(D(44), 74 X) =
0 if and only if pdg X < 1. Dually, one has HomA{r;‘X,A) = 0 if and only if
idga X <1

If now A is a shod algebra, then there is no indecomposable modules X with
both pds X > 2 and id4 X > 2 and so no modules X € indA has simultaneously
Hom(D(4A),7aX) # 0 and Hom4 (7' X, A) # 0. Intuitively, there is no much
room for modules which are successors of injective modules and predecessors of
projective modules. In this section, we want to explore this idea. The results here

have been mostly proven in [11].

Let X,Y € indA and let
(+) X=X, L X, 2 20 I XY
(t > 0) be a path in indA. A refinement of (*) is a path

X=2 L% 25...08 7 Bz Y
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in indA from X to Y such that there exists an order-preserving function ¢ from
{1,---.t—=1} to {1,---,u— 1} such that X; = Z,(;) foreach 1 <i <t~ 1.

PROPOSITION 4.1 Let A be a shod algebra, and suppose there ezists a path
F=Xy L Xy —90 o Xy L6 Xy =P (+)

in indA, where I and P are, respeclively, an injective module and a projective
module.

(a) If for each 1 < i < t — 1, X; s neither projective nor injective, then
t < 2(n+ 1), where n stands for the number of simple modules.

(b) [11](1.3) None of the f;’s lie in rad™ (modA). In particular, (*) has a re-
finement of irreducible maps.

Proof. (a) Suppose t > 2n + 2. Then there exists a refinement of (x) as follows:

I=Ye 25 Y — o Y1 Y, 828 2 ...y By 2= P
where g1, +, gm, h1,- - -, by are irreducible morphisms, (§) is a path in indA, and
at least n + 1 modules among Yp, - -+, Y;, are non-injectives and at least n + 1
modules among Zy, - - -, Z; are non-projectives.

Claim. Y, & L4.

Let (x¢) : I = Yj L3 Y7 — Yo I3 Y, be the begining of the above
refinement, and suppose first that it is not sectional. Then there exists j < m
such that 74Y;4, = Y;_;. Choose it minimal. By 1.2, Homu4(/,Y;_1) # 0 and
so, by 1.4, pd4Yj+1 > 2 implying the claim. Suppose now that (*x) is sectional.
Hence Hom4(1,Y;) # 0, for each i (1.2) and so, by 1.4, pdA'rd_lY,- > 2, whenever
Y is not injective. If Y; 2 Y; for distinct 7 and j, then one can easily construct
a non-sectional path I ~+ Y, (using 1.3) and, as above, Y, € £4. So, we can
assume that (x#) pass through at least n+1 non-isomorphic non-injective modules.
By [38], there exist 1 < p,¢ < n such that Hom4(7;'Y;,Y,) #0 and so Y, € L4
because pda7;'Y, > 2. The claim is now proven because L4 is closed under
predecessors.

Similarly, one can show that Z; ¢ R4 and so Y, € (L4 UR4), a contradiction to
the fact that A is shod.

(b) Suppose f; € rad®(modA) for some [. Then, by [37], for each r > 0, there
exists a path

Ko =l By =pvesll g Z5 T 2 X

where g1, -, g, are irreducible maps, h, € rad*°(modA) and h.g,---g1 # 0.
Choosing conveniently r, cne gets at least 2n + 3 non-isomorphic modules among
Up, - -+, U, which are neither projectives nor injectives. This leads to a contradic-
tion to (a). &
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THEOREM 4.2 [11] An algebra A is shod if and only if any path in indA from an
injective module to a projective module can be refined to a path of irreducible maps
and any such refinement has at most two hooks, and in case there are two. they
are consecutive.

Proof. Assume that A is shod and suppose there exists a path / ~ P in indA
where I and P are, respectively, an injective module and a projective module.
Using the 4.1, it yields that there exists a path of irreducible maps

{*) IZXOL).YI—}---Xg_IL})Q:P

Assume that (%) has at least two hooks. Hence, there are j and [ such that
TEIX_,- = Xj4+2, TaX; = Xi_2 and the paths | — X; — --- — X;;; and
Xi—1 — --+ — P are sectionals. Since there are at least two hooks, we infer

that j4+1 <1 —1. By 1.2, Homus({,7aX;+2) # 0 and HomA(rng;_z, P) # 0.
Hence pdaXj42 > 2 and idaX;—» > 2. If now j+2 < 1 — 1, we get a path
Xjt42 ~ Xj_2, a contradiction to Lemma 2.4. So j +2 =1 — 1 and in this case
the path () has only two hooks and they are consecutives.

Suppose now that A is not shod. Then there exists an indecomposable mod-
ule M with pdgM > 2 and idaM > 2. Hence Homu(D(A),7aM) # 0 and
Hom (7'M, A) # 0, and so there exists a path in indA

EELCN VRELINY JELNG VLN (LRSS L) VLAY (%)

where I is an indecomposable injective module, P is an indecomposable projective
module, and f; is irreducible for = 2,3,4,5. By 4.1, (%) can be refined to a path
of irreducible maps which clearly contains two non-consecutive hooks. &

COROLLARY 4.3 Let A be a shod algebra. Then there exists a positive integer ng
such that any path in indA from an injective module to a projective module has

length at most ng.

For our next result, recall that for a given non-projective X € indA, a(X) de-
notes the number of indecomposable modules in the middle term of an Auslander-

Reiten sequence ending at X.

PROPOSITION 4.4 Let A be a strict shod algebra and suppose there exists a non-
sectional path (%) in T4 from an injective I to a projective P. Then

(a) [11](2.3) there exists a path from I to P in T4 with just one hook.

(b) there exists a projective module P’ in the path () having a submodule X
with pda X > 2.

