Resenhas IME-USP 2001. Vol. 5, No. 1,63- 84,

Orders and Relative Pythagorean Closures

M. Dickmann and F. Miraglia

Introduction

Our main topic here is the structure of orders on the Pythagorean closures of
a non-Pythagorean formally real field. Following §3 of Chapter II of [Be2], if Q
1s a prime-closed extension of a formally real field F, then the intersection of all
{2-real closures of F in Q, (2|F)x, is the largest Galois extension of F in Q, to
which every order in F can be extended (Theorem I1.3.6, p. 81). When Q is the
algebraic closure of F, (Q|F)x is the intersection of all real closures of F; when
€2 is the maximal 2-extension of F', (Q|F)# is the Pythagorean closure of F' (see
also [Bel], Satz 10). The field (|F)# is called the Q-Pythagorean closure of F.
Since a field with a finite Pythagorean extension is itself Pythagorean (see [L1],
Exercise VIII.17, p.254), (Q|F)* is infinite dimensional over F, whenever F is not
Pythagorean. It seems natural to investigate the relations between the space of
orders of F', that of (Q|F)* and the Galois group of latter over the former.

Section 1 discusses the natural bijective correspondence between orders on a
field L and characters of the special group associated to L. We also present criteria
guaranteeing that the morphism of special groups induced by the embedding of a
field in an extension be injective and isometry preserving.

In section 2 it is shown that, if L/ F is a formally real algebraic extension, then
the group of field automorphisms of L leaving F fixed, can be embedded in the
group of automorphisms of the reduced special group of L.

In section 3 we prove that if L is a formally real Galois extension of F', then the
Galois group of L over F operates freely and continuously on the space of orders
of L, and that the space of orbits of this action is closely related to the space
of orders of the ground field. Moreover, if L is infinite dimensional over F' and
every order on F can be extended to L, then the orbits of the orders on L under
this action, as well as the space of orders of L, are perfect compacts. (Theorem
3.10). When F is countable, we can do better : if L is a Galois extension of F,
with Galois group T', and the canonical restriction map from the space of orders
of L to the space of orders of X, X, =3 X, is surjective, then there is an
isomorphism of 7T-spaces, between X 24 X p and the trivial T-bundle over X,
(Theorem 3.11).

In section 4 we prove an isotropy reflection principle between F' and (Q]F)#,
phrased in terms of the reduced special groups naturally associated to these fields
(Theorem 4.17).

In all that follows, F denotes a fixed formally real field, often referred to as
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the ground field. We work inside a fixed algebraic closure of F, written F'%; thus,
unless explicitly stated otherwise, all fields herein are extension fields of F' and
subfields of F¢.

Let  be a prime-closed extension of F. To simplify exposition, we write
— F2 for(Q| F)*, the Q-Pythagorean closure of F;

— F™ for the intersection of all Pythagorean subfields of F¢, that contain F. Thus,
F™ = (Q|F)*, where © is the maximal 2-extension of F' inside F%;

- F= for the intersection of all real closures of F in F%; hence F* = (Q|F)x, where
Q= F%
Clearly, F C F™ C F® C FE. Moreover, if L is a field, then

FCLEPY uy [PePY,

For a field L, let L be the multiplicative group of non-zero elements in L. As
usual, write

L2={32:a€f,} and EL2={E?=1 a?:n>1,{ay,...,an} C L},
for the subgroups of L consisting of squares and sums of squares, respectively.

Our basic reference for the Theory of Special Groups is [DM1], although [DM2]
contains the most of the needed material on these structures.

1 Orders, SG-characters and Complete Embeddings

We start collecting some basic facts about the reduced special groups associ-

ated to formally real fields, the majority of which appear in section 3 of chapter
1 of [DM1].

§ .2 ) .

Let G _ ,(F) = F/ZF"; we write an element of G__,(F) as @, a € F. When-
ever context allows, we drop the reference to F' from the notation. We define a
relation = in Gred(F) X Grea(F), called binary isometry by the rule

2
; 3
(z,y) iff W=7y and { e 2F,

= (a9)
such that uz = s + (zy)t.

We write T and —1 in G, 4(F) as 1, —1, respectively.
For z € F, define
D(1,Z)={T€G, ,(F):3s,te EFZ, such that v = s + zt},

called the set of elements represented by (1,7) in G, ,(F). With this in hand,
an equivalent formulation of (=) 1s

=) (,%)=(z,5) if w=7%y and @& € D(1, 77).
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G, 4(F) s callec_i the reduced special group of F, where reducibility means
that for all a € F,
(a,a) =(1,1) if a=1.

Let Z:z = {1, =1} be the multiplicative subgroup of Z. A SG-character of
G,.4(F) is a group homomorphism, o : G, .4(F) — Zs, such that o(—1) = —1,
and for all z € F,

(ch) T € ker o implies D(1, %) C ker o.

