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On the DitTerentiable Manifold Structure 
of some Spaces of Maps and Applications to Variational Mechanics 1 

Gláucio Terra 

Abstract: In this paper we construct a family of covari­
ant functors from the category of finite dimensional smooth 
vector bundles over a fixed differentiable manifold M to the 
category of smooth vector bundles with differentiable struc­
tures modelled on Banach spaces. As an application, we use 
one oí these functors to construct the differentiable manifold 
structures in some spaces of curves which appear naturally 
in the context of sub-Riemannian geometry and vakonomic 
mechanics. 
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Let M be a finite dimensional compact differentiable manifold, possibly with bound­
ary, and k E N. Let § and \1 be two covariant functors satisfying axioms (§ 1) - (§ 4), 
(\11) - (\12) and (11-) from section 1. The main properties stated in those axioms are: 

1 Sponsored by FAPESP (São Paulo, Brazil), Processo 98115988-0. 
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(a) $ is a covariant multiplicative functor from the category of finite dimensional smooth 
fiber bundles over M to the category of Banach manifolds, which maps the subcat­
egory of smooth vector bundIes to the subcategory of BanachabIe spaces. For each 
smooth fiber bundIe 1tE : E -+ M, $(E) is a subset of the space of Ck sections of 
E, Ck(E), and the inclusion is smooth. 

(b) 1# is a covariant additive functor from the category of finite dimensional Ck vector 
bundles over M to the category of BanachabIe spaces, which maps each Ck vector 
bundle 1t1; : I; -+ M to a linear subspace of the space S(I;) of alI sections of 1;. 

(c) The multiplication $(RMJ x I#(!l\r) -+ I#(!l\r) is well defined and bilinear contin­
uous, where !l\r is the trivial bundle M x Ilt 

Then, for each smooth finite dimensional differentiabIe manifold M, we construct a 
covariant functor $1#, fram the category of finite dimensional smooth vector bundles 
over M to the category of (infinite dimensional) smooth vector bundles over $ (M) . For 
each smooth vector bundle 1tç : I; -+ M, the total space of $1# (I;) is the set given by 
Definition 1, and for each VB-morphism f : Ç, -+ ", the morphism $1# (f) is given by 
(fo) : z f-+ f o z. Besides, if the functor 1# satisfies the additional axiom (1#3), we can 
extend the functor $1# to the category of finite dimensional smooth vector bundles wíth 
smooth fiber bundle morphisms (not necessarily linear on the fibers) . 

The construction of these functors is based on the generalization of a technique used 
in [5], for the case M = [ao, aI] C IR, to define a differentiable manifold structure on the 
space of curves H1L 2 (TM) := {(y,z) : [ao,at]-+ TM I y E Hk(M) and z E L2 (y*TM)} . 
These functors appear in a sornewhat natural"manner in tb:e context ofsub-Riemannian 
geometry and constrained mechanical systems; the reason for this is the fact that, app~ing 
"ili-" to given a curve y E Ck(M) or y E Hk(M) , with k ~ 1, we obtain elements di E 

CkCk- 1 (TM) and !if E HkH k- 1 (TM), respectively, on the fiber overy. 

In section section 3, we restrain ourselves to the case M = [ao, aI] C IR, $ = Hk and 
1# = H k- l, k ~ 2, applying the functor $1# to: 

(1) reprove the smoothness of the Lagrangian functional L: Hk(M) -+ R induced by a 
smooth Lagrangian L : TM -+ R on the tangent bundle of a smooth manifold M -
see Proposition 6. 

(2) show that the spaces H k (M, 'i!f), H k (M, 'i!f , q) of horizontal curves to a constraint man­
ifold 'i!f corresponding to a regular constraint f : TM -+ S adrnit a smooth mani­
fold structure endowed of which they become smooth embedded submanifolds of 
Hk(M) - see Definition 7, Definition 8 and TheoremA. 

We conclude the paper with a brief description of some results we have obtained 
in [12] using the manifold structure on the spaces of curves horizontal to the constraint 
manifold'i!f mentioned above. 
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Throughout this paper we will use the adjectives "smooth" or "differentiable" mean­
ing "of class CO" . We use the notation EM to denote the trivial fiber bundIe of base M 
and fiber E, and 't'M : TM -t M to denote the tangent bundle of a smooth manifold M. 
Given k E N and a finítedimensional compact smooth manifold M, possibly with bound­
ary (which will remain fixed until the end of this section), Iet us consider two covariant 
functors § and \# satisfying the following axioms: 

(§1) § is a functor fram the category of smooth finite dimensional fiber bundles over 
M with smooth fiber bundle morphisms over idM as the morphisms (denoted by 
FB(M) henceforth) to the category of differentiable manifolds modelled on Banach 
spaces (denoted by Ban Man henceforth). We consider the category of finite di­
mensional smooth manifoIds Man as a subcategory of FB(M), identifying a man­
ifold M with the trivial fiber bundle MM:= M x M and a smooth map I : M -t N 
with the fiber bundle morphism I x idt\r : MM -t NM. 

(§2) § maps the subcategory VB(M) of finite dimensional smooth vector bundles over 
M to the subcategory Ban of Banachable spaces; we consider the category Lin of 
finite dimensional vector spaces as a subcategory of VB(M), identifying a vector 
space V with the trivial vector bundle VM := M x V and a linear map I: V -t W 
with the vector bundle morphism i~ x I : VM -t WM. 

($3) For all E E FB(M), §(E) C (k(E), and the inclusion is smooth, where (k(E) 
is the Banach manifold of (k sections of the smooth fiber bundle 1tE : E -t M. 
Moreover, given a morphism (f : E -t F) E Mor FB(M), $ (f) is given by § (f) = 
(fo) : St-t los. 

(§4) § is multiplicative, that is, given El,E2 E FB(M), we have §(El XME2) == 
§(Et) x §(E2). Moreover, if El C E2 E FB(M), and the total space of El is 
an embedded submanifold of the total space of E2, then §(Et) is an embedded 
submanifoId of $(E2) and $(El) = {y E $(Ez) I y(t) E El for all tE M}. 

(\#1) '# is a functor from the categóry (kVB(M) offinite dimensional (k vectorbundles 
over M to the category Ban of Banachable spaces; as in ($2) , we consider Lin as 
a subcategory of (kVB(M) . 

('#2) For alI ç E (kVB(M) , '#(1;) C S(I;) , where S(I;) is the vector space of alI SectiOllS 
of the vector bundIe 1;. Moreover, given a morphism (f : I; -t 1') E Mor (kVB(M), 
'#(f) is given by \#(f) = (fa) : s t-t las. 

(JL) The multiplication: 
w §(~) x '#(~) 

(f ,g) 
--+ \#(~) 

r--t I ·g 
is well defined and continuous, where (f. g)(x) := I (x)g (x) , for alI x E M. 
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Remark 1. 

(i) We are identifying sections which are equal almost everywhere on M. 

(ii) It follows from theses axioms that the functor 1# is an additive functor and preserves 
exact sequences, and the same holds for the restriction .!F : VB(M) -+ Ban . 

(iü) It follows fram (.!F3) and (.!F4) that, if El C E2 E FB(M), and El is an open (respec­
tively, closed) submanifold of E2, then .!F(El) = {y E .!F(E2) ! y(t) E El for alI tE M} is 
an open (respectively, closed) submanifold of .!F(E2). 

Example 1. The following functors satisfy the axioms above, where n := dimM: 

(i) ff = (5 and 1# = (r, O ~ r ~ k ~ s. 

(ii) .!F = (5 and 1# = Lr, O ~ r ~ k ~ s, 1 ~ P < 00. 

(iii) .!F = L~ and 1# = Lr, 1 ~ p,q < 00, O ~ r ~ k < s - ~. 

As a particular case of (iii), we can take n = 1, P = q = 2 and O ~ r ~ k < s; we will 
consider this case in the applications in the next section. 

