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On the Differentiable Manifold Structure
of some Spaces of Maps and Applications to Variational Mechanics !
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Abstract: In this paper we construct a family of covari-
ant functors from the category of finite dimensional smooth
vector bundles over a fixed differentiable manifold M to the
category of smooth vector bundles with differentiable struc-
tures modelled on Banach spaces. As an application, we use
one of these functors to construct the differentiable manifold
structures in some spaces of curves which appear naturally
in the context of sub-Riemannian geometry and vakonomic
mechanics.
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§1. INTRODUCTION

Let M be a finite dimensional compact differentiable manifold, possibly with bound-
ary, and k € N. Let .# and ¢ be two covariant functors satisfying axioms (#1) — (£ 4),
(41) — (¢2) and (u) from section 1. The main properties stated in those axioms are:
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(a) .Z is a covariant multiplicative functor from the category of finite dimensional smooth
fiber bundles over M to the category of Banach manifolds, which maps the subcat-
egory of smooth vector bundles to the subcategory of Banachable spaces. For each
smooth fiber bundle ntz : E — M, Z(E) is a subset of the space of C* sections of
E, CX(E), and the inclusion is smooth.

(b) € is a covariant additive functor from the category of finite dimensional C* vector
bundles over M to the category of Banachable spaces, which maps each C¥ vector
bundle 7tz : & — M to a linear subspace of the space S(&) of all sections of &

(c) The multiplication % (Rg) x ¢ (Rgp) — ¢ (Rgg) is well defined and bilinear contin-
uous, where R is the trivial bundle M x R.

Then, for each smooth finite dimensional differentiable manifold M, we construct a
covariant functor #¢, from the category of finite dimensional smooth vector bundles
over M to the category of (infinite dimensional) smooth vector bundles over .#(M). For
each smooth vector bundle 7 : £ — M, the total space of F¥ (&) is the set given by
Definition 1, and for each VB-morphism f : £ — m, the morphism F¥(f) is given by
(fo) : 2+ foz Besides, if the functor & satisfies the additional axiom (¢3), we can
extend the functor #¥ to the category of finite dimensional smooth vector bundles with
smooth fiber bundle morphisms (not necessarily linear on the fibers).

The construction of these functors is based on the generalization of a technique used
in [5], for the case M= [a0,a1] C R, to define a differentiable manifold structure on the
space of curves H!L2(TM) := {(v,2) : [a0,a1] = TM | y € H*(M) and z € L2(y*TM)}.
These functors appear in a somewhat natural manner in the context of sub-Riemannian
geomelry and constrained mechanical systems; the reason for this is the fact that, applying
“L> 10 given a curve y € C¥(M) or y € H*(M), with k > 1, we obtain elements 7' €
CCk-1(TM) and ZX € H¥H*~1(TM), respectively, on the fiber overy.

In section section 3, we restrain ourselves to the case M = [ag,a1] C R, & = H* and
@ = H*1 k> 2, applying the functor £ to:

(1) reprove the smoothness of the Lagrangian functional £ : H*(M) — R induced by a
smooth Lagrangian L : TM — R on the tangent bundle of a smooth manifold M -
see Proposition 6.

(2) show that the spaces H*(M, %), H*(M, ¥, ¢) of horizontal curves to a constraint man-
ifold ¥ corresponding to a regular constraint f : TM — S admit a smooth mani-
fold structure endowed of which they become smooth embedded submanifolds of
H¥*(M) — see Definition 7, Definition 8 and Theorem A.

We conclude the paper with a brief description of some results we have obtained
in [12] using the manifold structure on the spaces of curves horizontal to the constraint
manifold ¥ mentioned above.
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§2. A CLASS OF VECTOR BUNDLE STRUCTURES ON SPACES OF MAPS
1. Basic Notations and Definitions

Throughout this paper we will use the adjectives “smooth” or “differentiable” mean-
ing “of class C*”. We use the notation Ey to denote the trivial fiber bundle of base M
and fiber E, and Ty : TM — M to denote the tangent bundle of a smooth manifold M.
Given k € N and a finite dimensional compact smooth manifold M, possibly with bound-
ary (which will remain fixed until the end of this section), let us consider two covariant
functors # and ¢ satisfying the following axioms:

(#1) .Z is a functor from the category of smooth finite dimensional fiber bundles over
M with smooth fiber bundle morphisms over idygg as the morphisms (denoted by
FB(M) henceforth) to the category of differentiable manifolds modelled on Banach
spaces (denoted by Ban Man henceforth). We consider the category of finite di-
mensional smooth manifolds Man as a subcategory of FB(M), identifying a man-
ifold M with the trivial fiber bundle Mg7:= M x M and a smooth map f: M — N
with the fiber bundle morphism f x idgr : Mgz — Ny

(£2) Z maps the subcategory VB(M) of finite dimensional smooth vector bundles over
M to the subcategory Ban of Banachable spaces; we consider the category Lin of
finite dimensional vector spaces as a subcategory of VB(M), identifying a vector
space V with the trivial vector bundle Viz := M x V and a linear map f: V — W
with the vector bundle morphism idg; x f : Viz = Wiz

(£3) For all E € FB(M), #(E) C C*(E), and the inclusion is smooth, where C*(E)
is the Banach manifold of C¥ sections of the smooth fiber bundle g : E — M.
Moreover, given a morphism (f : E — F) € Mor FB(M), # (f) is givenby # (f) =
(fo):s+> fos.

(#4) F is multiplicative, that is, given E;,E; € FB(M), we have #(E; x5 E2) =
F (E1) x F(E,). Moreover, if E; C E; € FB(M), and the total space of Ej is
an embedded submanifold of the total space of E3, then .#(E;) is an embedded
submanifold of .# (E;) and & (E1) = {y € F(E2) | y(r) € Ey for all t € M}.

(#1) ¢ is a functor from the category C¥VB(M) of finite dimensional C* vector bundles
over M to the category Ban of Banachable spaces; as in (#2), we consider Lin as
a subcategory of C*VB(M).

(92) For all £ € CKVB(M), 4(E) C S(E), where S(£) is the vector space of all sections
of the vector bundle £ Moreover, given a morphism (f : & — 1) € Mor CVB(M),

G (f) is givenby Z(f) = (fo): s+ fos.

(1) The multiplication:
p: FR)xZ(R) — %R

is well defined and continuous, where (f - g)(x) := f(x)g(x), for all x ¢ M.
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Remark 1.
(i) We are identifying sections which are equal almost everywhere on M

(ii) Tt follows from theses axioms that the functor ¢ is an additive functor and preserves
exact sequences, and the same holds for the restriction % : VB(M) — Ban .

(iii) It follows from (#3) and (F4) that, if Ey C E, € FB(M), and E; is an open (respec-
tively, closed) submanifold of E, then & (E1) = {y € #(E2) | y(t) € E; for all t € M} is
an open (respectively, closed) submanifold of .# (E;).

Example 1. The following functors satisfy the axioms above, where n := dimM:
) F=Cand¥=C,0<r<k<s.

() F=Cand¥ =L, 0<r<k<s, 1<p<on.

(i) F=Liamd¥=1p, 1< p,g<e0<r<k<s—2.

As a particular case of (iii), we cantaken =1, p=g=2and 0 < r < k < 5; we will
consider this case in the applications in the next section.

We refer the reader to [8] for details on these functors. See also [3], [10], [4] and [2].
We also refer the reader to [11], which reports a technical slip in Palais’ proof of a basic
lemma on functors from vector bundles over compact manifolds to Banach spaces of
sections (see [8]) and proposes a slight modification in Palais’ axiom (B§2) to eliminate
the problem. Nevertheless, there exists another technical slip in Palais’ formulation for
section functors, which we are currently working out. The problem appears in Palais’
construction following the proof of the “Mayer-Vietoris Theorem™: given a smooth finite
dimensional vector bundle & over a smooth compact n-dimensional manifold M, he takes

charts @; : D" = M, 1 < i < r, such that M C Uigic,9i(D"), and local trivializations
it @t — D" x R9, where D" is the n-disc {x € R" | ||x|| < 1}. Unfortunately, this
cannot be done if the manifold M has boundary oM # 0. We have already devised a
possible solution to this problem and we point out that this technical slip does not have
any implications in the results stated here.