Write X, for the set of characters of G,,,(F). It is a closed set in the product
topo]ogy_ of the power 2Gr<d¢(F); hence, with the induced topology, it is Boolean
space, with a basis of clopens given by finite intersections of sets of the tvpe

F=1={ceX,:0(z) =1}
For o € X, define
(C) P ={0}u{zeF: o =1}
where 0 is the additive neutral of F. Clearly, 3] i C P,. Moreover,
-If z, y € P, then zy € P, because ¢ is a homomorphism; further, since
z=(1/z), z€ P, ff 1/z€ P,;
- =1¢ P_, because o(—1) = —1;

- For z € P_, note that 1+ € D(1, T); since ¢ is a SG-character, we get (1 +
z) € P,. It now follows easily that P_ is closed under sum.

~If z € F, then either o(F) = 1 or ¢(=%) = 1 (but not both); thus, PU-P =F
and this union is disjoint.

Hence, P, is a mazimal cone in F, corresponding to the set of positive elements
of a unique ordering on F' (see section 8.3 in [Co], p. 309 fT).

Conversely, if P is the positive cone of an ordering < on F, define
op: G, 4(F) — Zz, by

Forallz€ F, o,(Z) =1 iff z¢€P.
Note that o,(1) = 1 (1 € P) and 0,(—1) = —1, because —1 ¢ P. The above defi-
nition is independent of representatives in the same square class, since P is closed

under products and contains £F?. The fact that P is closed under multiplication
and P U —P = F, implies that o, is a group homomorphism. If ¢ ,(Z) = 1 and
that § € D(1, T), then y = s + tz, where s and ¢ are sums of squares in F. Since

P C P and P is closed under sums, we conclude that y € P and D(1, T) C ker
op. Consequently, 0p € Xp.

It is easily verified that for all maximal cones P in F and all ¢ € X,
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op,=0¢ and P,, =P,

establishing a natural bijective correspondence between orders on F and SG-
characters of G _,,(F). Note that if ay,...,a, € F, then the orders in v?'hich
all a.’s are positive correspond exactly to the characters that are equal to 1 in all
a;’s, 1 < j < n. Thus, the Harrison set H(ai, ..., an), a typical basic clopen in the
usual topology on the space of orders of F, is taken to the the basic clopen (N},
[@; = 1]) in X : the natural correspondence between orders and SG-characters,
described above, is also topological.

Now suppose that F' C L is a field extension, with L formally real. There is a
natural group homomorphism

L > Gred(F) — Gred(L)’ given by E,F' E¥ ?EL-

FL

Observe that tpL takes —1 to —1. Moreover, if z, y € F,

Tp € D(1,y,) implies 7, € D(1,7,),
that is, ¢t is a morphism of_specz'a! groups (SG-motphism)‘l In general, ¢, 1s not
injective, for an element of F' may be a sum of squares in L, but not in F'. Note
that for every ¢ € X, composition with ¢y, yields a SG-character of G ,,(F).
Thus, ¢, induces a map

Cppt Xp — Xp,

that is, in fact, continuous. The next result gives equivalent sufficient conditions
for ¢, to be injective (compare with Theorem 5.2 in [DM1]) :

Lemma 1.1 Notation as above, the following conditions are equivalent :
(1) All orders on F can be eztended to orders on L.

(2) ¢y 1s injective and all SG-characters of G, (F) can be extended to SG-
characters of G__,(L).

(3) For all forms ¢, ¥ over G__,(F),

T * v,

¥ =, .uF) FL * % =g,..0) ‘L

where tpp * (a1,...,80) = (tpy(a1),...,tp (an)) (the tmage of (ay,...,an ) by
tpp)-

Proof. (1) & (2) : Given the natural correspondence between SG-characters and
orders, to show that (1) implies (2), it is enough to check that ¢, is injective.

If tp; (zp) = 1, then z is a sum of squares in L. If ¢ was not in EP"z, by Artin-
Schreier, there would be an order on F in which z < 0. Clearly, this order cannot
be extended to L. Hence, Zo = 1 and iy, is indeed injective. The converse
1s similar and omitted. The equivalence (2) < (3) follows from Theorem 5.2 in
[DM1]. <
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Morphisms of special groups that satisfy condition (3) in Lemma 1.1 are called
compl(-.zte embeddings; conditions (2) and (3) are equivalent for reduced special
groups in general. The reader can consult section 1 of chapter 5 in [DM1] for more
details.

Example 1.2 By Lemma 8.3.6 in [Co] (p. 312), if L is an odd degree extension

of F, or a quadratic extension of the form F(,/5), where s € Eﬁ'z, then ¢
complete embedding.

FL Is a

For odd degree extensions, a result of T. A. Springer (see Theorem 11.5.3,
pg-46 of [Sc]), guarantees that the embedding tpy has an even stronger property,
namely, that it reflects isotropy (see Proposition 4.14). <

Example 1.3 By Theorem 11.3.6 in [Be2], if 2 is a prime-closed extension of
F, then every order on F can be extended to F®. Thus, tppa 18 a complete
embedding. In particular, all the SG-morphisms that come from the sequence

F C F* C F® C FE,

are complete embeddings. %

2 Groups of Automorphisms

If L is an extension of F, write Autp(L) for the group of automorphisms of L
that leave F pointwise fixed. If L is formally real and f € Autp(L), define

T: G, q4(L) — G, 4(L), by f@ = f"(a).
Note that if @ = B, then ab € £L°, and so f~!(ab) = f~(a)f~'(b) € £L. Thus,
f is well defined. It is straightforward to verify that
1) f is a SG-automorphism of G, (L), i.e., a bijective SG-morphism such that
forall z, y € L,
zeD(l,y) iff f(@) e DA, @)
Moreover, the inverse of f is f~!.
2) fog=gof and Tdp = Idcrgd(“.