We refer the reader to [8] for details on these functors. See also [3], [10], [4] and [2]. 
We also refer the reader to [11], which reports a technical slip in Palais' proof of a basic 
lemma on functors fram vector bund1es over compact manifolds to Banach spaces of 
sections (see [8]) and proposes a slight modification in Palais' axiom (B§2) to eliminate 
the problem. Nevertheless, there exists another technical slip in Palais' formulation for 
section functors, which we are currently working out. The problem appears in Palais' 
construction following the proof of the "Mayer-Vietoris Theorem": given a smooth finite 
dimensional vector bund1e I; over a smooth compact n-dimensional manifold M, he takes 

.• o 

charts CPi : D" -+ M, 1 ~ i ~ r, such that M C Ul~i~TCPi(D"), and local trivializations 
'IIi : cp;*1; -+ D" x lRq , where D" is the n-disc {x E lR" !lIxll ~ I} . Unfortunately, this 
cannot be done if the manifold M has boundary dM:f: 0. We have already devised a 
possible solution to this problem and we point out that this tecbnica1 slip does not have 
any implications in the results stated here. 

2. The Functor .!FI# 

Let .!F : FB(M) -+ Ban Man and 1# : (kVB(M) -+ Ban be two covariant functors 
satisfying the axioms of the previous subsection and let M E Man. In this section we will 
construct acovariantfunctor .!Fl#: VB(M) -+ Ban VB(.!F(M)) , whereBan VB(.!F(M») 
is the category of smooth vector bund1es over .!F(M), modelled on Banach spaces. 

DEFINITION 1. Let nÇ : I; -+ M E VB(M). We define: 

.!FI#(I;) := {(y ,z) : M -+ I; ! y E .!F(M) and z E l#(y*I;)} 

In the definition above, note that, by axiom (.!F3) we have y E .!F(M) C (k(M), so 
that y' I; is in (kVB(M). 

The following lernmata and definitions will be used to construct the differentiable 
vector bundle structure on the set .!FI#(I;) defined above. 
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LEMMA 1. Let 1tç : ç --r M be a finite dimensional diJferentiable vector bundle over M 
Then there exists N E N such that ç is isomorphic to a smooth vector subbundle of the 
trivial bundle IR~ = M x JRN. 

A proof of this lemma can be found in [7] . 

Remark 2. (i) A similar result valid in infinite dimension can be found in [6] . 

(ü) The lemma also holds for Ck vector bundles 1tç : ç --r M, k ~ 0, if the base M is 
compact (see [7]). Thus, given a smooth finite dimensional compact manifold 
M and a Ck vector bundle 1tç : ç --r M, k ~ 0, there exists N E N such that this 
vector bundle is isomorphic to a Ck vector subbundle of the trivial (smooth) bundle 
~. This allows us to apply the theory of [8], chapter 14, to the Ck vector bundle 
1tç : ç --r M. 

Notation. Until the end of this subsection, let us fix a finite dimensional smooth vector 
bundle 1tç : ç --r M, and let N E N, given by Lemma 1, such that ç is a smooth vector 
subbundle of the trivial bundle ~. Let us endow ~ with the metric tensor induced by 
the canonical inner product of ll~;l\": and let 1tç : ç --r M be the smooth vector subbundle of 

~ such that, for each p E M, çp = (çp).l. Then we have ç EBM ç = ~. Let us denote by 
Pç and Pç (or simply P, whenever there is no confusion about which "P" we are referring 
to) the induced orthogonal projections. Given p EM, we identify the fiber (JRN)p with 
JRN and we denote by (Pç)p the restriction Pçl(RN}p : JRN --r çp, and similarly for (PT\)P ' 

Let us also give ourselves a metric d which defines the topology of M. Given p E M 
and r > 0, we will denote by B,(P) eM the open ball of radius r and centered on p in 
that metric. 

DEFINlTlON 2. Given p,q E M, we say that p f'V q if Ppll;q : I;q --r çp is a linear isomor­

phism. Note that çq is a linear subspace of (JRN)q == JRN, so that the restriction makes 
sense. 

LEMMA 2 . The relation f'V on M x M is reflexive and symmetric (but it is not transitive, 
in general). Moreover, the set: 

'Mi>~ := {(p,q) E M x M I p f'V q} 

is open in M x M (and contains the diagonal ~M, since f'V is reflexive). 

Prooj. (i) It is clear that f'V is reflexive. To see that it is also symmetric, note that 
Pplçq : Çq --r çp is a linear isomorphismif, and only if, I;q EB çp = JRN . This follows 
fromthefact thatdiml;q = dimçp = : m, dimÇp =N - m and Ker(Ppll;q) = I;qnçp . 

But Çq EB çp = JRN if, and only if, ç~ EB ç~ = JRN , that is, çq EB çp = JRN . By the same 
argument, çp EB Çq = JRN if, and only if, Pqlçp : çp --r I;q is a linear isomorphism 
Thus wehave shownp f'V q ~ q f'V p , as asserted. 
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(ii) It remains to show that ~ is open in M X M. We will prove that 'W~ = 
M X M \ 'f1.t.~ is closed in M X M. 

Indeed, let {(p",q")}"EN be a sequence in 'W~ such that (p",q,,) '!.:::4 (p,q) E 

M X M. We have to show that (p, q) E 'W~. 

We have proven in the previous item that (p, q) E ~ if, and only if, I;q EB çp = JRN ; 

since ('V (x,y) E M X M) dim~ + dimçy = dimJRN, this implies that (p,q) E 'W~ 

if, and only if, I;q n çp "# {O}. Thus, we have ('In E N) I;qn n ÇPn "# {O}, and 
we want to show that this implies I;q n Çp"# {O}. Let us endow Gr(JRN) with the 
Hausdorff metric D induced by the Euclidean distance d of JRN (see appendix B); 
since (Gr(IR.N),D) is a compact metric space, we canassume, passing to a conver­
gent subsequence if necessary, that I;qn n çPn converges in D to a linear subspace 
X E Gr(JRN). Moreover,the fact that ('In E N) I;qn n ÇPn "# {O} and that the con­
nected components of Gr(lR."') are Gro(JRN), ... ,GrN(JRN) implies thatX"# {O}. 

We assert thatX C Çq n çp, so that I;q n çp "# {O}, what concludes the proof. 

As amatter of fact, it is sufficient toverify thatd(Çqn nÇPn' I;qnÇp) '!.:::4 O, since this 
implies that d(X,Çqnçp) = lim,, __ d(Çqn n çp.,Çqn Çp) = O, so thatX C Çqn çp. 
But this equivalent to condition (Cl) (see appendix A). Given (x,,)nEN sequence in 
JRN such that ('In E N) x" E I;q. n Çpn' suppose that (x,.",)m is a cony-ergent subse-

quence of (X"),,EN with x"m ~ x E JR.N. Then x E Çq n çp, because Çqn -t I;q and 
ÇPn -t çp in the Hausdorff metric (since I; and ç are smooth vector subbundles of 
~), and an application of condition (Cl) to these two sequences gives x E I;q and 
x E çp, respectively. Thus, condition (Cl) is verified, as asserted. 

o 

COROLLARY 1. Using the above notation, let y E $(M). Then there exists r> O such 
that,forall tE M, Br(y(t)) X Br(y(t)) C ~~. 

Proof Let: 
i,~.M: M ~ MxM 

x t--t (x, x) 

and y : = iAM o y : M -t M X M. Then y is continuous, since y E $ (M) C CO (M), so that 
y(M) = {(y(t),y(t)) I t E M} is compact and contained in the open set ~ C M X M, 
and the assertion follows immediately by a compactness argument. O 

DEFINITION 3. Using the above notation, let y E $(M), and let r> O given by the 
previous corollary. The metric d ofM induces an admissible metric D for the topology of 
CO(M), given by: 

for all $, '" E CO (M). 
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Since §(M) c (O(M), byaxiom (§3), we have y E (O(M). Let 'llr := Br(Y) be the 
open ball of radius r centered at y in ((O (M), D). Then 'llr is also an open neighborhood 
ofy in §(M), since, also by axiom (§3), the inclusion of §(M) in (k(M) C (O(M) 
is continuous. Moreover, by the choice of r, it follows from the previous corollary that, 
for all ql,q2 E 'llr and all tE M, we have (Ql(t),Q2(t)) E 'J#.ç. Let us choose,for each 
y E §(M), such an r > O and such an open neighborhood 'llr, so that we have an open 
covering .9l. = {'llr I y E § (M)} of § (M). 

Let §f# (ç) be the set given by Definition 1, and let: 

n : §f#(ç) --+ §(M) 
(y,z) f---+ y 

Finally, for each 'llr E .9l., let us define: 

IP'Uy : n-1 ('llr) --+ 'llr x f#(y*ç) 
(1) 

(q,z) f---+ (q,Py · z) 

where: 
Py·z: M --+ y*ç 

f---+ py(t) . z(t) E Çy(t) 

PROPOSITION 1. The maps IP'Uy are well defined and {IPu, I 'llr E JiI.} is a dif/erentiable 
VB-atlas in §f#(ç), so that n : §f#(ç) --+ §(M) is a smooth vector bundle, that is, it is 
an object of the category Ban VB (§ (M) ). 