2. The Functor F%

Let % : FB(M) — BanMan and ¢ : C*VB(M) — Ban be two covariant functors
satisfying the axioms of the previous subsection and let M € Man. In this section we will
construct a covariant functor #¢ : VB(M) — Ban VB(.# (M)), where Ban VB(# (M))
is the category of smooth vector bundles over .# (M), modelled on Banach spaces.

DEFINITION 1. Let 7tz : § = M € VB(M). We define:
FIE) :={(r,2) :M—>E|ye FM) andz€ 4(y'E)}

In the definition above, note that, by axiom (.#3) we have y € #(M) C C¥(M), so
thaty*£ is in CxVB(M).

The following lemmata and definitions will be used to construct the differentiable
vector bundle structure on the set F% (&) defined above.
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LEMMA 1. Let m; : £ — M be a finite dimensional differentiable vector bundle over M.
Then there exists N € N such that € is isomorphic to a smooth vector subbundle of the
trivial bundle RY; = M x RY.

A proof of this lemma can be found in [7].
Remark 2. (i) A similar result valid in infinite dimension can be found in [6].

(ii) The lemma also holds for C* vector bundles ng: &= M, k >0, if the base M is
compact (see [7]). Thus, given a smooth finite dimensional compact manifold
M and a C* vector bundle m; : & — M, k > 0, there exists N € N such that this
vector bundle is isomorphic to a C* vector subbundle of the trivial (smooth) bundle
IRY;. This allows us to apply the theory of [8], chapter 14, to the C* vector bundle
ng:E M.

Notation. Until the end of this subsection, let us fix a finite dimensional smooth vector
bundle ng : € =+ M, and let N € N, given by Lemma 1, such that § is a smooth vector
subbundle of the trivial bundle RY;. Let us endow RY with the metric tensor induced by
the canonical inner product of RY, and let 7t : { — M be the smooth vector subbundle of
]ﬂ such that, foreachpe M, {, = (§p)J'. Then we have EBpm L = ]l& Let us denote by
P and Py (or simply P, whenever there is no confusion about which “P” we are referring
to) the induced orthogonal projections. Given p € M, we identify the fiber (RV), with
RY and we denote by (Pg), the restriction Pe|mm), : RY — &, and similarly for (Py),.

Let us also give ourselves a metric d which defines the topology of M. Given p € M
and r > 0, we will denote by B,(p) C M the open ball of radius r and centered on p in
that metric.

DEFINITION 2. Given p,q € M, we say that p ~ q if Pple, : & — &p is a linear isomor-
phism. Note that &, is a linear subspace of (RY ), = R, so that the restriction makes
sense.

LEMMA 2. The relation ~ on M x M is reflexive and symmetric (but it is not transitive,
in general). Moreover, the set:

Wh, = {(p,q) EMxM|p~q}

is open in M x M (and contains the diagonal Awm, since ~ is reflexive).

Proof. (i) It is clear that ~ is reflexive. To see that it is also symmetric, note that
Pyle, : & — Ep is alinear isomorphismif, and only if, £, &, = RY . This follows
from the fact that dim&; = dim&, =: m, dim{, = N —m and Ker (Pp|¢,) = &, NEp.
But&, &, = R if, and only if, &} @ {; = RY, that s, {, & &, = R". By the same

argument, &, &, = RY if, and only if, Pyle, : &, — & is a linear isomorphism.
Thus we have shown p ~ g < g ~ p, as asserted.



236 Gléducio Terra

(ii) It remains to show that W, is open in M x M. We will prove that 'W,%:
M x M\ W, is closed in M x M.

Indeed, let {(.pmq:'l)}nEN be a sequence in WPCE:' such that (quﬂ) "i? (p1Q) €
M x M. We have to show that (p,q) € WP"E'

We have proven in the previous item that (p,q) € Wh, if, and only if, £, & {, = RY;
since (¥ (x,y) € M x M) dim&, + dim{, = dimR", this implies that (p,q) € WPCE
" if, and only if, &N, # {@}. Thus, we have (Vn € N) &, N, # {0}, and
we want to show that this implies & N, # {0}. Let us endow Gr(R") with the
Hausdorff metric D induced by the Euclidean distance d of RV (see appendix B);
since (Gr(R¥),D) is a compact metric space, we can assume, passing to a conver-
gent subsequence if necessary, that &, N{,, converges in D to a linear subspace
X € Gr(RY). Moreover,the fact that (Vn € N) &, N{,, # {O} and that the con-
nected components of Gr(RY) are Gro(RY),...,Gry(RY) implies that X # {Q}.

We assert that X C &, N p, so that &, N {, # {0}, what concludes the proof.

n—soo

As amatter of fact, it is sufficient to verify that d(&,, NC,,,E,NE,) — 0, since this
implies that d(X,&,NCp) = limy e d(&g, N Ep,,E4NEp) =0, 50 that X C §,N L.
But this equivalent to condition (C1) (see appendix A). Given (x,)en Sequence in
RY such that (Yn € N) x, € &, N {p,, suppose that (x,,, ). is a convergent subse-
quence of (Xs)nen With X,,, ™ x € RY. Then x € &N {,, because &, — &, and
Cp, — Cp in the Hausdorff metric (since & and { are smooth vector subbundles of
RRY)), and an application of condition (C1) to these two sequences gives x € &; and
x € {p, respectively. Thus, condition (C1) is verified, as asserted.

O

COROLLARY 1. Using the above notation, let y € % (M). Then there exists r > 0 such
that, for all t € M, B, (Y(t)) x B, (Y(t)) C Wh,.

Proof. Let:
iay: M — MxM
x — (%)

and ¥ := ip, 0¥ M- M x M. Then ¥ is continuous, since y € & (M) C C°(M), so that
¥(M) = {(v(1),¥(r)) | + € M} is compact and contained in the open set Wp, C M x M,
and the assertion follows immediately by a compactness argument. O

DEFINITION 3. Using the above notation, let y € % (M), and let r > 0 given by the
previous corollary. The metric d of M induces an admissible metric D for the topology of
C°(M), given by:
D(9,v) := sup d(o(:), w(r))
teM

for all §,y € C°(M).
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Since F(M) C C%(M), by axiom (F3), we have y € C°(M). Let Uy := B,(y) be the
open ball of radius r centered aty in (C°(M),D). Then U, is also an open neighborhood
of y in # (M), since, also by axiom (F3), the inclusion of F(M) in CX(M) c C°(M)
is continuous. Moreover, by the choice of , it follows from the previous corollary that,
for all 91,92 € Uy and all t € M, we have (q1(1),42(1)) € Wh,. Let us choose, for each
Y € F(M), such an r > 0 and such an open neighborhood U, so that we have an open
covering A = {Uy |y € F(M)} of F(M).

Let #9 (&) be the set given by Definition 1, and let:

n. FLE) — ZFM)
vz +— v

Finally, for each Uy € A, let us define:

d)ﬂy: lllt_‘l(“"l\') a2 ‘u‘(xg('ré) 6))

(Q!z) F— (Q!P‘l"z)

where: _
Pcf L M —_ Y’é

t — Pyy-z(t) €&
PROPOSITION 1. The maps ®q, are well defined and {®q, | Uy, € A} is a differentiable
VB-atlas in % (), so thatn: F%(E) = F (M) is a smooth vector bundle, that is, it is
an object of the category Ban VB(.Z (M)).

Proof. (i) Bach ®g; is well defined, that is, for all (¢,z) € n~'(Uy), Py-z € 4(Y*E).