3) tpy = fo tpp, that is, the following diagram is commutative :
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L _____'- Gred(LJ

A/

Although ¢, might not be injective, an automorphismof G, ,(L) that satisfies
(3), is called an automorphism over F or an F-automorphism. Write Autg(G,,,(L))
for the group of F’-antomorphlsms of G, 4(L).

rcd(

By Item (2) above, f ~ f is a group anti-homomorphism, from Autp(L) to
Autp(G,,4(L)). The reason for the defining f as above will become apparent in
section 3.

We shall use the following extension result, that can be extracted from the
proof of Theorem 1.3.2 in [BCR], particularly the paragraphs before and after
Lemma 1.3.3 :

Proposition 2.4 Let L be an ordered field, with real closure L and let R be a

real closed field. Then, any order embedding L Ay R hasa unique eztension to
an order embedding of L into R. <&

Proposition 2.5 With notation as above, let L be a formally real algebraic ez-
tension of F.

a) The following are equivalent, for f € Autp(L) :
(1) For some order on L, f is an order automorphism of L 2;
(2) Foralla€ L, f(a), =
3) f=1d.
b) The anti-homomorphism f € Autp(L) — f € Autp(G, 4(L)) is injective.

Proof. a) Clearly, (3) = (2) = (1). To show that (1) implies (3), let < be an
ordering on L, which is preserved by f. Write L for the real closure of { L, <)
in F*, L being algebraic over F, L is also the real closure of (F,S!F}. By

Proposition 2.4, f has a unique extension to an automorphism fof L. On the

'Le.,a > 0= h(a) > 0.
2a>0= f(a)>0,Va€ L.
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other hand, because ffF' = Id, and L is the real closure of F with the induced

order, we must have f = Id; . 1t follows that f]L =f=1d,.

b) Suppose that f, g € Autp(L) are such that f = 7. Then,

gof :jo_F-_—-f—log:!dG“d(L)_

The preceding equation means that for alla € L, [9=1 o fl(a) = @. By (a), g~ ! o
f = Id,, showing that f = g, as desired.

Remark 2.6 1If we drop the assumption that our fields are formally real, there
are perturbations of the identity by sums of squares, distinct from the identity.
One example that comes to mind is the Frobénius automorphism, z + z?, p an
odd prime. &

As observed in section 1, the natural map inclusion of F into a formally real
algebraic extension L, induces a SG-morphism ¢, : G, ,(F) — G,_,(L), which
in turn yields a continuous map ¢3,, : X; — Xp. We may ask if there is a
geometrical meaning to the fiber of :*, over the points of X . Or equivalently,
what is the geometrical meaning, for ¢, 7 € X, of the equation ¢ o 1, = 7
o iy, . The answer is the content of the next Proposition. Before its statement,
recall that an algebraic extension L/F' is normal if every F-embedding of L into
F? is an automorphism of L. Or equivalently, if every F-automorphism of any
field containing L, restricts to an F-automorphism of L (see Corollary V.3.9 in

[Col).

Proposition 2.7 With notation as above, let L be a formally real algebraic ez-
tension of F. For o, 7 € G__,(L), consider the following conditions :
(I)ootg, =Totp,;

(2) The orders on L, associaled to o and T, respectively, coincide in F.

(3) The orders on L, associated to o and T, respectively, are conjugate by a F-
automorphism of L.

(4) There is f € Autp(L) such that T = o o f.

Then, (4) & (3) = (2) & (1). If L is a normal extension of F, then all four
conditions are equivalent.

Proof. (1) < (2) : It suffices to check that if c € X; and p = 0 ¢y, then P N

F = PH, where P(_) is the maximal cone associated to SG-characters via relation
(C) in section 1. But for all € F, we have

[oo ‘FL]{EF) =o(T,),

and the desired conclusion follows immediately.
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It is clear that (3) is equivalent to (4), as well as that these conditions imply
(2) (or (1)). It remains to show, for instance, that (2) implies (3). Suppose that
o and T are orders on L, that coincide in F. Let

— F be the real closure of F inside F'%;
— L be the real closure of ( L, ) inside F'*;
— L_ be the real closure of ( L, 7) inside F°.

