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Dimension and Fox subgroups 

Ted Hurley 

To Sudarshan K. Sehgal on the occasion of his 65th birthday. 

Abstract:This article is a survey of some results on the 
identification of groups given by ideaIs in the group ring of 
a group over the integers and in certain cases over the inte­
gers modulo p, a prime. Dimension and Lie dimension sub­
groups are discussed in general and also the Fox-type sub­
groups within the free group ring. A new result on identifying 
the generalised Fox subgroups F(n, R, m) = (1+fn • m )nF 
is also given with some applications. 
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Section 1 is concerened with the dimension subgroup conjectures, section 2 
surveys results on the Fox problem, section 3 deals with the modular Fox problem 
and section 4 introduces new results on identifying the generalised Fox subgroups 
F(n, R, m) = (1 + fntm) n F. 

1 The Dimension Subgroup Conjectures: 

1.1 Notation: 

'!lG is the group ring of the group G over the integers '!l: 

ZG = {Lagg: 9 E G,ag E Z}. 

The augmentation ideal of '!lG is Ll( G) = Ker <jJ(ZG -t Z) where <jJ : L: agg r-t 

L:ag • 

Define the Lie powers Ll(i)(G) of Ll(G) inductively by: Ll(I)(G) = Ll(G), and 

Ll (m+!) (G) = (Ll (m) (G), Ll(G) )'!lG 

is the ideal generated by the Lie products (x,y) = xy - yx with x E Ll(m) (G), 
y E Ll(G). 

For subsets H and K of G, the group [H, K) is the subgroup of G generated 
by all commutators [h, k) with h E H and k E K. Let 'rn(G) be the nth. term 
of the lower central series of G; 'rn (G) is defined inductively by: 'rI (G) = G and 
'rn+!(G) = bn(G), G). 

Denote by Dn(G) and D(n)(G) the n th Dimension subgroup and the nth Lie 
Dimension subgroup respectively of G, namely, 
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D(n)(G) = G n (1 + ~(n)(G». 

Denoting by [x, y] the group commutator x-Iy-Ixy, we have 
[x,y]-1 = x-1y-l(xy - yx) = x-Iy-1{(X -1)(y - 1) - (y -1)(x -I)} 
It follows by induction that 

1.2 Problems and results 

The Dimension Subgroup Conjecture refers to the equality Dn(G) = ')'n(G). 
It has a tempestuous history and is notorious for the number of published 

incorrect proofs. 
The Lie Dimension Subgroup Conjecture refers to the equality D(n) (G) = 

')'n(G). 
Early known results: (until about 1972) 

1. Dn(F) = ')'n(F) for a free group F . (Magnus, 19308 ) 

2. The dimension conjecture is true for a group with torsion-free lower central 
factors. (Hall, Jennings.) 

3. Dl (G) = ')'1 (G) and D2 (G) = ')'2 (G). (Exercises!) 

4. D3(G) = ')'3(G) (Higman-Rees, Passi, Hoare, Sandling.) 

5. D4(G) = 14(G) if G is of odd order (Passi). 

6. It is only necessary to prove the Dimension conjecture for finite p-groups. 
(Higman) 

In 1972 [20] Bob Sandling published a very nice paper in which he really got 
to the heart of the matter. He noticed amongst other things that the dimension 
conjecture is not the most natural and, perhaps, the Lie Dimension Subgroup 
Conjecture, that D(n)(G) = In(G), is more appropriate. 

He proved among other things: 

1. D(n)(G) = In(G), for n ~ 6. 

2. D(n)(G) = In(G), for a metabelian group G. (G is metabelian iff 
')'2(')'2(G» = 1.) 

3. 
~(n) (G) = ~(')'n(G»ZG + L II ~(')'n;(G».ZG, 

j 

where the sum is over alI nj, n ~ nj > 1, for which E(nj - 1) = n - 1 
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So in fact Sandling showed that the Lie Dimension Conjecture in a sense goes 
twice as far as the Dimension Conjecture and is true for metabelian groups. 

Note from 
'Yn(G) ç D(n)(G) ç Dn(G). 

that a positive solution to the Dimension Conjecture gives a positive solution to 
the Lie Dimension Conjecture and that a counterexample to the Lie Dimension 
Conjecture yields a counterexample to the Dimension conjecture. 

A major breakthrough came about when Rips [19], in 1972, produced a coun­
terexample to the Dimension Conjecture for the case n = 4. Ris example is a 
metabelian 2-group and is very dever. 

