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Hochschild cohomology: some methods for computations !

Maria Julia Redondo

Abstract: We present some results on computing Hochs-
child cohomology groups. We describe the lower cohomology
groups and provide several examples. In the particular case
of hereditary algebras, radical square zero algebras and inci-
dence algebras, we construct convenient projective resolutions
that allow us to compute their cohomology groups. Finally,
we show an inductive method to compute the Hochschild co-
homology groups.
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1 Introduction

These notes correspond to a series of three lectures given in the Workshop on
Representations of Algebras that took place in Sdo Paulo in July, 1999, before the
Conference on Representations of Algebras (CRASP).

The purpose of these lectures was to present some results on computing
Hochschild cohomology groups.

Let A be a finite—dimensional k—algebra (associative, with unit) and let M be
an A-bimodule. The Hochschild cohomology groups H*(A, M) were introduced by
Hochschild [19] in 1945. He considered the group of i~linear applications L} (4, M)
and he defined a coboundary operator Li(A4, M) — Li*!(A, M) in analogy with
the corresponding in algebraic topology. He proved that A is separable if and
only if H*(A, M) = 0 for any A-bimodule M, and that there is a one to one
correspondence between H?(A, M) and the set of equivalence classes of singular
extensions of A by M. :

The low—dimensional groups (i < 2) have a very concrete interpretation of clas-
sical algebraic structures such as derivations and extensions. Moreover, H?(A, A)
has a close connection to algebraic geometry. It was observed by Gerstenhaber
[15) that H?(A, A) controls the deformation theory of A, and it was shown that
the vanishing of H?(A, A) implies that A is rigid, that is, any 1-parametric defor-
mation is isomorphic to the trivial one [16]. The converse is not true in general,
but it holds if we add the condition H3(A, A) = 0.

There exists also a connection between Hochschild cohomology and the rep-
resentation theory of finite-dimensional algebras. It is known that if A is of
finite representation type (this means that there exists a finite number of non-
isomorphic indecomposable A-~modules) then A is simply connected if and only if
A is representation-directed and H'(A, A) = 0, see [18]. The importance of the
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simply connected algebras follows from the fact that usually we may reduce the
study of indecomposable modules over an algebra to that for the corresponding
simply connected algebras, using Galois coverings.

Despite this very little is known about computations for particular classes of
finite-dimensional algebras, since the computations of these groups by definition
is rather complicated, and it has been done only in particular situations where
explicit formulas have been obtained. The aim of these notes is to show how some
computations can be done in particular cases.

In Section 2 we provide an introduction to the subject, that is to say, given
any associative k—algebra A with unit, with ¥ a commutative ring, we define the
Hochschild (co)-homology groups of A with coefficients in an A-bimodule M.

In Section 3 we consider the lower cohomology groups, that is, H*(A, M) for
1 =0,1,2. These groups have a concrete interpretation in terms of classical alge-
braic structures such as derivations and extensions. We provide several examples
concerning algebras of the form kQ /I where @ is a quiver, kQ is its path algebra
and I is an ideal of Q. For basic information on this subject we refer the reader
to [1], [21].

In Section 4 we consider finite dimensional algebras over an algebraically closed
field k. We provide convenient projective resolutions of A over the enveloping alge-
bra A®, which allow us to compute the Hochschild cohomology groups of hereditary
algebras, radical square zero algebras and incidence algebras.

In Section 5 we present an inductive method to compute the Hochschild co-
homology groups of triangular algebras. We use a result due to Happel that says
that for one point extension algebras A = B[M] there exists a long exact sequence
connecting the Hochschild cohomology groups of A and B, see [18].

2 Definition of Hochschild cohomology groups

Let k denote a commutative ring with unit and let A be a k—-algebra (associative
with an identity). The enveloping algebra A® is the k—algebra whose underlying
k-module is A @ A° with product (a ® b)(a’ @ V') = aa’ ® b’b. The following
lemma shows the importance of the enveloping algebra:

Lemma 2.1 The category of A-bimodules is equivalent to the category of left
(right) A®-modules.

Proof: If M is an A-bimodule, we define a left (right) A®-structure in the
following way:
(a ® b)m = amb, (m(a ® b) = bma).

On the other hand, if N is an A°*~-module, we define
am = (a ® 1)m, mb=(1® b)m.

The axioms are verified and this defines an equivalence. O
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Example 2.2 The tensor product A®™ = A®y ---®@x A of A n—times over k is
an A-bimodule, with a(a; ® - - ® an)b = aa; @ - @ a,b . Hence A®" is an
A% -module.

The map b}, _; : A®"+1 — A®" n > 1, given by

n—1

bp-1(a0 ® - ®@an) = Z(—l)i%@-“@aiaiﬂ ®---®an

i=0

s a morphism of A-bimodules. Hence, it is a map of A®-modules.

Lemma 2.3
b i '
(A% B): ... A®THIZ3t gon Ly, g03 2 4020 4 g
1s a resolution of A over A%, the so-called Hochschild resolution of A.