Proof (i) Each IP'Uy is well defined, that is, for all (q,z) E n- 1 ('llr), Py· z E f#(y*ç). 

Indeed: 

(1) Let: 

Since: 

P: M --+ 
x f---+ 

ç: M --+ Grm(IR.~) 
x f---+ /;x 

is a smooth section (or, equivalenH}', ç is a smooth vector subbundle of rank 
m of ~), it follows that the map P is smooth. Therefore, we can apply the 
functor § to this map, yielding the smooth map: 

(2) Let us consider: 

õ: §(g[(JR.N») x f#(IRN ) --+ f#(JR.N) 
(A,x) f---+ A ·x 

(2) 

By axiom (/l), this map is well defined and bilinear continuous. 
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(3) lt follows from the two previous items that, given q E 11r and z E W(q*ç) C 
W(q*I~) == W(r'), we have: 

Py·z=ô(Po)·y,z) EW(~) 

But, for almost all t E M, py(t) . z(t) E ~t), and W(r') = W(y*ç) EBW(y*Ç), 
since W is an additive functor; thus, taking the projection on the first factor 
induced by this direct sum, which is given by (y*Pç)o, we conclude that, in 
fact, Py' z E W(y*ç), as asserted. 

(ii) Each «l>'Ur is bijective. 

As a matter of fact, Iet: 

'PUt : 11r x W(y*ç) ~ n-1(11r) 
(q,z) f---t (q, (Pylç,)-l . z) 

where, for ali t E M, (q, (Py lç,)-l . z) (t) = (q(t), (Py(t) lçq(r,)-l . z(t»). 

Once we have proven that 'P 'U.y is a well defined map (i.e., that its image lies, in 

fact, in n-1 (11r », it is clear that this map is the in verse of «l>'U.y • Therefore, we just 
have to verify that it is, in fact, well defined: 

(1) Firstly, note that, by our choice of the sets 11r and by Corollary 1, for alI q E 

11r and for ali t E M, the map P y(t) I çq(r) : ~(t) -t ~t) is a linear isomorphism, 
so that, given z E W(y*ç), the following map is well defined: 

(2) Let: 

(pyll;q)-1·Z: M ~ 
f---t 

r' 

(Py(t) I~(f) )-1 . z(t) 

P: 'Wp~ CMxM ~ g(r') 
(x,y) f---t (Pxlçy) - 1 oPx E L(r' ,çy) 

It follows from the fact that ~ varies smoothIy with x (or, in other words, 
that ç: M -t Grm(r') is smooth) thatP is a smooth map. Therefore, we can 
appIy to this map the functor §, yielding the smooth map: 

(3) Given q E 11r, we have (y,q) E §(M) x §(M) and, for alI 
tE M, (y(t),q(t») E ~. Thus, by axiom (§4), wehave (y,q) E §(~) C 
§(M x M) == §(M) x §(M). Besides, a direct computation shows that, for 
alI q E 11r and for ali z E W(y*ç) C W(IRN) : 

(Pylçq) - t·z = ô(Po)(y,q),z) E W(r') 



On the Differentiable Manifold Structure 239 

where I) is given by equation (2). Since, for almost alI t E M, (Py(t) IÇq(tl ) -1 . 

z(/) E çq(t), we have shown that (Pylçq)-1 . z actually beIongs to ~(q*ç), so 
that 'Y 'lly is well defined, as asserted. 

(iii) Given YO,Y1 E $(M) such that 'llyo n 'llyl ::j:. 0, we assert that the map: 

'llyo n 'llyl x ~(Yo*ç) -t 

(q,z) ~ 

'llyo n 'llyl x ~(Y1 *ç) 

(q,PY1 . (PYO lçq) -1 . z) 

is a smooth vector bundle morphism, what concludes the proof. 

Indeed: 

(1) Let: 

P: Mx 'J1.í.~ CMxMxM -t 

(x,y,z) ~ 

g[(JRN) 
Pxo (pyl!)-I OPy E L(JRN,!;x) 

Again, the fact that !;x varies smoothly with x implies that P is a smooth map. 
Hence, we can appIy to this map the functor $ to obtain the smooth map: 

Therefore, the following composition is also smooth (using axiom ($4) again to 
ensure (Yo, q) E $( 'J1.í.~) for q E 'llyo n 'llyl): 

what, in tum, implies that the following composition is also smooth: 

'llyonVrl xW(Yo*ç) ~ $(g[(JRN») X~(m.N) __ .s----;..~ ~(JRN) . 

(q ,z) 1--1 -------------~~ PYI o (PYOlçq)-l·Z 

where i is theinclusion and I) is given by equation (2). Note that, since z E W(Yo*ç), 
we have PYO . z = z. Thus, since the image of <1><1'1. o <1>"i1 is actually contained 

-rI yo 

in 'llyo n 'llyl x W (YI *1;), and since W (Y1 *1;) is a Banachable subspace (hence, an 
embedded submanifold) of ~(JRN), we have shown that <1>'Uy o <1>"i1 is a smooth 

1 yo 
map. 
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(2) It remains to show that <I>'Un o <I>~o is linear continuous on the fibers . 

In fact, given q E ~o n ~I' we have: 

-+ Ç§(Yl*l;) 

z I-t PYI o (PYOI!;q)-l·Z 

It follows from what we have seen in the previous item that the map: 

S(P(q), .): Ç§(JRN) -+ ç§(IRN) 
z I-t PYI o (PYOI!;q)-l OPyo'z 

is linear continuous, where P is given by equation (3). Since the restriction of 
this map to the Banachable subspace Ç§(yo*l;) of Ç§(JRN) is just (<I>'1L o <I> ;j )q, it 

'4'1 Yo 

follows that this map is linear continuous, and the assertion follows. 

o 

The next step is to show that the differentiable vector bundle structure of §Ç§ (I;) is 
intrinsic, in the sense that it does not depend on the embedding : I; -+ ~. In the sequeI, 
to complete the construction of the functor §Ç§, we will map each differentiable vector 
bundle morphism f : I; -+ Tl to a differentiable vector bundle morphism (f o) : §Ç§ (I;) -+ 
§Ç§(Tl), to be defined in the next proposition. 

DEFINITION 4. Let I; and '11 be finite dimensional differentiable vector bundles aver M, 
ofranks m and n, respectively. Let <p : I; -+ 1(l and'lf : Tl -+ ~ be differentiable vector 

bundlemonomorphisms, and let us endow 1(1 and J(f withmetric tensors induced by 

the canonical inner products of JRNl and JRNz, respectively. Denote by P'Ç : 1(l -+ I; and 

PTj : I(f -+ Tl the respective orthogonal projections (and again we will write just P if it 
is clear to which P we are referring to) and by 'Wpç and 'J#.'l the corresponding open 

sets ofM x M defined like inLemma 2. Let (§Ç§(I;) ,<p) and (§Ç§(Tl), 'If) denote the di} 
ferentiable vector bundle structures induced, respectively, in §Ç§(I;) and ~Ç§(Tl) by the 
vector bundle atlases {<I>'Uy I ~ E Y1q,} and {'Y 'Uy I ~ E ~} defined like in Definition 3, 
using the embeddings <p and 'If, respectively. 

This notation is temporary; we will drop the "<p" of (~Ç§ (1;) , <p) after we prove that 
the vector bundle structure actually does not depend on the embedding <p. 

PROPOSITION 2. Using the above notation, let f : I; -+ Tl be a smooth vector bundle 
morphism. Let us define the map: 

~Ç§(f) = (fo) : (~Ç§(I;),<p) 
(q,z) 

-+ (~Ç§(Tl),'If) 
I-t fo (q,z) = (q,jq · z) 

where (Vx EM) fx := fi!;. : /;x -+ Tlx and (Vt EM) (fq ·z)(t) := fq(t) . z(t). 
Then (fo) is well defined and it is a smooth vector bundle morphism. 
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Proof. (i) (fo) is well defined (that is, for alI q E §(M) and for all z E ~(q*ç), in 

(1) 

fact it is true that fq· Z E ~(q~t'))) and linear continuous on the fibers. 