Indeed:
(1) Let: ~
P M — gl(RY)
x — P.eL(RYE)
Since:

E: M — Grn(RY)
X ¥

is a smooth section (or, equivalently, € is a smooth vector subbundle of rank
m of ]Rg’d), it follows that the map P is smooth. Therefore, we can apply the
functor .# to this map, yielding the smooth map:

.ﬁ'(f’-) = (?o} F (M) > ﬁ(g[(ﬂ&”))
(2) Let us consider:

5: F(I(RY)) x4(RY) — ®)

(A.x) —  A-x @

By axiom (p), this map is well defined and bilinear continuous.
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(3) It follows from the two previous items that, given ¢ € U, and z € ¥(g*E) C
9 (q*RY) = ¢(RY), we have:

Py-z=8((Po) v,2) e 4(RY)

But, for almost all t € M, Py -2(t) € &), and Y(RY) =9 ('E) g (Y*0),
since ¢ is an additive functor; thus, taking the projection on the first factor
induced by this direct sum, which is given by (y*P;)o, we conclude that, in
fact, Py-z € 9(y*E), as asserted.

(ii) Each dJu{ is bijective.
As a matter of fact, let:

Yo YWY — (W)
@) — (5(Pl,)2)

where, for all € M, (g, (Pyle,) ™" +2) (1) = (a(8), (Pyn )" - 2(0))-
Once we have proven that ‘Pu,{ is a well defined map (i.e., that its image lies, in

fact, in 71~ (Uy)), it is clear that this map is the inverse of ®¢;,. Therefore, we just
have to verify that it is, in fact, well defined:

(1) Firstly, note that, 131 our choice of the sets Uy and by Corollar)} 1,forallg e
U, and for all # € M, the map Pﬁ')lﬁm : &) = Eyqy) is a linear isomorphism,
so that, given z € ¢(y*E), the following map is well defined:

(PyiQ)_l o 4 m e RN
to— (Puyle, )" o20)
) Let: _
P: WpCMxM — gl(RY)
(x,) — (leﬁ,)_l oP; € L(RY,E,)

~ It follows from the fact that &; varies smoothly with x (or, in other words,
that & : M — Gr,,(RY) is smooth) that P is a smooth map. Therefore, we can
apply to this map the functor .#, yielding the smooth map:

(Po) : F(Wp,) — F (aU(RY))

(3) Given g € Uy, we have (y,q) € F(M) x .#(M) and, for all
t €M, (v(r),q(t)) € Wh. Thus, by axiom (#4), we have (v,q) € F(Wg,) C
F(MxM) =.#(M) x #(M). Besides, a direct computation shows that, for
allg€ Uyandforall z€ Z(y*E) C 4(RY):

(Pyle,) ™" -2 =8((Po)(v,9),2) € 4(R")
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where 8 is given by equation (2). Since, for almost all 1 € M, (P'f(‘)lﬁq(n ¥y

z(r) € &4(1), we have shown that (Pe,) " -z actually belongs to %(¢*E), so
that W, is well defined, as asserted.

(ii)) Givenyo,y1 € & (M) such that Uy, N Uy, # 0, we assert that the map:
Py, 0Py ¢ UpNUy XxFW0'E) — U N Uy xI(11°E)
(QVZ) — (Q!PYI '(P‘folﬁq)_l'z)

is a smooth vector bundle morphism, what concludes the proof.
Indeed:

(1) Let:

P: Mx Wp, CMXMxM — gl(RY)
(x,y,z) = PIO(P)’IQ)LIOP)’EL(RP‘(&EW)

Again, the fact that &, varies smoothly with x implies that P is a smooth map.
Hence, we can apply to this map the functor .# to obtain the smooth map:

(Po) : F(M) x F(Wg,) » Z (al(RY))

Therefore, the following composition is also smooth (using axiom (.%4) again to

ensure (Yo,9) € F (Wp,) for g € Uy, N Uy,):

P Uy, —= FM x F(Wh) —T0 s g(@@) O

9 —————(Y1,Y0,9) /> Py 0 (on|§q)_1 o Py,
what, in turn, implies that the following composition is also smooth:

Pxi

Uy N Uy, X F(40*E) —> F (gI(RY)) x ¢(RY) —>—> @ (RY)

(g,2) Py o (Pyle,) !z

where i is the inclusion and § is given by equation (2). Note that, since z € % (yo*&),
we have Py, -z = z. Thus, since the image of ®q, o d){éo is actually contained
in Uy, N Uy, xZ(y1*E), and since ¥ (y;*E) is a Banachable subspace (hence, an
embedded submanifold) of #(RY), we have shown that ®¢;, o cpg,ju is a smooth
map.
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(2) It remains to show that ®q;, o cb;,:o is linear continuous on the fibers.
In fact, given g € Uy, N Uy, , We have:

(®u, oGl )e: F(0E) —  LnE)
2 = Pyo(Buly) 'z

It follows from what we have seen in the previous item that the map:

8(P(g),"): 9RY) — %(RN)
2z > Pyo(Pyle,) 0Py 2

is linear continuous, where Pis given by equation (3). Since the restriction of
this map to the Banachable subspace % (o*E) of Z(RV) is just (Pay, © tbao) g it
follows that this map is linear continuous, and the assertion follows.

O

The next step is to show that the differentiable vector bundle structure of F¥(£) is
intrinsic, in the sense that it does not depend on the embedding : £ — RY;. In the sequel,
to complete the construction of the functor .#¥, we will map each differentiable vector
bundle morphism f : € — 7 to a differentiable vector bundle morphism (fo) : F¥(E) —
F%(n), to be defined in the next proposition.

DEFINITION 4. Let & and m be finite dimensional differentiable vector bundles over M,
of ranks m and n, respectively. Let ¢ : & — R:} andy:m — R& be differentiable vector
bundle monemorphisms, and let us endow l@;’ and ]lg{2 with metric tensors induced by
the canonical inner products of R" and R™2, respectively. Denote by P : IR:,‘ — Eand
Py lﬂf — 1 the respective orthogonal projections (and again we will write just P if it
is clear to which P we are referring to) and by W& and ‘H&:ﬂ the corresponding open
sets of M x M defined like in Lemma 2. Let (% (£),9) and (¥ (n),y) denote the dif-
ferentiable vector bundle structures induced, respectively, in % (E) and % (n) by the
vector bundle atlases { @, | Uy € Ap} and {Yu, | Uy € Ay} defined like in Definition 3,
using the embeddings @ and vy, respectively.

This notation is temporary; we will drop the “@” of (F¥ (), @) after we prove that
the vector bundle structure actually does not depend on the embedding ¢.

PROPOSITION 2. Using the above notation, let f : & — m be a smooth vector bundle
morphism. Let us define the map:

FY(f)=(fo): (F4(&),9) — (£%(n),v)
(9:2) —  fol(q,2) =(q,fq2)

where (Vx € M) f; := fle, : & — nx and (V1 € M) (f-2)(1) := fyq) - 2(0)-
Then (fo) is well defined and it is a smooth vector bundle morphism.
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Proof. (i) (fo) is well defined (that is, for all g € .# (M) and for all z € %(g*E), in
fact it is true that f, -z € ¥(g*n)) and linear continuous on the fibers.

Indeed, given g € (M), we have ¢ € C*(M) by axiom (£ 3), hence ¢*f : g*£ —
g*n is a C¥ VB-morphism. Applying to this morphism the functor &, we obtain
the linear continuous map:

9@ f): 9@€ — %g'm)
z — foz=fg2
and the assertion follows immediately.
(ii) (fo) is smooth.