Proof: The map s : A®" — A®"+1 given by s(z) = 1® z, for any z in A®"
verifies:
bls+ sb),_; =idgentr, Yn>1,
{ bls =idy.
Then bj is an epimorphism and Ker b, _; C Im#b],.
To prove that (b')? = 0, we proceed by induction. Since A is associative

bpbi(a® b ® c) = by(ab ® c — a ® be) = (ab)c — a(be) = 0.
By induction

bLbL s = b (id — sbl) = (id — b.,s)b, = sb!,_,bl, = 0.

n-n+

Since Ims generates A®™ as an A-module and &' is a morphism of A-modules,
then b,b),,, = 0. 0

Let M be an A-bimodule. If we apply the functor M ®4- . (respectively
Homg- (., M)) to the Hochschild resolution of A, we get a complex whose homology
(respectively cohomology) is the Hochschild (co)-homology of A with coefficients
in M, H;(A, M) (respectively H'(A, M)).

Let us see in detail the definition of H*(A, M). Applying the functor
Homye (., M) to the Hochschild resolution of A and using the isomorphism

Homy- (A®", M) = Homy (A®"~2%, M)

given by f — f, with f{z) = f(1® z® 1), we get the following isomorphism of
complexes:

M)



116 Maria Julia Redondo

. — Homy (A®"+2, M) &M Hom . (48743 M) > ..

... — Homy(A®", M) —2— Homy(A®"+!, M)~ ...
where the maps 6" are defined so as to make all the squares commutative. It can
be verified directly that 6™ : Homy (A®", M) — Homy (A®"*+1, M) is given by

(" fla® - ®an) = aof(a1®@---Qayn)

n—1

i Z(—l)m.f(au ® - ®aidit1® @ an)

=0

+ {—1]"+1f(ﬂo @ ® apn_1)dn.
Then H (A, M) = Ker 4§/ Imé*~1.
Remark 2.4

i) If A is k—projective, then A®"~2 is k-projective. Hence the 4°~-module 4%"
is projective, for n > 1, since

AP" = A @ AP @ A= A®y A7 © AP = A° @) A®2

Then (A®",¥) is a projective resolution of A over A°. So we may define the
Hochschild (co)-homology of A with coefficients in M in the following way:

Hi(A, M) = Tor" (M, 4),

H'(A, M) = Ext’,.(4, M).

It follows that, in this case, the Hochschild (co)-homology of A with coef-
ficients in M does not depend on the projective resolution we consider to
compute it.

ii) Let D = Homg(., k) . For any A-bimodule M, we can define maps
¢ : H'(A, D(M)) - D(Hi(A, M)),
¥ : Hi(A,D(M)) = D(H*(A, M)).

If k is a field then ¢ is an isomorphism, and if A is a finite dimensional
k-algebra then 1 is also an isomorphism, see 7, page 181].

iii) Assume that k is a field. If A is A°—projective, by i) we have that H*(A, M) =
0 for any ¢ > 0 and for any A-bimodule M. By ii), we deduce that
Hi(A, M) =0 for any 7 > 0 and for any A-bimodule M.

In fact, the following conditions are equivalent:
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a) A is A®-projective,

b) H'(A,M) =0, Vi > 0, for any A-bimodule M,
c) Hi(A,M) =0, Vi>0, for any A-bimodule M,
d) A is separable.

So we are interested in determining when A is A®-projective. Let p: A* — A
be the map defined by p(a ® b) = ab. Then u is a morphism of A-bimodules.

Lemma 2.5 The A¢-module A 1s projective if and only if there exists an element
e € A® such that p(e) = 1 and ae = ea, for any a in A.

Proof: Assume that A is A®-projective. Then the A®~epimorphism
A* B A0

splits. Hence there exists an A°—morphism o : A — A® such that po = id4. Let
e = 0(1). Then p(e) = po(1) =1 and ae = ao(1) = o(a) = o(1)a = ea.
The converse is immediate if we define the map & by o(a) = ae. (]

Example 2.6
i) Let A= M, (k). The element

n
e= E €1 @ ex;
=1

verifies the conditions of the previous lemma. Then H'(M,(k),M) =0 =
Hi(Myn(k), M) for 1> 0 and for any My (k)-bimodule M.

it) Let A = k[G], G a group with o(G) = n, such that n=* € k. Then the

element g
-1
e= —
L5t
TeG

verifies the conditions of the previous lemma. Hence H(k[G],M) = 0 =
H;(k[G], M) for i > 0 and for any k[G]-bimodule M.

1) Let A = k[z]/ < 2" >. We want to compute the Hochschild (co)-homology
of A with coefficients in the A~bimodule A, H'(A) = H'(A, A) and H;(A) =
H;i(A, A). Since A is k—free, we may consider any projective resolution.
Now,

LR N Oy L. O L. O B
s a projective resolution of A over A®, with dy; the multiplication by Z:‘:ul '@
™17 and dyiy; the multiplication by 1@ ¢ — & ® 1, see [17, page 54].
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If we apply the functors A ®4. . and Homy«(., A), using that A is commu-
tative, we get compleres isomorphic to the following ones:

m%AhA%m%AgA%Q

05AB A5 54845 ...

where by; = b% is the multiplication by pu(Y 1y @* ® 2"~1~%) = nz"-1 and

bais1 = b¥*! is the multiplication by p(1®@ z —z ® 1) = 0. Then

A, ifi=0,
Hi(A) = { A/ne™'4, ifi is odd,
Ann(nz"~1'), ifi is even and i > 0.

) A, if i =0,
H'(A)={ A/nz""'A, ifiiseven andi> 0,
Ann(nz™~'), ifi is odd.
In particular, if 1 € k, then
A ifi=0,

H'(A) = Hi(A) = { Afnz™=14, ifi> 0.