Indeed, givenq E §(M), wehaveq E Ck(M) by axiom(§3), henceq*f: q*ç ~ 
q*t') is a Ck VB-morphism. Applying to this morphism the functor~, we obtain 
the linear continuous map: 

~(q* f) : ~(q*ç) -t ~(q*t')) 

Z t---t foz=fq·z 

and the assertion follows immediately. 

(ii) (f o) is smooth. 

Indeed, given y E §(M), let ('lly, <1» and ('Uy, 'Y) be VB-charts of (§~(ç),cp) and 
(§~(F),,,,), respectively, where 'Uy is aneighborhoodofy in §(M). We have: 

<1> : 7t$~(Ç) ('Uy) -t 'Uy x ~(y*ç) 

(q,z) t---t (q,(Pç)y·Z) 

and: 
'Y: 7t;t~(T/'Uy) -t 'Uy x ~(y*t')) 

(q,z) t---t (q, (PTJ)y · z) 

so that: 

'Yo (fo) 0<1>- 1 : 'Uy x W(y*ç) -t 'Uy X ~(y*t')) 

(q,z) t---t (q, (PTJ)y o fq o (Pç)Ylçq) -1 . z) 

where, for alI t E M: 

(PTJ)Y o fq o ((Pç)Ylçq) -1 . z) (t) = (PTJ)y(t) o fq(t) o (Pç)y(t) IÇq(t») -1 . z(t) 

We will show that the second component of this map is smooth. Since y E §(M) 
was arbitrarily taken, this is sufficient to prove that (fo) is smooth. 

Consider the following maps: 

f: WpçCMxM -t 

(x,y) t---t 

L(~l ,~2) 

(PTJ)x o f y o (Pç)xlçJ -1 o (Pç)x E L(~l , t')x) 

Thefact that ~ andt')x vary smoothlywithx (thatis, that ç: M ~ Grm(~l) andt') : 
M ~ Grn(~2) are smooth) implies that 1 is smooth. Note that 1 is well defined, 
since, by the definition of W~, for all (x,y) E W~ the map (Pç)xlçy : çy ~ ~ is a 
linear isomorphism. 
Since 1 is smooth, we can apply to it the functor § to obtain the smooth map: 

(lo) : §(Wpç) C §(M) x §(M) ~ §(L(r'l ,r'2)) 
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S : $(L(JRNJ ,JRNZ)) X rf(r'1) -t rf(JRNZ) 
(A,x) f-----t A . x 

(4) 

App1ying axiom (/1-), we conclude that S is well de.fined and bilinear continuous, 
hence smooth. 

Then ít follows that the second component of 'I' o (jo) o <1>-1 is given by the f01-
lowing composition of smooth maps: 

Vy x rf(Y*l;fij~J:~(L(JRNl ,JRN1)) X rf(r'J) _~õ --~ rf(JRN2) 

(q,z) 1-1 -----------~~ (PT))yofq o(Pç)YIÇqf1.Z 

where i is the inclusion. We haveused the fact that, for alI z E rf(y*I;), (Pç)y'Z = z. 
Since, for alI q E Vy and for ali Z E rf(q*I;), (PT))Y o fq o (Pç)Ylçqf1 . Z E rf(y*rl), 
and since rf (y*1')) is a Banachable subspace (hence an embedded submanifold) of 
rf(JRN2), we have shown that the second component of 'I' o (jo) 0<1>-1 is smooth. 
Thus, 'I' o (jo) o <1>-1 is smooth, as asserted. 

o 

COROLLARY 2. Using the same notation, the differentiable vector structure of $rf (I;) 
does not depend on the embedding : I; --t ~. 

Proof Let CP1 : I; --t I(f and CV2 : I; --t i(f be two differentiable vector bundle monomor­
phisms, and let ($rf (1;), CP1) and ($rf (1;), CV2) be the respective induced differentiable 
vector bundle structures. Then, by the previous proposition, the identity idç : I; --t I; in­
duces a differentiable vector bundle isomorphism: 

(idç o) : ($rf(I;),cp1) --t ($rf(I;) ,CV2) 

what concludes the proof. o 

COROLLARY 3. Thefunctor $rf : VB(M) --tBaD VB($(M)) isadditive andpreserves 
exact sequences. Moreover, given 1') E VB(M), (y,z) E $rf(1')), and a smooth vector 
subbundle I; of1'), then (y,Z) E $rf(l;) if, and only if, (y(t),z(t)) E çfor almost ali tE M 

Proof The first assertion is clear; to prove the second, let ç E VB(M) such that ç 9 M ç = 
1'), and let Pç be the projection on the first factor induced by this Whitney sum. Then we 
have $rf(1')) = $rf(l;) 9$(M) $rf(Ç), and the projection on the first factor induced by 
this Whitney sum is given by (Pço). Hence, if (y,z) E $rf(rl) and (y(t) ,z(t)) E I; for 
almost alI tE M, wehave (y,z) = (Pço), (y,z) E $rf(I;). O 
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3. Ao Extensioo of the Functor $C§ to the Category FVB(M) 

In this subsection we will show that, if the functor C§ satisfies the rodom (C§3), below, 
then, given M E Mao, the functor $C§ can be extended to a functor fram the category 
FVB(M), of finite dimensional smooth vector bundles over M with smooth fiber bundle 
morphisms, to the category Bao FVB ($ (M)) of smooth vector bundles over $ (M) 
modelled on Banach spaces, with smooth fiber bundle morphisms. 

(C§3) The restriction of the functor C§ to the subcategory VB(M) of (kVB(M) can be 
extended to a functor C§ : FB(M) -+ Bao Mao satisfying axioms ($3) with k = O 
and ($4) . Besides, for alI E E FB(M), wehavea smoothinclusion $(E) C C§(E). 

Example 2. Axioms ($1) - (ff4), (C§I) - (C§3), (p.) are satisfied in the following cases: 

(i) $ = (5 and C§ = cr, O ~ r ~ k ~ s. 

We refer the reader to [8], [3], [10] and [2] for the verification ofaxiom (C§3) in these 
examples. 

As a particular case of (iii), we can take n = 1, P = q = 2 and 1 ~ r ~ k < s; we wiIl 
consider this case in the applications in the next section. 

PROPOSITlON 3. Suppose that $ andC§ satisfy axioms ($1) - ($4), (C§I) - (C§3) and 
(p.). Let ç, t'J be finite dimensional smooth vector bundles over a smooth manifold M, 
k E N, and f : ç -+ t'J a smooth fiber bundle morphism. Then the map: 

ffC§(f) = (fo) : $C§(ç) 
(q,z) 

is a smoothfiber bundle morphism. 

Prooj. Using the notation of Definition 4, let: 

---t $C§(t'J) 
~ fo(q ,z) 

1: Mx~) 
(x,z) 

---t ~2 
~ fo (Pç}x ' z E 11x C ~2 

The fact that 1;x and t'Jx vary smoothly with x (that is, that ç : M -+ Grm(~)) and 
11 : M -+ Grn(~2 ) are smooth) implies that 1 is smooth. 

Since 1 is smooth, we can apply to it the C§ functor to obtain the smooth map: 
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By axiom (~3), the inclusion : §(M) x ~(r'1 ) ~ ~(M) X ~(r'1 ) is smooth; there­
fore, the following composition of maps is smooth: 

§(M) X ~(r'1 ) - ~(M) X ~(r'I) ~ W(r'2) 

(q,z) t-I ----~J (q,z) t-I --_J f o (Pç)q' z 

what implies that: 

: § (M) x ~ (r't) ---t § (M) x W (RN2 ) 

(q,z) f---t (q,J o (Pç)q . z) 

preserves fibers and is smootlL But the image of this map lies in the split vector subbundle 
§~ (1''1) of §~ (I(f), since f(l;) C 11, and its restriction to the vector subbundle §~ (I;) 
of §~(J(i) coincides with (to). Thus, wehave shown that (to) : §W(I;) ~ §~(11) 
is well defined, smooth and preserves fibers. 

o 
4. Tangent Spaces and Tangent Maps 

Let § and ~ be two covariantfunctors satisfying axioms (§1) - (§ 4), (~1) - (W2) 
and (Il). In this subsection, given ç E VB(M) , we give a description of the tangent spaces 
T(y,z) §W (1;), for (y,z) E §~(I;). This description wiil be usefulin the applicationsin the 
next section. We also compute the tangentmap T(to) of (to), for a morphismf: ç ~ 11 
belonging to Mor VB(M) or to Mor FVB(M) if ~ also satisfies axiom (~3). 

