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Remarks on Analytic Hypoellipticity 1 

Nicholas Hanges 

Abstract: We will compare the foIlowing ideas: analytic 
hypoeIlipticity on open subsets of Euclidean space; global an­
alytic hypoeIlipticity; analytic hypoeIlipticity in the sense of 
germs. We present a new operator which posseses Treves 
curves, yet is analytic hypoelliptic in the sense of germs. That 
is, the analog of the Treves conjecture, in the sense of germs, 
is false. 
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1 Introduction 

The problem of analyticity of solutions of partial differential equations is one of 
the oldest in analysis. lndeed , Hilbert [19) wrote the following , concerning his 
19th problem: 

"One of the most remarkable facts in the elements of the theory of analytic 
functions appears to me to be this: That there exist partial differential equations 
whose integraIs are ali of necessity analytic functions of the independent variables, 
that is, in short, equations susceptible of none but analytic solutions. The best 
known partial differential equations of this kind are the potential equation 

and certain linear differential equations investigated by Picard; 11 

In today's language we say that the Laplace operator is analytic hypoelliptic. 
This is a property it shares with all elliptic linear partial differential equations 
with analytic coefficients. When one leaves the class of elliptic equations, the 
question of analytic regularity becomes quite complicated . 

We begin by presenting a short survey comparing various notions of analytic 
hypoellipticity. This is the foeus of Sections 2 through 5. In Section 6 we present 
a new operator 1i on 1R3 . The operator 11. has an infinite number of Treves curves 
over the origin, yet is analytic hypoelliptie at the origin in the sense of germs. We 
state our results concerning 1i in Section 7. We give a short outline of the proofs 
in Section 8. Complete details will appear elsewhere. 

1 This article is an expanded version of a lecture gi ven at the Workshop on Geometric Analysis 
of PDE and Several Complex Variables , Serra Negra SP, Brazil, August 2001. We thank the 
organizers for their generosity and hospitality. 
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2 Sums of Squares and Analytic Hypoellipticity 

Let M be a real analytic manifold and let Xl, ... X r be real analytic vector fields 
on M. We study an operator P of the form "sum of squares". That is P has the 
form 

P = Xl 2 + ... + X r 2. 

Definition 1 We say that P is analytic hypoelliptic (in the strong sense) on M 
if for every open O C M we have the following: Pu analytic on O implies that u 
is analytic on O. Here u is a distribution on O. 

We always assume that the X j satisfy a "finite type" condition. That is, at each 
point of M, the Lie algebra generated by the Xj (under the commutation bracket) 
has dimension equal to dimM. 

Under these conditions a classical result of Hormander [21] guarantees the 
hypoellipticity of P. However analytic hypoellipticity will not hold unless further 
assumptions are made. 

If we assume that E, the characteristic set of P, is a symplectic manif~ld and 
that the principal symbol of P vanishes precisely to second order on E, then P is 
analytic hypoelliptic. This follows from a result of Treves [27] and Tartakoff [26]. 

Further work in this direction around this time was done by Métivier and 
Sjostrand. See for example [23], [24]. 

When E is not symplectic, analytic hypoellipticity may fail. We have the 
following example due to Baouendi - Goulaouic [1]. Consider the operator on ~3 
given by 

(1) 

If we use natural coordinates (x, y, t; ç, TJ, r) on the cotangent bundle T* (~3), 
we see that the characteristic set E for B is defined by the equations 

ç = TJ = x = o. 

E is not symplectic and B is not analytic hypoelliptic on any open set that inter­
sects x = O. 

Note that 

E = {f = 9 = h = O} 

with df, dg, dh independent and the following condition on the Poisson brackets 

{J,g} = 1, {f, h} = O, {g, h} = O. 

E is foliated by the integral curves of the Hamilton field of h (bicharacteristics of 
h). We will say that such a E is of Baouendi - Goulaouic type. 

These bicharacteristics are examples of what are now called Treves curves. 
Indeed, let (0,1) C ~ denote the open unit interval. We have the following : 
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Definition 2 Let E C T* M be an analytic submanifold and let , : (0,1) -+ E be 
a non-constant analytic curve. We call, a Treves curve for E if 

(2) 

for ali t E (0,1). Note that T""Y(t)~ is the tangent space to E at the point ,(t) and 
(T-y(t)E).l is the orthogonal space with respect to the symplectic formo 

In [27] Treves conjectured that when the characteristic set E is a manifold and 
contains such curves, the associated operator is not analytic hypoelliptic. Later 
[28], Treves extended his conjecture. Both conjectures are still open at this time. 
Recent progress has been made by Chanillo [4]. 