Proof. (a) Let

(%) I=XL X — o — X I X =P
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be a path of irreducible maps in indA from I to P with two (consecutive) hooks.
Then there exists an 7 such that TA—IX.'_.I = Xi41 and r;]Xf = Xiya2. If
a(Xi41) = 1 and a(X;42) =1, then

Oy g gy Mo Tl ]

U—->¥ X,+]‘—§‘X,+2—)0

are Auslander-Reiten sequences and so f;4; is an isomorphism, a contradiction.
So, either a(X;41) > 1 or a(Xi42) > 1. Also, if Xjya3 is not projective, then
a(Xiy2) > 2 because Xy and 74.X,43 are non-isomorphic summands of the
middle term of the Auslander-Reiten sequence ending at X;4,. In this case,

I—)X1—}'--—}1"5—}TAX,'+3—PT;IX,'—}X“+3-)X,‘+4‘—->-”—}P

is also a path from I to P with two hooks. Thus, without loss of generality, we
can assume that ¢ =¢ — 3, and that X is not injective for j > 0. Clearly,

Py w5 1 X
NN
2 — 7 X2
N
3

is a subquiver of I'y. Suppose now that a(r;'(X;)) > 3 for some 2 < 1< t—4.
Then, the middle term of the Auslander-Reiten sequence endmg at r3 Xi ; has an
indecomposable summand Y which is neither isomorphic to 7 1X:_1 nor to Xi41.
Therefore the path of irreducible maps

I=Xg— X1 — - = Xi—Y 27 Xi— . — X =P

has exactly one hook.

A similar argument can be done if a(77 ' X;) > 2 or if a(r; ' X,—3) > 2. It remains
to consider the case where a(r;'X;) = 1 = a(r; ' X,—3) and o7 (X;)) = 2 for
1=2,---,t — 2. In this case, g3 should be an epimorphism because

0— X1 — X2 B 71X — 0
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is an Auslander-Reiten sequence. So g; is an epimorphism for each i = 2, .- { —3.
However, g;_3 cannot be epimorphism because

00— X,_ '3—'—-'}‘.")41\, 4—}7"A Xt 33— 0

is an Auslander-Reiten sequence. This proves (a).

(b) Suppose (*) : I =Xo — X; — --- — X; = P is a paht in I'4 with just
one hook i. So 74 X;41 = Xi—;. Let r > i+ 1 such that P’ = X, is a projective
module and if i 4+ 1 < [ < r, then X is not projective. By applying conveniently
Ta if necessary in (*) one gets a path

() I=Yo—Yy— - Y, 35— Y. s —1'Y 3 —Y, =P

in I'4. Since A is shod, if (%) has another hook, it has to be r — 3. In any case,
I =Yy — Yy — .-+ —3 Y,_3 is sectional and so Hom4(/,Y,_3) # 0 (1.4). This
yields that pdATEIY,._3 > 2 and the result is proven since T'A_IY,-_;; is a direct
summand of rad P/, )

The next result has been established in [22]. We shall give here an alternative
proof.

COROLLARY 4.5 [22] An algebra A is quasitilted if and only if any path in indA
from an injective module to a projective module can be refined to a path of irre-
ducible maps and any such refinement s sectional.

Proof. Suppose A is quasitilted. Then, by 4.1, any path in indA from an injective
to a projective can be refined to a path in I'y. Assume now that there exists a
non-sectional path I ~» P in I'y where I is an injective and P is a projective.
By Proposition 4.4, there exists a pro]ect.lve P’ € indA having a submodule X
with pdga X > 2. Clearly, the quotient % £_ is indecomposable and has projective
dimension at least 3, a contradiction to the fact that A i1s quasitilted.
Conversely, if any path in indA from an injective module to a projective module
can be refined to a path of irreducible maps and any such refinement is sectional,
then A is shod by 4.2. If A is not quasitilted, then gl.dimA = 3. In particular,
there exists a simple module S with pd4S = 3. Let Pg € indA be the projective
module associated to S. Then rad Ps has an indecomposable summand X with
pdaX = 2. Hence, there exists a path

oy Xty v By Xy Ps

in indA where I is an injective module and f, ¢ are irreducible morphisms. By
4.1, such a path can be refined to a path in I'y which is clearly not sectional, a
contradiction. &

COROLLARY 4.6 [11] The following statements are equivalent for a shod algebra
A:
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(a) A s strict shod.

(b) There exists a non-sectional path tn indA from an injective module to a
projective module.

(c) Ra\ La has a projective module.
(d) L4\ Ra has an injective module.

Proof. The equivalence between (a) and (b) follows directly from Corollary 4.5.
(b) = (c) and (d). Assume there exists a non-sectional path (%) in 'y from an
injective module [ to a projective module P. Since (%) is not sectional but it has
at most two (consecutive) hooks, then there exists a non-injective module X such
that (%) has the form:

19 x—y—sx9p

where (1) and (e2) are sectional paths. In particular, pda73'X > 2 and ida X >
2. Since A is shod, we infer that X € £, \ R4 and ‘T';"IX € Ra\La and so
IEEA\RA and PE'R,A\,CA

(c) = (b) Assume there exists a projective P € R4\ L4. Since P ¢ L4, there
exists a path X ~» P in indA with pd4X > 2. As before, one gets a path
I — 74X — E — X ~ P in indA, where [ is an injective. Hence (b) holds.
The proof of (d)= (c) is similar.

We finish this section with two examples.

EXAMPLES 4.7 (a) Let A be the k-algebra given by the quiver

N
. with o181 = azf2 = B272 =0

This is a representation-finite iterated tilted algebra of type A,. Its Auslander-
Reiten quiver has the following shape:
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An easy calculation shows that A is shod. Also, since gl.dimA = 3. 4 is indeed
strict shod. Observe that from I, to Ps there are both a path with one hook and
a sectional path.

(b) Let A be the k-algebra given by:

Je
x
. 2
2 4 5 6 with 8de = af = 0
/ Io; é €
(43
le

Its Auslander-Reiten quiver is:

Observe that from I to Pg there is one path with one hook and another with two
hooks. Clearly, A is strict shod.

5. Non-semiregular components for shod algebras

The results in the last section indicate that the paths in 'y from an injective
module to a projective module when A is shod can play an important role in the
understanding of the category modA, or particularly, on the Auslander-Reiten
quiver of A.