Indeed, giveny € .# (M), let (TUy, ®) and (Uy,'¥) be VB-charts of (F¥(E),p) and
(FF(F),w), respectively, where T, is a neighborhood of y in .#(M). We have:

D: “;1{;(5}(%) — Uy xZ (')
(4:2) — (q,(Pe)y-2)
and:
k 4 _yg(“)(ﬁv) — Uy xY(y'n)
(Q: ) == (q’ (P‘l'l)? 'Z)
so that:
Yo (fo)od!: UXYHYE — Uy x I (v*n)
@) — (& Palyofeo (Pily,) ™ 2)

where, for all 1 € M:

-1
(@a)rofao (Pekle,) ™ +2) (1) = Podyiy © fat) © (Pedyio eg) ™ 2()
We will show that the second component of this map is smooth. Since y € # (M)
was arbitrarily taken, this is sufficient to prove that (fo) is smooth.
Consider the following maps:
@ ‘
f: W, CMXM —» L(RM  RM2)
-1
(I,}") — (P'I'I)Jr Df)’ o ((Pﬁ)xlﬁy) e (Pﬁ)x € I‘(IRN1 :nX)
The fact that &, and n, vary smoothly with x (that is, that & : M — Gr,,(RM ) and n:
M — Gr,(IR™2) are smooth) implies that f is smooth. Note that f is well defined,
since, by the definition of W, for all (x,y) € W, the map (Py)ile, : &y = &« isa
linear isomorphism.
Since fis smooth, we can apply to it the functor .# to obtain the smooth map:

(fo): F(Wp,) C FM) x F(M) - £ (L(R™ ,R™2))
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2 .
§: F(L(RM,’M)) xg®M) — 9g(RM) @
(A,x) —  Ax

Applying axiom (u), we conclude that § is well defined and bilinear continuous,
hence smooth.

Then it follows that the second component of ¥ o (fo) o @1 is given by the fol-
lowing composition of smooth maps:

1, x 98 2L (LR R ) x 9 (®RY) ——S > g(R)

(4:2) = > (Pn)v"fq"((P&)ﬂf,,,)_l'z

where i is the inclusion. We have used the fact that, for all z € #(y*E), (Pg)y-z =z
Since, for all ¢ € Uy and for all z € ¥(¢*E), (Py)yo fyo ((Pg)ylgq) “l.ze 4 (y*n),
and since ¥ (y*n) is a Banachable subspace (hence an embedded submanifold) of
& (RM ), we have shown that the second component of ¥ o (fo) o ®~! is smooth.
Thus, ¥ o (fo) o ®~! is smooth, as asserted.

0O

COROLLARY 2. Using the same notation, the differentiable vector structure of F% (&)
does not depend on the embedding : & — R}.

Proof. Let; : & — R;’; and@y: € — ]R;,'f be two differentiable vector bundle monomor-
phisms, and let (F¥(E),0;) and (FZ(E),2) be the respective induced differentiable
vector bundle structures. Then, by the previous proposition, the identity id : £ — & in-
duces a differentiable vector bundle isomorphism:

(idgo0) : (FL(E),01) = (FZ(8),92)

what concludes the proof. O

COROLLARY 3. The functor F% : VB(M) — Ban VB(.# (M)) is additive and preserves
exact sequences. Moreover, given 1 € VB(M), (v,z) € £ (n), and a smooth vector
subbundle & of m, then (y,z) € F4 () if. and only if, (y(t),z(t)) € & for almost allt € M.

Proof. The first assertion is clear; to prove the second, let { € VB(M) such that E&m{ =
7, and let P be the projection on the first factor induced by this Whitney sum. Then we
have FY () = FY(§) ® #m) FZ (L), and the projection on the first factor induced by
this Whitney sum is given by (Pzo). Hence, if (v,z) € F¥(n) and (y(1),z(t)) € & for
almost all 1 € M, we have (y,z) = (Pzo) - (v,2) € F¥(£). 0
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3. An Extension of the Functor .#¥ to the Category FVB(M)

In this subsection we will show that, if the functor & satisfies the axiom (%3), below,
then, given M € Man, the functor ¥ can be extended to a functor from the category
FVB(M), of finite dimensional smooth vector bundles over M with smooth fiber bundle
morphisms, to the category Ban FVB(.#(M)) of smooth vector bundles over .# (M)
modelled on Banach spaces, with smooth fiber bundle morphisms.

(¢3) The restriction of the functor & to the subcategory VB(M) of CXVB(M) can be
extended to a functor 4 : FB(M) — Ban Man satisfying axioms (#3) withk =0
and (#4). Besides, for all E € FB(M), we have a smooth inclusion .# (E) C 4(E).

Example 2. Axioms (F1)—(F4), (1) —(¥3),(p) are satisfied in the following cases:
(i) F=Cand¥9=C,0<r<k<s.

(i) F=Cand¥ =LP, 2 <r<k<s, 1< p<ee

(iii) F=Liand¥ =LP, 1< p,g<oo, 5 <r<k<s—7.

We refer the reader to [8], [3], [10] and [2] for the verification of axiom (¥3) in these
examples.

As a particular case of (iii), wecantaken=1,p=g=2and 1 <r <k <s; we will
consider this case in the applications in the next section.

PROPOSITION 3. Suppose that & and ¥ satisfy axioms (F1) — (F4), (91) —(¥3) and
(w). Let & be finite dimensional smooth vector bundles over a smooth manifold M,
k€N, and f : & = m a smooth fiber bundle morphism. Then the map:

FE(f)=(fo): FYIE — FYI(m)
(g,2) +—> fo(q,2)

is a smooth fiber bundle morphism.

Proof. Using the notation of Definition 4, let:

f: MxRM — RN
(x2) = fo(P)sze€EM CRV:

The fact that &, and n, vary smoothly with x (that is, that & : M — Gr, (R ) and
1N : M = Gr,(R2) are smooth) implies that f is smooth.
Since f is smooth, we can apply to it the & functor to obtain the smooth map:

(fo): (M) x 4(RM ) » ¢ (R™)
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By axiom (#3), the inclusion : # (M) x 4 (RM ) — ¢ (M) x & (R ) is smooth; there-
fore, the following composition of maps 1s smooth:

F (M) xZ(RM ) — ¢ (M) x #(RM ) —— #(R™)
(g,2) ¢ > (q,2) | > fo(P)q 2

what implies that:

FZM) x4 (RM) — F(M)xY(RM)
(9:2) — (q,fo(Pt)q2)

preserves fibers and is smooth. But the image of this map lies in the split vector subbundle
F4(m) of ﬁg(ﬂiﬁz since f(E) C m, and its restriction to the vector subbundle .# ¥ (£)
of F¥(RY! ) coincides with (fo). Thus, we have shown that (fo) : FZ(£) - FE(n)

is well defined, smooth and preserves fibers.
O

4. Tangent Spaces and Tangent Maps

Let .# and ¢ be two covariant functors satisfying axioms (#1) — (#4), (91) —(92)
and (). In this subsection, given § € VB(M), we give a description of the tangent spaces
T FY(8), for (v,2) € FZ (). This description will be useful in the applications in the
next section. We also compute the tangent map T(fo) of (fo), for a morphism f : £ = 1
belonging to Mor VB(M) or to Mor FVB(M) if ¢ also satisfies axiom (¢3).

Let N € N such that & is a differentiable vector subbundle of R}, so that, for each v, €
€, T,,& is a linear subspace of T,M x RY. We have already seen that F% (&) is a closed
differentiable vector subbundle of F¥(RY,) = # (M) x ¢(RV) and it splits; therefore,
given (v,z) € FY(E), Ty FZ(E) is a closed Banachable subspace of TyF (M) x
T.4(RY) = T,.# (M) x Z(RY) and it splits. More precisely, we have:

PROPOSITION 4. With the notation above, we have:
Ty F4(E) ={X e T, FM) x TZQ(RN) | X(r) € T;)E ae. on ﬁ}

This means that we can interpret the elements of T(y ) F% (&) as maps X : M — TE
with X(1) € Tz(,}é for almost all # € M. We use this characterization of the tangent spaces
to compute the tangent maps T(fo) for morphisms f : £ — n:

PROPOSITION 5. Let f : § — m be a morphism belonging to Mor VB(M) and (y,z) €
F% (E). Then, using the notation above, the tangent map T, .\ (fo) at (v,z) of the mor-
phism (fo) : F4(E) = F¥(n) coincides with (T fo), that is:

T(..r;_)(fO)I T(.m)ﬁg('é) — Th,’z)fg(ﬂ)
TfoX

The same holds for a morphism f € FVB(M) if ¢ satisfies axiom (43).
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Remark 3. [The tangent spaces at the null section of Z¥ (£)]

Using the notation above, let us denote by Qg4 ¢) the null section of F¥ (€) and by
Oy the null vector of the fiber of F¥(€) overy € .#(M). Then, identifying To, Oz ()
with T,.#(M) and identifying the vertical subspace Verg, F¥(E) of T, F¥(£) with
& (y*E) (that is, with the fiber of F% (&) overy), we have:

To, #F4(8) =Ty F (M) x4 (')

Moreover, denoting by Pg, : To, FY(§) = ¥(y*§) the projection induced by this

decomposition, it is clear that, given X € To, F¥ (), for almost all 1 € M:
(Po, - X)(t) = Po,, - X(r)

where Po, Tom’c; — &) is the projection induced by the decomposition:

To,, & = TyMx &y
obtained by identifying To,,, O With Ty M and Verg,, & C Ty)& With &y).