Ifn=0in k then H'(A) = H;(A) = A for any i > 0.
In fact these computations may be generalized for any monic polynomial
f € k[z], see [17, page 54], and we get

A, ifi =0,
Hi(A) =< A/f'A, ifiis odd,
Ann(f’), ifi is even and i > 0.

A, =,
H'(A)=<{ A/f'A, ifiiseven andi> 0,
Ann(f"), if17 is odd.

Remark 2.7

1) Let A, B be k-algebras, M any A-bimodule and N any B-bimodule. Then,
for any 7 > 0,

Hi(Ax B,M x N) = H;(A,M) ® H;(B, N),
H'(Ax B,M x N)= H'(A,M) ® H' (B, N),

see [22, page 305]. Hence, we may just consider indecomposable algebras.
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ii) The Hochschild (co)-homology is invariant under Morita equivalence:
given k-algebras A and B such that mod A is equivalent to mod B, then
H;(A) = H;(B) and H'(A) = H*(B), for any i > 0, see [22, page 328].
Hence, we may just consider basic algebras.

3 Interpretation of the lower cohomology groups

Recall that the Hochschild cohomology of A with coefficients in M is the coho-
mology of the following complex:

o 1 2
0 = M % Homy (4, M) 25 Homy (492, M) & Homy (493, M) = ...

3.1 The 0-Hochschild cohomology group
We have
H°(A,M) = Ker(4%)
= {meM:6m)=0}
= {me M :6°m)(a) = am —ma =0,Ya € A}.

In particular, H%(A) = Z(A) the center of A.

3.2 The first Hochschild cohomology group
We have H'(A, M) = Ker(6')/ Im(4°). Now,
Ker(6') = {f € Homk(A, M):6'(f)(a®b) = af(h) — f(ab) + f(a)b=0,
Va,b € A}
= Derg(A, M)
is the space of derivations of A in M, and
Im(6°) = {f € Homy(A,M): f=6m),me M)}
{fm € Homy(A,M),m € M : f(a) = am — ma}
Derp (A, M)

Il

is the space of inner derivations of A in M.
Then H!(A, M) = Dery(A, M)/ Derp (A, M).

Example 3.1 Let A = k[z]/ < ? >. The k-linear map 6 : A — A given by
6(a + bT) = bT is a derivation. Since A is commutative, Dery(A, A) = 0. Hence
H1(A) = Derg(A, A) # 0.
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Example 3.2 Let A = kQ/J?, with J the ideal generated by the arrows. We want
to show that if H'(A) = 0 then Q is a tree (the underlying graph has no cycles).
Assume Qo = {1,...,n} and @1 = {a1,...,0;}. If Q is not a tree, there exists
an arrow o € @y such that Q \ {a} is connected. Suppose that o = 1. We may
define a derivation § : A — A by

d(e;)=0 fori=1,...,n,

d(a) = m

0(a;) =0 fori=2,...,r, and we extend by linearity.
Let us see that § is not an inner derivation. If it were, there would exist z € A such
that § = 6, and §(a) = az — za for any a € A. Let z = 3 1, Niei + )0 pjoy,
Ai,pj € k. Then

ap =0(a1) = 0z — 2a1 = (Ay(ay) = Ae(ar)) @1
0 =4d(a;) = aiz — 2oy = (As(aq) = Ae(as))®i; i=2...,7.
50 A(ay) = Ae(an) = 1 and Ag(a;) = Ae(a;) = 0 for i = 2,...,r. But this is a
contradiction since Q \ {1} connected implies that A\; = \;, Vi,j € Qo.
Hence & is a derivation which is not inner, so H'(A) # 0.
In fact, the following general result holds (see [18, page 114]): if A= kQ/J?, the
following conditions are equivalent

a) H'(A) =0, Vi> 1;
b) H(A) =0;
c) @ is a tree.

Example 3.3 Assume k has characteristic zero, A = kQ/I, I an homogeneous
tdeal (this means that I is generated by linear combinations of paths that have the
same length). We want to show that if H'(A) = 0 then Q has no oriented cycles.
We may define § : kQ — kQ by 6(w) = l(w).w, where [(w) is the length of the
path w, and eztend by linearity. A direct computation shows that é is a derivation
of kQ. Since I is homogeneous, § induce a dertvation in A,

d:A— A
Since H'(A) = 0, § must be inner. Hence there ezist a € A such that §(z) =

za —az for all z in A. Now d(e;) = l(e;)e; = 0 for all i, so ae; = e;a for all i.
Hence a =Y aje; + y, with y € Pe;(rad A)e;.
Take a € Q. Then

a =d(a) = aa — ao = (a,(a) = Ge(a)) @ + Yo — ay.

Since ya — ay € rad® A, we have that Us(a) = de(a) = 1 for any arrow o € Q1.
Assume that @) has an oriented cycle 1 +2 — .- —>n — 1. Then

as — aq = 1
az—a; = 1
ay—a, = 1
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1s a linear system that has no solution if k has characteristic 0.

Using this result we get that for algebras A with rad® A = 0, the vanishing of
the first Hochschild cohomology group implies that its associaled quiver @ has no
ortented cylees.

For some time it was suspected that the vanishing of the first Hochschild coho-
mology group implies that the corresponding quiver has no oriented cycles. Now
it is known that this is not true (see [4]).