We have seen that if A is strict shod, then there always exist a path in indA
from an injective to a projective. On the other hand, if A is quasitilted but not
tilted, there is no such path and if A is tilted, there could exist such path. In any
case, it follows from 4.1 that if there exists a path in indA from an injective I to a
projective P, it can be refined to a path of irreducible morphisms. In particular,
I and P lie in the same component of I'y. We shall now study some properties
of such component. It will, indeed, play the same role for strict shod algebra as
the so-called connecting component for tilted algebras, dividing the category indA
into two parts, the left one lying in £4 and the right one in R 4.
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Qur first aim is to establish that a non-semiregular component I' of I'4 for a
shod algebra A has no oriented cycles. Indeed, such a result can be generalized
and we have done so in [12] in a joint work with Lanzilotta, where we have studied
the so-called pip-bounded components. However, we shall provide here a different
proof for the non-existence of oriented cycles than the one given in [12]. We shall
need the following lemma proved in [18]. For the convenience of the reader, we
shall give here a proof.

LEMMA 5.1 [18](1.4) Let A be an algebra, X = X9 — X; — -+ — X, = X
be an oriented cycle in T4, and r > 1. If T4X; # 0 for each 1 < i < r and
j=0,---,1, then there exists a path in Ty from X to 73 X.

Proof. By 1.3, the path () : X = Xg — X; — -+ — Xy — X1 = X441 Is
not sectional and so there exists an [, 1 <! < t, such that 74 X;4;, = X;_,. By
hypothesis, one can apply 74 to (*) to get the following path

(**) TAX:TAXo—PTAxl——i'“—)TAXt —)‘r,;X;

in I'4. Observe that the module 74 X;41 = X;_, appears in both () and (#*) and
hence, there exists a path

X=Xo— 0 X1 274X141 —7aX142 — - — 14 X, =14 X
in I'4y from X to 74 X. Iterating this procedure, one gets the desired result. &

PRrROPOSITION 5.2 Let T' be a component of ' 4 and let Z € T be a module lying in
an ortented cycle.

(a) IfT has projective modules, then there is a path inT 4 from Z to a projective.

(b) If T' has injective modules, then there is a path in Iy from an injective to
Z.

Proof. We shall only prove (a) since the proof of (b) is dual.

(a) Let 0 : Z = Zy — Zy —> - -+ —* Z; = Z be an oriented cycle in I" containing
Z. Suppose first that there exists an j such that 7} Z; is a projective module for
some r > (. Without lost of generality we can assume that rj,‘ Z; is not projective
for each | < r and each i = 0,---,t. By 5.1, there exists a path from Z; to 7 X;

as required.
Suppose now that each Zy,---, Z; is left stable, that is, 7} Z; is not a projective
for each n > 0 and each i = 0,---,t. Since I' contains projective modules and it

is connected, there exists a walk
(%) Z'=Xo—-X1—-—Xm=P

in 'y of minimal length, where P is a projective module in I' and Z’ is a module
in the 74-orbit of Z. It follows from the imposed minimality on (%) that each
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of Xo, -+, Xm-1 is left stable. Therefore, by applying 74 if necessary one gets a
path Z" — ... — P, where Z"” = 13 Z for some s. If s < 0, then clearly there
exists a path Z ~» 74 Z in I'. Otherwise, if s > 0, then by 5.1, there exists a path
Z~13Z in T. In both cases, we get a path Z ~ P as required. &

In order to show our main result of this section, we recall the following lemma
from [12].

LEMMA 5.3 [12] Let A be a shod algebra and let T' be a non-semiregular component
of T'a. Then ' has only finitely many T4 -orbits.

THEOREM 5.4 [12] Let A be a shod algebra and T' be a non-semiregular component
of T'a. Then T s generalized standard and has no oriented cycles.

Proof. (a) Suppose that (x) : X = Xg — -+ — X, = X is an oriented cycle in
I'. Since I is non-semiregular, by 5.2, there exist an injective I and a projective
P and paths I ~» X and X ~+ P. Using (%), one can produce paths { ~» P of
arbitrary length, a contradiction to 4.3.

(b) Suppose there exists a non-zero morphism f € rad¥(X,Y) with X and Y in
I'. By [37], there exists an infinite path

N5 Ky 2y By 225X b L K e

of irreducible maps and non-zero maps g; € rad*(X;,Y), for each 7. By 5.3, T
has only finitely many 74-orbits, and so there exists a positive integer np and an
infinite set of integers J such that if j € J, then the 74-orbits of X; and of X,,,
coincide. Without lost of generality, we can assume that ng = 0. Observe also
that, since I' has no oriented cycles, if j1,j2 € J, j1 > jo, then 74 X;, = X;, for
some s > 0. In particular, the modules X;, with j € J, are right stable. Since I
has injective modules, it is not difficult to see that any right stable r4-orbit has a
module which is a successor of injectives. Let then ! be such that X, is a successor

of an injective I. Hence, we have shown the existence of a path I @ Xi ZsY
from the injective I to Y passing through a morphism g; in rad¥ (X;,Y). Using a

dual argument and the morphism g;, one gets a path (x%) : X; =3 Y’ ~» P with
P an indecomposable projective and ¢’ € rad®y’(X;,Y’). The glueing of the paths
(*¥) and (**) yields a contradiction to 5.1 and the result is proven. ¢

COROLLARY 5.5 Let A be a connected quasitilted algebra and let T' be a non-
semiregular component of I'y. Then A is tilted and T is a connecting component.

Proof. We shall only sketch the proof here. By 5.4, I' has no oriented cycles and
it is generalized standard. Therefore, I is directing. Suppose I' is not connecting.
Then, by 3.4, I' is either postprojective or preinjective. Suppose the former.
If ' contains all the indecomposable projective modules, then it is connecting,
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contrary to our assumption. Therefore, there exist projective modules not lying
in T'. Since A is connected, there are projectives P, P’ € indA such that P € T,
P" ¢ T and Homyu (P, P’) # 0. Clearly, Hom4(P, P') = rad¥ (P, P’). Lifting any
non-zero morphism of Hom 4 (P, P’) through paths of irreducible morphisms in T,
one gets a path from an injective I € T to P’ passing through a morphism in
rad® (modA), a contradiction to 5.1. Dually, one gets a contradiction if assuming
that I' is preinjective. O

COROLLARY 5.6 A representation-finite connected quasitilted algebra s tilted.