Could it possibly be that the conjecture would be true for some values bigger 
than 4? 

Certainly not but it wasn't until 1990 that N. D. Gupta [8] produced a meta­
belian 2-group 9 (depending on n) such that Dn(9) =j:. 'Yn(9) for all n ~ 4. 

The Lie dimension subgroup conjecture refers to the equality D(n)(G) = 'Yn(G). 
This is known to be true for n ~ 6 and for metabelian groups (Sandling). A 
counterexample must have n > 6 and also must be non-metabelian which makes 
it much more complicated. 

Another complication arises from the fact that 

so that some of the 'dimension' is lost. 
However, Hurley and Sehgal [17] gave examples that disprove the Lie Dimen­

sion conjecture for all n ~ 9. These are also counterexamples to the Dimension 
Subgroup conjecture. 

The examples also yield the fascinating fact for the Dimension subgroup con-
jecture that 

D4m(G) ~ 'Y3m+l(G) for m ~ 2. 
The Dimension conjecture is very far off! 

The following problems then remained unresolved: 

1. 1s the Lie dimension subgroup conjecture true for n = 7 or n = 8 ? 

2. Are the dimension conjectures true for odd order groups? 

3. Find the structure of Dn(G)/'Yn(G). 

In connection with 2. Gupta [7] showed that the Dimension Conjecture is true 
for odd-order metabelian groups. Remember that Sandling showed that the Lie 
Dimension subgroup conjecture is true for all metabelian groups. 

It was then shown by N. D. Gupta and Tahara 1993 [10] that in fact the Lie 
Dimension conjecture is true for n = 7,8. This gave the complete picture: The 
Dimension conjecture is true for n ~ 3 and is false for n ~ 4; the Lie Dimension 
conjecture is true for n ~ 8 and false for n ~ 9. 
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1.3 Restricted Lie Dimension subgroups 

In view of these examples one might expect that 'Yn(G) is the group associated 
with the restricted Lie powers of ~(G). These Lie powers are defined inductively: 

~[l](G) = ~(G), ~[m+1](G) = (~[m](G), ~(G)), 

the additive group generated by the Lie products. 
Define the restricted Lie Dimension subgroup by D[n] (G) = G n (1 + ~[n] (G)). 
It is a nontriviaI result of Gupta and Levin [9) that 'Yn(G) ç D[n](G) . 

Thus 'Yn(G) ç D[n](G) ç D(n)(G) ç Dn(G) "In. 

In [17) a modification of the Lie Dimension counterexamples is given which 
shows that for n 2: 14, D[n](G) t- 'Yn(G). 

There remained the problem of whether the restricted Lie Dimension subgroup 
conjecture holds for those n between 9 and 13 (inclusive). Gupta and Srivastava 
[6] in 1991 modified the examples to show that in fact it does not hold for these 
vaIues and so the generaI restricted Lie dimension problem is solved. 

1.4 Two-torsion 

The counterexamples all involved two-torsion and the intriguing problem remained 
as to whether or not the Dimension subgroup conjecture holds for finite odd order 
groups. This however has been settled very nicely recently by N. D. Gupta [11] 
who showed that the dimension quotients Dn(G)/'Yn(G) of a finite nilpotent group 
are 2-groups. From this follows the truth of the dimension conjecture for odd order 
groups. 

In fact Gupta claims that the exponent of the dimension quotients divide 2 
but this result has not yet appeared. 

2 The Fox subgroups 

Here we change our notation to work with ideais in the free group ring. 

2.1 IdeaIs in the free group ring 

Let R be a normaI subgroup of the free group F. Let ZF be the group ring of F 
over the integers. 

Define f = Ker(ZF ~ Z) and t = Ker(ZF -t Z(FIR)). 
These ideais were used extensively by Karl Gruenberg [2] in his Cohomological 

methods in group theory and are used to generate free resolutions of G ~ FI R. 
Results of Gruenberg [2) (Chapter 3) on bases for these ideais and for factor 

ideais are particularly useful. For example the following is extensively used: "If a is 
free (as a left ideal) ou a set S then alfa is free abelian on the set {s+fa: s E S}". 
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AIso many of the calculations for the dimension subgroups in the last section 
use the free presentation of G ~ F/R, as the factor group of the free group F by 
the normal subgroup R of F, and the work is done within the free group rings of 
F and R. 