3.3 The second Hochschild cohomology group
Recall that H2%(A, M) = Kerd?/Imd'. Now,

Keré? ={f:A®@A— M :46*(f) =0}
={f:A@A M :af(b®c)— f(ab®c) + f(a ® be) — f(a ® b)c =0}

and

Imé! ={f:AQA—>M:f=46(g),9 € Homk(A, M)}
={f:AQ@A—> M :f(a®b) = ag(b) — g(ab) + g(a)b, g € Homy (A, M)}.

Definition 3.4 An extension of A is a k-algebra epimorphism ¢: B — A that is
k-split. '

Let M be the kernel of ¢. Since M is a two-sided ideal of B, then M has
an structure of B-module. The product in B induces a product in M. If this
product is such that M2 = ( this allows us to consider M as an A-bimodule in
the following way:

am = bm, if¢(d)=a,

m.a = mb, if¢(b)=a. (1)
Observe that this is well defined since ¢(b) = ¢(b’) implies that b — ¥ € M, so
(b —b")m = 0 since M2 = 0.
On the other hand, if M has an structure of A-bimodule satisfying (1), then the
product in M induced by the product in B is zero.

Definition 3.5 Let A be a k-algebra, M an A-bimodule. An extension of A by
M 1is a short exact sequence

0-MH5BA A0

with ¢ an epimorphism of algebras that 1s k—split, i a monomorphism of k-modules
such that

i(8(b).m) = b.i(m),
i(m.¢(b)) = i(m)b, Vbe B,me M. (2)
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Two extensions of A by M are said to be equivalent if there erists a commutative
diagram

0 g By B ey 4 s 0
I |
0 M~y B A y 0

with F a morphism of algebras (necessarily isomorphism).

Remark 3.6 The conditions (2) are simply a translation of (1) when i is the
inclusion M < B.

Proposition 3.7 The set Ext(A, M) of isomorphic classes of extensions of A by
M is in natural bijection with H%(A, M).

Proof: Let )
0-M53B3 A0

be an extension of A by M, and let v : A — B be the k-linear map such that
¢y=1ds. Then B = A@® M as k—modules.

If v is an algebra morphism, B = A x M as k-algebras, with (a,m).(b,n) =
(ab, an + mb). In this case, B is said to be the trivial extension of A by M.

In general, v is not an algebra morphism. The failure of v to be a morphism is

measured by
f(a®b) = y(a)y(b) — v(abd).

Since ¢ is a morphism of algebras, we have
d(fla@b)=ab—ab=0

and v is k-linear,so f: A@ A — M. Now, B is completely determined by A, M and
f as the k-module A®M with multiplication (a, m).(b, n) = (ab, an+mb+ f(a®b)).
We write B= Axy M.

Derived from the associative law, we have that f satisfies

fla®@ble+ f(ab®@c) =af(b®c)+ fla ® be).

This shows f to be in Ker §2.
Hence we have a surjective map

Ker §2 — Ext(A, M).

Two extensions A Ky M, A xy, M are equivalent if and only if there exists a
commutative diagram

0 + M i:ij,M 254 > 0

|| ¢| |

0 M — Aw, M —2 5 4 » 0
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with F' a morphism of algebras.
The commutativity of this diagram implies that F(a,m) = (a,m + g(a)), for
g € Homg (A, M). Now, F is a morphism of algebras if and only if

fi(a®b) — f2(a®b) = ag(b) — g(ab) + g(a)b, Va,be€ A.
This is just the condition for f; — f» to be in Imé!. O
Remark 3.8
1) The trivial extension of A by M corresponds to the zero element in H?(A, M).

2) If A = kQ/J?, then H%(A) = 0 if and only if @ does not contain loops,
does not contain non-oriented triangles, and Q is not 1 <= 2, see [9, page
213]. This says that if @ satisfies the hypothesis we have just mentioned,
any extension of A by A splits.

4 Convenient projective resolutions of A over A°

From now on A will denote a finite dimensional algebra over an algebraically closed
field k. Moreover, we will assume that A is basic and connected. For information
on this subject see [1].

4.1 Minimal projective resolution

Let {ey,...,en} be a complete set of primitive orthogonal idempotents of A. Then
{ei ® €;}1<i j<n is a complete set of primitive orthogonal idempotents of A°.

So {P(i,j) = A%(e; ® e;) ~ Ae; ®x e; A} is a complete set of representatives from
the isomorphism classes of indecomposable projective A°*~modules.

Lemma 4.1 [18, page 110] Let
o> Ry Rp1—> - > R >Ry A=0

be a minimal projective resolution of A over A®. Then

an - @P(i, J)dlmk Ext;‘(sj',s‘-)‘

L)

Proof: Let R,, = @e,j P(1,7)7. Denote S(i, j) = top P(i,j) the corresponding
simple A®-module. Observe that S(i,j) ~ Homg(Sj,S;). Then by definition we
have that

dimy Ext7. (4, 5(7, 7))

dimy EXtI; (A, Hom;,(.S',- A S,'))

dimy Ext’ (S;, S;)

The last equality follows from [7, Corollary 4.4, page 170]. O

T 3

o
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The projective resolution constructed above allows us to get the immediate
following consequences:

Proposition 4.2 pd. A = gl.dim A.
Proposition 4.3 [8] Let A = kQ/I, Q with no oriented cycles. Then

[ klQl ifi=0,
H"(A)‘{ 0 ifi#0.