Next we have the example of Métivier [22]: 

M = âx 2 + (x 2 + l)ây 2. (3) 

M is not analytic hypoelliptic on any open set containing the origino (M is elliptic 
away from the origin.) Note that the characteristic set Eis given by 

E={Ç"=x=y=O}, 

and hence is of Baouendi-Goulaouic type. 

3 Global Analytic Hypoellipticity 

Definition 3 We say that P is globally analytic hypoelliptic on M if for every 
distribution u on M we have the following: Pu analytic on M implies that u is 
analytic on M. 

We have the surprising fact that the Baouendi - Goulaouic operator is globally 
analytic hypoelliptic on the 3 dimensional torus 1f3. This result is due to Cordaro 
- Himonas [12]. 

Other interesting global results have been obtained by Himonas - Petronilho 
[20] and by Bergamasco - Cordaro - Malagutti [3] . 

Later Tartakoff [25] proved that the Baouendi-Goulaouic operator 

B=âx2+â/+x2ât2 

is globally analytic hypoelliptic on 

Here §l is the circIe in y space and V is any open set in (x, t) space. Note that 
here the Treves curves are compacto 
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4 Several Complex Variables 

We turn to related results fram the theory of functions of several complex variables. 
We begin with the results of Chen [6] and [5]. 

Theorem 1 Let n 2: 2. Let 1) C C" be a bounded complete Reinhardt domain 
with real analytic pseudoconvex boundary. Then 

(1) The 8- Neumann problem is analytic hypoelliptic. 
(2) The Szegõ projector preserves analyticity. 

Similar results in this direction were obtained by Derridj and Tartakoff [13]. 
Note that Christ [9] has shown that there exist domains in CZ as above, such 

that the associated "sum of squares" is not analytic hypoelliptic (in the strong 
sense). Here Treves curves exist and are compacto 

Christ [11] has also shown the existence of bounded pseudoconvex domains 
with analytic boundary such that the Szego projector does not preserve analyticity. 

The analytic singularities of the Bergman and Szego kernels are determined by 
the Treves curves for tube domains in CZ, Francsics - Hanges [14], [15] . .Jt is not 
clear how these off-diagonal singularities affect the mapping properties of these 
kernels. 

5 Analytic Hypoellipticity in the 
Sense of Germs 

Definition 4 We say that P is analytic hypoelliptic at x E M if we have the 
following: Pu analytic near x implies that u is analytic near X. Here u is a 
distribution defined near X. 

Consider the tube domain 

Here m 2: 3 is an odd integer. If we parametrize the boundary using Xl = 
lRzI , YI = S.SzI, X2 = lRz2 , we see that the natural CR structure is generated by the 
vector field 

8 m-l 8 . 8 
L= -8 +mYI -8 +l-8 . 

Xl x2 YI 
(4) 

L is analytic hypoelliptic at any point where YI = O. On the other hand, L is not 
analytic hypoelliptic at any point where YI i- O. Much more general results of this 
nature were obtained by Baouendi and Treves [2]. AIso observe that the operator 
LL is analytic hypoelliptic at any point where YI = O. 
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On the other hand, the sum of squares 

is not analytic hypoelIiptic at any point where YI = O. This is due to Grigis -
S}ostrand [16] when m = 3 and to Hanges - Himonas [18] for general odd m. A 
proof valid for alI m > 3 was later given by Christ [8] . 

Observe that T and LL differ by a first order operator. It would be interesting 
to study the influence of lower order terms on regularity questions. 

AIso note that the characteristic set here has codimension 2. However the set of 
characteristic points that are "weakly pseudoconvex" is a manifold of Baouendi­
Goulaouic type. 

6 A New Example 

Let (Xl, X2, t) be coordinates on ]R3 and let 

where 

and 
Ô 2 (ô 2 6 x = (-ô ) + -ô ) . 
Xl x2 

Note that 1l is hypoelIiptic with 10ss of one derivative, see [21]. The charac­
teristic set is given by 

Observe that ç =j:. O on I;, hence I; is of Baouendi- Goulaouic type. As a conse­
quence I; is foliated by Treves curves. 