Since L is algebraic over F, it follows from Theorem 1.3.2 in [BCR] — or Propo-
sition 2.4 and Zorn’s Lemma —, that there are F-order isomorphisms A : Py
L, and A_: F L_;clearly, A = A o A;! is an F-order isomorphism from
L onto L_. Let pu: L (v/=1)— L_(+/=1) be the unique extension of A to an
F-isomorphism, taking v/—1 to itself. By Theorem VII1.3.7 in [Co], we have F? =
L_(v/-1) = L_(v/=1) and so p is an F-automorphism of F®. Since L is normal,
we conclude that A 1 is an F-automorphism of L; by construction, AlL takes the

order o to the order 7, as desired. o]
With notation as in Example 1.3, we have

Corollary 2.8 Let F' be a formally real field and Q a prime-closed extension of
F. For all o, T € Xpa, the following are equivalent :

(1) o otppn =T o0 tppa;

(2) There is f € Autp(F®?) such that T = o o f. <

3 Galois Groups and Orders

Let L be a formally real algebraic extension of F. We start by constructing a
group homomorphism from Autp(L) into Homeo(Xy), the group of homeomor-
phisms of the space of orders of L. For f € Autp(L), define f, : X, — X;,
by o= oo f.

red[L) _'_- Gred(L)

{1}

Note that f, is bijective, because the same is true of f; o o f is a SG-character
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of G, ,(L) because f is a SG-morphism; continuity of f. comes from the identity

L E=1)= [T =1],
which holds for all @ € L. Since X, is a compact Hausdorff space and f, is a
continuous bijective map, we have f. € Homeo(X). Further, Id, = IdXL and
(fogl(o)=co(gof)=co(gof)=(s07) o f=fulg(o)),

for all f, g € Autp(L) and all ¢ € X, . Hence, f — f. is a group homomorphism
from Autp(L) into Homeo(Xy).

Remark 3.9 a) Since we wished f + f. to be a group homomorphism, it was
necessary to define f as in section 2.

b) For all f € Autp(L), f. is, In fact, an isomorphism of abstract order spaces,
because it is the dual of the SG-automorphism f. o

Theorem 3.10 Let L be a formally real Galois extension of F. Let T =gyey
Autp(L) be the Galots group of L over F. Then,

a) The map
T x XL _"XL: (fs0'> — fu(o) =def f-o
defines a free and continuous T-action on X .

b) If X, /T is the space of orbits of this T-action on X, with the quotient topology,
there is a continuous injectionw : X, /T — Xy, such that the following diagram
ts commutative :

Pr

XL XL/I'

with t. the continuous dual of the SG-morphism 1p; : G_ 4(F) — G_4(L) and
py the canonical quotient map.

¢) The continuous injection w is a homeomorphism iff tp; 15 a complete embed-
ding.

d) If [L : F) is infinite, every orbit of the action of T in X, as well as X itself,
are perfect compacts.
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Proof. Our basic reference for actions of topological groups on topological spaces
is [Br], particularly Chapter 1.

a) The displayed rule will be a T-action on X if forall f. g € T
(A) Forallo € X;, (fog)-o=f (9 -0);

(B) Forallc € X,, 1d, -0 =o0;

(C) (Freeness) If f - o = o, for some o € X, then f = Id.

(A) and (B) are clear; for (C), suppose that f - o = o, for some ¢ € X . If <
is the order on L associated to o, then f is an automorphism of the ordered field
(L,<). By Proposition 2.5.(a), f = Id, as required.

We now verify that { f,o) = f - o is continuous, where 7' x X has the prod-
uct topology. Recall that T is the projective limit of the finite groups Autp(K),
as K ranges over the finite Galois extensions of F, contained in L (see Theorem
V.6.6 in [Co]). For f € Autp(L), a basic clopen neighborhood of f is given by

V(f, K) = {9 € Autp(L) : fIK = glK},

where K is a finite normal extension of F contained in L. With these preliminaries,
let ay,...,a, be elements of L and suppose that (f - o) € V =45 r]_;.‘:l {Ej = 1];
we must find a clopen U/ containing f in T and a clopen W containing ¢ in X, ,
such that (g, 7) € U x W implies g - 7 € V. Let N be a finite normal extension
of F, containing {a,,...,an}; it suffices, for example, to take N as the splitting
field of the minimal polynomials of the aj’s over F. Set

U=V(f, N) and W=ﬂ;=; [f~'(a;) = 1].

Since f - o(a;) = o(f~'(a;)) = 1,itisclear that c € W. If (g, 7) € U x W, we
have
For1<j<n, [g-7](3)="(3(g;)).

Hence, to show that g - 7 € V, it is enough to check that g“l(aj) = f'l(aj). But
this is immediate from the fact that, for g € V(f, N), f(a;) = g(a;), for all 1 <
i<n.

As is the case for general actions, if we fix f € T, the above action induces the
homeomorphism f. from X, to X .

b) Let X, /T be the space of orbits of the T-action on X, (see section 3, Chapter
1 in [Br]). Let

pr: X, — X, /T
be the natural projection. Recall that if o €X, the orbit of 7 is the set
T(e)={f-0: feT)

T(o) is the equivalence class of ¢ under the equivalence relation
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c~7 W 3IfeT(f-o=r7).

As a set, _:(L/T is the set of equivalence classes (or orbits) of this equivalence
relation. We endow X, /T with the quotient topology induced by P §

A subset of X, /T is open iff its inverse image by p,. is open in X;.

