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Abstract: Let G be a finite non-abelian simple group. In 
the first part we consider the question whether CG determines 
G up to isomorphism. This question is closely related to a 
recent conjecture of B. Huppert that G is determined up to a 
direct abelian factor by its set of ordinary character degrees. 
We sketch a proof that a finite simple group is determined 
by a11 its group algebras over a field . This proof involves also 
arguments of modular group algebras of G. The second part 
deals with conjugacy questions in the unit group of '?lG. A 
survey on the known results of conjectures of Zassenhaus and 
variations of these conjectures is given with respect to finite 
simple groups. 

Key words: Group rings, finite simple groups, character 
degrees, Zassenhaus conjectures, automorphisms, blocks. 

1 Introduction 

The question up to which extent a finite group G is determined by its group ring 
RG - R an arbitrary commutative ring - is a topic with a long history. The case 
when R = '?l has been studied first by G.Higman in his thesis [29]. Further work 
on such questions have been stimulated by R.Brauer in his well known lectures on 
modern representation theory [9]. 

M. Hertweck has shown that the isomorphism problem for integral group rings, 
i.e. the question whether '?lG ~ '?lH implies that G and H are isomorphic, has in 
general a negative answer [21]. 

For many classes of interesting groups however this problem has a positive 
answer and this is not only the case when the coefficient ring of the group ring is 
'?l. 

The object of the first part of this Survey concerns some recent results - moti­
vated by a conjecture of B. Huppert - for the case when G is finite sim pIe and R 
is a field. 

In the second part we consider torsion units and properties of torsion subgroups 
in integral group rings of finite sim pIe groups. If R is an integral domain of 
characteristic zero such that IGI is not invertible then it is known for a finite 
sim pIe group G that RG ~ RH if and only if G and H are isomorphic. Even 
more, if RG ~ RH, then G and H have the same chief series [42]. If G is abelian 
simple then already G. Higman showed that the torsion units of '?lG are just 
the elements of G and the group of normalized - i.e. augmentation preserving -
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automorphisms of 'LG coincides with AutG. 
Thus the question is what about the torsion units and torsion subgroups of 

the unit group of 'LG can be said when G is finite non-abelian simple. 
In this survey we do not consider infinite simple groups. For recent work and 

aspects on group rings of locally finite simple groups see [57] and [78]. 

2 Ordinary and modular group rings 

Problem 1 [Conjecture of B. Huppert 2000, [32J] Denote for a finite group 
by cdG its set of ordinary character degrees. Assume that G is finite simple. If 
cdG = cdH as set then H ~ [G, G] x A where A is a finite abelian group. 

B. Huppert gave evidence for his conjecture by proving it among others for 
the folIowing simple groups: 

AI (q), 2 B2 (q), q arbitrary An for n ~ 11, a finite number of small simple groups 
of Lie type, 15 of the 26 sporadic sim pIe groups including alI Mathieu groups and 
,alI Janko groups [32], [33] . 

We remark that we formulated Huppert's conjecture in such a way that it 
contains a positive solution for simple abelian groups. 

The next problem was posed as a question for a general finite group. 
Problem 2 [9, Problem 2*J If two groups GI and G2 have isomorphic group 

algebras over every ground field n are GI and G2 isomorphic ? 
E. Dade gave a counterexample to this problem [14] . The counterexamples are 

metabelian. For finite abelian groups it is easy to see that the answer is positive. 
It is certainly natural first to study the question whether Problem 2 has a positive 
solution in the case when G is a finite non-abelian simple group and then to go 
on Huppert's conjecture. 

Huppert's conjecture indicates also that much more might be true. If one as­
sumes that cdG coincides with cdH and the multiplicities of the character degrees 
agree, then this is equivalent to an isomorphism of the complex group algebras 
CG and CH. This leads naturally to the folIowing questiono 

Problem 3 Let K be a field and let G be a finite simple group. Is it true that 
KG ~ KH implies that G is simple ? 

More generally is of course the question, what invariants of a general finite 
group G are determined by KG. The case when K is the field of complex numbers 
has been studied in [34] with respect to soluble groups. Assume that CG ~ CH. 
Then it is shown in [34] that G is nilpotent if, and only if, H is nilpotent. Moreover 
let K be a normal Hall - subgroup of G then H has a normal Hall subgroup L 
such that CK ~ CL and CG / K' ~ CIHI/L' . 