Proof. Since A is connected, then I'4 is also connected (see [3](VII1.2.1)). Clearly,
it is a non-semiregular component and so the result follows from 5.5. ¢

In [12], in a joint work with Lanzilotta, we have considered an special kind of
component in the Auslander-Reiten quiver I'y which includes the one discussed
above. A component I' C I'4 is called pip-bounded provided there exists a positive
integer ng such that any path in ind A from an injective in I to a projective in I' has
length at most ng. We have shown that a pip-bounded component is generalized
standard and has no oriented cycles (see [12]). The following result follows easily
from 4.3.

COROLLARY 5.7 Let A be a shod algebra. Then any non-semiregular component
of ' is pip-bounded.

The study of pip-bounded components has been also useful in [13] where we
consider a more general class of algebras, the so-called weakly shod algebras. We
Jjust recall its definition and refer the reader to [13] for details. An algebra A is
called weakly shod provided there exists a positive integer ng such that any path
in indA from an injective to a projective has length at most ny.

6. Shod algebras as an iteration of one point extensions

We have seen that if A is a strict shod algebra, then 'y has a non-semiregular
generalized standard component I' with no oriented cycles. We will see below
that in fact, if A is connected, then there exists a unique such a component which
is, in addition, faithful. Moreover, it resembles a connecting component for tilted
algebras in many aspects since it divides I' 4 into two parts. In order to prove this,
we shall make use of a technique called one point extension. Being more precise,

let B be an algebra and M € modB. The algebra A = B[M] = ( Lk 9 is

M B

called the one point extension algebra of B by M. In this case, the A-modules can
be described as triples (k%, X, f), where X is a B-module and f:k*®x M — X
is a B-homomorphism. Observe then that modB can be naturally embedded
into modA. The indecomposable projective A-modules can be described as: (i)
(0, P, 0) where P is an indecomposable projective B-module; and (ii) the extended
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projective A-module P, = (k, M,idp). whose radical is the module (0, M, 0).
Also, if I is an injective B-module, then (0.1,0) is an injective A-module if and
only if Homp(M, 1) = 0. When there is no danger of confusion, we shall also
indicate the A-module (0, X, 0) simply by X.

Suppose A = B[M]. If one denotes by n the number of simple A-modules,
then the number of simple B-modules is n — 1. Also, the ordinary quiver A4 of
A is an extension of the ordinary quiver Ag of B in the folllowing way: (A,4)o =
(Ap)o U{w} and (A4); has all the arrows of Ap plus some extra arrows going
from the vertex w to vertices in (Ag)y. For more details on this construction we
refer the reader, for instance, to [3].

Observe that the construction above will allow us to transport some informa-
tions from the algebra B to A using induction on the number of simple modules.
The next result is very useful for this purpose.

LEMMA 6.1 If A = B[M] is a shod algebra, so is B.

Proof. Suppose B is not shod and let X € indB with pdgX > 2 and idpX > 2. It
is not difficult to see that pd4 (0, X,0) > 2 and id4(0, X, 0) > 2, which contradicts
our assumption on A. ¢

Using this reduction procedure, we will see that any strict shod algebra is in
fact an iteration of one point extensions starting at a product of tilted algebras
and one can then use the knowledgment on this later class of algebras to study
the class of strict shod algebras. This is the aim of this section. For complete
proofs of the material discussed here, we refer to [13, 30].

Our main result here can be stated as follows.

THEOREM 6.2 [13] Let A be an strict shod algebra. Then there are algebras
B = AD,AI, T -,At = A and A,--modufes M,'_. = 0, Lt -,t-— 1, such that:

(a) B is a product of tilted algebras.
(b) For eachi=1,---,t, Aj = A;_1[M;_1].

(c) For each i = 1,---,t, there are no paths from the extended projective A;-
module to any other projective A;-module.

We shall now discuss only the main steps of the proof of the above theorem.
Let A be a strict shod algebra and denote by P the set of all indecomposable
projective A-modules lyingin R4 \ £4. By 4.6, P4 # 0 and, clearly, an indecom-
posable projective A-module P lies in P9 if and only if there exists a non-sectional
path in indA from an injective module / to P.

Let now P, P’ € P and let I € indA be an injective module such that there
exists a non-sectional path I ~+» P. If P’ is a successor of P, then there is no
path P’ ~ P, since otherwise one would get a non-trivial path P ~» P and so
paths of arbitrary length from / to P, contradicting 4.3. Hence, one can define
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the following order in P%: for P, P’ € indA, P < P’ if and only if there exists a
path P~ P’

Under this order, a maximal element P € P{ also satisfies the following
Homy4 (P, P’) = 0 for each indecomposable projective P’ not isomorphic to P.
In terms of the ordinary quiver of A, the vertex associated to P is a source.
Therefore, A can be seen as one-point extension C[M], where P is the extended
projective A-module.

Write C=Cy x---x Cy and M = My x --- x M, where foreachi=1,---,1,
C; is a connected algebra and M; € modC;. We know, by 6.1, that each Cj is a
shod algebra. In fact, each Cj is either a strict shod algebra or a tilted algebra,
the possibility of C; being quasitilted but not tilted excluded (see [13] for details).
Moreover, if [ is a component of I'¢, containing an indecomposable summand of
M;, then I' is either a pip-bounded component (in case C; is strict shod) or a
connecting component (in case Cj is tilted). One can now repeat this procedure
for each summand of C which is strict shod. An induction on the number of
indecomposable projective modules gives now the main result.

This procedure also shows that a pip-bounded component I' of a strict shod
algebra can be built up from connecting components of some connected tilted
algebras. Since a connecting component of a connected tilted algebra is faithful,
one gets the following result (see [13](5.4) for a complete proof).

THEOREM 6.3[13] Let A be a connected strict shod algebra. Then T4 has a unigue
pip-bounded component which 1s, in addition, faithful.

Next result is a direct consequence of 6.2 and shows that the ordinary quiver
of strict shod algebra has no oriented cycles. For an alternative proof, we refer
the reader to [11](2.2) and [22](II1.1.1).

COROLLARY 6.4 The ordinary quiver of a shod algebra A is directed.

Proof. (a) If A is quasitilted, then the the result follows from [22]. Suppose A
is strict shod. As we have seen, A is then built up from a (product of) tilted
algebra(s) by iterating one-point extensions. The result will now follow from the
following easily verified remarks: (i) the ordinary quiver of a tilted algebra is di-
rected; and (ii) the process of one-point extending an algebra does not produce
cycles in its ordinary quiver. &

There exists a dual notion of one-point coextension. It is not difficult to see
that 6.2 can be dualized using this notion. We finish this section with an example
to illustrate the above procedure.