A subs¢'3t. A C X, is invariant if f,(A) C A, for all f € T. For A C X,, the
saturation of A is

T(A) = Uyser fo(4),
being the least invariant subset of X, containing A. Since the f. are all home-
omorphisms, it is clear that if U is open in X, the same is true of T(U). In
particular, p,. is continuous and open. By Theorem 1.3.1 in [Br], X, /T is Haus-
dorfl and compact. But we need a bit more, namely

Fact 1. X, /T'is a Boolean space and the diagram X, LLES X, /T has the following
universal property :

If X, 2, Y is a continuous map such that for all y € Y, f~1(y) is
invariant in X , then, there is a unique continuous map Ny X /[T —
Y, making the following diagram commutative :

Py

X, — X,/T

(*)
7 Ny
¥

Proof. Another way to view the saturation of a subset A in X is as the image,
by the operation ' x X, — X, of the product T' x A. Since X, is Boolean
and T is compact, we get that the saturation of any clopen set is again clopen. To
see this, let V' be a clopen set in X, . As already observed, T(V') is open; on the
other hand, T'(V) is the image by a continuous map of the compact set T' x V,
thus being compact in X, . Since a compact subset of a Hausdorff space is always

closed, T'(V) is closed.

To show that X, /T is Boolean, it is enough to verify that all of its opens can
be written as unions of clopens. For U open in X, /T, write

PEI{U) =Uier Vi
where each V; is clopen in X, . Since p7'(U) is invariant, we have

pr (U) = Uier T(V)),
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with each T'(V.) clopen in X, . It follows easily from the definition of quotient
topology, that the image by p,, of an invariant clopen is a clopen in X, /T. Thus,

U = Uier Pr(T(V)),

is a rendering of [/ as a union of clopens. To verify (*), for T'(c) € X /T, set
n.(T(s)) = n(o); then n,, is the unique continuous map making the displayed
diagram cornmutative. Details are left to the reader.

As in section 1, the inclusion F' C L yields a SG-morphism
tpr ¢ GrealF) — G 4(L),

which in turn originates, by composition, a continuous map t. : X; — X. By
Proposition 2.7, for all o, 7 € X,

(1) ta(0) = tu(r) f ooty =To0ty, M T(o)=T(r),

i.e., 17" (p) is a T-invariant (possibly empty) subset of X, , for all € X .. By (*)
in Fact 1, there is a unique continuous map w : X, /T — X, such that w o p,

= ly.

Pr
X, —— X,/T

Y,

Now observe that if w(T(¢)) = w(T(7)), then t.(c) = tu(7), which by (1), implies
T(e¢) = T'(7), showing that w is indeed injective.

c) Since we are dealing with compact Hausdorfl spaces and w is continuous and
injective, it is enough to prove that w is surjective iff ¢, is a complete embedding.
But we have

w is surjective iff ¢, is surjective
iff every ordering on F extends to an ordering in L,
and so, w is onto iff ¢, is a complete embedding (see Lemma 1.1).

d) It is enough to prove that every orbit in X, is a perfect compact. Since the
action of T' 1s free, the isotropy subgroup of ¢ in T',

T ={feT:f-e=0)},

is equal to {/d; }. Because T is compact, Proposition 1.4.1 in [Br] guarantees that
the map
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T—T(e), ff-o0.
‘is a homeomorp]tism, where T'(c) has the topology induced by Xy When [L: F)
is infinite, 7 is an infinite compact topological group, and the underlying space

of any such group must be perfect. But then, T(o) is also a perfect compact, as
desired. o

When F is a countable field, we have

Theorem 3.11 Let F be a countable formally real field. Let L be a Galois
extension of F, such that every order on F has an extension to L. Let T be the
Galois group of L over F. Then, there is an equivariant homeomorphism, h :
T x Xp — X, such that the following diagram is commutative

h
T x Xp ———— X,

\/

where 7 1s the canonical projection and t. is the dual of the SG-morphism tpy-

Proof. If F is a countable field, then so is F'*. Consequently, the normal algebraic
extension L is also countable. Hence,

- X, and and X, are Boolean metric spaces, since they are compact and have a
countable basis of clopens, consisting of finite intersections of sets of the type [a
= 1]. In particular, X, and X, are complete metric spaces.

— The Galois group of L over F, T, is the projective limit of a countable family
of finite groups, because there are only countably many normal fields between F'
and L. Therefore, T is a compact metrizable topological group.

The stage is set for an application of

Theorem A If X is a paracompact and zero-dimensional Hausdorff space and Y
is a complete metric space, then every lower semi-continuous function ®, from X
to the closed, non-empty subsets of Y, admits a continuous selection.

This result is due to E. Michael ([Mil]); Chapter 1 of [Pa] contains a nice
exposition of this and related results. Write 2¥ for the set of closed, non-empty
subsets of a topological space Y.