Note that results may depend on the field. The field of complex numbers 
determines only the order of a finite abelian group whileas Q determines finite 
abelian groups up to isomorphism. 

Since there are only few simple groups with the same order, it should folIow 
that if Problem 3 has an affirmative answer for some field that G and H are 
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isomorphic. 
The object of the remainder of this section is a sketch of the proof of the 

following result. 

Theorem 2.1 [30] Let C be a finite simple group then Problem 2 has an affir­
mative answer. 

Note, if C is simple abelian, then Problems 1,2, and 3 have a positive solution. 
Let K be a field and let C be a finite non-abelian simple group. Starting with 

an isomorphism KC ~ KH we see that H has to be perfect and that IHI = ICI. 
Assume that H is not simple. Then H has a non-abelian simple image Q of order 
dividing IHI. In particular IQI has to divide ICI· 

Divide the finite non-abelian simple groups into three families, the alternating 
groups An , the sim pIe groups of Lie type and the 26 sporadic simple groups. 

Case 1. G is a sim pIe group of Lie Type. 

Proposition 2.2 [40] Let C be a finite simple group of Lie type and let p be its 
describing characteristic. Let F be a field Df characteristic p. Then FC ~ F H 
implies H is simple. 

Clearly it suffices to show the proposition in the case when F is algebraically 
closed. The main ingredient for the proof of the proposition is that FC has 
precisely two p - blocks, one of defect zero and F - dimension IPI2, where P 
denotes a Sylow p - subgroup of C [31, section 5]. Using Clifford theory for blocks 
[1, Theorem 4.4] it is shown that then H has to be simple as well. 

There are only few non-isomorphic sim pIe groups with the same order namely 
the alternating group A8 and the linear group A2 (4) and the infinite series of pairs 
Bn(q), Cn(q) with n 2: 3 and q odd. 

A Iook at the degrees of the ordinary characters and of the Brauer characters 
shows that Problem 3 has a positive solution for A8 and A2 (4) with respect to 
each field K. Moreover Huppert established his conjecture for these two groups 
[32). 

It is known that the minimal degree of a faithful ordinary character of Bn(q) 
differs from that one of Cn(q), [46], [74] . In case of Cn(q) it is q"2-1 or q"::l whileas 

the minimal degree for Bn(q) is greater equal than q:2"~l, cf. [74, Theorem 5.2, 
Theorem 6.1]. 

This settles case 1. 
Case 2. C is an alternating group of degree n. 
Case 2a. Q = Am. 
If C = As then the smallest ordinary character degree is 3. If n 2: 6, then 

by a result of W. Burnside n - 1 is the smallest ordinary character degree [10, 
Appendix C, p.468] . 

This shows immediately that if CAn maps onto CAm then n = m. 
Case 2b. Q is a sporadic group. 
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The minimal degrees of ordinary characters of the symmetric group have been 
classified by R. Rasala [61]. Using his results we get the following for the alter­
nating groups. 

Proposition 2.3 Let 

1 1 
do = l,d1 = n -1,d2 = 2n(n - 3),d3 = 2(n -1)(n - 2), 

111 
d4 = 6n(n - 1), ds = 6(n - 1)(n - 2)(n - 3), d6 = 3n(n - 2)(n - 4), 

1 1 
d7 = 24 n(n - 1)(n - 2)(n - 7), ds = 24 (n - 1)(n - 2)(n - 3)(n - 4). 

a) Suppose that 9 ~ n ~ 14. Then the jirst lour mínimal ordinary character 
degrees for An are given by do, dI , d2 , d3 • 

b) 11 15 ~ n ~ 21, then the seven smallest ordinary character degrees 01 An are 
do,.·· ,d6 . 

c) 11 n ~ 22, then the nine smallest ordinary character degrees 01 An are 
do,··· ,ds . 

In all cases the multiplicity 01 the degrees di is 1. 

We show how this proposition is used to show that Q cannot be the Babymon­
ster B. 

The order of B is 

241 .313 .56 .72 • 11 . 13·17·19·23·31·47. 

The smallest degrees of non-trivial complex irreducible representations of B are 
81 (B) = 4371 and 82 (B) = 96255. Therefore the initial range for n is n ~ 4372. If 
n = 4372 we get d2 (n) > 96255. Thus CA4372 cannot map onto CB. 

If n ~ 4371 then the degree 4371 of B must appear as one of the larger degrees 
of An. Looking again at d2 (n) = ~n(n - 3) we see that d2 (n) > 82 (B) provided 
n ~ 96. 