LetN E N suchthat I;is adifferentiablevectorsubbundleof~ , sothat, foreach vp E 
1;, T vpl;is a linear subspace of T pM x r'. Wehave already seen that §W(I;) is a closed 
differentiable vector subbundle of §~(~) == §(M) x ~(r') and it splits; therefore, 
given (y,z) E §~(ç), T(y,z)§W('Ç) is a closed Banachable subspace of Ty§(M) x 
TzW(r') == Ty§(M) x ~(JRN) and it splits. Moreprecisely, wehave: 

PROPOSITlON 4. With the notation above, we have: 

T(y,z)§W(ç) = {X E Ty§(M) x Tz~(~) I X(t) E Tz(t) I; a.e. on M} 

This means that we can interpret the elements of T(y,z)§~(I;) as maps X : M ~ TI; 
withX(t) E T z(t)ç for almost alI tE M. We use this characterization ofthe tangent spaces 
to compute the tangent maps T (to) for morphisms f : I; ~ 11: 

PROPosITION 5. Let f: I; ~ 11 be a morphism belonging to MorVB(M) and (y,z) E 

§W(I;). lhen, using the notation above, the tangent map T(y,z)(to ) at (y,z) ofthe mor­
phism (to) : §W(ç) ~ §~(11) coincides with (T fo) , that is: 

T(y,z)(to): T(y,z) §~(ç) -+ T(y,z)§W(l1) 
X f---t TfoX 

lhe same holds for a morphism f E FVB(M) iff§ satisfies axiom (f§3) . 
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Remark 3. [Th.e tangent spaces at the null section of §C# (ç)] 
Using the notation above, let us denote by 09"fI (I;) the null section of §C# (I;) and by 

~ the null vector of the fiber of §C#(ç) overy E §(M). Th.en, identifying T Oy09"fI(Ç) 
with Ty§(M) and identifying the vertical subspace VerOy§C#(ç) of Ty§C#(ç) with 
C#(y*ç) (that is, with the fiber of §C#(ç) overy), we have: 

T Oy§C#(ç) == Ty§(M) x C#(y*ç) 

Moreover, denoting by POy : T Oy§C#(ç) --+ C#(y*ç) the projection induced by this 
decomposition, it is clear that, givenX E T Oy§C#(ç), for almost all tE M: 

(POy 'X)(t) =POy(') ·X(t) 

where POrttJ : T Oy(t) ç --+ Çy(t) is the projection induced by the decomposition: 

T Ort,)ç == T y(t)M X ~t) 

obtained by identifying T Ort') ~ with Ty(t)M and Veroy(,) ç C Ty(t)ç with ~t). 

§3. APPLICATIONS 

In this section, we particularize the theory of the previous section to the case M = 
[ao,at) c]R, § = Hk and C# = W, with k,r E N, O ~ r < k. Th.en § and C# satisfy 
axioms (§1) - (§4), (C#1) - (C#2) and (JA.); if r ~ 1, they also satisfy (C#3). 

1. The Lagrangian Functional as a Smooth Map 

As a first application, wereprove that the Lagrangian functional associated to a given 
smooth Lagrangian L : TM --+ IR defined on the tangent bundle of a finite dimensional 
differentiable manifold M is a smooth map if defined on some convenient spaces of maps. 
Th.ese are well-known results (see, for instance, [5] and [9]), but we will include them 
here to illustrate our theory. 

DEFINlTION 5. Let L : TM --+ IR be a smooth lAgrangian defined on the tangent bundle 
ofafinite dimensional differentiable manifoldM Let k E N; k ~ 2, and let us define: 

L: Hk(M) ~ IR 

y f----t JJL(fy) 

We call L the Lagrangian functional associated to L. 

PROPOSITION 6 . The lAgrangianfunctional L : Hk(M) --+ IR is a smooth map. 

Prooj. To show that L is smooth, let us identify C" (TM, IR) with the set of differentiable 
fiber bundle morphisms Rom (TM, IRM:) in the obvious way, so that we can look at L as a 
smooth fiber bundle morphism L : TM --+ IRM:. Thus, it makes sense to apply the functor 
HkHk- 1 to L, yielding the smooth map: 

(Lo): HkHk- 1(TM) --+ Hk(M) x Hk- 1(1R) 
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Using this smooth map (Lo), we can write L as a composition of smooth maps: 

l a l T 
L={ ) o1t20 (Lo) o (-) 

ao dt 

where: 
J~l: Hk-l(lR) ----+ IR 

y ~ J~ly 

which is linear continuous (hence smooth), 

is the projection on the second factor, which is also linear continuous, and: 

which is smooth (this is obvious for M = IR"; to check the general case, embed M in IR" 
by Wbitney's theorem). O 

Remark 4. (i) The saroe result also holds for time-dependent Lagrangians, and also for 
the Lagrangian functional defined on (k(M), k ~ 1, and the proof is similar. 

(ii) If (M,g) is a Riemannianmanifoldand theLagrangian is given by L(vq ) := ! (vq , vq) + 
V(q), where V E (OO(M), the saroeresult alsoholds for L : Hl(M) -t Ilt 

2. The Setting for Vakonomic Mechanics 

In this subsection we will show that, given a finite dllnensional differentiable mani­
fold M and a smooth submanifold ~ of the tangent bundle TM of M satisfying certain 
conditions (a regular constraint, in the sense of Definition 7), for k ~ 2 the set Hk(M,~) 
formed by the Hk curvesy : [ao,atl-t M which are horizontal (seeDefinition 8), admits a 
differentiable manifold structure, endowed with which it becomes a closed differentiable 
embedded submanifold of H k (M) . This is also true for k = 1 if ~ is a smooth vector 
subbundle of TM (in this case, this manifold structure in the spaces of horizontal curves 
is well known - see [5]). The saroe holds for Hk(M, ~,p) C Hk(M,p), where Hk(M,p) 
is the submanifold of H k (M) defined in the following definition: 

DEFlNITION 6. Let M be afinile dimensional dijJerentiable manifold and p ,q E M For 
k E N,k ~ 1, leI us define lhe seIs: 

Hk(M,p) := {y E Hk(M) I y(ao) = p} C Hk(M) 

Hk(M,p ,q) := {y E Hk(M) I y(ao) = p,y(al ) = q} C Hk(M,p) 

Itis well known that Hk(M,p) and Hk(M,p ,q) areclosed smoothembeddedsubman­
ifolds of Hk(M) . Moreover, given y E Hk(M,p) , we have: 

TyHk(M,p) = {X E TyHk(M) I X(ao) = O} 
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and, fory E Hk(M,p,q), we have: 

This follows at once from the fact that the maps Ôao : H k (M) --+ M and Ôa1 : H k (M) --+ 
M defined by y I--t y(ao) and y I--t y(al), respectively, are smooth submersions onto M. 

The differentiable manifolds Hk(M,)f) and Hk(M, ~,p) are the "arena" for the set­
ting of the so called vakonomic or variational mechanics (see [12]); if ~ is a smooth 
vector subbundle of TM, they are also the "arena" for the setting of sub-Riemannian 
geometry. 

Until the end of this subsection, we will use the notation and definitions from [12], 
which we summarize below. 