2.2 Fox's Problem 

Now define 
F(n, R) = (1 + fnr ) n F 

and call this the n th Fax subgroup of F relative to R. 
The identification of these subgroups is known as Fox's Problem. 
The Fox problem was introduced by R.H. Fox [1] in 1953, in connection with 

his free difJerential calculus. The free differential calculus was devised to solve 
problems in knot theory but has found uses in many different areas. lndeed knot 
theory has recently proved useful in the disentanglement of DNA - see Sumners 
[24] for a discussion on this. 

Solutions to Fox's problem have been given by Yunus [26], Hurley [13], and 
also in Gupta [5]. 

2.3 Statement of the Theorem 

Let H be a subgroup of a group K with K / H nilpotent. 
Define the isolator, IK(H), of H in K as follows. 

IK(H) = {k E K: km E H for some non-zero integer m}. 

Let "Im (G) denote the m th term of the lower central series of a group G and write 
"Im for "Im (F). 

THEOREM 

and the product is over ali s-tuples (h, i2 , ••• , is), with s 2: 2, and with (i1 + 
i2 + ... + is) - i m ~ n for all m, 1 ::; m ::; s. 

The condition (i1 + i 2 + ... + is) - im 2: n for alI m, 1 ::; m ::; s, is of course 
equivalent to (i 1 +i2 +·· '+is)-it 2: n for it = max{i1,i2 , ... ,is}. This viewpoint 
is important when considering the generalisation given below. 

3 The modular Fox subgroups 

We now look at the modular situation where we replace Z by Zp, the integers 
modulo a prime p. 

Let R be a normal subgroup of the free group F. Let ZpF be the group ring 
of F over the integers mod p, where p is a prime. 
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Define fp = Ker(ZpF -+ Zp) and tp = Ker(ZpF -+ Zp(F/ R)). 
Then define 

F(n, R,p) = (1 + f;tp ) n F 

and call this the nth p-modular Fox subgroup of F relative to R. 
When Zp is replaced by Z, the determination of (1 + fnt ) nF is the usual Fox's 

problem, which we now refer to as the the integral Fox problem. 
For a solution to the determination of F(n, R,p) see Hurley, Sehgal [15]. 

3.1 The solution 

A p' -number is an integer relatively prime to p. Let H be a subgroup of a group 
K with K/H nilpotent. Define 

IK,p' (H) = {k E K: km E H for somep' -number m}. 

THEOREM: 

(1 + f;tp) n F = I R,p' (H[R n 'Yil' R n 'Yi2 , •• • , R n 'Yi.1 Pi• II(R n 'Yi)P~;) 

with s ~ 2, j s ~ O, ki ~ 1; where the first product is over all 
s-tuples (h,i2 , .. . ,is ), 

s ~ 2, with pi-(il + i 2 + ... + i 8 ) - im ~ n for ali m, 1 S m S s, and the second 
product is over all i and ki with (Pk; - 1) i ~ n. 

li we let p = 1 in the statement of the Theorem (and then of course there is no 
second product as (1 - l)i is never greater than or equal to n) and a p' -number 
is interpreted as any non-zero integer, then we get a statement of the solution to 
the integral Fox problem. Using this interpretation, this result includes a solution 
of the integral Fox problem. 

The cases n = 1: 

for the modular case and 

(1 + ft) n F = R' 

for the integral case were well-known. The integral one is related to Magnus' 
representation of F/R' in a group of 2 x 2 matrices. 

Define 

Rn(P) = II[R n 'Yit, ... , R n 'Yi.1Pi• II(R n 'Yi)pk
; 

with s ~ 2, js 2: O, ki 2: 1 and where the first product is over alI s-tuples 
(il, i2,· .. , is) with pi- (il + i2 + ... + is) - im 2: n for alI m, 1 S m S s, and the 
second product is over all i and ki for which (pk. - 1) i 2: n. 

The theorem then is that 



Dimension and Fox subgroups 

4 Back to the integral case 

We now look at is the identification of 

F(n, R, m) = (1 + fn~m) n F 

It was shown by Gruenberg [1] that 

F(I, R, m) = (1 + ftm) n F = ')'m+l (R) 
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For the case n = 2, Vermani and Razdan, [24]1996 identified F(2, R, m) for 
m~5. 