Consider the continuous map ¢, : XL — X ; since every order on F can be
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extended to an order in L, ¢, is a complete embedding (Lemma 1.1). Thus, ¢. is
a surjection. By item (c) in Theorem 3.10, there is a homeomorphism w : X, /T
— X, such that w o p; = ¢.. Since py 1s an open map, we conclude that the
same is true of +.. Recall that by Proposition 2.7,
(1) Forall 7 € Xp, w7'(7)=T(0),
where o is any extension of T to an order on L. Now define

®: X, — 2%t by &(r) =u"1(r).
Since ¢. is a continuous open map, it follows from Examples 1.1 and 1.1% in Chapter
1 of [Pa] (p. 3 and 4), that ® is lower semi-continuous. Since X is Boolean and
metric, it is paracompact and zero-dimensional; hence Theorem A applies, to yield
a continuous s : X, — X, such that s(7) € t.7!(7), for all 7 € X. Define

h:T x Xp— X,, h(f,7)=F"s(7).

If{f,7), (g,n) €T x Xp are such that f - s(7) = g - s(u), then, from (1) comes
g7 (frs()=s(p) = T=wl™ - (f-s(1) = w(s(w) = b
Hence, since the action is free, (97! o f) - s(r) = s(r) implies that f = g. We
have just verified that h is injective. Since it is clearly surjective, we conclude
that A is bijective. To show that h is a homeomorphism it is, once again, enough
to check continuity. Let V be an open neighborhood of f - s(7) in X . Since the
T-action is continuous, there is an open U in T, containing f, and an open W in

X , containing s(7), such that
(2) (g9,0) €U x W implies g-o € V.
Let W' = s~!(W); by the continuity of s, W’ is an open set in Xp. Consider V'
= U x W'; clearly, V' is open in T' x Xp. But then,

2

(9uY €V = (gsm)eUxW B g-s(u) eV,
completing the proof that A is continuous. It is straightforward that the diagram
displayed in the statement is commutative. Note that for all f € 7" and all (g, )
€T x Xp, we have
(3) f-hlgr)=Ff (g-s(r))=(foyg) s(r)=h(fog, )
There is a natural T-action on the topological product T' x Xp, given by
f ) (g,T} = <f o g!T)'

Clearly, this action is free. Then, equation (3) guarantees that h is an equivariant
map from T' x Xp to X, , completing the proof. <

Since for all prime-closed Q containing a formally real field F', F is a Galois
extension of F', to which every order on F can be extended, Theorems 3.10 and
3.11 apply, ipsis literis, to this situation.

We end this section with another proof that the orbits of the action of the
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Galois of an infinite extension are perfect. Note that, since the Galois group
operates by homeomorphisms, if an orbit of this action had an isolated point,
all of its points would be isolated (in the induced topology). Since the orbit is
compact, that would imply that it must be finite, Thus, to show that each orbit
is perfect, it is enough to prove

Proposition 3.12 Let F be a formally real, non-Pythagorean field, and let Q be
a prime-closed ertension of F. Then, each order on F has, at least, continuum
many distinct extensions to F<.

Proof. Fix an order 7 in F. One should keep in mind the fact, due to Diller and
Dress, that a finite extension of a non-Pythagorean field is also non-Pythagorean.

Write 2"~! for the set of maps from {1, 2, ..., n} into {0, 1}, that take 1 to
1. By induction on n > 1, we construct a sequence of fields

- 0
P C Ry CoiCF CFpgy € i P9,
and a sequence of sets of 2"~ distinct orders on F;
O, ={o,:s5€ 2"},
such that O, = {7} and for all n > 1,
i) F,,; = F,(V1+a?), is a proper quadratic extension of F,, with a € Fo:
ii) For all s € 2", o, is an extension to F,,, of o, wheret = S|(1,2,...n)"

Suppose that F, and O, have already been constructed and satisfy properties
(i) and (ii), for all 1 < k < n. Since F is a finite extension of F, F, cannot be

Pythagorean. Thus, there is a € F,, such that 1+ a? is not a square in F,_ . Set

F..,=F,(V1+a?) C F® Fort € 2""!, define the extensions of ¢ by 0 and 1,

t70,t71€2" by

iﬁﬂ(k):{i{k) if1<k<n t“l(k):{t(k) ifl<k<n

0 ifk=n+1 1 ifk=n+1

Clearly, every s € 2" is of the form t "4, (i = 0, 1), for some ¢ € 2"~'. Now define

the extension of o to F, | such that ViFaZ <0 ifi=0
{ the extension of o; to F“,H_1 such that vV1+aZ > 0 ifi =1
and set O, ., = {o,~; : t € 2" and i = 0, 1}. It is clear that (F,,,, O, .,)
satisfies the required properties.
Let L = J,>, F,; any map h : N — {0, 1}, such that A(1) = 1, determines a
family of compatible orderings

t78

)

in the tower {F, : n > 1}, which are all extensions of 7 on F; this family of

(F"‘a-"‘m. o}
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compatible orderings defines an ordering o, on L, whose restriction to each F
is Thyq i3 Thus, o, is an extension of 7. Note that h # k implies 7, # 0,
P

because if n = min {j > 2 : h(j) # k(j)}, then, by construction, ¢, and o are
distinct on F . We have just shown that L has continuum many distinct orders,
all of which are extensions of 7. Since F C L C F®, we have L = F?; hence,
each order on L can be extended to F. Consequently, 7 has continuum many
distinct extensions to F*, ending the proof. <