EXAMPLE 6.5 Let A be the k-algebra given by the quiver A:



Shod Algebras 47

T ¢ 8 €& 9 6 10
K
o ) € _ﬁ_
1 o 2 3 4 5, 5
Y| |72

with relations 0§ = £p = dn = 0, a;d = 0, Bie = 0, §v = 0 and yie = 0, for
each i = 1,2. Observe that P consists of the projectives Ps and P; and both are
maximal there. Choosing P; as the extended projective, A can be written as the
one-point extension A = (C] x C{)[Ss & N], where: (i) N is the indecomposable
module of length 2 such that radN = S and N/radN = Sj; (i1) C} is the radical
square zero algebra given by the quiver:

o 5 € B
.1 oy '2*“_{.]‘3_’:1 ng '5
Y| |72
*6

and (1) CY is the algebra given by the quiver

3 9
.8—5- -9———» 010 with 95 =0

Observe that CY’ is a tilted algebra while C1 is a strict shod algebra. Now P2, =

{Ps} and so we can write C] = C,[S3]. Observe that Cs is the radical square zero

algebra given by the quiver:

ay é € B
e T he—— e — e T "o
1%, 2 3 475" 5

which is a tilted algebra. In the notations of 6.2, we have B = Ay = Cy & CY,
A1=C;€;‘ i;,ﬁ’!u:S:-;andM;{:Sg@N.
7. The Auslander-Reiten quiver of a shod algebra

It follows from our considerations in the last section that if A is a strict shod
algebra, then I'4 has a unique non-semiregular component which is, in addition,
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faithful, generalized standard and has no oriented cycles. In [36], Skowronski,
studied the algebras whose AR-quivers have a generalized standard component
without oriented cycles. We shall now combine these two results to further under-
stand the AR-quiver of a strict shod algebra. The following result is a consequence

of Skowroriski’s results of [36].

THEOREM 7.1 Let A be an Artin algebra and let T' be a connected component of
I'a. If T is faithful, generalized standard and without oriented cycles, then there
ezist tilted algebras AY) and A") such that any component I of T4 different of
T', satisfies one and only one of the following conditions:

(a) I’ s a component of T 4ay and Homa(X,Y) # 0 for some X € I'" and
Yerl;or

(b) T' s a component of T 4¢» and Homa(X,Y) # 0 for some X € T and
Yer.

Applying this to our context, we have the following result. We refer to [13] for
a proof.

PROPOSITION 7.2 [13] Let A be a strict shod algebra and let I' be the unique
non-semireqular component of T' 4.

(a) if I’ is a component of T 4 different of T', then T is semiregular and either
I"CLa\RaorI"CRa\La.

(b) the intersection L4 NR 4 1s finite and it is contained in T.

Let A be a connected strict shod algebra, and let I' be the unique non-
semiregular component of I'y. As we have seen above, if I is a component of
I's different from I', then it is a component of a tilted algebra. Using now the
well-known description of the Auslander-Reiten quiver of tilted algebras, we have
the following. For a strict shod algebra A, the components of I'y are of the
following shape (using the notation of (7.1)):

(i) postprojective component(s) (those of T 4¢).
(ii) preinjective component(s) (those of I' 4(r)).

(iii) a unique and faithful pip-bounded component which is the unique non-
semiregular component.

(iv) stable tubes.
(v) components of type ZA .

(vi) components constructed from tubes or from ZA ., by ray or coray insertions.
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Observe moreover that the components of I' ;) (or I' 4ry) which are embedded
in I'4 are semiregular without injective (respectively, projective) modules and are
contained in L4 \ R4 (respectively, in R4 \ L4) (see (7.2)).

We finish this section with some further results concerning the connection of
components of I'y and the subcategories £,4 and R 4 for a strict shod algebra A.
We first recall the following result which has been proven in [15] and [22].

LEMMA 7.3 Let A be a tilted algebra with connecting component I which is neither
postprojective nor preinjective.

(a) [15)(3.1) Then LasNR4 CT.

(b) [22)(I1.3.1) If T is regular, then L4 NR4 =T.

PROPOSITION 7.4 Let A be a connected shod algebra.

(a) If Lo NR 4 contains a component of T 4, then A is quasitilted.

(b) Assume A 1s not hereditary. Then L4 NR 4 contains a directing component
if and only if A 1s a tilted algebra with a regular connecting component T.
Moreover, in this case, L4 NR4 =T.

Proof. (a) It follows from 7.2(b).

(b) If A is a tilted algebra with a regular connecting component I, then by 7.3
I'=L4NR4 and £4 NR 4, in particular, contains a directing component.
Suppose now that £4 NR 4 contains a directing component I''. Observe first that
if P € I is a projective module, then rad P is also projective. Indeed, if rad P has
an indecomposable summand X which is not projective, then id474 X > 2 and so
IVéd LanRa.

Suppose I' is postprojective. The remark above implies that each projective in
I'” is hereditary. Since the algebra A is not hereditary, there exist projective
modules not lying in I'V. Since now A is connected, there exist projective modules
P, P’ € indA with P’ € T’ and P ¢ I and a non-zero morphism f: P/ — P.
Lifting now f through the irreducible morphisms of I'” it is not difficult to see that
Hom4 (X, P) # 0 for some non-projective module X € I'V. As above, idg7a X > 2
and so I ¢ L4 NR 4, a contradiction. A similar argument shows that I cannot
be preinjective. Then, by 3.4, I is a connecting component of a tilted algebra.
Clearly, if IV is not regular, then it would contain either a projective P such that
rad P is not projective or, dually, an injective [ such that I/socl is not injective,
a contradiction and the result is proven. &

We refer the reader to [13, 18], where further results relating the components
of 'y and the categories £4 and R 4, for A shod or quasitilted, are proven.
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8. Hochschild cohomology of strict shod algebras

In this section, we want to show how Theorem 6.2 can be used to calculate the
Hochschild cohomology of a strict shod algebra. The results below appear in a
joint work with Lanzilotta and Savioli [14].