§3. APPLICATIONS
In this section, we particularize the theory of the previous section to the case M =
[a0,a1) CR, & =H* and ¢ = H', with k,r € N, 0 < r < k. Then .# and ¥ satisfy
axioms (F1) — (F4), (91) — (92) and (p); if r > 1, they also satisfy (43).

1. The Lagrangian Functional as a Smooth Map

As a first application, we reprove that the Lagrangian functional associated to a given
smooth Lagrangian L : TM — R defined on the tangent bundle of a finite dimensional
differentiable manifold M is a smooth map if defined on some convenient spaces of maps.
These are well-known results (see, for instance, [5] and [9]), but we will include them
here to illustrate our theory.

DEFINITION 5. Let L: TM — R be a smooth Lagrangian defined on the tangent bundle
of a finite dimensional differentiable manifold M. Let k € N, k > 2, and let us define:

L: HYM) — R
v — LL(EY)
We call L the Lagrangian functional associated to L.
PROPOSITION 6. The Lagrangian functional L : H*(M) — R is a smooth map.

Proof. To show that L is smooth, let us identify C*(TM, IK) with the set of differentiable
fiber bundle morphisms Hom (TM, Ry ) in the obvious way, so that we can look at L as a
smooth fiber bundle morphism L : TM — Ry. Thus, it makes sense to apply the functor
H*Hk-1 to L, yielding the smooth map:

(Lo) : H*H*"}(TM) — H*(M) x H* }(R)
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Using this smooth map (Lo), we can write L as a composition of smooth maps:

L= (fa::) omo(Lo)o (E];)

where:

fj"]’ : H“Y(R) — R
Y — [

which is linear continuous (hence smooth),

2 : HY(M) x H*"}(R) = H* }(R)
is the projection on the second factor, which is also linear continuous, and:

(F): HM) — HHY(TM)
_— o

which is smooth (this is obvious for M = R"; to check the general case, embed M in K"
by Whitney’s theorem). O

Remark 4. (i) The same result also holds for time-dependent Lagrangians, and also for
the Lagrangian functional defined on C*(M), k > 1, and the proof is similar.

(i) If (M, g) is a Riemannian manifold and the Lagrangian is given by L(v,) := § (vq, V) +
V(q), where V € C*(M), the same result also holds for £ : H}(M) - R

2. The Setting for Vakonomic Mechanics

In this subsection we will show that, given a finite dimensional differentiable mani-
fold M and a smooth submanifold € of the tangent bundle TM of M satisfying certain
conditions (a regular constraint, in the sense of Definition 7), for k > 2 the set H*(M, %)
formed by the H curvesy : [ag, 1] — M which are horizontal (see Definition 8), admits a
differentiable manifold structure, endowed with which it becomes a closed differentiable
embedded submanifold of H*(M). This is also true for k = 1 if ¥ is a smooth vector
subbundle of TM (in this case, this manifold structure in the spaces of horizontal curves
is well known - see [5]). The same holds for H*(M, %, p) C H*(M, p), where H*(M, p)
is the submanifold of H¥(M) defined in the following definition:

DEFINITION 6. Let M be a finite dimensional differentiable manifold and p,q € M. For
k€ N,k 2 1, let us define the sets:

H*(M, p) := {y € H*(M) | y(a0) = p} C H*(M)
H*(M, p,q) := {y € H*(M) | ¥(a0) = p,Y(a1) = g} C H*(M, p)

It is well known that H*(M, p) and H*(M, p, ) are closed smooth embedded subman-
ifolds of H(M). Moreover, given y € H*(M, p), we have:

TyH (M, p) = {X € TyH(M) | X(a0) = 0}
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and, fory € H*(M, p, q), we have:
TyH*(M, p,g) = {X € T,H*(M) | X(a0) = 0,X(a1) = 0}

This follows at once from the fact that the maps 8,, : H*(M) — M and 8, : H*(M) —
M defined by y — y(ao) and y > y(a; ), respectively, are smooth submersions onto M.

The differentiable manifolds H*(M, %) and H*(M, %, p) are the “arena” for the set-
ting of the so called vakonomic or variational mechanics (see [12]); if % is a smooth
vector subbundle of TM, they are also the “arena” for the setting of sub-Riemannian
geomeltry.

Until the end of this subsection, we will use the notation and definitions from [12],
which we summarize below.

Given a smooth vector bundle 7 : £ -+ M and a connection V on &, with corre-
sponding horizontal lift Hz : E@®m TM — TE and horizontal subbundle Hor(§) C TE, we
can define the connector kg : TE — &, which is a VB-epimorphism from w:TE—E
to 7 : £ — M such that for each z € TE, xg(z) € E,c{,,g(,_) is the unique vector, which
satisfies:

z—He (15(2), T (2)) = Mg (T (2), % (2))

Note that the restriction of x to the vertical subbundle Ver(£) is independent of the
connection: actually, we don’t need any connection at all to define it, that is, we can
define ::E’ : Ver(§) — &, which is, on each fiber Ver,, (E) of the vertical subbundle, the

inverse of the vertical lift Ay, : &, — Ver,, (€).
Let mg : £ = M and 7, : | = M be vector bundles over M, and let b: £ — m be a
smooth fiber bundle morphism. The fiber derivative of b is the map:

Fb : E—L(EM)
vg > Fb(vg)

such that for all w, € &;, we have:
v(T
Fb(vq) - wg =Ky E|‘=0b(vq +twy)

If in addition, in the vector bundles ng : § — M and m,, : } — M we are given connec-
tions, with horizontal lifts He and Hy, and connectors K and ky, respectively, then for
any v, € &, we define the map Pb: £ — L(TM,n) such that:

]Pb("q)_ -wg = Kg (T, 0 Hg (v, w,))

for all w, € T,M. We call the map b the parallel derivative of b.
It follows immediately from these definitions that, for each X,, € TE, we have:

Kn(Toeb-Xy,) = Pb(vg) (Tnﬁ 'X"q) +Fb(vy) (kg 'X"n)
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DEFINITION 7. Let M be a finite dimensional differentiable manifold, S a finite dimen-
sional smooth vector bundle over M and f : TM — S a smooth fiber bundle morphism
which is transversal to the null section Qs of S, so that € := f~(Qs) is a closed differ-
entiable embedded submanifold of TM. Suppose that the restriction to € of the projection
of the tangent bundle TM, T\, is a submersion onto M. In these conditions, we call f a
regular constraint and € the corresponding constraint manifold.

The nomenclature constraint comes from mechanics: ¥ is the set of permissible
velocities of the trajectories of a constrained mechanical system.

PROPOSITION 7. A smooth fiber bundle f : TM — S is a regular constraint if, and only
if, for each v, € f~1(0s), Ff(vp) - T,M = S, where F denotes the fiber derivative of f.

We refer the reader to [12] for more details.