4 An Isotropy Reflection Principle

Definition 4.13 Let G -5 H be a morphism of special groups. We say that f
reflects isotropy if for all forms ¢ = (ay,...,a,) over G,

[ * ¥ isotropic in H wmplies ¥ isotropic in G,

where f * ¢ = (flay),..., f(an)) ts the tmage form in H.
The following result appears as Proposition 5.32 in [DM1] :

Proposition 4.14 IfG 2 nm reflects tsotropy, then f is a complete embedding,
i.e., for all forms ¥, ¥, of dimension n > 1 over G,

=¥ ff frP=y, fxrY,
where =, =, denote the isometry relation in G and H, respectively.
If G is a special group, write Sat(G) for the least saturated subgroup of G,
that is,
Sat(G) = U.ngl Dg(2¥),

% :
r_ ] Qi (L,1) ifk>1
WhereQ_.{ 1 k=0

A special group is formally real iff —1 ¢ Sat(G). In this case, the quo-
tient G/Sat(G) is a reduced special group, written G_,,. There is a natural SG-
morphism

m:G— G, w(a)=a/Sat(G) (the class of a modulo Sat(G)).
For n-forms ¥, ¥ over G, Proposition 2.21.(a) of [DM1] yields
TxP =g mx¥ iff Forsomeinteger k>0, 2*@¥=,2"0%. (¥
If ¥ = (ay,...,an) is a form over G_, ,, since 7 is surjective, we can always find

a n-form # in G, such that @ x @ = ¥; 8 is called a lifting of ¥ to G.

Example 4.15 Let F be a field of characteristic # 2. As in section 3 of chapter 1
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of [DM1], we can associate to F two special groups, G(F) and G__,(F); the latter,

we have already presented in section 1. To describe the former, set G(F) = F‘/F’z,
and write @ for the square class of a € F. We select TIF as the distinguished
element of G(F) and write it as —1.

(@pbp) Zoey (Bpdp) i { W =cdp and 3z,y€F

such that ac = z? + y?(cd).

Then (G(F), =g(r) —1) Is a special group. Moreover, G(F) is formally real iff
F is formally real. In th.is case, the SG-morphism 7 is given by @p > @y, where
@ is the class of ¢ € F modulo sums of squares; relation (*) above is a well-
known connection, due to Pfister, between the reduced and non-reduced theory
of quadratic forms over F. When the field F is clear from context, we drop its
mention from the notation.

A field extension F' C L induces a SG-morphism, Mgy : G(F) — G(L), ina
natural way : @, + @, . When L is formally real, we have a commutative diagram

G(F) e G(L)

(D) m m™

G

red(F) T ——. Grgd(L)

t
FL
As examples, we state some of the results we shall need, in the language of
special groups.
(I) A regular quadratic form over F of dimension n > 1, is isotropic iff it has
a non-zero isotropic vector in F". In the language of special groups, let ¥ =
(d@y,...,dn ) be a n-form over G(F'). Then,
3 (t1,...,ta) € F™, not all zero,

= - A iff
Pegihadie ‘ { such that 30, a;t? = 0,

where A is a (n — 2)-form over G(F). Since a SG-morphism preserves isometry in
all dimensions, it is clear that the isotropy of ¢ in G(F) implies that of 7 « ¥ in
Gred(F)'

(II) If L is an odd-dimensional extension of F, Springer’s Theorem (Theorem
11.5.3, p.46 of [Sc]) may be stated as

(S) Ny, reflects isotropy.
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(IIT) Lemma VI1.3.1 in p. 200 of [L1], can be phrased as follows : Let L = F(\/d)
be a quadratic extension of F and let ¥ be an anisotropic n-form over G(F). If
Npy, * ¢ 1s isotropic in G(L), then there is a € F, such that

(L) =gy @(1,~d) & X,
where ) is a (n — 2)-form over G(F). O

Proposition 4.16 Let F be a formally real field. If L is an odd-d:mens:ona!
extension of F, or an ertension of the form F(\/B), where 8 € EF‘ then the
SG-morphism

L

pL * Gred(F) — G, 4(L),

reflects 1sotropy.

Proof. The method of proof for both cases is similar, and so we treat them in
parallel. Let L be a field extension of F, as in the statement. Let ¥ be a form
over G_,,(F) such that ¢, » ¥ is isotropic in G, _,(L). Let @ be a lifting of ¥ to
G(F). By the commutativity of the diagram (D) in Example 4.15, we have

* (Mo, *0) =tpy x (T x0) =15, *P.
It follows that m % (n,, * 6) is isotropic in G,__;(L). By (*) above, there is a
integer k > 0 such that 2% ® (n,, * 0) * (2% ® 0) is isotropic in G(L).
Now,
a) If [L : F]is odd, then the formulation (S) of Springer’s Theorem described in
(IT) of Example 4.15, guarantees that 2¥ ® 8 is isotropic in G(F), that is, there is
a (n — 2)-form & over G(F), such that 2* @ ¢ =6(r) (1,-1) ® &; then, since 7
is a SG-morphism, we get

rr-k('Z"‘®9)=2"‘®(ﬂ'*3):2“@@56"‘(” (1,-1) & (7 * £),

=NpL

showing that 2¥ @ ¢ is isotropic in G, ,(F). Since G, 4(F) is a reduced special
group, Proposition 1.6.(e) in [DM1] yields the isotropy of ¢ in G_, ;(F), as desired.