For an algebra A, denote by H*(A) its i-th Hochschild cohomology group (see
[20, 27] for details). We want to show here that, for a strict shod algebra A,
H(A) = 0 for each ¢ > 2. The next results, due to Happel, will be useful in our
considerations. For a proof of them, we refer to [20].

THEOREM 8.1 [20]. Let B be a connected tilted algebra of type A. Then
(a) HO(B) = k;
(b) HY(B) = 0 if and only if A is a tree;
(c) H'(B) =0 for each i > 2.

THEOREM 8.2 [20]. Let A= B[M]. Then there exists a long exact sequence
0— H°A) — H°B)— ( End asM)/k — H'(4) —
— HY(B) — Entp(M,M)—> -
coo— H'(A) — H'(B) — Ety(M,M) —s -

Let A be a strict shod algebra. The strategy of the proof of our main result is
to show that at each step in the iteration of one-point extension given in 6.2, the
modules M;’s satisfy Ext), (M;, M;) =0, for j = 1,2 (using the notations of 6.2)
and then use Happel’s long exact sequence given in 8.2. This will follow from the
next proposition.

ProPosITION 8.3 [14] Let A = B[M)] be a strict shod algebra and assume that the
extended projective A-module P,, is a mazimal element in P%. Then Eztg (M, M) =
0, for eachi=1,2.

Proof. We shall not give a complete proof here, see [14] for it. However, we shall
sketch the proof that Ext% (M, M) = 0 for the taste of it.

Suppose Ext} (M, M) # 0. Then there exists an indecomposable summand M,
of M such that Ext%(M,M,) # 0. Clearly, then, Exti({O, M, 0), (0, M,,0)) # 0.
Denote by Z the quotient of the extended projective A-module P, = (k, M, idp)
by (0, M1,0). Applying now Hom4((0, M, 0), —) to the short exact sequence

0 — (0,M;,0) — P, — Z —0
one gets

oo — Extl((0,M,0),2) — Ext%((0, M,0), (0, M;,0)) —
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— Ext%((0, M,0),P,) —> ---

Observe that id4P, < 1. Indeed, if idy P, > 2, there would exist a non-
zero morphism from 7;'P, to a projective A-module leadlng to a contradic-
tion to the fact that P, is maximal in P§. Therefore, Ext?((0, M,0), F,) = 0.
Since Ext? ((0, M, 0), (0, M1, 0)) # 0, we then infer that Ext% ((0, M,0), Z) is non-
zZero. Consequent]y, Homy(Z, 74(0, M,0)) # 0 (recall that ExtA([O M,0),2) =
D Homu(Z, 74(0, M,0)), see [3](IV.4.6)). In particular, there exists an indecom-
posable direct summand N of M such that Hom4(Z, 74(0, N, 0)) # 0. We obtain
then an oriented cycle

(%) Py — 2 — 714(0,N,0) — * — (0, N,0) — P,

in T'4. Since P, € PY there exists a path (%) : ] ~» P, in indA where [ is an
injective module. Using the paths (x) and (x*) we would get paths I ~ P, of
arbitrary length, a contradiction to 4.3. ¢

We can now show the main result of this section.

THEOREM 8.5 [14] If A is a strict shod alyebra, then H'(A) =0 for each i > 2.

Proof. By 6.2, there are algebras B = Ay, A;,---, A, = A and A;-modules M;
for each ¢ = 0,---,¢ — 1 such that: (i) B is a product of tilted algebras; (ii)
Aip1 = Ai[M;] for each i = 0,---,¢ — 1; and (iii) the extended projective A;4;-
module (k, M;,idpy,) is a maximal element in P4 . We shall use induction on
t > 1 to get our result. First observe that, since gl.dim 4 < 3, we get H'(4) = 0,
for each ¢ > 4. Suppose t = 1, that is, A = B[M], where B is a product of tilted
algebras and the extended indecomposable projective A-module is maximal in P4.
Then, by 8.1, H(B) = 0, for each i > 2. Since Ext'y(M, M) =0 for each i = 1,2,
we get from Happel’s long exact sequence that H?(A) = H3(A) = 0. The above
argument can be indeed made at each step of the iteration of one-point extensions
described in 6.2 in order to get the desired result. &

We first observe that 8.5 cannot be generalized to shod algebras since there
are quasitilted algebras A with H?(A) # 0. The second remark we want to make
concerns the first Hochschild cohomology group of a strict shod algebra. The
group H'(A) will clearly depend on the types of the tilted algebras which are
components of B and properties of the modules M; (using the notations of 6.2)
as shown in the next result.

PROPOSITION 8.6 [14] Let A be a strict shod algebra. Using the notations of 6.2,
H'(A) = 0 if and only if

(a) B is a product of connected tilted algebras of tree type;
(b) for each i > 0, the extended projective A;y)-module is separating; and

(c) for each t > 0, the module M; is a direct sum of pairwise orthogonal bricks.
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We refer to [14] for more details of this discussion. We finish this section with
some examples.

EXAMPLES. (a) Let B be the k-algebra given by the quiver:

5

2

- . with affy =0
4

It is not difficult to see that B is a tilted algebra of type Ds. Therefore, by 8.1,
H'(B) = 0. Consider M = 7=2Ps, that is, the indecomposable B-module of di-
mension vector dimM = (0,0,1,0,1) and A = B[M]. Then A is the k-algebra
given by the quiver

)
Ee w—e
l‘r
a@ B :
. . . . with afy = v =0
1 2 3 4

Clearly, A is a strict shod algebra, and since M is a brick and the extended pro-
jective A-module is separating we infer that H!(A) = 0.

(b) Let B be the k-algebra given by the quiver

(8
ot L with af = 0

- L
Il 2 3

The algebra B is tilted of type As (with a complete slice in its preinjective com-
ponent) and therefore by 8.1, H'(B) # 0. Consider the one-point extension
A = B[S3] of B by the simple B-module S; associated to the vertex 3 which
is indeed the unique indecomposable B-module of projective dimension 2. It is
not difficult to see that there are then only two indecomposable A-modules which
have projective dimension greater than 2, namely, S3 and S;. Since pdsSs = 2,
pdaSs = 3,1d4S3 = 1, and id4S4 = 0, we infer that A is a strict shod algebra.
Also, it follows from the above considerations that H!(A) # 0.