If n < 95 we have d2 (n) < 81 (B) which again means that 81 (B) appears as a 
larger degree of An. Now d3 (n) > 81 (B) for n > 31. On the other hand 47 divides 
IBI. Thus n ~ 47. Consequently B cannot occur as Q. 

With similar calculations it is shown that alI other sporadic sim pIe groups also 
cannot occur as Q. 

Case 2c. Q is a sim pIe group of Lie type. 
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As simple group of Lie type Q has a non-trivial ordinary character degree of 
prime power order pn namely the degree of the Steinberg character. By [2] , if 
n 2:: 10, the An has a non-trivial character degree of prime power order if and 
only ií n = pf + 1 and pl is the only one of this kind. The degree d = pl of the 
Steinberg character is the order of a Sylow p - subgroup of Q. Moreover looking 
at the order of a finite simple group Q of Lie type one sees that 

This shows that all character degrees of Q are smaller than d3 /12. On the other 
hand looking at Proposition 2.3 the degrees of the characters oí the alternating 
groups grow rapidly. More precisely there are at most 4 character degrees less 
than ~ /12 if n 2:: 15. These have multiplicity 1 and so Q has at most 4 different 
character degrees provided n 2:: 15. But there ís no non-abelian simple group wíth 
less than 5 conjugacy classes. A dírect inspectíon of the alternating groups oí 
degree less than 15 yields the result that Q can only exist in the cases n = 5,6,8,9 
and in these cases Q ís ísomorphic to An . 

Case 3. G ís a sporadic group. 
Case 3a. Q is sporadic. Looking at the Atlas [12] one sees that cdQ ís not a 

subset of cdG. 
Case 3b. Q is alternating. Because n - 1 is the smallest non-trivial degree for 

An the smallest degree for G bounds n. This and the fact that each prime dividing 
IQI divides the order of G shows that Q cannot be an alternating group. 

Case 3c. Q is símple ofLie type. Only the groups M1l' M12' M24, CÜ2 , C03 have 
a non-trivial ordinary character degree of prime power order. The prime powers 
are 11,23 and 16. As Q is a simple group of Lie type, the Steinberg character of Q 
gives a character degree of prime power order. Thus there are few possibilites to 
be checked and a direct inspection shows finally that this case can also not occur. 

In [47] alI non-trivial ordinary character degrees of prime power degree of 
finite simple groups of Lie type are classined. There are not many cases where 
such degrees are not given by the Steinberg character. It appears to be possible to 
use this together with [46], [53] and [74] to avoid the use of Proposition 2.2. This 
should lead to the result that the complex group algebra of a finite simple group 
G determines G up to isomorphism. I doubt that at present sufficiently much 
is known about the degrees of ordinary characters in order to prove Huppert's 
conjecture for each finite simple group. 

3 Integral group rings 

Notations. ê : RG --+ R, E:Z:EG r 9 • 9 f-t E:Z:EGrg denotes the augmentation map 
and its kernel, the augmentation ideal, is denoted by IR(G). The group of units 
of RG is U(RG) and its subgroup consisting of the units with augmentation 1 is 
denoted by V (RG). 
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H. Zassenhaus stated with respect to the structure of U(RG) of integral group 
rings RG three well known conjectures, cf. [69]. 

Problem 4 [The Zassenhaus conjecture (Z2)] Let H be a group basis of 
ZG. Then H is conjugate by a unit of QG to G. 

It has been shown by K. W. Roggenkamp and L. L. Scott that this conjecture 
is in general not true [45], [63], [73]. For finite simple groups however the answer 
is open. 

The Zassenhaus conjecture (Z2) may be also phrased in terms of automor­
phisms. An R - algebra automorphism o- of RG is called normalized if it preserves 
the augmentation, Le. 

o-(t:(g» = t:(o-(g)). 

In the case when the isomorphism problem for ZG has a positive solution (Z2) 
is equivalent to the following. 

(AUT) Let X be a group basis of ZG. 1 Any normalized automorphism o- of 
ZG may be written as the composition of one induced from a group automorphism 
of X followed by a central automorphism. 

Note that an automorphism is called central if it fixes the centre elementwise. 
By the Skolem - Noether theorem these are precisely the automorphisms of ZG 
given by conjugation with a unit U of QG which stabilizes ZG. 