DEFINITION 8. Let M be a finite dimensional differentiable manifold, p € M and € =
f~YQs) C TM the constraint manifold corresponding to a regular constraint f : TM —
S, in the sense of the previous definition. We say that an absolutely continuous curve
¥ : [@a0,a1] — M is horizontal with respect to € if ¥(t) € € a.e. on [ag,a;]. For each
ke N k> 1, we define the sets:

HX(M, %) := {y € H*(M) | /(1) € € ace. on [ao,ay]}
H*M,%,p) := {v e H*(M, p) | ¥(t) € € a.e. on [a0,a1]}

THEOREM A. With the same notation, if k > 2, H*(M,¥) and H*(M, ¥, p) are closed
differentiable embedded submanifolds of H*(M) and H*(M, p), respectively. Moreover,
given a Riemannian metric tensor g on M, a connection V® on S andy € H*(M, %), the
tangent space TyH*(M, %) is the subspace of TyH*(M) formed by the vector fields along
¥ which satisfy:

Ff) -ViX+Pf(y)-X=0 (&)
where V, is the covariant derivative along vy induced by the Levi-Civita connection V of
(M, g), Pf is the parallel derivative of f induced by V and VS, and Ff is the fiber deriva-
tive of f. The same holds fory € H*(M, ¥, p), that is, TH¥(M, ¥, p) is the subspace of
TyH¥(M, p) formed by the vector fields along y which satisfy (5).

Proof. We will do the demonstration for H*(M, %). The same proof applies to
H¥(M, ¥, p) and we will explicitly mention any important detail in the proof for this case.
Using the above notation, let us define the map:

F: HM) —s H*H<1(S)
Y — (fo)- %

that is, F = (fo) o (%), where (fo) = H*H¥"2(f) : H*H*"1(TM) — H*H*"1(S). Note
that, as a composition of smooth maps, £ is smooth.
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We contend that £ is transversal to the null section Oy 15y of H*H*~1(S). Indeed,
itis sufficient to check that, giveny € F ™! (Qyyyi-1(5)) C H*(M), denoting by Oy = F (y)
the null vector of the fiber of H*H*~*(S) overy:

TyF - TyHM) + To, Oy (s) = To, HHKX(S) ©

since the splitness condition is automatically fulfilled, that is, the fact that T,H¥(M) =
H¥(y*TM) is Hilbertizable implies that the closed subspace (TyF)~! (To, Ok H*-l(s))
has a closed complementary subspace.

By Remark 3 and using the notation stated therein, we have To, Gy yi-1(s) = TyH (M)
and To, H*H*=1(S) = TyH*(M) x H*=2(y*S), so that equation (6) is equivalent to:

Po, - TyF - T{H (M) = H** (y*S) )

where Pg, : To, H*H*"1(S) — H*"(y*$S) like in Remark 3.
Therefore, given 1 € H*"2(y*S), we have to show that there exists X € TyH*(M) =
H*(y*TM) such that:
Po,-TyF -X=m )

or equivalently (see Remark 3), such that for each ¢ € [ag,a; |:
Po, - (TyF -X) (1) =m(1)

where: Po, : Toﬂ,)S = TyyM x Sy) = Sy() is the projection on the second factor,
which is being identified with the vertical subspace Verg, S C To,, S, like in Remark 3.
Let k: TTM — TM be the connector induced by the Levi-Civita connection V of
(M, g). Since the restriction of the horizontal vector subbundle of any connection on TM
(or, more generally, on any differentiable vector bundle £ over M) to the zero section of
TM (respectively, of &) coincides with the tangent bundle of this zero section (that is, for
each @, € TM we have Horg, TM = Tg,Onyv), we have, for all ¢ € [ap,a;] and for all
vVE Tow.}S!
Po, (v) =Ko, ) (V)
so that, by (8), the demonstration will be concluded if we prove that, givenm € H*"1(y*S),
there exists X € TyH*(M) such that, for all ¢ € [ao,a;]:

Koy, - (TyF - X) (1) =n(1) ©)
On the other hand, each X € TyH*(M) can be written as X = 3}"‘- lhmo where w :
(—¢,€) = H*(M) is a smooth curve with wo =Y. Thus, for each 1 € [ao,a1]:

X(r) = ___TF;,S(I) o
d th ;
Y w: (—¢€,€)x[ag,a)] — M
(s,1) — ws(r)
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is a smooth variation of wy =y by H* curves w; in the classical sense.
Hence, we have:

(T X)0 = (5, o)) 0=

=0

ds [Fof(ws(t)) =

and, since:

(T2, =T

o2 )=x0

it follows that:

k- (TyF - X) (1) =Ff(7()) - ViX + Pf(3(t)) - X (1)

therefore, by (9), we conclude the demonstration with an application of the following
lemma:

LEMMA 3. Using the above notation, for eachn € H*~1 (y*S), there exists X € T\H*(M) =
H*(y*TM), and even X € T,H¥(M, p) C TyH*(M) such that, for all t € [ao,a1):

Ff(v(1)) - ViX +Pf(¥(1)) - X (1) =m(r) (10)

Note that the lemma also states that there exists X € TyH¥(M, p) satisfying equation
(10), so that this demonstration also applies to the H*(M, %, p) case. It is also clear that
the tangent space at v is given by:

TH M, %) = TyF ! (To,Ouwpir(s))
= {X e T,H*M) | x- (TyF -X) =0}

that is, it is the subspace of TyH*(M) formed by the vector fields along y which satisfy
equation (5), and the same applies to T,H*(M, ¥, p). 0O

Proof of the lemma. Let1k S =m, dimM = n, and let (e, ...,e,) be an H* parallel frame
field on TM along y and (e, ... ,€") be the corresponding dual coframe field along y. Let
(81,-..,5m) be an H* parallel frame field on S along y and (s,...,s™) be the correspond-
ing dual coframe field along y. Such frame fields exist: we just have to choose bases of
Ty(ap)M and Syp), and extend them along vy through parallel translation in the respective
connections. Note that, since y € H*(M), writing in coordinates the equation for parallel
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translation yields a system of linear ODE with coefficients in H*~(R), what implies that
its solutions are of class H* (see [1]).
Each X € T,H*(M) = H*(y* TM) can be written uniquely as:

X=YXe 1)
i=1
with X € H*(R), for 1 i < n.
Since V,e; =0, for 1 < i < n, we have:

VX =3 Xe; (12)
i=1

On the other hand, for each ¢ € [ag,a;], the maps:
Pf ('Y(’)) : Tv(r)M =% s‘v{r)
Ff (Y(I)) : T...(‘)M —> S.l,(,}
are linear; taking, for 1 <i<nand1<j<m:
BI(1) := (1), PY (¥(1)) - ex(2))
87(t) == (s/ (1), Ff (7(1)) - ex(r))

we have B/, 8/ € H*"1(R) and, from equations (11) and (12):

{ 4 i ;

13)

Pr@) X =3 3 pixis;

j=1i=1

Ff7)-viX =Y Y §iX's;
j=li=1

(14)

Hence, defining n’ € H*"1(R), for 1 <i < m, by:
n= f}ln"s; (15)
it follows from equations (14) and (15) that equation (10) is equivalent to:
iS{X"Jr 2": BiX* =n/ (16)
i=1 =1

for1<j<m

Since the constraint ¢ = f~!(Qs) is regular, for each ¢ € [ay,a;] the map Ff (v(¢)) :
TyyM — Sy is surjective. Thus, § = (8/) € H*~* (L(R",IR™)) is such that, for each
t € [ap,a;], 8(¢) has maximal rank, that is, rk 8(r) = m. Thus, (16) is a system of m
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linear ODE in R with coefficients in H*~*(R), and the matrix 8(¢) has maximal rank
for all ¢ € [ao,a;], what implies that (see [1]) there exists X € H*(R") = H*(y* TM) with
X(0) = 0 (that is, X belongs, in fact, to TyH*(M, p)) such that X satisfies (16). Note that
we cannot guarantee that such X is unique, unless m = n.