Proof: This follows from the fact that applying the functor A ® 4. . to the
minimal projective resolution given in the previous lemma, we may identify

A® 4. P(f,j) = A®4- Ae(e,‘ ®e;;) Lo e_,-Ae;.

But Ext’y (S;, Si) # 0 for some m > 1 implies that there is a path in @ from j to
i. Since @ has no oriented cycles, then e;Ae; = 0. Hence A ® 4 R,, = 0 for all
m> 1, O

Proposition 4.4 [18, page 111] Let A be a basic indecomposable finite dimen-
sional hereditary algebra, this means, A = kQ, @ connected without oriented cy-
cles. Then

; if i=0,
dimy H;(A) = 0 ifi> 1,
l1—n+43 cq, dimkee(a)des o) ifi=1.

where n = |Qo| and ee(a)Aey(a) 15 the subspace of A generated by all the paths
Jrom s(a) to e(a).

Proof: Clearly H°(A) = Z(A) = k since Q is connected and has no oriented
cycles.

Sipce A is hereditary, we have that gl.dimA <1, so R,, =0 for all m > 2. Hence
H*(A)=0for i > 2 and

0—2>R =5 Ry=2A-=20

is the minimal projective resolution of A over A°, with Ry = €P;¢q, P(i,) and
Ry =@ cq, Ple(a), s(a)), because dimy Exty (S;, S;) coincides with the number
of arrows from 7 to j. Applying Hom4-(., A) to the previous exact sequence, we
get
0 — Homy-(A, A) - Homy-(Rg, A) = Homue(Ry, A) — 0.
But
Homy- (A, A) ~ k,

Homge(Ro, A) = P eide; ~ k"
iEQo
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and
HomAe(Rl,A) o2 @ EG(G)AE,(Q).
a€Q
Thus dimy H'(A) =1—-n+ Y wcq, dimk ee(q)Aes(a) - O

Corollary 4.5 Let A = kQ, Q without oriented cycles. Then H'(A) = 0 if and
only if Q is a tree.

Remark 4.6

1) Locateli describes the minimal resolution considered in Lemma 4.1 in the
particular case of truncated algebras A = kQ/J™, and she computes the
corresponding Hochschild cohomology groups [20].

2) Butler and King [6] and Bardzell [2] describe the morphisms of this minimal
resolution in particular cases (monomial algebras, truncated algebras, Koszul
algebras).

3) The equation for the dimension of the first Hochschild cohomology group
given in Proposition 4.4 holds in a more general context. In fact,

dimy H'(A) = dimc Z(A) — Y dimye;Ae; + Y dimy ega)Aey(a)
iEQo aEQ)

if A= kQ/I and

a) [ =Jm, see [3, 20]; or

b) the ideal I is pregenerated, that is, e;Ie; = e;kQe; or e;(IJ + JI)e; for
any i, € Qo, see [10, page 647] and [13]; or

¢) A is schurian and semi-commutative, that is, dimy Homy4 (P, P') < 1
for any indecomposable projective modules P, P’ and if w,w’ are two
paths in @ sharing starting and ending points, w € I implies w’ € 1,
see [18, page 113].

Example 4.7

1) Let A =T, (k) be the n x n-upper triangular matrices over k. Then A is an
hereditary algebra and the ordinary quiver associated

Q: 192> ---=n

is a tree. So i "
P ifi=0,
H(A)“{ﬂ ifi # 0.
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2) Let A= kQ, with Qo = {1,2} and Q1 = {a; : 1 = 2}1<i<m. So

_ 1 ifi=0,
diog B (A = 6 i1
1-24+5 " m=m?-1 ifi=1

3) Let A =kQ/J™, with Q the oriented cycle
124299 n=1

Then dimy H'(A) =1—-n+n=1.

Recall that a left A-module T"is called a tilting moduleif pd T’ < oo, Ext% (T, T) =
0 for all i > 0 and there exists an exact sequence 0 5 A > T° - ... 5 T4 50
with 7% € add T.

Theorem 4.8 Let A be a finite dimensional k-algebra, T' a tilting left A-module.
Let B = End4(T). Then H'(A) ~ H'(B).

Proof: It is known that if B = End4(T), T a tilting A-module, then there is
an isomorphism between the corresponding derived categories, ¢p 1,4 : Db (A) =~
Db(B). Using this isomorphism, we may construct an isomorphism between the
derived categories of the enveloping algebras A¢ and B¢.

In fact,

i) A®x T is a tilting A @, B?-module and A® ~ End 4, por(A4 % T)
ii) T @k B is a tilting A ®, B-module and B® ~ End g, por (T ® B?)
So the map F : D*(A®) — D*(B®),
F= ¢Ii_4@,‘q»,,;@,‘3-p B TQ.BoP,AQ ) BP

is the desired isomorphism. Moreover, F(A) = B and F' commutes with the shift.
Hence ) _
H'(A) = Exty.(A, A) = Homps4¢)(4, A1),
Homps ge)(F(A), F(A[i])) = Homps(ge)(F(A), F(A)[i]) = H'(B)
and .
HDme(Ac}(A, A['S]} = Home(Bo) (F(A], F{A[l])).
o
Corollary 4.9 Let A be a finite dimensional k—-algebra, A = Ap, Ay,..., Ay =

kQ, T; tilting A;-modules, A;11 = End4,(T;), @ without oriented cycles. Then
H(A) =0 foralli>2, H°(A) = k, and H'(A) = 0 if and only if Q is a tree.
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4.2 The resolution of the radical

The resolution we are going to construct in this section may be used to connect
Hochschild cohomology with simplicial cohomology.