If G belongs to a class of finite groups closed under direct products, then (Z2) 
holds for each group for this c1ass provided (AUT) is valid for each group of the 
class [38, Lemma 5.3 a)]. 

The following so - called F* - theorem has been discovered by K. W. Rog­
genkamp and L. L. Scott [65]. 

F* - theorem. Denote by R the p-adic integers (or more generally the integral 
c10sure of p - adic integers · ina finite extension field of Qp ). Let G be a finite 
group, with a normal p - subgroup N containing its centralizer. Then for any 
augmented ring automorphism (T of RG which stabilizes IR(N) . RG, the groups 
G and o-(G) are conjugate in the units of RG. 

Unfortunately the proof of Roggenkamp and Scott was not quite complete. 
In the mean time a complete proof exists. The strong results of A.Weiss on p -
permutation modules are a basis for it [76]. The proof can be collected from [23], 
[24] and [26]. 

The assumption on G in the F* - theorem is equivalent to the condition that 
the generalized Fitting subgroup F*(G) is a p - group. This explains the name 
of the theorem. Note also that the groups satisfying the assumption of the F* 
- theorem form a class closed under direct products. Thus we get the following 
conclusion. 

Corollary. Assume that the generalized Fitting subgroup F* (G) is a p - group 
then the Zassenhaus conjecture (Z2) is valido In particular, if G is a finite soluble 
group with Opl (G) = 1, then the (Z2) - conjecture is valido 

1 A group basis of ZG is a subgroup of V(ZG) of the same order as G. It automatically spans 
ZG. 
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This leads naturally to the following open questiono 
Problem 5. Let G be a finite group. Assume that Opl (G) = 1 for some prime 

p. Is the Zassenhaus conjecture (Z2) valid for G? 
A positive answer to Problem 5 would lead to an obstruction theory for the 

(Z2) - conjecture for a general finite group as described for soluble groups in 
[44]. Clearly finite simple groups are a first test object whether Problem 5 has an 
affirmative answer. In contrast to the case of soluble groups there is no similar 
approach known to show this conjecture for simple or almost simple groups. Also 
many module - theoretic techniques of the modular representation theory work 
only for p - constrained groups. Thus it is not obvious how to extend the proof of 
the F* - theorem to general finite groups. 

In the case of sim pie or almost sim pIe groups character - theoretical arguments 
and the theory of blocks with cyclic defect are up to now almost the only methods 
which lead to results. If the structure of the group ring is at least locally explicitely 
known - but this is only the case for very few groups - then the automorphisms of 
the group ring can be precisely computed. For some groups this seems the only 
possibility to decide whether conjecture (Z2) is valid or noto With respect to the 
complex reflection group 3.A6 ( the non-split central extension of the alternating 
group A6 with a cyclic group of order 3 ) this was the only way to show finally that 
(Z2) holds for this group, see [28]. For the other exceptional complex reflection 
groups (Z2) has been proved in [20]. 

May be the condition Opl (G) = 1 in Problem 5 should be replaced in such a 
way that the statement is only a statement for the principal block Bo, see also the 
remarks about this in [71]. 

Problem 6 [The principal block variation (B-Z2)o,p]. Let H be a group 
basis of 'LG. Let p be a rational prime dividing IGI and let B 1 , ••• ,Bk be the 
blocks of the Wedderburn decomposition of CG associated to the irreducible C -
characters of G which belong to the principal p-block. Let 7r be the projection of 
CG onto Bo := EB~=lBi. Then 7r(G) and 7r(H) are conjugate within Bo. 

There is also no counterexample known to the following block variation of 
conjecture (Z2). 

Problem 7 [The block variation (B-Z2)c]. Let H be a group basis of 7lG. 
Let B be a block ofthe Wedderburn decomposition ofCG. Let 7r be the projection 
of CG onto B. Then 7r(G) and 7r(H) are conjugate within B. 

We remark that the block variations stated as above also make sense p-adically 
and modularly. It might be possible that projections of group bases of 'LG are 
conjugate within the principal block of KG where K denotes an algebraically 
closed field of characteristic p. 

Other variations of (Z2) which have been considered in the last years deal with 
Sylow-like theorems. 

Problem 8. 

a) [The Zassenhaus conjecture (ZI)] Let x be a unit of V(7lG) of finite 
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order. Then x is conjugate within QG to an element of G. 

b) Let X and Y be group bases of 'll.,G. Let 8 E Sylp(X) and T E Sylp(Y). Are 
then 8 and T conjugate within QG ? 

c) Let U be a p - subgroup of V('ll.,G). Is U conjugate within QG to a subgroup 
ofG? 