The case n = 2 and for all m is due to (Hurley, Sehgal [16]) and is as follows: 

Notice that in this situation there is no "isolator" parto It is deduced then 
that 

')'m+l(R)/(-rm+2(R) * ')'m+l(R n F'») 

is a free abelian group with an explicitly defined basis. 
The general problem turned out to have a few twists and turns. The 'Jacobi' 

identity is a problem and cannot be applied as previously due to problems with 
bracketing. 

4.1 The solution for general n and m: 

Recall that ')'i means ')'i(F). Let C(R) denote the set of commutator subgroups 
derived using commutator bracketing from R n ')'i for any i ~ 1. Each element 
of C(R) has an F-weight, an R-weight and also what we call an Rm-eliminated 
weight. This is a technical definition given below in section 4.3 after the statement 
of the Theorem but it is essentially the F-weight remaining after eliminating m 
of the R n ')'i in a certain manner depending on the bracketing. 

For example: 

W = [Rn')'4,Rn')'3,Rn')'3,[Rn')'4,Rn')'3]] 

has R2-eliminated weight 10 but 

and 
[R n ')'4 , R n ')'3, R n ')'3, R n ')'3, R n ')'4] 

have R2-eliminated weight 9. 
Bracketing matters. 
Then W will be in (l+fl0~2)nF but the other two will only be in (l+f9~)nF. 
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Abbreviate "eliminated" to "el" and "weight" to "wt", and write R-el-wt(W) 
for the Rm-eliminated weight of an element W E C(R) when it is defined. 

The identification then is as follows: 
THEOREM: 

(1 + fntm) nF = IR(llWj ) 

where the product is over all commutator subgroups W j E C(R) with 
R-wt(Wj) ~ (m + 1) and for which Rm-el-wt(Wj) ~ n. 

Notes: 
1. For m = 1 it may be checked that each Wj can be taken to have the form 

[Rit,Ri2, ... ,Ri.] with s ~ 2 and (i1 + i 2 + ... + is) - ik ~ n where ik is the 
maximum of {i1 , i 2 , . . . , is}j as noted previously this is precisely the result for the 
original Fox problem stated in terms of the R1-el-wt. 

2. Both 'Ym+1(R n 'Yn) and 'Yn+m(R) are in the productj these are the "ex­
tremities" so that if any W j is in the product with R-wt(Wj ) ~ n + m then 
Wj ç 'Yn+m(R) (and may be absorbed into 'Yn+mR)j if R-wt(Wj) = m + 1 (ex­
actly) then Wj ç 'Ym+1(Rn'Yn). 

3. For the case n = 2 it is known - see [16] - that precisely these extremities 
come up and that the "isolator part" is omitted. 

4.2 When can the "isolator part" be omitted? 

It would be interesting to know for which groups G = F/R the "isolator part" of 
the formula can be omitted, i.e. for which groups is 

(l+fntm )nF=llWj 

where -Wj is as in thestatement of theTheorem. 
C.K. Gupta and N.D. Gupta [3J identifies F(n,F' , 1), i.e. the case m = 1 and 

R = F', the commutator subgroup of F, and there is no "isolator" part in the 
formula. 

What is likely is that the isolator part may be omitted when G has torsion-free 
lower central factors. This may be verified for the free polynilpotent groups and 
gives rise to some interesting varieties. 

See for example Hanna Neumann [18] for background to varieties, fully invari­
ant subgroups, free polynilpotent groups and residual properties. 

Note that if R is fully invariant in F then so is (1 + fntm) n F and hence 
F/(1 + fntm) n F is a free group in a variety. Call such a variety a Fox variety. 
Substituting a free polynilpotent group for R will thus give rise to a Fox variety 
and some interesting ones arise from the Theorem. 

Define R = 1'11'2·. ' 'Yn+1 inductively to be 1'1 b2 ... 'Yn+l) and this is the term 
of the polycentral series of F reI ative to the sequence {'Y1, 1'2, . .. , 'Yn+l} - recall 
that 'Yn means 'Yn(F). Then in this case, F/F(n,R,m) is a Fox variety and so is 
residually(torsion-free nilpotent) and residually(a finite p-group) for ali primes p, 
since by [14] it inherits these residual properties of F/R. 
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For example if we take R = 'Y3(F) and m = 2 then the theorem gives that 
F(n, R, 2) = 'Y3'Y3 for n:S 3, 
F(4, R, 2) = 'Y3'Y4 * 'Y473, 
F(5, R, 2) = 'Y3'Y5 * 'Y4'Y3, 
F(6, R, 2) = 'Y3'Y6 * 'Y473· 
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This would imply for example that F/b3'Y4 * 'Y4'Y3), F/b3'Y5 * 'Y4'Y3) and 
F/b3'Y6 * 'Y473), are all residually(torsion-free-nilpotent) and residually(a finite 
p-group) for all primes p. These are the free groups in the varieties "(nilpotent­
of-class-2 by nilpotent-of-class-t) n (nilpotent-of-class-3 by nilpotent-of-class-2)" 
for t = 3,4,5 . 