Given a smooth vector bundle 1tç : ç --+ M and a connection V on ç, with corre­
sponding horizontallift Hç : ç EBM TM --+ Tç and horizontal subbundle Hor(ç) C Tç, we 
can define the connector Kç : Tç --+ 1;, which is a VB-epimorphism from 'tç : Tç --+ ç 
to 1tç : ç --+ M such that for each Z E Tç, Kç(Z) E ~~~~(z) is the unique vector, which 
satisfies: 

z-HI; ('tI;(z),T1tI;(Z») =Â.I; ('tç(z),Kç(z») 

Note that the restriction of K to the vertical subbundle Ver(ç) is independent of the 
connection: actually, we don't need any connection at all to define it, that is, we can 
define K[ : Ver(ç) --+ ç, which is, on each fiber VerVq (ç) of the vertical subbundle, the 

inverse of the verticallift Â.vq : Çq --+ VerVq (ç) . 
Let 1tç : ç --+ M and 'Itr) : " --+ M be vector bundles over M, and let b : ç --+ " be a 

smooth fiber bundle morphism The fiber derivative of b is the map: 

lFb ç --+ L(ç,,,) 
vq I--t lFb(vq ) 

such that for alI wq E I;q, we have: 

lFb(vq ) . wq = ~ (dT b(vq + twq») 
(1/=0 

If in addition, in the vector bundles 1tç : I; --+ M and 1tT] : " --+ M we are given connec­
tions, with horizontallifts Hç and HT], and connectors Kç and KT], respectively, then for 
any vq E 1;, we define the map IPb : ç --+ L(TM,,,) such that: 

IPb(vq) . wq = Kç (Tvq OHE(Vq , wq ») 

for all wq E T qM. We call the map JPb the parallel derivative of b. 
It follows immediately from these definitions that, for each XVq E TI;, we have: 
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DEFINITION 7. Let M be a finite dimensional differentiable manifold, 5 a finite dimen­
sional smooth vector bundle over M and f : TM -t 5 a smooth fiber bundle morphism 
which is transversal to the null section Os of 5, so that't! : = f - I (Os) is a closed differ­
entiable embedded submanifold ofTM Suppose that the restriction to 't! of the projection 
of the tangent bundle TM. 'tM, is a submersion onto M In these conditions, we call f a 
regular constraint and 't! the corresponding constraint manifold 

The nomenclature constraint comes from mechanics: 't! is the set of permissible 
velocities of the trajectories of a constrained mechanical system. 

PROPOSITION 7. A smooth fiber bundle f : TM -t 5 is a regular constraint if, and only 
if, for each vp E f - I (Os), IFf(vp) . T pM = Sp, where IF denotes the fiber derivative of f. 

We refer the reader to [12] for more details. 

DEFINITION 8. Let M be a finite dimensional differentiable manifold, p E M and 't! = 
f-I (Os) C TM the constraint manifold corresponding to a regular constraint f : TM -t 
5, in the sense of the previous definition. We say that an absolutely continuous curve 
r : [ao,al] -t M is horizontal with respect to 't! ify(t) E 't! a.e. on [ao,ad. For each 
k E N, k ~ 1, we define the sets: 

Hk(M, 't!) := {r E Hk(M) I y(t) E 't! a.e. on [ao,al]} 

Hk(M, 't!,p) := {r E Hk(M,p) I y(t) E 't! a.e. on [ao, aI]} 

THEOREM A. With the same notation, if k ~ 2, Hk(M, 't!) and Hk(M, 't!,p) are closed 
differentiable embedded submanifolds ofHk(M) and Hk(M,p), respectively. Moreover, 
given a Riemannian metric tensor g on M, a connection VS on 5 and r E Hk (M, 't!), the 
tangent space T yH k (M, 't!) is the subspace of TyH k (M) formed by the vector fields along 
r which satisfy: 

Ff(Y)· VtX +lP'f(Y)·X = o (5) 

where v; is the cavariam derivative along r induced by the I.evi-Civita connection V of 
(M,g), lP'f is the parallel derivative of f inducedby V andVs, andFf is thefiberderiva­
tive of f. The same holdsforr E Hk(M, 't!,p), that is, TyHk(M, 't!,p) is the subspace of 
TyHk(M,p)formed by the vector fields alongr which satisfy (5). 

ProoJ. We will do the demonstration for W(M, '6"). The same proaf applies to 
H k (M, 'I? , p) and we wiIl explicitly mention any important detail in the proaf for this case. 

Using the above notation, let us define the map: 

HkHk- l(5) 
(to) . Itr 

that is, F = (to) o (It ), where (to) = HkHk- l(t) : HkHk- l(TM) -t HkHk- l(5). Note 
that, as a composition of smoath maps, F is smooth. 
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We contend that F is transversal to thenull section ~kHk-l(5) of HkHk- 1(S). Indeed, 

it is sufficientto check that, given y E F-1(OHkHk-l(5)) C Hk(M), denotingby Oy = F(y) 
the null vector of the fiber of HkHk- l(S) overy: 

TyF' TyHk(M) + T Oy~kHk-l(S) = T OyHkHk-1(S) (6) 

since the splitness condition is automaticaliy fu1filled, that is, the fact that TyHk(M) == 
Hk(y*TM) is Hilbertizable implies thatthe closed subspace (TyF)-l (T Oy0HkHk-l(5)) 
has a closed compIementary subspace. 

By Remark 3 and using the notation stated therein, we have T Oy ~k Hk-l (5) == T yHk (M) 

and T OyHkHk-1(S) == TyHk(M) X Hk-1(y*S), so that equation (6) is equivalent to: 

(7) 

wherePOy : T OyHkHk- l(S) -+ Hk- l(y*S) like in Remark 3. 

Therefore, given TJ E Hk- 1(y*S), we have to show that there exists X E TyHk(M) == 
Hk(y*TM) such that: 

POy' TyF ' X =TJ (8) 

or equivalently (see Remark 3), such that for each tE [ao,ad: 

POy(t) • (TyF .X)(t) = TJ(t) 

where: POy(t) : T Oy(t) 5 == Ty(t)M x Sy(t) -+ Sy(t) is the projection on the second factor, 
which is being identified with the vertical subspace Veroy(t) 5 C T Oy(t) 5, like in Remark 3. 

Let K: TTM -+ TM be the connector induced by the Levi-Civita connection V of 
(M,g). Since the restrictionof the horizontal vector subbundle of any connection on TM 
(or, more generally, on any differentiable vector bundle ç aver M) to the zero section of 
TM (respectively, of 1;) coincides with the tangent bundle of this zero section (that is, for 
each Op E TM we have Horop TM = T opOrM), we have, for alI tE [ao,all and for alI 
v E T Ont)S: 

POy(t) (v) = "oy(t) (v) 

so that, by (8), the demonstration will beconcludedifwe provethat, given TJ E Hk- l(y*S), 
there exists X E TyHk(M) such that, for ali tE [ao,al) : 

Koy(t)' (TyF ·X){t) =,,(t) (9) 

On the other hand, each X E TyHk(M) can be written as X = 1JT 1.=0' where w : 

(-E,E) -+ Hk(M) is a smooth curve with Wo =y. Thus, for each tE [ao,aJ]: 

and themap: 
w: 

X(t) = Tws(t) 
ds 1.=0 

(-E,E) x [ao,all 
(s,t) 
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is a smooth variation of Wo = Y by Hk curves Ws in the cIassical sense. 
Hence, we have: 

(TyF.X)(t) = (dT (fo)(ws))(t) = 
s 1=0 

T . = -d f(ws(t») = 
s 1-=0 

- T. f(TWs(t) ) 
- y(t) ds 1.=0 

and, since: 

it follows that: 

K· (TyF .X)(t) = Ff(Y(t)). 'VtX +lPf(y(t)) ·X(t) 

therefore, by (9), we conclude the demonstration with an application of the following 
lemma: 

LEMMA3. Usingtheabovenotation,foreachTJ E Hk-l(y*S), thereexistsX E TyHk(M) == 
Hk(y*TM), andeven X E TyHk(M,p) C TyHk(M) suchthat,jorallt E [ao,atl: 

Ff(y(t»). 'VtX +lP'f(y(t») ·X(t) =TJ(t) (lO) 

Note that the lemma also states that there exists X E TyHk(M,p) satisfying equation 
(10), so that this demonstration also applies to the Hk(M, «f,p) case. It is also clear that 
the tangent space at y is given by: 

TyHk(M, «f) = TyF - 1 (T Oy0HkHk- l(S») 

= {X E TyHk(M) I K · (TyF .X) = O} 

that is, it is the subspace of TyHk(M) formed bythe vector fields along y which satisfy 
equation (5), and the same applies to TyHk(M, «f,p). O 

Proof of the lemma. Let rk 5 = m, dimM = n, and let (e1 , ... ,en ) be an Hk parallel frame 
field on TM along y and (e 1 , ... ,~) be the corresponding dual coframe field along y. Let 
(S1, .. . ,sm) be an Hk parallel frame field on 5 along y and (s1, ... ,s"') be the correspond­
ing dual coframe field along y. Such frame fields exist: we just have to choose bases of 
T y(ao) M and Sy(O), and extend them along y through parallel translation in the respective 
connections. Note that, since y E H k (M), writing in coordinates the equation for parallel 
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translation yields a system of linear ODE with coefficients in Hk-l(lR), what implies that 
its solutions are of c1ass Hk (see [1]). 