Clearly Problems 8b and 8c describe a Sylow -like variation for the unit group 
of integral group rings. For Problem 8a this is as well the case when the unit has 
prime power order. Problem 8b is an important special case of 8c. It contains 
also a statement about normalized automorphisms in the case when X and Y are 
isomorphic. 

It is a consequence of the F* - theorem that Problem 8b is true for finite soluble 
groups [43]. It follows from the results in [77] that Problem 8c holds provided G is 
nilpotent. This was extended to nilpotent-by-nilpotent groups and soluble groups 
with abelian Sylow subgroups [15]. In [16] it is shown that Problem 8c is valid for 
Frobenius groups which do not have the symmetric group 85 as a homomorphic 
image. 

To the conjecture (ZI) no counterexample is known. In the area of soluble 
groups it is among other shown for G nilpotent [77] and certain metabelian groups 
[48], [60], [59], [55]. 

Problems 6, 7 and 8 are closely related to the following about defect groups. 
Problem 9 [The defect group problem [72, p.257]], see also [71]. Let 

G and H be finite groups. Denote by 'll.,p the p-adic integers and let B be a block 
of group rings 'll.,pG and 'LpH. Let Da, DH resp. be defect groups of G and H 
with respect to B. Identify Da and DH with their projections on B. Is it then 
true that after suitable normalization Da and DH are conjugate by a unit in B. 

Note that the group rings 'll.,pG and 'll.,pH have just this common block B. So 
they may be non-isomorphic. But of course the defect group problem may be 
specialized to the situation where H is a group basis of 'LG. If then the defect 
group problem holds for the principal block Bo, then Problem 8b has a positive 
answer. Note that the suitable normalization in case of the principal block is just 
given from the augmentation. If G has cyclic Sylow p - subgroups the defect group 
problem has a positive answer [72J. 

Conjecture (Z2) holds for finite Coxeter groups [6]. Denote by AutCT(G) the 
character table automorphisms of G and let W be a finite irreducible Coxeter 
group. Then the sequence 

1 ---* InnW ---* AutW ---* AutCT(W) ---* 1 

is exact [6, Theorem 1.1]. This is a very special property and not typical for other 
groups (even for complex reflection groups it is in general not true [20] ). 

The counterexamples to (Z2) give the impression that character table auto­
morphisms coming from Galois automorphisms of the character field of a block of 
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the Wedderburn decomposition of CG give an obstruction for the validity of (Z2). 
This makes it reasonable to study the following rational variation. 

Problem 10 [The Q-variation (Z2)Q). Let X and Y be group bases of ZG. 
Then there is an automorphism a of QG such that a(X) = Y and a fixes each 
component of the Wedderburn decomposition of QG. 

We first give a survey about known results with respect to the variations and 
simple groups. 

Theorem 3.1 [8, 2.2 and 2.3J 

a) Problem 8b is valid for all sporadic simple groups and their automorphism 
groups. 

b) The variation (Z2)Q is valid for aU sporadic simple groups and their auto­
morphism groups. 

With respect to Problems 8a and 8c very little is known for simple and related 
groups. (ZI) is true with respect to the alternating group A5 and the symmetric 
group 85 [54], [55]. It follows from [16] that Problem 8c has a positive answer for 
A5,85 and A 1 (5). In [75] it is shown that for G = Al(P/) with f = 1 or f = 2 
Problem 8a holds for torsion units of order p. 

Theorem 3.2 Let G be an alternating group. 

a) [37, Corollary 2.8.2J Problem 8b holds for G. 

b) [38, Satz 5.9J (Z2)Q holds for G. 

Theorem 3.2 b) was first proved in [38, pp.91 - 95]. The proof is similar 
to that one given by G. Peterson for the Zassenhaus conjecture for symmetric 
groups in [58], see also Theorem 3.5 below. Note that the proof given in [38] is 
different from the sketchy arguments given in [39, p.98]. Though these arguments 
are not complete another less technical proof could be written up with it. Later 
A. Giambruno gave his own variant for a proof of Theorem 3.2 b) [18]. 

It remains to establish a Sylow - like theorem and (Z2)Q for simple groups of 
Lie type. Because (Z2) implies that Problem 8b has a positive answer as well as 
(Z2)Q, both variations hold for the simple groups of Lie type listed in Theorem 
3.6 below. 