7 Treves Curves for 1-l and Statements of Results 

The Treves curves (bicharacteristics) are contained in I; and are integral curves 
of the non-degenerate vector field 

which is the Hamilton field of the function xl6 - x26. 
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Characteristic points have the form 

where 
OcO OCO ° X1<'2 - X2<'1 = . 

The Treves curve through such a point is given by the equations t = 0, r = ° 
and 

where ° < s < 211". 

Xl (s) = X~ cos(s) - xg sin(s) 

X2( s) = xg cos(s) + x~ sin(s) 

6(s) =efcos(s) -egsin(s) 

6(s) = eg cos(s) + ef sin(s) 

Note that these curves are always compacto When X O :/= 0, each curve, is the 
intersection of ~ with the torus 

When x O = 0, each curve is a circle in espace, centered at 0, with radius equal 
to leol. 

In particular, the origin is the projection of an infinite number of compact 
Treves curves. 

Given p, q > ° we define 

We have the following results concerning the operator 1i. 

Theorem 2 Let n C IR 3 be open. lf n intersects the hyperplane {t = O}, then 
1i is not analytic hypoelliptic (in the strong sense) on n . 

Theorem 3 The operator 1i is globally analytic hypoelliptic on np ,q for every 
p,q> o. 

Theorem 4 The operator 1i is analytic hypoelliptic at the origino 

Note that Theorem 2 is consistent with the Treves conjectures. Also observe 
that Theorem 4 is an immediate consequence of Theorem 3. 

Even though the origin is the projection of an infinite number ofTreves curves, 
it is impossible to find a solution that is singular there. That is, the analog of 
Treves conjecture in the sense of germs, is false. 
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8 Construction of the Inverse of 1l 

If u E S, the Schwartz space of rapidly decreasing functions on lR 3 , we define the 
partial Fourier transform by 

u(ç, t) = [ e-i<x,ç>u(x, t)dx. 
1J'i.2 

We will use polar coordinates (p, <p) in ç space, that is 

6 = pcos(<p),6 = psin(<p). 

If we have u, I E S such that 1lu = I, then this is equivalent to 

82 '11 ( ) 82 '11 ( ) 2 2 , ( ) - 1' ( ) 8<p2 p, <p, t + 8t 2 \p, <p, t - t P u p, <p, t - p, <p, t . 

Next we expand '11, j in Fourier series 

00 

u(p, <p, t) = L Uk (p, t)eik'P, 
k=-oo 

00 

j(p, <p, t) = L A (p, t)eik'P. 
k=-oo 

It follows that 

where 
82 2 2 2 

H p2,k2 = 8t2 - P t - k . 

Note that Hp2,k2 has an inverse on S(lR) for all p :I O and k E lR. Indeed, an 
explicit integral formula exists for the inverse, see for example [27]. 

Hence we have 

where Kk,p(t, t') is the distribution kernel of the inverse of Hp2,k2. It follows that 
the solution u is given by 

u(x, t) = 

100 121T ei(x,pCOS(<P)+X2psin(<p)) :(!-. eik<p 100 K (t t') i (p t')dt,pdpdt.p 
~ _ k,p, Jk, (211')2 . 

o o k=-oo 00 

We may write u = f-/, where we define 

(f-/)(x,t) = [ E(x,t;x',t')/(x',t')dx'dt' Jff.3 
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where the kernel Eis determined from above. There are several ways to write E. 
One way to write E is in terms of Bessel functions of integral order. Recall 

that 

satisfies Bessel's equation 

Hence it follows that 
E(x, t; x', ti) = 

100 k'f;;oo eik (8-8') Jk (rp)Jk (ri p)Kk,p(t, ti) ~;. 

Note that we have used the notation Xl = rcos(B),X2 = rsin(B) with similar 
notation for x'. 

The following formula is useful in obtaining estimates that are uniform in k 
and p: 

Kk,p(t, ti) = (1/ v7iJ 100 
e-$k 2 

/ p K 1 (s; tvp, ti v'PJds. 

Here K 1 is the inverse for the Hermite operator 

It follows from our construction and classical estimates, see for example [27], that 
we have 

Proposition 1 1{ is an isomorphism 01 the Schwartz space S(]R3) with inverse 
[. 

An important preliminary observation is the following 

Proposition 2 Let (x, t; x', ti) E ]R3 X ]R3. Assume that either t =1= ti or Ixl =1= Ix'l. 
Then E is analytic near (x, t; x', ti). 

The results of Section 7 follow from these Propositions. Complete details will 
appear elsewhere. 
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