EachX E TyHk(M) == Hk(y*TM) can be written uniquely as: 

n 

X = LXiei 
i=1 

withX i E Hk(lR), for 1 ::::;; i :( n. 
Since Vtei == O, for 1 :( i :( n, we have: 

n 

VtX = LXiei 
i=1 

On the otherhand, for each tE [ao,aI] , the maps: 

Ir f(y(t») : Ty(t)M -+ Sy(t) 

lFf(y(t») : Ty(t)M-+Sy(t) 

are linear; taking, for 1 :( i :( n and 1 :( j :( m: 

p!(t):= (si(t), Irf(Y(t») .ei(t») 

8!(t) := (si(t),lFf(Y(t») .ei(t») 

we have p!,8! E Hk- 1(lR) and, fromequations (11) and (12): 

m n 

Irf(Y)·X= L LP!xiSj 
i=1i=1 
m n 

lFf(Y)·VtX= LL8!XiSi 
j=1 i=1 

Hence, defining T)i E Hk-l(lR), for 1 :( i:( m, by: 

m 

T) = L T)iSi 

i= 1 

it follows from equations (14) and (15) that equation (lO) is equivalent to: 

n. n. . 
L 8fx i + L f31X S = T)1 
i= 1 s= 1 

for 1 :( j :( m. 

(11) 

(12) 

(13) 

(14) 

(15) 

(16) 

Since the constraint 'if = r 1(0s) is regular, for each tE [ao,aI] the map IFf(y(t») : 
Ty(t)M -+ Sy(t) is surjective. Thus, 8 = (8!) E Hk- 1 (L(lRn , lRm ») is such that, for each 
t E [ao ,a1], 8(t) has maximal rank, that is, rk 8(t) = m. Thus, (1,6) is a system of m 
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linear ODE in IR with coefficients in Hk- l(IR), and the matrix 8(t) has maximal rank 
for alI t E [ao ,al], what implies that (see [1 j) there exists X E Hk(lRn ) == Hk(y*TM) with 
X(O) = O (that is, X belongs, in fact, to TyHk(M,p» such thatX satisfies (16). Note that 
we cannot guarantee that such X is unique, unless m = n. 

o 

Remark 5. The theorem also holds for k = 1 if 'fi' is a smooth vector subbundle of TM, 
that is, if I : TM -* 5 is a smooth vector bundle epimorphism - see [5]. 

To close this section, we list below some of the main results we have obtained in [12] 
using these differentiable manifold structures on the spaces of curves horizontal to the 
constraint. 

DEFlNITlON 9. A constrained mechanical system is a quadruple (M, K, V,f), where 
(M, g) is a Riemannian manifold, 

K : TM --+ 
vq ~ 

is the kinetic energy, I : TM -* 5 is a regular constraint in the sense 01 Definition 7, and 
V : M -* IR is a smooth function called the potential energy. The manifold M is called the 
configuration space. 

DEFlNITION 10. We say that y E H2(M, 'fi') is an abnormal or singular variational tra­
jectory 01 the constrained mechanical system (M, K, V, I) if it is a criticaI point 01 the 
endpoint mapping: 

eVl: H2 (M, 'fi', y( ao)) 
q 

We say that y E H2 (M, 'if) is a normal or regular variational trajectory 01 the con­
strained mechanical system (M, K, V,f) if dL(y) annihilates the closed subspace: 

0lTyH2 (M, 'fi', y(ao)) . 

THEOREM B. The lollowing conditions are equivalent, given y E H2 (M, 'if): 

(i) y is an abnormal variational trajectory. 

(ii) There exists P E H1 (y*S), P:I O, such that,for almost ali tE [ao,al]: 

Vt (lF* I(r) . P) -]F* I(r) . P = O 

THEOREM C. Let y E H2(M, 'if). Then the two lollowing conditions are equivalent: 

(i) Y is a normal variational trajectory. 

(17) 
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(ii) There exists P E H1 (y*S) such that the fol1owing equation is satisfied: 

Vá+gradVoy= -Vt(F" f(y) .P) +lP*f(Y)·p (18) 

If y is a regular point of the endpoint mapping, then W(M,'6",y(ao),y(al») is a 
smooth sub-manifold of H2(M) in a suitable neighborhood of y. Hence, we obtain the 
following corollary: 

COROLLARY 4. Wlth the same notation, ify is a regular point ofthe endpoint mapping, 
then y is a normal variational trajectory if, and only if, it is a stationary point of the 
restriction ofthe Lagrangianfunctional L : H2(M) -t ]R to H2(M, '6", y(ao),y(al»). 

Remark 6. (i) The nomenc1ature normallabnormal comes from sub-Riemannian geom-
etry (which can be viewed as a particular case of our formulation, putting V = O 
and f the orthogonal projection P ~l. : TM -t !??l., where !?? is a smooth vector 
subbundle of TM, so that the constraint manifold is !??). 

(ii) The solutions of equation (18)may lead to curvesy E H2(M, '6") which arenotregular 
points af the endpoint mapping. In other words, like in sub-Riemannian geometry, 
a curve y E H2 (M, '6") may be simultaneously a normal and abnormal variational 
trajectory. 

(iii) Let C{j' XM 5 be the fiber product of 1tcc = 't'Mlcc : '6" -t M and 1ts : 5 -t M. We have 
also shown in [12] that there exists an open set 'll C '6" XM 5 containing'6" XM Os 
and a smooth vector field XH : 'll -t T'll, which is Hamiltonian with respect to a 
certain symplectic form induced by f, g and the canonical symplectic form af the 
catangent bundle T*M, whose integral curves are of the form (y,P), with (y,P) a 
solution of equation (18). In general, however, the open set 'l1 cannot be taken to 
be the whole '6" xM S. 

§A. HAUSDORFF METRIC 

No/ation. In this section (X,d) will denote a metric space and lix will denote the set 
{A C X I A:f. 0 andA is compact} . 

DEFINITION 11 (HAUSDORFF METRIC). Consider the following maps: 

d : lix x lix --+ 
(A,B) I---t 

D : lix x lix --+ 
(A,B) I---t 

]R 

sup{inf{d(x,y) lyEB} IXEA} 
]R 

!d(A ,B) + !d(B,A) 

(19) 

D is called the Hausdorff metric induced by d. This nomenclature is motivated by the 
following proposition: 

PROPOSITION 8. D is a metric in lix. 
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Proof. For alIA,B E Rx, wehaved(A,B) = O if, and only if,A CB; therefore,D(A,B) = 
O if, and only if, A = B. The symmetry of D is obvious, and the triangular inequality 
follows fram the fact that, for all A,B, C E Rx: 

d(A,C) ~ d(A,B) +d(B,C) 

what can be proven using the triangular inequality for d : X x X -+ IR and the definitions 
of inf and sup. O 

Remark 7. Endowing Rx with the Hausdorff metric D, the map d : Rx x Rx -+ IR is 
continuous. 

Notation. Until the end of this section, D will denote the Hausdorff metric in Rx induced 
by the metric d of (X, d). 

LEMMA 4. Let (An)nEN be a sequence in Rx, and let A E Rx. Assume that there exists 
no E N and a compact set K such that An C K for n ~ no. Then the following conditions 
are equivalent: 

(i) d(An,A) ~ «) 

(Cl) If (Xn)nEN is a sequence in X such that (Vn E N) Xn E An, then the Umit of any 
convergent subsequence of (Xn)nEN lies in A. 

Proof. (i)::>(Cl) Indeed, let (Xn)nEN be a sequence inX such that (Vn E N) Xn E An, 
j-too 

andlet (Xn')jEN beasubsequenceof (Xn)nEN such thatXn · '---tx EX. Wemust show 
J • J 

that x E A. In fact, for alI nj E N: 

j-too j -too 
As d(x,Xnj ) '---t O and d(Anj,A) '---t O, it follows from (20) that d(x,A) = O, that 
is, X EA. 

n-too 
(Cl)::>(i) Suppose that (Cl) holds and that d(An,A) f-+ O. Then there exists E > O 

and a subsequence (An)jEN of (An)nEN such that (V j E N) d(Anj,A) > E. 