Shod Algebras 53

9. Shod extensions of algebras

We have seen that if A is a shod algebra, then there exists an algebra B and a
B-module M such that A = B[M] and this allowed us to understand better the
algebra A. In this section, we shall discuss the converse problem, that is, given
an algebra B and a B-module M, when is the one-point extension B[M] a shod
algebra 7 As we have seen in Section 6, if A = B[M] is strict shod, then B is
a product of algebras which are either strict shod or tilted. In other words, if
B has a summand which is a quasitilted algebra but not tilted, then there is no
connected one-point extension of B which is strict shod. So, it is sensible to divide
our discussion into two parts: (i) quasitilted extensions of algebras; and (ii) strict
shod extensions of algebras.

Quasitilted extension of algebra. The results below are part of a joint work
with M. I. Martins and J. A. de la Pefia and their proofs can be found in [15, 16].

As we have seen, the canonical algebras are quasitilted. On the other hand,
they are one-point extensions of hereditary algebras by indecomposable modules
lying in regular components. It is not difficult to see that these modules are not
directing. Our first result implies that, in a sense, the above construction is an
exception, that is, if a one-point extension B[M] is quasitilted and M decomposes,
then M is directing.

THEOREM 9.1 [15] Let B be a connected algebra and let M be a non-zero decom-
posable B-module such that the one-point extension B[M] is quasitilted. Then M
is directing. Moreover, A 1is a tilted algebra.

The following results provide complete characterizations of the properties of a
decomposable B-module M for B[M] to be quasitilted in case B is indecompos-
able. Our first theorem deals with the case where M € add(Lp NRp).

THEOREM 9.2 [16] Let B be an indecomposable quasitilted algebra and M be a
non-zero decomposable B-module in add(Lp NRp). The following are equivalent:
(a) B[M] is tilted.
(b) B[M] is quasitilted.
(¢) M 1is directing.

In the situation complementary to the above theorem, since M € addLlpg, we
have to consider non-zero decomposable modules M with non-zero direct sum-
mands in £p \ Rp. We shall divide it in the next two theorems.

THEOREM 9.3 [16] Let B be an indecomposable quasitilted algebra and M =
M;@® M, be a B-module such that 0 # M, ts an indecomposable module in Lg\Rp
and 0 # M, € add(Lg NRp) . Then the one-point extension B[M] is quasitilted
if and only if the following conditions hold:
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(a) B[M,] is quasitilted;
(b) My s a hereditary projective module and Homp(M2,Rp \ Lg) = 0;

(c) M 1is directing.

THEOREM 9.4 [16] Let B be an indecomposable quasitilted algebra and M a de-
composable B-module in addCp such that it contains at least two non-zero inde-
composable direct summands in Lg\Rp. The following conditions are equivalent:

(a) B[M] s a quasitilted algebra;
(b) M 1is a hereditary projective B-module and Homp(M,Rp \ Lp) = 0;
(c) M 1is a projective B-module and Homg(M,Rp \ Lp) = 0.

There has been some further work in order to characterize the modules M in
mod B such that an extension B[M] is quasitilted, see [26, 32, 41] for instance.

Strict shod extensions of algebras. We shall now comment the main results
from our joint work with A. Savioli (see [17] for details).

We have seen that if A = B[M] is shod then so is B. The informations one gets
on M are somehow not so straight. The next results give some partial informations
on M.

THEOREM 9.5 [17, 13] Let A = B[M] be a strict shod algebra such that the extended
projective A-module lies in P%. Then:

(a) each indecomposable summand of M lies in a component of I'g which is
generalized standard and without oriented cycles.

(b) M is a directing module.

Proof. (a) If the extended projective module is a maximal element in P9 the result
has been established in [13], where we refer the reader to for a proof. However,
the result can be extended to the case considered here. Indeed, suppose the
extended projective module P, is a non-maximal element in P¥. So, there exists
a projective A-module P’ which is maximal element in P4 and a path (*) from P,
to P’. Observe that since P, is the extended projective, then Homy4(P,, P’') =0
and the path (*) is not sectional. On the other hand, since P, €PY , there exists
a path (+*) from an indecomposable injective module to F,. Glueing now the
paths (x) and (*x) we get a path from an injective to P’ which can be refined to
a path in 'y and so P, and P’ lie in the same component in '4. The result now
follows from the description of the components containing P, (5.4).

(b) Clearly then each indecomposable direct summand of M is directing. By [25],
we infer that M is itself directing. &
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PROPOSITION 9.6 [17] Let A=B[M] be a shod algebra where M is a directing
module. Then either M 1s a projective B-module or g M € addCp.

We shall consider first the situation where M is a projective B-module and
characterize when A = B[M] is (strict) shod. We observe that the equivalence of
conditions (a) and (c) of the next result was first established by Huard in [28].
For a complete proof, we refer the reader to [17].

THEOREM 9.7 [17, 28] Let B be an algebra and let M be a projective B-module.
The following statements are equivalent:

(a) A= B[M] 1s shod.
(b) For each (k*, X, f) € indA, either X € addCp or X € addRp.

(c) For each (k*, X, f) € indA, either pdp X <1 or idgX < 1.

As a consequence we have the following.

ProposiTION 9.8 [17] Let A = B[M] be a shod algebra where M is a projective
B-module.

(a) If M € addR g, then A 1s shod.
(b) A is strict shod if and only if B s strict shod.

Proof. (a) Let Z = (k*, X, f) be an indecomposable A-module. We want to show
that pdgX < 1oridgX < 1. If X is indecomposable, this is the case because B is
shod (by 6.1). If X is not indecomposable, then in particular f # 0. Moreover, the
image of f intersects each indecomposable summand of X. Since, by hypothesis
M € addRp, it yields that X € addRp and, in particular, idgX < 1. The result
now follows using 9.7.

(b) In general, if A = B[M] then gl.dimA = max{ gl.dimB,pdgM + 1} (see
[3](I11.2.7)). Now, since in our case A is a shod algebra we have that gl.dimA < 3.
Since pdg M = 0, we infer that gl.dimA = 3 if and only if gl.dimB = 3 and the
result is proven. &

The next result deals with the second possibility discussed in 9.6.