b) Suppose that L = F(\/B), with 8 € SF I 2% @6 is isotropic in G(F), the
same reasoning as in (a) will show that ¥ is isotropic in G, (F). If 2* @ 6 is
anisotropic in G(F), formula (L) in item (II1) of Example 4.15 applies, to yield
an element a € F, such that

¥ ® 0 =gp) G(1,-F) ® A,
where A is a (n — 2)-form over G(F'). Since 8 € EF‘S, ﬁ'(—ﬁ} =—F=-1in
G,,..(F). But then, taking the image of this isometry by m, we get
e R =6, .4(F) a{l,—-1)& (mx A) =6, ea(F) (1,-1) & (7 % A),

and, as above, ¥ must be isotropic in G, _,(F), completing the proof. <

red
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We now have

Theorem 4.17 Let F be a formally real field and Q a prime-closed extension of
F. Then, the natural map tppa : G, (F) — G, ,(F®) reflects isotropy.

red

Proof. We start with the following

Fact 1. Let F C L C N C F* be fields, such that N is Galois over L, with index
2", n > 1. Then, there is a tower of fields

=L,CL C...CL, =N,
such that J’..‘+1 = L(; Hﬁi], where B, € Eﬁ;z.

Proof. First suppose that n = 1 and write N = L(a), @ € N. Let p(X) =
X? + aX + b be the monic irreducible polynomial of o over L. It is clear that
p(X) splits into linear factors in N C F%. Since L® = F9, this means that the
discriminant of p(X), a® — 4b, must be positive in all Q-real closures of L. By
Theorem I1.2.4 (p. 78) of [Be2], all orders on L are induced by a §-real closure of
LQ Thus, we must have a? — 4b = 8 where § is a sum of squares in L. From b =
at — B
4

comes

p(X)=X*+aX +b= (X + a/2)? - B/4,
and so N = L(+/B), as desired. Now, proceed by induction. If the result is true
for (n —1) > 1, since the Galois group G of N over L is a 2-group, it follows from
the Corollary to Theorem 1.6.3 (p. 25) in [La], that G has a normal subgroup, G,
of index two. Let K be the fixed field of G,; then K is normal over L of degree
2"=1 while N is of degree 2 over K. Thus, the induction hypothesis implies the
desired tower of quadratic extensions.

Next, we show

Fact 2. Suppose N is a finite Galois extension of F, inside F*. Write [L : N] =
2"d, where d is odd. Then, there is tower of extensions

FCK=K,CK,C...CK, =N,
such that [K : F] = d and for 1 < i < n, K, = K,_,(,/B,), with 8, € K;_,.

Proof. If [V : L] is odd, there is nothing to prove. If not, let S be a 2-Sylow
subgroup of G, the Galois group of N over F. Let K be the fixed field of 5. By
Theorem VIII.1.2 (p.194) in [La], N is a Galois extension of K, with Galois group
S. Thus, [N : K] = 2", [K : N] = d and the existence of required tower follows
directly from Fact 1.

To finish the proof, let ¥ be a n-form over G, ,(F), such that tppa * ¥ is
isotropic in G, _,(F®). Thus, there is a (n — 2)-tuple of non-zero elements in F*,
(z3,...,2n ), such that
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1) ¢ =g pay (1,=1)® ((Fa)pn, .-, (Fa)pa).

Let N be a finite normal extension of F, such that {z;, ..., 2, } C N. Since N =
F®, any order on N can be extended to F. Thus, Ly po is a complete embedding
(Lemma 1.1). Moreover, tppa = typa © Ly, that is, the following diagram is
commutative :

L
Grea‘.(F) Grgd(N}
Fn

FN
——i-
LFFQ /N

Gred(Fn)

Thus, we may rewrite (1) as
type * (tpy *P) =6, .4(FY INFO X ((1,-1) & ((Z3)n, ..., (Zn)N )
Since ¢y pa is a complete embedding, we conclude that
tpny * ¥ =g, vy (L,-1) & ((ZB)N, .-, (Zn)N ),

i.e., tpy * ¥ is isotropic in G _,(N). Let FC K C K, C...C K, = N, be the
tower of fields of Fact 2. This tower originates a sequence of SG-morphisms

Gred(F] % Gred’(f{) _“_> Gred(K‘l) : "Gred(Kn—l) l’ Gred(‘N)’

where L= g K 1 < j < n; furthermore, tpy =1¢, 0 ¢, _,
by Proposition 4.16, tpg and each of the zj‘s reflect isotropy. It follows that the

same must be true of ¢, and so ¥ is isotropic in G,,,(F), ending the proof. <

©...0tp,. But

red
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