Next we turn to results on the Zassenhaus conjecture (Z2) itself and the block 
variations. 

Theorem 3.3 [8, Theorem 2.5J [7J The conjecture (Z2) is valid for a sporadic 
simple group if in Table 1 the corresponding column is marked with a +-sign. 
Analogously the variations (B-Z2)c and (B-Z2)o,p for all p hold if there is a + 
sign in the table. The last column lists aU primes p for which the principal block 
conjecture is unknown. 
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Theorem 3.4 [8, 2.1J Let X be a finite sporadic simple group with nontrivial 
outer automorphism group. Then (Z2) is valid for Aut(X) = X.2. 

Table 1: Results on (Z2) and the variations of (Z2) 

Group (Z2) (B-Z2)c (B-Z2)o,p (B-Z2)o,p 
valid Vp ? 

Mu + + + -

Ml2 + + + -
M22 + + + -

M23 + + + -

M24 + + + -

J2 + + + -

Suz + + + -

H'S + + + -

McL open open open p = 2,5,11 
C03 + + + -
CO2 + + + -
COI + + + -
He open + open p= 2,5 
~ 

p= 2,3 Fb open + open 
Fi23 open open open p= 2,3,5,23 
Fi24 open + open p= 2,3,23 
H'N + + + -
Th + + + -
B + + + -

M open open open p= 2,3,13,17 
J1 + + + -

O'N + + + -
J 3 + + + -
Ly open open open p= 3,5,67 
Ru + + + -

J 4 open open open p = 2,11,43 

We note that if in the open cases the principal block conjecture (B-Z2)o,p held 
for each prime p then our results would show that already the conjecture (Z2) is 
valid in these open cases. 

With respect to alternating groups An one knows only small cases where (Z2) 
is valido This is the case for 2 ~ n ~ 10 and n = 12 [3]. For central extensions of 
alternating groups the problem seems to be even harder. The only general result 
in this area of simple groups is the following of G. Peterson. 
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Theorem 3.5 [58] (Z2) is valid for symmetric groups. 

Theorem 3.6 [3], [4], [5]. The conjecture (Z2) is valid for all finite simple groups 
of Lie type of rank 1 and of rank 2 which are not of type 2 A3 or 2 A4' 

In the last part of this section we consider the structure of the normalizer of a 
finite subgroup of G within V(ZG). 

Problem 11 . 

a) [The normalizer problem [10, Problem 43]]. Consider G as subgroup 
ofU = U(ZG). Is it true that the normalizer Nu(G) coincides with Z(U) ·G, 
where Z(U) denotes the centre of U? 

b) Let K be a subgroup of G. Is NG(K) = Cu(K) . NG(K)? 

Problem lIa played in the last years a prominent role in the solution of the 
isomorphism problem of integral group rings. 

M.Mazur showed that a counterexample for a finite group to Problem lIa 
would lead to a counterexample for the isomorphism problem for integral group 
rings of infinite groups [49], [50]. K. W . Roggenkamp and A. Zimmermann con­
structed a counterexample to the semilocal analogue of Problem lIa [66], [67]. 
More precisely they constructed a finite group G such that Nu(G) > Z(U) . G, 
where U denotes the group of units of Z1r(G)G and Z1r(G) is the intersection of 
alI the local rings Zp,p a prime dividing IGI. M. Hertweck finally constructed a 
global counterexample to Problem lIa , Le one over Z [21]. With M. Mazur's 
construction this gave as well a counterexample to the isomorphism problem for 
infinite groups. But M. Hertweck used his counterexample to Problem lIa also in 
a crucial way for his construction of a counterexample to the isomorphism problem 
for finite groups. 

The normalizer problem has been considered in many artides within the last 
years, see [35], [36], [22], [27], [41], [51], [52]. We restrict ourselves here to results 
involving simple groups. 

If x is a normalizing element of K, then conjugation by x induces an automor­
phism of K . If K = G then this automorphism is class preserving. By W. Feit 
and G. Seitz class preserving automorphisms of finite simple groups are inner [17] . 
Thus Problem lIa has a positive answer with respect to finite simple groups. The 
normalizer problem has been considered also for infinite groups. It follows from 
[36] or [25] that for groups with no finite normal subgroup the normalizer problem 
is valid, so in particular for infinite simple groups. 