Let A = kQ/I, E the subalgebra of A generated by the set of vertices Qg. Then
E is semisimple, commutative and 4 = E@rad A in the category of E-bimodules.

Lemma 4.10 Let A=kQ/I, A= E@®rad A. Then

o> A®E (rad A)®*" @p A & A®p (rad A)®="1 @5 A
— - -2 AQprad A@g A

Y AQE A= A—0
is a projective resolution of A over A%, with b’ the Hochschild boundary.

Proof: The boundary b’ is well defined and (5’)? = 0. The sequence is exact
since the map s : A ®p (rad A)®2" @g A — A @g (rad A)®2"*! @ A given by
s(a®z)=1®a®z, for z € (rad A)®=" Qg A, a = e + 7@ € E @ rad A, satisfies
the equation b's + sb’ = 1.

On the other hand, A®p (rad A)®E"@p A ~ A®g A ® (rad A)®2", (rad A)®="
is E-projective and A®Qg A is AQy A°P —projective, hence A®g (rad A)®*"@p A
is A®—projective. O

4.3 Radical square zero algebras

The resolution above allows us to compute completely the Hochschild cohomology
of radical square zero algebras, that is, algebras of the form kQ/J2.

In fact, since rad? A = 0, all the middle-sum terms of the boundary b’ vanish,
S0

V(a®@rm®@ ®@rm@b)=ar®rn® - @r,@b+(-1)"a®@r @ - ®@rn_1 @ rab.

Theorem 4.11 [12, page 96] Let @ be a connected quiver, @} ts not an oriented
cycle. Then

14 |@1]|Qol ifn=0,
dimg H™(kQ/J?) = { 1Q1]1Q1] — |Qol|Qol +1 ifn=1,
|@nllQ1] — |Qn-1]IQo|l #fn>1,

where Q. 1s the set of paths in Q of length m and Q;||Q; = {(7,7') € Qi x Q; :
v, 7' parallel paths}.

Corollary 4.12 [12, page 98] Let Q be a connected quiver, Q is not an oriented
cycle. Then ®n>oH™(kQ/J?) is a finite dimensional vector space if and only if
the quiver @ has no oriented cycles.

If Q has an oriented cycle of length c, then H™+t1(kQ/J?) # 0, for any n > 0.
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Remark 4.13 The last result has been generalized by Locateli [20, page 660] for
truncated algebras, that is, algebras of the form A = kQ/J™.

Theorem 4.14 [12, page 98] If Q is the oriented cycle 1 52 — -.- 5 m — 1,
and chark # 2 then

i) ifm=1, A=k[z]/<z?> and
n o _ | A ifn=0,
4 (kaJ)_{ k ifn>0,
i) ifm>1,
a on _J k ifn=0,2sm,2sm+1 for any s € N,
H™(kQ/J )_{ 0 otherwise.

Theorem 4.15 [12, page 98] If Q) is the oriented cycle 1 -2 — --- - m — 1,
and chark = 2 then

i) ifm=1, A=k[z]/ < 2?> and H"(kQ/J?) = A for anyn > 0,
ii) ifm>1,

. on_ ) k ifn=0,smsm+1 forany s €N,
H™(kQ/J )....{ 0 otherwise.

4.4 Incidence algebras

Let (P, <) be a finite partially ordered set (poset). Without loose of generality,
we may assume that P = {1,2,...,n}. Let I(P) be the subalgebra of the square
matrices over k, M, (k), such that

I(P) = {(aij) € Mn(k):a;; =0 ifi £ j}.

Then I(P) is the so—called incidence algebra associated to the poset P.

The ordinary quiver associated to an incidence algebra I(P) is given as follows:
the set of vertices Qo is P, and there is an arrow ¢ — j in @; whenever i > j
and there is no s € P such that i > s > j. We say that two paths are parallel if
they have the same starting and ending points. Then I(P) = kQ/I, where [ is
the ideal generated by differences of parallel paths.

Example 4.16

1) The lower triangular square matrices algebra T, (k) is an incidence algebra
assoctated to the poset P={1<2<...<n}.
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2) Let P={1,2,3,4} and 1<2<4,1<3<4. So I(P)=kQ/I with

&
N A

and | =< asay — 23 >.

Given any poset P, we may associate a simplicial complex £p = (C}, d;) with
Ci = {so > 51 > -+ > s; : 5; € P} the set of i-simplices. Let kC; be the k—vector
space with basis the set C;. The cohomology of £p with coefficients in k is the
cohomology of the following complex:

0 — Homy (kCo, k) 3 Homy (kCy, k) 23 Homy (kCa, k) — . ..
with
i+1 )
Bi(f)(50 > - > si41) = D (=1) f(50 > - > 5 > -+ > siga).
7=0

Theorem 4.17 [16, page 148], [11, page 225] H'(Zp, k) ~ H(I(P)).