O

Remark 5. The theorem also holds for k = 1 if ¥ is a smooth vector subbundle of TM,
that is, if f: TM — S is a smooth vector bundle epimorphism — see [5].

To close this section, we list below some of the main results we have obtained in [12]
using these differentiable manifold structures on the spaces of curves horizontal to the
constraint.

DEFINITION 9. A constrained mechanical system is a quadruple (M,K,V, f), where
(M, g) is a Riemannian manifold,

K: TM — R
v, +— %g(vq,vq)

is the kinetic energy, f : TM — S is a regular constraint in the sense of Definition 7, and
V : M — R is a smooth function called the potential energy. The manifold M is called the
configuration space.

DEFINITION 10. We say that y € H*(M,¥) is an abnormal or singular variational tra-
jectory of the constrained mechanical system (M,K,V, f) if it is a critical point of the
endpoint mapping:

evi: H:(M,%,y(a)) — M
q — q(a1)

We say that y € H*(M, %) is a normal or regular variational trajectory of the con-
strained mechanical system (M, K,V f) if d L(y) annihilates the closed subspace:

{X € TyH?(M, € ,v(a0)) | X(a1) = 0}
of TyH?2 (M, % ,v(a0)).
THEOREM B. The following conditions are equivalent, giveny € H?(M,¥):

(i) v is an abnormal variational trajectory.

(ii) There exists P € H (y*S), P # 0, such that, for almost all t € [a0,a1):
Vi (F* f(7)-P) —P*f(¥)-P=0 (17)

THEOREM C. Lety € H3(M,¥). Then the two following conditions are equivalent:

(i) v is a normal variational trajectory.
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(ii) There exists P € H*(y*S) such that the following equation is satisfied:
Viy +gradVoy=—V,(F f(7) - P) + P*f(y) - P (18)

If v is a regular point of the endpoint mapping, then H?(M, ¥,y(ao0),y(a1)) is a
smooth sub-manifold of H?(M) in a suitable neighborhood of y. Hence, we obtain the
following corollary:

COROLLARY 4. With the same notation, if y is a regular point of the endpoint mapping,
then v is a normal variational trajectory if, and only if, it is a stationary point of the
restriction of the Lagrangian functional L : H2(M) — R to H2(M, %,v(a0),Y(a1))-

Remark 6. (i) The nomenclature normal/abnormal comes from sub-Riemannian geom-
etry (which can be viewed as a particular case of our formulation, putting V =0
and f the orthogonal projection Py, : TM — 2+, where 2 is a smooth vector
subbundle of TM, so that the constraint manifold is 2).

(ii) The solutions of equation (18) may lead to curvesy € H?(M, ¢) which are not regular
points of the endpoint mapping. In other words, like in sub-Riemannian geometry,
a curve y € H?(M,¥) may be simultaneously a normal and abnormal variational
trajectory.

(iii) Let ¥ xM S be the fiber product of g = tm|¢ : € - M and 1t : S — M. We have
also shown in [12] that there exists an open set U C € xS containing € xy Os
and a smooth vector field Xy : U — TU, which is Hamiltonian with respect to a
certain symplectic form induced by f, g and the canonical symplectic form of the
cotangent bundle T*M, whose integral curves are of the form (y,P), with (y,P) a
solution of equation (18). In general, however, the open set U cannot be taken to
be the whole % xu S.

§A. HAUSDORFF METRIC

Notation. In this section (X,d) will denote a metric space and Ry will denote the set
{ACX|A#0andA is compact}.

DEFINITION 11 (HAUSDORFF METRIC). Consider the following maps:

d: Rx xRy —> R
(A,B) +— sup{inf{d(x,y)|y€B}|x€A} %)
D: RyxRy —> R

(A,B) +— 31d(A,B)+3d(B,A)

D is called the Hausdorff metric induced by d. This nomenclature is motivated by the
following proposition:

PROPOSITION 8. D is a metric in fx.
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Proof. Forall A,B € 8%, we have d(A,B) = 0if, and only if, A C B; therefore, D(A,B) =
0 if, and only if, A = B. The symmetry of D is obvious, and the triangular inequality
follows from the fact that, for all A,B,C € Rx:

d(A,C) < d(A,B) +d(B,C)

what can be proven using the triangular inequality for d : X x X — R and the definitions
of inf and sup. O

Remark 7. Endowing fx with the Hausdorff metric D, the map d : Rx X Ax — R is
continuous.

Notation. Until the end of this section, D will denote the Hausdorff metric in £x induced
by the metric 4 of (X,d).

LEMMA 4. Let (Ap)nen be a sequence in Rx, and let A € Rx. Assume that there exists
no € N and a compact set K such that A, C K for n 2 ng. Then the following conditions
are equivalent:
(i) d(An,A) =30
(C1) If (Xn)nen is a sequence in X such that (Vn € N) x,, € Ay, then the limit of any
convergent subsequence of (X )nen lies in A.
Proof. (i)=>(C1) Indeed, let (x,)nen be a sequence in X such that (Vn € N) x, € Ay,
and let (X, ) jen be a subsequence of (x)nen such that x,; 2% x € X. We must show
that x € A. In fact, for all nj € N.

Xn €A
d(x,A) < d(x,%,) +d(njA) < d(X,Xn)) +d(An;,A) (20)

As d(x,%,;) 25 0 and d(4,;,4) 25 0, it follows from (20) that d(x,4) = 0, that
is, x € A.

n—yoo
(C1)=(i) Suppose that (C1) holds and that d(A,,A) #— 0. Then there exists € > 0
and a subsequence (An,) jen Of (An)nen such that (¥ j € N) d(An;,A) > €.

Therefore, for each j € N, we can choose x,; € An; such that d(x,,j,A) > £. Taking
a convergent subsequence of (x»;) jens (there exists such a subsequence, since the
sequence (X, ) jen lies in the compact K for nj > ng), if necessary, we can suppose

that xy, IMew Thus, for n; sufficiently large:
d(x,A) 2 d(xn;,A) — d(xn;,%) >0

and this implies that x ¢ A, which contradicts (C1).
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LEMMA 5. Let (An)nen be a sequence in Ry, and let A € Rx. Then the following condi-
tions are equivalent:

(i) d(A,A,) =50

(C2) For all x € A, there exists (Xa)nen sequence in X such that (Vn € N) x, € Ay
n—too

and x, — x.

Proof. (H=(C2) Given x € A, for each n € N take x, € A, such that d(x,A,) =
d(x,%,). Since (Vn € N) 0 < d(x,A,) < d(A,Ay), it follows from (i) that:

d(x,x,) = d(x,A,) =50
that is, x, —> x, which proves (C2).

(C2)=(i) Letx € A and let (x,)nen be a sequence in X such that (V7 € N) x, € A,
and x, 5 x. Then, since (Yn € N) 0 < d(x,A,) < d(x,%), it follows that:

d(x,A;) =50

Therefore, given € > 0, for each x € A there exists n, € N such that
(Yn>n,)d(x,As) < 5.

Let C be the open cover {Bi (%) | x € A} of the compact set A. Take a finite subcover
{Bi (xl), S ’Bi (x;,)} of C, where xj,...,x; € A.