The cases n ~ 7 become more complicated so for example F(7, 'Y3, 2) = 'Y3'Y7 * 
[['Y4, 'Y3], h4, 'Y3]] * 'Y5 'Y3· 

More generally let R = 'Yt. a general term of the central series, and then 
from the theorem it follows that F( t + i, 'Yt, m) = 'Ym+l 'Yt+i * 'Ym+2'Yt for 1 ~ 
i :s t and hence for these t, F / bm+l 'Yt+i * 'Ym+2'Yt), the free group in the variety 
"(nilpotent-of-class-m by nilpotent-of-class-(t+i-1) ) n (nilpotent-of-class-(m+1) 
by nilpotent-of-class- ( t -1) )" , is resid ually ( torsion-free-nilpotent) and resid ually( a 
finite p-group) for all primes p. 

Other interesting Fox varieties can be obtained by substituting some more 
terms of the polycentral series for R and applying the theorem. 

4.3 Technical definition: 

Let C(R) denote the set of commutator subgroups derived using commutator 
bracketing from Rn'Yi , i ~ 1. For the purpose of assigning weights to the elements 
of C(R) we consider R n 'Yi = Ri as simply an expressíon. 

Define the F-weight of R n 'Yi to be i and its R-weight to be 1. 
Suppose P, Q are commutator subgroups in C(R) and that F-wt(P), F-wt(Q), 

R-wt(P), and R-wt(Q) have been defined. Then define: 
F-wt([P, Q)) = F-wt (P) + F-wt(Q) and R-wt([P, Q)) = R-wt(P) + R-wt(Q). 
With W E C(R) and when R-wt(W) ~ m, define the Rm-el-wt of W, written 

Rm-el-wt(W), as follows. (This weight should be considered as a weight in F 
rather than a weight in R and is not related to the R-weight.) 

R1-el-wt(R n 'Yi) is defined to be O. 
If now P, Q E C(R) then define Rl-el-wt([P, Q]) to be 
min {F-wt(P) + R1-el-wt(Q), F-wt(Q) + Rl-el-wt(P)}. 
For example the Rl-el-wt of [Ri17 Rõ2 , ••• ,Ri,] is 2:~=i ij -max{i1,i2,'" ,it}. 

Compare this with the solution to Fox's problem given above. 
Suppose now P, Q E C(R), R-wt([P, Q]) ~ u and that the Rt-el-wt(P) and 

Rt-el-wt(Q) have been defined for t < u. 
First we define the RU-el-wt([P, Q)) in the case when R-wt(P) ~ R-wt(Q) and 

then define RS-el-wt([P, Q)) = R 8 -el-wt([Q, P)) when R-wt(P) < R-wt( Q) 
Suppose then R-wt(P) = t and R-wt(Q) = s and t ~ s. 
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(i) If s :::: u, then RU-el-wt([P, Q]) is defined to be the 
min{F-wt(P) + RU-el-wt(Q) , F-wt(Q) + RU-el-wt(P)} 

(ii) If t :::: u > s, then RU-el-wt([P, Q]) is defined to be 
min{RU-S-el-wt(P) , F-wt(Q) + RB-el-wt(P)} 

(iii) If u > t :::: s, then R 8 -el-wt([P, Q]) is defined to be 
min{ Ru-s-el-wt(P) , Ru-t-el-wt( Q)} 

Note that for (iii) , s + t :::: u so that O < u - s ~ t and O < u - t ~ s. 
End of technical definition. 

4.4 Problems 

(i) Identify in general 

(ii) Generalise the modular case. 

Problem (i) is likely to be very difficult. When n = 1, t = 1 and for general 
m, Stõhr [22] proves that (1 + ftmf) n F = IR([í'm+1(R),F]). Here though the 
'isolator part' may not be removed even for m = 1 and R = F' (for this see C.K. 
Gupta [4]). 
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