THEOREM 9.9 [17] Let B be a shod algebra and let M be a directing B-module in
addRp such that Te M € addCpg.

(a) Then B[M] is shod.

(b) The algebra B[M] is strict shod if and only if B is strict shod or if pdg M = 2.
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We borrow the following example from [17] (see also [35]) to show that there
exists an extension B[M] which is strict shod but with M not directing.

EXAMPLE 9.10 Let B be the radical square zero k-algebra given by the quiver A:

P ——— 0

1 2 3 4

The Auslander-Reiten quiver I'g of B consists of a postprojective component and
a family of homogeneous tubes corresponding to the algebra given by the full
subquiver of A containing the vertices 1 and 2, and a component I' as follows:

The subcategory Lp consists of all indecomposable B -modules but Sz, Py and
S4, while R p consists of the modules P3, Ss, Py and S4. So B is shod. Moreover,
it is strict shod because pdpS; = 3. Let now M = ( k::::k«-—O*-—O] in indB.
It is not difficult to see that M belongs to one of the homogeneous tubes of I'g
and so M is not directing. Consider now A = B[M], that is, the k-algebra given
by the quiver A’:

ay B 7
- . <+ — & <+ —— @
1 ap $2 3 4
s
S5 e

with a9d = 018 = a3 = fy = 0. Observe that the k-algebra B’ given by the
full subquiver of A’ consisting only of the vertices 1, 2 and 5 is tilted. Also, it is
not difficult to see that the algebra A4 is strict shod. Hence, there are strict shod
algebras which are one-point extensions by non-directing modules.

10. Tilting up shod algebras

In this section we will comment very quickly some results from our joint work
with Happel and Unger [10], where we refer to for details.

The starting point of our considerations was the problem whether or not there
is a relantionship between hereditary abelian categories and strict shod algebras
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via the tilting process. The following example, borrowed from [35], shows that
there are strict shod algebras which do not come in this way.

EXAMPLE 10.1 Let A be the k-algebra given by the quiver A:
/ &
\ A

with @ff = 0, ¥ = 0 and 6¢ = 0. This is a strict shod algebra. Observe however
that Ext%(S,5) # 0 and Ext®(S’,S) # 0 if S is the unique simple injective
module and S’ is the unique simple projective. Therefore, by [19](IV.1.11), A
cannot be a piecewise hereditary.

L]
)

However, there is a nice relation between the class of strict shod algebras and
a class of algebras of global dimension 2 admiting a special tilting torsion pair
which we shall now describe. We start discussing the so-called canonical tilting
module.

Let A be a strict shod algebra. Let now P’ (respectively, I’) be the sum of
all indecomposable projective (respectively, injective) modules lying in R4 \ L4
(respectively, in £4 \ R4). By 4.6, both P’ and I’ are non-zero. Let finally J be
the sum of I’ with all indecomposable modules X € £, such that TA_IX & La.
In fact, J is the sum of all indecomposable Ext-injective modules of £4. Recall
that a module X is an Ext-injective in a subcategory C of modA if X € C and
Ext) (X, C) = 0 for each C € C. Dually, one can define Ext-projective modules in
C.

THEOREM 10.2 [10](3.6) If A is a strict shod algebra, then T = P’ & J is a tilting
module.

The (tilting) module T as in 10.2 is called the canonical tilting module for A.
Observe that a similar version of this module has been considered by Savioli in
[35] in connection with the so-called separating slice of Assem.

Let A be a strict shod algebra and let T = P’ & J be the canonical tilting
module. Clearly, P’ is an Ext-projective in R4 \ £4. Also, it is not difficult to
see that the torsion pair (7(T), (7)) induced by T is

T(T)= add ((Ra\La)U ind J) and F(T)= add (L4 ind J)
Consider now the following set S consisting of all pairs (A, T) where:
(i) A is a strict shod algebra.
(i) T =T ® T, is a cotilting module, T} is Ext-injective in add(L4 \ Ra).
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(i11) the torsion pair (X (7)), Y(T)) splits.

(iv) pdaX < 1 for each indecomposable X € Y(T') which is not a direct sum-
mand of T'.

For a strict shod algebra A, the pair (A,7"), where T' is the canonical tilting
module, belongs to §. The main result of [10] is the following theorem.

THEOREM 10.3 [10] There exists a bijective correspondence between the set S and
the set of all pairs (B, T") where:

(2) B is an algebra of global dimension two.
(b) T" 1s a tilting module.

(c) 1dpX <1 for each X € F(T") and pdgY < 1 for each non-injective ¥ in
ind7 (T").

(d) Exzty (F(T), T(T)) # 0.

11. Double tilted algebras

In an independent work, Reiten and Skowronski [33] have proven some similar
results to the main results of Section 6. There, they introduce the notion of
double section and double tilted algebras and relate them to strict shod algebras.
In this section, we want to discuss this work very briefly, refering to [33] for details.

DEFINITION 11.1 Let A be an algebra and I' be a component of I'y. A double
section A in T is a full connected subquiver of I' such that

(i) A has no oriented cycles.
(ii) A is convex.
. (iil) A crosses each T4-orbit of I' at least once and at most twice.

(iv) If A crosses two modules X, X’ in the same 14-orbit then (without lost of
generality) X’ = 74X and there are sectional paths I ~ 74X and X ~» P,
where / is an injective module and P is a projective module.

This double section can be seen as the glueing of a left section A; and a right
section A, (with a possible intersection). A double tilted algebra A is an algebra
such that I'y has a component with a faithful double section A which induces two
tilted algebras A(") and A(") which are factors of A (we refer to [33] for a precise
definition). The main result of [33] is the following.
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TueorEM 11.2 [33] The following statements are equivalent for a connected alge-
bra A:

(a) A s a strict shod algebra.

(b) A 1s an iterated strict shod extension of a tilted algebra.
(c) A s an iterated strict shod coextension of a tilted algebra.
(d) A is a double tilted algebra.

(e) T'a admits a component T with a faithful strict double section A such that
Homy(X,74Y) = 0 for all modules X from A, and Y from A,.

Also in [33], Reiten and Skowroniski studied the tame strict shod algebras. In
particular, they extend Skowroriski’s characterization of tame quasitilted algebras
to shod (see [33](9.4)).
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