Proof: Denote A = I(P). We apply the functor Homy-(., A) to the resolution
of the radical and we use the following identification

Homy-(A ®g (rad A)®E" @5 A, A) ~ Homge ((rad A)®5",A] ~ Homy (kCp, k).

These isomorphisms follow from the fact that the ideal I identifies parallel paths,

and
rad A = @ 5rec e, =~ @ik

since dimy e; Ae, = 1. Hence
(rad A)®2" = rad A®g---®grad A
= @$n>31>'“>5nesnAeﬂn—1 ®k eﬂn._1Aesn_3 Qk - Ok e.!],Ae-Sn

= Bye>s1>>snlsaAls,

Moreover, these isomorphisms commute with the boundaries, hence we have a
complex isomorphism. O

Remark 4.18 The previous result says that the computation of the Hochschild
cohomology 1s at least as complicated as the computation of the cohomology of
simplicial complezes.
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Example 4.19 Constider the incidence algebra I(P) given by the quiver
(n,0) (n,1)

(n—-1,00) (n—1,1)

(n—2,00 (n-2,1)

(0,0) (0,1)
Then the corresponding simplicial compler is ¥p ~ S™ the n-sphere, and
i — k !fi — 0: n,
H(I(P)) = { 0 otherwise.

To any poset (P, <) we are going to associate a new poset P adding two new
elements a,b such that a > u > b for any u € P. If A= I(P) and A = I(P) are
the correspondmg incidence algebras, and A = kQ/I, then A = kQ/T, where Q
is the quiver @ with two new vertices a,b and a new arrow from a to each source
vertex of () and a new arrow from each sink vertex to b.

Theorem 4.20 [11, page 225] H'(I(P)) ~ Extgx(sd,sb) for any i > 1.
Proof: Since . o
Ext2t?(Sa, Sp) ~ H'+?(4, Hom(Sa, Sb))

and Homy (Sa, Sp) ~ egﬂa as A-bimodules, we use the resolution of the radical
to compute H'*%(A, ey Ae,). There is an isomorphism

Homgpe ((rad A)®=*+2 ¢, Ae,) ~ Homge ((rad 4)®=%, A) ~ Homy (kC;, k)
that follows from the fact that the paths in @ from a to b, that is, the i+2-simplices
a> sy > --+> s; > b, are in correspondence with the paths in @ corresponding

to the i-simplices sy > - - - > s;. Moreover, these isomorphisms commute with the
corresponding boundaries, hence we get the desired result using Theorem 4.17. O

Corollary 4.21 [14] If P is a poset with a unique mazimal (minimal) element
then Hi(I(P)) =0, for all i > 1.

Proof: Let z be the unique maximal element in P. Then
02 FP— P85 —0

is a projective resolution of S, over A. So Ext‘%(Sa, .) = 0 for any j > 2. O

J.C. Bustamante has obtained a nice generalization of the previous result, see

[5]-
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Example 4.22
i) H (Ta(k)) =0 for any i > 1.
it) Let A= kQ/I, where Q is the quiver

1/3\4
\

and I is the parallel ideal. Then H*(A) =0 for any i > 1.

5 Inductive method to compute Hochschild coho-
mology of triangular algebras

An algebra A is said to be triangular if the corresponding quiver has no oriented
cycles. In this case, the quiver has sinks and sources, and this allows us to describe
A as a one—point extension (co—extension) algebra.

Let B be a finite dimensional k-algebra, M a left B-module. The one-point
extension A = B[M] of B by M is by definition the finite dimensional k-algebra

swa=( 4 8)

. T a 0 a 0\ _ ad’ 0 '
with multiplication ( m b ) ( b ) = ( e’ 3t B ) where a,a’ €
k, m,m' € M and b,V € B.

Proposition 5.1 Let A be an algebra, Q its ordinary quiver. The following as-
sertions are equivalent:

1) A is a one-point extension algebra;
i1) there is a simple injective A-module S;
1) there is a vertex i € Qo which is a source.

Proof: i) — i7) Assume that A = B[M] is a one point extension algebra of B
by M. Then S = D(ey1A) is a simple injective A-module, where

(10
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11) — 117) Since the injective module S = D(e; A) is simple, then the corresponding
vertex 1 is a source, that is to say, there is no arrow o € @, ending at 1.

1i1) — i) Suppose there is a source ¢ € Qp and let M = rad Ae; and B = A/ < ¢; >,
where < e; > denotes the two-sided ideal in A generated by the idempotent e;.
Then M is a B-module, and it is easily checked that A ~ B[M].

Example 5.2
1) Let B be the hereditary algebra with ordinary quiver

and let M be the B-module with representation M(1) = 0, M(2) = k&,
M(3) = k and M(4) = 0. Then A = B[M], the one-point extension al-
gebra of B by M, is the algebra kQ 4 /14 with ordinary quiver Q4

A
N,

and the ideal I, is generated by fa.

2) T, (k) the algebra of n x n—-upper triangular matrices over k is a one-point
extension algebra of T,—_1(k) by the T,,_,(k)-module M = rad T}, (k)e1;.

Theorem 5.3 [18, page 12/] Let A = B[M] be a one point eztension algebra
of B by M. Then there exists the following long eract sequence connecting the
Hochschild cohomology of A and B

0 — H°(A) —» H%(B) — Endg(M)/k — HY(A) - H'(B) = Exth(M, M) — ...
oo = Extly (M, M) = H™(A) - HFY(B) - ExtF (M, M) — ...