Therefore, for each j E N, we can choose Xnj E Anj such that d(Xnj,A) > E. Taking 
a convergent subsequence of (xnj)jElln (there exists such a subsequence, since the 
sequence (Xn j) jEN lies in the compact K for n j > no), if necessary, we can suppose 

j-too 
that Xnj '---t X EX. Thus, for nj sufficiently large: 

d(x,A) ~ d(Xnj ,A) - d(xnj,x) > O 

and this implies that x ~ A, which contradicts (Cl). 
o 
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LEMMA 5. Let (An)nEN be a sequence in ilx, and let A E ilx. Then lhe following condi­
tions are equivalent: 

(C2) For ali x E A, there exists (Xn)nEN sequence in X such that (\In E N) Xn E An 

andXn ~x. 

Prooj. (i)::}(C2) Given x E A, for each n E N take xn E An such that d(x,An) = 
d(x,Xn). Since (\In E N) O ~ d(x,An) ~ d(A,An), it follows from (i) that: 

that is, Xn ~ x, which proves (C2). 

(C2)::}(i) Let x E A and let (Xn)nEN be a sequence in X such that (\In E N) Xn E An 

andxn ~ x. Then, since (\In E N) O ~ d(x,An) ~ d(x,Xn), itfollows that: 

Therefore, given E > O, for each x E A there exists nx E N such that 
(\In ~ nx ) d(x,An) < !. 
Let C betheopencover {B~ (x) Ix EA} ofthecompactsetA. Takeafinitesubcover 

{B~ (xt), ... ,B~ (Xk)) of C, wherexl, .. . ,Xk EA. 

Let N : = max {nxp ... , nXJt} . Given y E A, there exists j E {I, ... , k} such that y E 
B~ (Xj); therefore, for n ~N, wehave: 

since d(y,xj) < ! and d(xj,An) < ~ . By the arbitrariness of the choice of y E A , 
this shows that, for n ~ N : 

d(A,An) = supd(y,An) ~ E 
yEA 

and, since E was arbitrarily taken, this implies that d(A,An) ~ O 
o 

COROLLARY 5. Let (An)nE N be a sequence in ilx, and let A E ilx. Assume that there 
exists no E N and a compact set K such that An C K for n ~ no. Then An ~ A in the 
Hausdorffmetric D if, and only if, conditions (Cl) and (C2) hold. 
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§B. GRASSMANN MANIFOLDS AND FIBER BUNDLES 

DEFINITlON 12. Let vn be a real vector space of dimension n, let (. , .) be an inner 
product in V, and, given k E N, let: 

and let also: 

Grl;(V) := {k-dimensional subspaces ofV} 

Gr(V):= U Grl;(V) 
O~I;~n 

Given an orthonormal basis {el, ... , en } of V, there exists a well defined action 11 : 
O(n) x V -+ V, which induces the action: 

11 : O(n) x Grl;(V) 
(cr, [VI, ... , VI;]) 

---t Grl;(V) 
t----+ [crv I , . .. , crvk] (21) 

and it is obvious that 11 is a transitive action of O(n) on the set Grk(V). Let W := 
[el , ... , ek] E Grl;(V). We claim that,for 1 ~ k ~ n, the isotropy subgroup Hw ofW is the 
subgroup: 

{( g~) I cr E O(k),'t E O(n -k)} ~O(k) x O(n-k) 

As a matter offact, it is clear that cr E O(k) x O(n - k) like above leaves W fixed. On 
the other hand, assume that cr E O(n) is such that cr· W = W. lhen itfollows that: 

(i) ('V j E {I, ... ,k}) cr · ej = }:i'=1 ~ei E [el, ... ,el;], so that ~ = O for i E {k+ 
1, ... ,n}; 

(ii) as we also have cr · Wl. = Wl., it follows that ~ = O for i E {I, .. . ,k} and 
j E {k + 1, ... , n }, and this concludes the proof of the assertion. 

Since O(k) x O(n - k) is a closed subgroup of O(n), the quotient O(n)/ [O(k) x 
O (n - k)] is a homogeneous manifold, and we transport this manifold structure to Grk(V) 
through the bijection: 

íí: O(n)/Hw ---t Grl;(V) 
[cr] t----+ cr . W 

Grk(V), endowed with this manifold structure, is called the Grassmannian manifold 
of k-planes of V , and we topologize Gr(V) as the topological sum of the spaces Grk(V), 
O~k:::;n. 

PROPOSITION 9. lhe manifold structure of Grk(V) is independent of the orthonormal 
basis 'E = (el , . .. , en ) initially chosen. 

PROPOSITION 10. Each Grl;(V), O :::; k ~ n, is path connected, so that these spaces are 
the connected components of Gr(V). 



On the Differentiable Manifold Structure 257 

DEFINITION 13. Denote by Bl (O) the closed ball 01 radius 1 in the euclidean space 
(V, (-,.»), and by D the Hausdorffmetrie 01 JtBl(O)' Let Grk(Bl (O» be the metrie sub­
space 01 (JtBl (O) ,D) given by: 

Grk(Bl(O» := {WnBl(O) I w E Grk(V)} 

PROPOSITION 11 . The map: 

N: Grk(V) --* Grk(Bl(O» 
W ~ WnBl(O) 

is a homeomorphism. In other words, the topology 01 Grk(V) can be delmed by lhe 
Hausdorffmetric D 01.f'iB1 (O)' 

Proof. It is clear that N is a bijection. Therefore, since Grk(V) ~ O(k) x O(n - k) is 
compact and Grk(Bl (O» is Hausdorff, it is sufticient to show that N is continuous. But 
this is equivalent to show that the map: 

NoTíon: O(n) --* Grk(Bl(O» 
cr ~ cr· WnBl(O) 

is continuous, since 
T)on: O(n) --* Grk(V) 

cr ~ cr·W 

is a quotient map. 
Indeed, given a sequence (crn)nEN in O(n) such that crn ~ cr E O(n), we assert that 

crn · WnBl(O) ~ cr· WnBl(O). By Corollary 5, we must verify conditions (Cl) and 
(C2). 

(Cl) LetAn := crn · WnBl(O) andA:= cr· WnBl (O). Let (x,,)nEN be a sequence 
in Bl (O) such that (Vn E N) x" E An, and let (Xnk)kEN be a subsequence of (x,,)n 
such that xnk ~ x E Bl (O) . We must verify that x E A. As a matter of fact, 
let (yÜ"EN be the sequence in W defined by Yk : = cr~ 1 . x"k ' Then, by continuity 

we have Yk = cr~1 'x"k ~ cr- 1 ·x E W, since W is closed in V. But this implies 
x = cr· (cr- 1 ·x) E cr · W, so that x E cr · W nBl(O) =A and (Cl) is verified. 

(C2) Givenx E A, take y := cr- 1 ·x E W nBl (O) and let (x,,)nEN be the sequence in 
B 1 (O) defined by xn : = crn . y. Then we have: 

so that (C2) is verified. 

o 
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COROLLARY 6. (Grk(Bl (O) ),D) is a compact metric space. 

PROPOSITION 12. Let (Vn , (. , .»), (W"', (. ,.») be inner product spaces, and let f : V -t 
W be a linear isomorphism (so that n ~ m). Given k E N, 1 ~ k ~ n, let: 

Grk(f) : Grk(V) --t Grk(W) 
[Vl, ... ,VkJ ~ [j.Vl,···,f·VkJ 

Then Grk(f) is a smooth embedding. 

DEFlNITION 14. Let k E N* and let M be afinite dimensional Hausdorff second count­
able differentiable manifold. Let also 1tç : ç -t M be a finite dimensional smooth vector 
bundle over M with rank n ~ k, and let us define: 

Grk(Ç):= U Grk(Çp) 
pEM 

where çp := 1t~ 1 (P) is the fiber of ç over p EM 
Let 1tGrk(l;) : Grk(Ç) -t M be the obvious projection. We will define a manifold struc­

ture in the set Grk(Ç) in such a way that 1tGr):(ç) : Grk(Ç) -t M be a locally trivializable 
differentiable fiber bundle over M In order to do that, let {( 'lia, CfJa), a E A} be a vector 
bundle atlas Of1tç : ç -t M 

For each a E A let us define: 

Grk (<Pu): 1t~(Ç) ('lia) --t 'lia x Grk(lRn) 

'Cp ~ (P,Grk(<Pp) . 'Cp) 

where CPp is the restriction <Pulçp : çp -t IRn. 

PROPOSITION 13. Using the notation ofthe above definition, the collection 
{( 'lia, Grk( <Pu)), a E A} is a smooth fiber bundle atlas in Grk(1;), so that 
1tGrk(Ç) : Grk(Ç) -t M is a differentiable fiber bundle over M 
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