Let N := max{ny,,...,n, }. Given y € A, there exists j € {1,...,k} such thaty €
Bg (x;); therefore, for n > N, we have:

d(y,An) < d(y,x)) +d(xj,An) <€

since d(y,x;) < 5 and d(x;,A,) < 5. By the arbitrariness of the choice of y € A,
this shows that, forn > N:

d(A,A,) =supd(y,Ax) <€
YEA

n—seo

and, since € was arbitrarily taken, this implies that d(4,4,) — 0
O

COROLLARY 5. Let (An)nen be a sequence in Rx, and let A € Rx. Assume that there
exists ng € N and a compact set K such that A,, C K for n > ng. Then A, 2% Ain the
Hausdorff metric D if, and only if, conditions (C1) and (C2) hold.
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§B. GRASSMANN MANIFOLDS AND FIBER BUNDLES

DEFINITION 12. Let V" be a real vector space of dimension n, let {-,-) be an inner
product inV, and, given k € N, let:

Gri(V) := {k-dimensional subspaces of V'}

and let also:
Gr(V) := U Gri(V)
0gk<n
Given an orthonormal basis {ey,...,e,} of V, there exists a well defined action v :
O(n) x V = V, which induces the action:

n: O(n) xGr(V) — Gr(V)

(U,[Vl,-..,\«'k]) — [U'Vl,...,o‘vk] 21

and it is obvious that v is a transitive action of O(n) on the set Gri(V). Let W :=
[e1,...,ex] € Gri(V). We claim that, for 1 < k < n, the isotropy subgroup Hy of W is the
subgroup:

{(82) Io€0W),xcO(m-R)} =O(®k) x O(n—k)

As a matter of fact, it is clear that & € O(k) x O(n — k) like above leaves W fixed. On
the other hand, assume that o € O(n) is such that 6-W = W. Then it follows that:

(ii (v;‘? {1,....k}) 0-e; = 37 0%e; € [ey,...,ex], 50 that o, =0 for i € {k+
o 1 M

(i) as we also have o-W* = W, it follows that o, = 0 for i € {1,...,k} and
j € {k+1,...,n}, and this concludes the proof of the assertion.

Since O(k) x O(n —k) is a closed subgroup of O(n), the quotient O(n)/[O(k) x
O(n—k)] is a homogeneous manifold, and we transport this manifold structure to Gri(V)
through the bijection:

n: Om)/Hy — Gre(V)
[o] — oW

Gri(V), endowed with this manifold structure, is called the Grassmannian manifold
of k-planes of V , and we topologize Gr(V) as the topological sum of the spaces Gri(V),
0<k<n

PROPOSITION 9. The manifold structure of Gri(V) is independent of the orthonormal
basis E = (ey,...,ey) initially chosen.

PROPOSITION 10. Each Gri(V), 0 < k < n, is path connected, so that these spaces are
the connected components of Gr(V).
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DEFINITION 13. Denote by Bi(Q) the closed ball of radius 1 in the euclidean space
(V,(:,+)), and by D the Hausdor{f metric of R, (o). Let Gri(By(0)) be the metric sub-

space of (Rg, (o), D) given by:
Gry(B1(0)) := {WNB1(0) | W € Gre(V)}
PROPOSITION 11. The map:

N: Gri(V) — Gri(B1(0))
W  — WnNB(0)

is a homeomorphism. In other words, the topology of Gri(V) can be defined by the
Hausdorff metric D of Rg, (g)-

Proof. Tt is clear that N is a bijection. Therefore, since Gry(V) = O(k) x O(n —k) is
compact and Gry(B;(0)) is Hausdorff, it is sufficient to show that N is continuous. But
this is equivalent to show that the map:

Nomom: O(n) -— Gr(B1(0))
o — o-WnNB(0)

is continuous, since
nom: O(n) — Gr(V)
o — o'W
is a quotient map.
Indeed, given a sequence (O, )nen in O(n) such that o, Toe O(n), we assert that
o, -WnN B (0) T o-WNB; (0). By Corollary 5, we must verify conditions (C1) and
(C2).

(C1) LetA, :=0,-WNB;(0) and A := o-WNB;(0). Let (x,)nen be a sequence
in By (0) such that (Vn € N) x, € A,, and let (x, )ren be a subsequence of (X,)n
such that x,, 2% x € B(0). We must verify that x € A. As a matter of fact,
let (y)ken be the sequence in W defined by yi := o, - x,,. Then, by continuity
we have y; = o';*l Xy 2T o-l.x e W, since W is closed in V. But this implies
x=0-(c"!-x) € 6-W, so that x € 6-WNB;(0) = A and (C1) is verified.

(C2) Givenx € A, take y:= o~ ! -x € WNB;(0) and let (x,).en be the sequence in
B;(Q) defined by x,, := 0, - y. Then we have:

(@) (YneN)x, €A, =0,-WNB;(0).
(i1) x, =0',,-y'5:—-}w0-y=x

so that (C2) is verified.
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COROLLARY 6. (Gri(B1(0Q)),D) is a compact metric space.

PROPOSITION 12. Let (V*,(-,-)), (W™,(-,-)) be inner product spaces, and let f : V —
W be a linear isomorphism (so thatn < m). Givenk € N, 1 <k <n, let:

Gri(f): Gr(V) — Gri(W)
Viseeeam] — [y, fovi]

Then Gri(f) is a smooth embedding.

DEFINITION 14. Let k € N* and let M be a finite dimensional Hausdor{f second count-
able differentiable manifold. Let also mg : € — M be a finite dimensional smooth vector
bundle over M with rankn > k, and let us define:

Gri(8) := | Gri(&p)
PEM

where &, := ngl(p) is the fiber of € over p € M.

Let TGy, (&) - Gri(§) — M be the obvious projection. We will define a manifold struc-
ture in the set Gri(§) in such a way that ng,, ¢ : Gri(€) = M be a locally trivializable
differentiable fiber bundle over M. In order to do that, let {(Uq,Po), & € A} be a vector
bundle atlas of g : € - M.

For each o. € A let us define:

Gri(9o) : “a(g)('ua) — Uy xGri(R")
Tp —  (p,Gri(9p) - Tp)
where @ is the restriction Qqe, : §p — R”.

PROPOSITION 13. Using the notation of the above definition, the collection
{(Ua, Gri(9a)), o € A} is a smooth fiber bundle atlas in Gry(E), so that
TGr (&) - GT(E) = M is a differentiable fiber bundle over M.

Acknowledgements

The author is grateful to Helena M. A. Castro, Waldyr M. Oliva, Marcelo H. Kobayashi
and Fernando M. Antoneli for their interest and many suggestions and comments on the
work.

REFERENCES

[1] E. A. CODDINGTON AND N. LEVINSON, Theory of Ordinary Differential Equa-
tions, McGraw-Hill Book Company, 1965.

[2] D. G. EBIN AND J. MARSDEN, Groups of diffeomorphisms and the motion of an
incompressible fluid, Ann. of Math., 92 (1970), pp. 102-163.



On the Differentiable Manifold Structure 259

[3] J. EELLS, A setting for global analysis, Bull. Amer. Math. Soc., 72 (1966), pp. 751-
807.

[4] E. HEBEY, Nonlinear Analysis on Manifolds: Sobolev Spaces and Inequalities,
Courant Institute of Mathematical Sciences, 1999.

[5] I. KuPKA AND W. M. OLIVA, The nonholonomic mechanics, Journal of Differen-
tial Equations, 169 (2001).

[6] S. LANG, Fundamentals of Differential Geometry, Springer-Verlag, 1999.

[7] 1. H. MADSEN AND J. TORNEHAVE, From Calculus to Cohomology : De Rham
Cohomology and Characteristic Classes, Cambridge University Press, 1997.

[8] R. S. PALAIS, Foundations of Global Non-linear Analysis, W. A. Benjamin, Inc.,
1968.

[9] P. PiccilOoNE AND D. TAUSK, Lagrangian and Hamiltonian formalism for con-
strained variational problems. To appear in The Royal Society of Edinburgh Pro-
ceedings A (Mathematics). (see also LANL math.0OC/0004148), 2000.

[10] P. PicclONE AND D. V. TAUSK, On the Banach differential structure for sets of
maps on non-compact domains, Journal of Nonlinear Analysis, 46 (2001), pp. 245-
265.

[11] R. C. RIDELL, A note on Palais’ axioms for section functors, Proc. Amer. Math.
Soc., 25 (1970), pp. 808-810.

[12] G. TERRA AND M. H. KOBAYASHI, On the variational mechanics with non-linear
constraints, To appear, (2002).

Glaucio Terra

Universidade de Sao Paulo

Instituto de Matemética e Estatfstica
Departamento de Matemética Aplicada

Rua do Matéo, 1010 05508-090 Szo Paulo - SP -
Email: glaucio@ime.usp.br

Brazil