Proof: Let A= B[M], M =rad Py, Py = Aey, eg the idempotent associated to
the source 0 € Q. First observe that

0=I—-A—=B—=0 (3)
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is a short exact sequence of A®*~modules, where [ = A®(ep ® eg), and
0o>M— Py— S;—0 (4)

is a short exact sequence of A—modules.
The proof will be done in several steps:

i) apply the functor Homg- (4, .) to (3);
ii) apply the functor Homye. (., B) to (3);
iii)a) apply the functor Homy(., Po) to (4);
iii)b) apply the functor Homu (M, .) to (4).
i) Since H'(A) = Ext%.(A4, A) we get the long exact sequence
0 — Homga<(A4,I) = H°(A) — Homy-(4, B) = Exth.(4,1) = H'(A)
— Extl. (A, B) = Ext3. (A, 1) — ...

ii) The A®*-module I is projective, so Exty.(I,.) = 0 for all i > 0. More-
over, Homy«(I,B) = 0. So, applying Homgy-(., B) to (3) we get that
Ext'y. (A, B) = Ext}. (B, B). But B¢ is a convex subcategory of A%, so

Exty. (B, B) = Ext.(B, B) = H*(B).

1ii) Observe that
Extl. (A, I) = H' (A, I) = H*(A, Homy (S0, Po)) = Ext% (So, Po)

since | ~ Homy (Sp, Pp)) as A-bimodules, and the last equality follows from
[7, Corollary 4.4, page 170]. So,

a) applying the functor Homyu(., Po) to (4) we get that Exti!(So, Po) =
Ext (M, Py) for all i > 0 and
Ext 4 (So, Po) = Homy (M, Py)/ Homy (P, Po).

b) since Sp is A-injective and Homy4 (M, Sp) = 0, applying the functor
Homu4(M,.) to (4) we get that Exty (M, Py) = Extly (M, M) for all
i > 0. O

Example 5.4

i) Let A= kQ/I be the algebra with Qo = {1,2}, @1 = {e, B}, wherea : 1 — 2,
B:2—2 Letl=<f?> Then A= B[M], where B = k[z]/ < 2? > and
M =rad P,. Now, M is B-projective, Homg(M, M) = k2, H°(B) = k? and
H°(A) = k. So H*(A) = H'(B) for all i > 0, and we have already computed
H¥(B) in Theorem 4.14.
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ii)

iii)

Maria Julia Redondo

Let A = kQ/I where Q 1is the quiver

LN\
ONA

and I is the ideal generated by fo. Then A = B[M], B = A/ < e; > an
hereditary algebra, M the B-module with representation M (2) = k, M(3) =
0, M(4) =k, M(5) =k, M(8) = idx, M(€) = idx. Nouw,

0—=>Ps—=>Po—>M-—=0

ts the projective resolution of M over B. Applying Hompg(., M) to this short
eract sequence, we get the long eract sequence

0 — Homg (M, M) — Hompg(P;, M) — Hompg(Ps;, M)
— Extp (M, M) —= 0.

But Homp (M, M) = k, Homp(Py, M) = M(2) = k and Homg(P3, M) =
M(3) = 0. So Extly (M, M) =0 for all i > 0. By the previous theorem, we
have that H*(A) = H*(B) for all i > 0. Since B is hereditary, we know that
H°(B) = H'(B) = k and H*(B) =0 for all i > 1, see Proposition 4.4.

Let A = kQ/I where Q 1is the quiver

N
NS

4

and I is the ideal generated by yBa — ¢fa. Then A = B[M], B = A/ <
e1 > an hereditary algebra, M the B-module with representation M (2) = k,
M(@3) =k M(4) =k, M(5) =k, M(B) = idi, M(y) = idx, M(e) = idy,
M (8) = idy. Now,

0=+Ss=+P—->M—=0
1s the projective resolution of M over B. Applying Homg(., M) to this short
eract sequence, we get the long eract sequence

0 — Homp (M, M) — Homp (P2, M) = Homp(Ss, M) = Exth (M, M) — 0.

But HomB(M M) = k, Homp(P;, M) = M(2) = k and Homp(Ss, M) =
k. So Exth(M,M) = k and Exty(M,M) = 0 for all i > 1. Since B is
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hereditary, we know, from Proposition 4.4, that H%(B) = HY(B) = k and
H'(B) =0 for all i > 1. From Theorem 5.3 we have that H'(A) = H*(B)
fori=10 and i > 1, and we also have the eract sequence

0— H'(A) = H'(B) = Extz(M, M) - H%(A) — 0.

So H'(A) = H*(A) and dimy H'(A) < dimx H'(B) = 1. Hence H'(A) =
H?*(A) =0 ork.
In fact, A is a tilted algebra, that s, A ~ Endgq(T), with Q the quiver

3\1 /4
7

that is a tree. So H(A) = H!(kQ) = 0, see Theorem 4.8 and Corollary 4.5.
This says that the non—inner derivations in B can not be extended to A.

8) Let A = I(P) be the incidence algebra assoctated to the poset P. Let P =
P U {a} be the poset such that a > u for allu € P. Let A = I(P) = A[M],
with M = rad P,. Since H*(A) = 0 for all i > 0 (see Corollary 4.21) and
Endy (M) = k, then H'(A) = Ext’, (M, M).
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