Coleman's Lemma, see [11] or [35, 2.6 Theorem] says that Problem lIb has a 
positive solution provided K is a p - subgroup. Coleman's Lemma implies that 
the automorphism of G induced by a normalizing element of U(ZG) restricted 
to a Sylow p - subgroup coincides with an inner automorphism of G. Thus a 
group automorphism of G whose restriction to an arbitrary Sylow subgroup S 
coincides with an inner automorphism is called a Coleman automorphism. A 
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group automorphism of a finite group which is restricted to a Sylow p - subgroup 
the identity is called p - central. Clearly for each prime p a Coleman automorphism 
may be modified by an inner automorphism "(p such that the composition is p -
central. In [27) it is shown that for each finite sim pIe group G exists at least one 
prime p such that p - central automorphisms of G are inner [27). In particular 
Coleman automorphisms of finite simple groups are inner. This also proves the 
normalizer problem for finite sim pIe groups. Even a little bit more follows. 

Proposition 3.7 Let K be a simple subgroup of the finite group G. Assume that 
K is subnormal in G then Problem 11 b holds for K. 

Proof. Let x be an element of Nu(K) . Let p be a prime such that p - central 
automorphisms of K are inner and choose P E Sylp(K). Clearly there is k E K 
such that x . k normalizes P. By Coleman's Lemma we may write x· k = 9 . c with 
9 E Na(P) and c E Cu(K). Now K9 is subnormal because K is by assumption 
subnormal. K9 n K contains P. On the other hand the intersection of subnormal 
subgroups is subnormal again. Because K is simple it follows that K9 = K. Hence 
conjugation by g-1 . x· k is an automorphism of K and because 9-1 . x· k = c it 
is a p - central automorphism. By choice of p it is conjugation with some I E K. 
Thus conjugation by x on K coincides with conjugation by 9 ·1 . k-1 • This proves 
the proposition. q.e.d. 

The result on Coleman automorphisms of finite sim pIe groups is used to prove 
part a) of the following resulto 

Theorem 3.8 [27J Let G be a finite group. 

a) Assume thatthe center of F* (G) is of odd order and that G / F* (G) has no 
chief factor of order 2 then the normalizer problem has a positive answer. 
In particular this is the case when G has no composition factor of order 2. 

b) If G is soluble and G / O2 (G) has no chief factor of order 2, then the nor­
malizer problem has a positive answer for G. 

The results used to show that Problem lIa is valid for finite sim pIe groups both 
that of [17) and that of [27) depend on the classification of the finite sim pIe groups. 
Using a result of J. Krempa it is shown in [35,3.5 Theorem) that the normalizer 
problem has a positive solution provided each 2 - central automorphism of order 
2 is inner. If G is sim pIe with abelian Sylow 2 - subgroups, then the latter follows 
from Glauberman's Z· - theorem [19, Corollary 5). This gives a classification free 
solution for the normalizer problem for such finite simple groups and illustrates 
the importance of the Z* - theorem. 

Most of the applications of representation theory to the structure of finite 
groups require only ordinary character theory. Glauberman's celebrated z· -
theorem is proved with the aid of modular representations. J. Alperin remarked 
in his lecture at the conference " Richard Brauer (1901 - 1977): Taking his ideas 



Group rings of finite simple groups 273 

into the 21st century " - held in Stuttgart 25.3. - 31.3. 2001 - that no major 
application of integral representation theory to the theory of finite groups has 
been given so far. The analogue to the Z· - theorem for odd primes p, the so -
called Z; - theorem has been linked with the existence of non-trivial central units 
of order p in the principal p - block of a possible counterexample [62]. Can integral 
representation theory contribute to a elassification free proof of the Z; - theorem 
? 

The knowledge about torsion units of integral group rings of finite soluble 
groups has been grown up considerably in the last twenty years [13], [21], [44], 
[64], [73], [70], [76], [77] . This survey makes the attempt to show that some 
progress has been made in the area elose to finite simple groups as well. But in 
contrast to the soluble area there is no general obstruction theory to questions like 
the isomorphism problem. Many results - for example the F* - theorem - wait for 
an analogue for insoluble groups in order to become a result for a general finite 
group. 

The whole development becomes elear if one compares the results known nowa­
days to the content of the elassical books on group rings by S. K.Sehgal [68] and 
D. S. Passman [56]. These two books certainly have had a big influence on our 
present knowledge about group rings. 
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